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ABSTRACT

Off-road autonomous driving poses significant challenges such as navigating di-
verse terrains, avoiding obstacles, and maneuvering through ditches. Addressing
these challenges requires effective planning and adaptability, making it a long-
horizon planning and control problem. Traditional model-based control tech-
niques like Model Predictive Path Integral (MPPI) require dense sampling and ac-
curate modeling of the vehicle-terrain interaction, both of which are computation-
ally expensive, making effective long-horizon planning in real-time intractable.
Reinforcement learning (RL) methods operate without this limitation and are
computationally cheaper at deployment. However, exploration in obstacle-dense
and challenging terrains is difficult, and typical RL techniques struggle to navi-
gate in these terrains. To alleviate the limitations of MPPI, we propose a hier-
archical autonomy pipeline with a low-frequency high-level MPPI planner and
a high-frequency low-level RL controller. To tackle RL’s exploration challenge,
we propose a teacher-student paradigm to learn an end-to-end RL policy, capa-
ble of real-time execution and traversal through challenging terrains. The teacher
policy is trained using dense planning information from an MPPI planner while
the student policy learns to navigate using visual inputs and sparse planning in-
formation. In this framework, we introduce a new policy gradient formulation
that extends Proximal Policy Optimization (PPO), leveraging off-policy trajecto-
ries for teacher guidance and on-policy trajectories for student exploration. We
demonstrate our performance in a realistic off-road simulator against various RL
and imitation learning methods. Source code and videos are available at this link.

1 INTRODUCTION

Autonomous ground vehicles have advanced significantly in recent years, with applications such
as delivery robots and self-driving taxis. While great progress has been made in structured, ur-
ban environments, navigating off-road terrains remains a major challenge. Unlike on-road driving,
off-road driving requires effective planning to avoid obstacles, speed management to navigate ex-
treme slopes, and rapid adaptive maneuvers to handle varied traction levels and terrains such as
dirt, sand, and rocks. Hence, it requires sophisticated control techniques to traverse in these chal-
lenging terrains. Successfully navigating large, unstructured environments also depends on effective
long-distance planning, making it both a long-horizon planning and adaptive control problem.

Conventional control methods for off-road vehicles often depend on model-based techniques, like
Model Predictive Path Integral (MPPI) (Han et al. (2024); Williams et al. (2015)). Model-based
techniques rely on environmental details, such as segmentation maps and depth maps, to provide
waypoints for a low-level controller. These methods necessitate very dense sampling of waypoint
rollouts to effectively avoid obstacles and manage diverse terrains. However, this dense sampling
requirement is computationally expensive, making it impractical to run these controllers in real-time
for simultaneous globally optimal trajectory planning and terrain handling. Some attempts have
been made to improve sampling efficiency by learning a state-dependent control action distribution
and learning a terminal value function (Qu et al. (2024); Hansen et al. (2022)), thereby reducing
required number of samples and planning horizon.

Reinforcement learning (RL) is highly effective for tackling complex, high-dimensional, and se-
quential tasks that are often challenging for traditional control methods. RL models typically utilize
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Figure 1: Illustration of the proposed hierarchical autonomy framework, integrating an MPPI plan-
ner and an RL controller for off-road navigation. During deployment, the framework enables effec-
tive global planning through MPPI while reducing the need for frequent costly sampling. During
training, the planner plans at different granularity, facilitating training of a teacher policy using dense
waypoints. The teacher’s demonstrations facilitate effective exploration during the training of the
student policy through updates provided by TADPO.

neural networks with a limited number of layers, enabling rapid inference. This capability also
allows them to execute swift action maneuvers effectively in response to diverse terrains which is
impossible with model-based planners. However, in an off-road environment, when attempting to
avoid obstacles and ditches, RL methods face significant challenges in exploration, often render-
ing it difficult to learn these complex tasks effectively. Specifically in applications like off-road
autonomous driving where environment simulation is relatively costly, environment transition dy-
namics are highly stochastic, and dense rewards can encourage expediency, exploration is hard with-
out guidance from an external source or access to global planning information. Some works have
explored end-to-end RL methods (Kalaria et al. (2024); Hensley & Marshall (2022); Wang et al.
(2023)) for specific aspects of off-road driving. However, they lack a planning component and re-
alistic simulation, making these methods significantly less suitable for realistic off-road autonomy.
Some works (Kendall et al. (2018); Isele et al. (2018); Fayjie et al. (2018)) have attempted to ad-
dress specific aspects of on-road driving using RL. However, the challenge there is the unpredictable
behavior of the other actors rather than the variability of the terrain.

Proximal Policy Optimization (PPO) proposed by Schulman et al. (2017) is a popular RL framework
that allows for stable on-policy learning. Despite its advantages, PPO faces limitations in effective
exploration as it relies on random actions sampled around the policy’s intended action for explo-
ration. Because of this, in the proposed off-road driving problem, training a policy with PPO for
waypoint distances greater than tens of meters faces significant exploration challenges, and attempt-
ing to master multiple off-road navigation skills particularly in avoiding obstacles and navigating
extreme slopes leads to ineffective policy training and failure to complete the task. Therefore, our
goal is to distill planning information from a teacher trained with the aid of a dense planner on a
reduced observation space, while a student learns off-road traversal using an extended observation
space without access to the computationally expensive planning data.

Since PPO is on-policy, it can only be trained on trajectories collected from its own policy and cannot
incorporate external guidance. Attempts to incorporate demonstrations in PPO have been made,
though with notable limitations. PPO+D (Libardi & Fabritiis (2021)) extends PPO by incorporating
a single off-policy trajectory into the training process. This approach modifies the PPO replay buffer
to include three components: Dr for successful trajectories, Dv for failure trajectories and D for the
currently sampled trajectories. When sampling from Dv , the paper employs value-based sampling,
which becomes impractical for tasks that involve large replay buffers with visual inputs. In off-road
driving, navigating diverse terrains requires a broad range of skills, making large buffers for the
teacher demonstration replay and the failure replay buffer in PPO+D crucial. This necessity renders
PPO+D unsuitable for the task.

There have been a few attempts to learn policies from demonstrations and through a teacher-student
framework in autonomous vehicles. Peng et al. (2022) use off-policy methods like SAC and choose
actions between a teacher and student policy to solve simpler tasks like lane following and obsta-
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cle avoidance. Some teacher-student paradigms, such as those using Deep Q-network Hester et al.
(2017), focus on discrete action spaces. Kang et al. (2018); Martin et al. (2021) use existing off-
policy methods like Soft Actor-Critic (SAC) to update a student policy. In complex planning and
control tasks, these methods tend to be less stable during training (James W. Mock (2023)). There-
fore, we use PPO as our RL training method.

To address the limitations of MPPI, we propose a hierarchical end-to-end pipeline that integrates a
high-level MPPI planner with a lower-level reinforcement learning controller focused on adaptive
execution for effective obstacle avoidance and navigation through challenging terrains. To resolve
the exploration issues of PPO, we propose a novel method, Teacher Action Distillation with Policy
Optimization (TADPO), which extends PPO to optimize policy based on trajectories collected by
an expert teacher policy.

2 BACKGROUND

We formulate the low-level control of the off-road driving problem as a Markov Decision Process
(MDP), represented by the tupleM = (S,A, P, r, γ), where: S is the state space, A is the action
space, P (s′|s, a) is the transition dynamics function, r : S × A → R is the reward function, and
γ ∈ [0, 1) is the discount factor. Our objective is to identify an optimal policy π∗ such that

π∗ = argmax
π

Eπ

[ ∞∑
t=0

γtr(st, at)

]
(1)

2.1 POLICY GRADIENT OPTIMIZATION METHODS

A common family of on-policy RL methods uses a policy gradient to optimize policies. A key aspect
of policy gradient methods, is that the gradient is computed with respect to the distribution of states
induced by the current policy. By utilizing this distribution, policy gradients can be derived from the
expected return, facilitating updates to the policy parameters. In general, the policy gradient has the
form:

∇J(θ) = Eτ∼πθ

[
∇ log πθ(at|st)Â(st, at)

]
(2)

where τ is a trajectory and Â is the advantage estimate.

Proximal Policy Optimization PPO, proposed by Schulman et al. (2017), improves traditional
policy gradient methods by limiting large policy updates through a clipped surrogate objective to
optimize θ:

LCLIP(θ) = Et

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
(3)

LVF(θ) = Et

[
(Vπθold

(st)−Rt)
2
]

(4)

Lentropy(θ) = Et [−H[πθ(·|st)]] (5)

LPPO(θ) = LCLIP(θ)− c1LVF(θ) + c2L
entropy(θ) (6)

where rt(θ) = πθ(at|st)
πθold (at|st) is the probability ratio of the action in distribution πθ(at|st) and

πθold(at|st), Ât =
∑t+T

i=t (γλ)
i−tδi is the generalized advantage estimate with δt = Rt +

γVπθold
(st+1) − Vπθold

(st), Rt =
∑t+T

i=t γ
i−tr(si, ai) + γT−t+1V (sT+1) is the discounted return,

and T is the number of transitions, H[πθ(·|st)] is the entropy of the policy’s action distribution
given state st, and the value function Vπθold

(st) is the expected return of state st. LPPO updates the
actor towards the more advantageous actions at state st, and LVF updates the value function so it
represents the expected return of the policy for the current state, Lentropy encourages exploration by
the policy and c1, c2 are constants. Instead of making unrestricted updates to the policy, PPO intro-
duces a clipping mechanism to ensure that policy updates remain within a constrained region, which
stabilizes training and leads to more reliable convergence.

It is important to note that the advantage estimate Ât reflects how much advantageous the current
action at is compared to the expected value of the state, represented by Vπθold

. Thus, the gradient
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update from equation 6 is meaningful only when Vπθold
sufficiently represents the expected return of

the actor of policy πθold . This intuition is a crucial insight for equation 10 in our proposed method.

For tasks that encounter exploration challenges due to complex planning requirements, PPO fails to
learn effective policies (Libardi & Fabritiis (2021)). Introducing undirected randomness to the actor
can lead to inefficient exploration because the random actions may not be strategically aligned with
the task objectives. This lack of direction leads the agent to explore suboptimal areas, hindering
policy improvement in complex environments where targeted exploration is essential. Therefore, it
is necessary to distill this planning knowledge while training PPO using a teacher expert. As PPO
is an on-policy algorithm, it lacks the ability to learn from off-policy trajectories in the form of
demonstrations. This limits its application in tasks where exploration is difficult.

2.2 MODEL-BASED CONTROL

Model Predictive Control (MPC) is a traditional control framework that uses sampling or optimiza-
tion techniques to minimize a cost function, making it effective for generating control action in
complex, nonlinear systems. The optimal action sequence a∗ is chosen via

a∗ = argmin
a

h∑
i=0

C(si, ai) (7)

where C is the cost function, si is the state, ai is the action at step i and h is the horizon. Some
techniques for selecting optimal actions are Cross-Entropy Method (CEM) Kobilarov (2012) and
Model Predictive Path Integral (MPPI) Williams et al. (2015). MPPI is a sampling-based method that
applies importance-weighted optimization to generate control outputs. CEM is a sampling-based,
iterative optimization technique that refines a probability distribution over control parameters for
robust control outputs. MPPI has proven popular in recent literature due to its high parallelizability
and speed.

3 TADPO: TEACHER ACTION DISTILLATION WITH POLICY OPTIMIZATION

As illustrated in Figure 1, we formulate a new method to train a student policy π capable of local
execution to be used in conjunction with a sparse global MPPI planner by combining on-policy
exploration with off-policy distillation. The same MPPI planner also generates dense waypoints
spanning the sparse waypoints to train a teacher policy µ. Demonstrations generated by the teacher
policy then provides guidance to facilitate exploration and learning of the student policy.

3.1 TEACHER ACTION DISTILLATION POLICY GRADIENT

For a pre-trained teacher policy µ, we define the loss L used for training a student policy π. This
loss is applied exclusively to trajectories sampled from the teacher, meaning that actions are drawn
from µ at each time step, at ∼ µ.

LTAD(θ) = Lµ(θ) + c2L
entropy(θ) (8)

ρt(θ) =
πθ(at|sπt )
µ(at|sµt )

(9)

∆̂t = R(at, st)− Vπθold(s
π
t ) (10)

Lµ(θ) = Eat∼µ

[
max

(
0,min(ρt(θ), 1 + ϵµ)∆̂t

)]
(11)

whereLentropy is defined as in equation 5. Note that the teacher policy µ and the student policy π have
distinct observation spaces given the same environment state, denoted by sµt , s

π
t , st respectively.
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Figure 2: This diagram shows the policy update process when sampling from the teacher demonstra-
tion replay buffer. This update process only updates the actor and the feature encoder of the policy
and uses the critic as the measure of the relative advantage between teacher action to the student
performance given the observation.
The likelihood ratio defined in equation 9 resembles the one used in PPO when Ât > 0. We
substitute the likelihood of at under πθold with the likelihood under µ. ρ quantifies the difference
between πθ and µ and clipping ρ restricts gradient updates to the policy when ρ exceeds 1 + ϵµ,
where ϵµ is a hyperparameter.

1 1 + ϵµ
ρ · sign(∆̂)

Lµ

Figure 3: A single timestep of the teacher distillation loss function Lµ as a function of ρ ∗ sign(∆̂).
The intended effect of the Lµ formulation is that student policy only learns from the teacher policy
when the return by the teacher demonstration is higher than the expected return of the student given
the state and not too much more likely (controlled by clipping factor ϵµ) to predict such action,
thereby ensuring stability of policy during training.

In equation 10, ∆̂t measures the advantage between the discounted reward from st collected using
the teacher policy and the expected student policy return Vπθold

(sπt ). As Vπθold
(sπt ) represents ex-

pected return of πθold at st, ∆̂t is positive when the teacher trajectory earns a higher reward than the
expected student return and negative vice-versa. Hence, the update to πθ is relative to the student’s
value function over the actions generated by µ. This is an extension of the advantage function for
off-policy trajectories.

As Figure 2 shows, during the TADPO update, only the actor network and the feature encoder are
updated using LTAD as in equation 8. The value function is only updated using trajectories generated
by the student exploration process according to the intuition provided in 2.1.

Figure 3 gives an visualization of the value of distillation function as a function of ρ and ∆̂. Using ρ
and ∆̂ in equation 8 ensures that the policy gradient only propagates when (i) the teacher trajectory
rewards are higher than the expected student return and (ii) the student’s likelihood of performing
the same action at is not significantly higher than that of the teacher. Also similar to PPO, Lentropy

in equation 8 regulates the exploration of the student policy.

A key observation is that in pure policy gradient methods, gradient computation means the policy
improvement occurs only over a state distribution induced by the existing policy. However, it is both
reasonable and feasible to improve the policy over other distributions. In particular, if one happened
to already know the optimal distribution, or at least a better distribution, it could be advantageous to
focus policy updates on that. Our modified algorithm does exactly that. Even if trajectories sampled
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according to the existing (poor) student policy would be unlikely to visit some state st, π(·|sπt ) can
still be optimized using signals generated from the teacher trajectories.

3.2 TRAINING PROCEDURE

Teacher action distillation with policy gradients involves optimizing an actor function while simulta-
neously bootstrapping a value function with the expected return of that actor. Consequently, training
a policy with TADPO requires interlacing trajectories sampled from both the teacher and student
policies. Thus in on-policy settings, training the policy in separate phases of imitation learning
and reinforcement learning does not yield a sufficiently accurate student value function, hindering
effective learning from teacher trajectories.

We then propose algorithm 1 to enable the simultaneous training of the actor using teacher trajecto-
ries and student trajectories. In our implementation, ∆̂t is normalized to have standard deviation 1
in every mini-batch since the reward definition is unbounded.

Algorithm 1 TADPO

1: Input: Teacher policy µ, Student policy π, Teacher sample probability p
2: Return: Parameters of student policy θ
3: Collect Nµ teacher transitions Bµ ← {τtat∼µ

= (sµt , at, Rt, µ(at|sµt ))}
4: for iter = 1 to I do
5: Collect Nπ student transitions Bπ ← {τtat∼πθold

= (sπt , at, Rt, πθold(at|sπt ))}
6: for epoch = 1 to K do
7: while Bπ ̸= ∅ do
8: r ∼ U(0, 1)
9: if r > p then

10: Sample n transitions τ ← τt ∼ Bπ without replacement
11: θ ← PPOUpdate(τ)
12: else
13: Sample n transitions τ ← τt ∼ Bµ without replacement
14: θ ← TADPOUpdate(τ)
15: end if
16: end while
17: Reinitialize Bµ and Bπ

18: end for
19: end for

3.3 OFF-ROAD AUTONOMY STACK

As shown in Figure 1, we use two subsystems to achieve off-road autonomous driving: an MPPI-
based high-level planner that generates waypoints towards a predefined goal using coarse, global
information; and a RL-based controller that learns to track sparse waypoints using local information.

The MPPI planner for this problem is designed in accordance with Han et al. (2024), with the same
cost function. For the teacher policy, MPPI provides dense waypoints and is referred further as
MPPI-d. The teacher is a PPO controller trained to track provided MPPI-d waypoints, analogous to
the hybrid controller for quadrupedal robots in Jenelten et al. (2024). During training and deploy-
ment of the student policy, MPPI provides sparse waypoints and is referred to as MPPI-s. Because
of the high runtime cost of the MPPI-d planner, when generating teacher demonstrations, a fixed,
pre-computed set of expert MPPI-d waypoints are used. By training with different waypoint dis-
tances, responsibility for planning at intermediate distances is shifted from the MPPI-d planner to
the student policy controller. This allows for much faster and less frequent planning at deployment.
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4 RESULTS AND DISCUSSIONS

4.1 EXPERIMENT SETUP

Observation and Action Spaces We combine proprioceptive states with visual input for both the
teacher and the student policies. The proprioceptive observation includes the vehicle’s normalized
speed, roll, pitch, and encodings of the current and next waypoint are provided, with the teacher
using densely planned waypoints and the student using sparsely planned waypoints, as detailed in
4.1 and A.5.

The visual observations consist of top-down views for planning and a forward camera for obstacle
avoidance, with the teacher policy using a local top-down image and the student policy employing
a wider-area image with a lower spatial resolution. Both utilize a stack of 3 historical frames for the
final observation. The controller directly outputs throttle and steering commands. More information
about the observation and action spaces can be found in A.5 and A.6 respectively.

Reward Function The reward function we designed for off-road navigation includes five key com-
ponents. The progress reward encourages movement toward the goal by measuring the reduction in
distance between the vehicle’s current and previous positions, while collision and damage penalties
address vehicle safety, a jerk penalty discourages sudden acceleration changes, and a success reward
is granted for reaching waypoints. More details about reward functions can be found in A.9.

(a) Training set examples. (b) Test set examples. (c) Vehicle in the simulator.

Figure 4: Figure (a) shows example trajectories in the training set where the teacher policy is trained
and demonstrations are collected. Blue dots are waypoints as observed by the teacher, and red dots
are waypoints as observed by the student. Figure (b) shows examples from the test set, and only
student waypoints are shown in white. The largest waypoint at the end of each trajectory is the goal.
Both sets cover a diverse set of terrain that include obstacles at different scales, ditches, and cliffs.
Figure (c) shows the vehicle running over a variety of terrain in simulation and two examples of
camera views as observed by the controller.

Training, Demonstration, and Testing Datasets We train both the teacher and the student over
the same large map of a desert terrain. For any given start and goal position, we use a sparse global
map and a global MPPI planner to generate waypoints of 80 m apart. We choose a fixed set of
start, goal position pairs to serve as teacher training and demonstration trajectories. Using the MPPI
planner supplied with a detailed local semantic segmentation map and associated depth information,
we generate dense waypoints 6 m apart to span the intervals between the sparse 80m waypoints. A
similar set is generated to serve as the test trajectories on which we evaluate all learned policies. For
methods where expert labeling is required, we generate static, dense waypoints at the beginning of
each episode.

We chose these trajectories to cover a range of offroad obstacles. As illustrated in Figure 4b, they
can qualitatively be categorized as terrains with: i) positive obstacles, ii) extreme slopes, or iii) a
hybrid of the preceding categories. The positive obstacles observed on the testing terrain mainly
consist of natural obstacles (e.g. boulders and trees) and artificial obstacles (e.g. parked trailers,
fences, etc.). Extreme slopes include ditches and sandy cliffs.

7
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For teacher demonstrations, we collected 15 trajectories for (i) and (ii) each, and 20 for (iii). For
evaluating models, we collected 8 for (i) and (ii) each, and 15 for (iii).

Evaluation Metrics We aggregate the evaluation performance of each policy over the test trajec-
tories. For policies that produce an action distribution, we deterministically choose the mode of the
distribution as the selected action. For each episode, we define the following metrics, with values
normalized to the range [0,1]:

• Success Rate (sr): sr = 1 if the vehicle is within a completion radius r of the goal
position. sr = 0 otherwise.

• Completion Percentage (cp): cp measures the maximum progress the vehicle made to-
wards the goal position, normalized by its initial distance to the goal position.

• Mean Speed (ms): ms is the mean speed of the vehicle during the episode.

More details about the metrics are included in A.7

Simulator We use BeamNG (BeamNG GmbH) as the simulator for our offroad vehicle. Visual
example of the test vehicle driving in simulator is provided in Figure 4c. Further details regarding
the simulator can be found in A.10.

4.2 RL AND IMITATION LEARNING BASELINES

Controller Planner Extreme Slopes Obstacles Hybrid

sr cp ms sr cp ms sr cp ms

Teacher MPPI-d 0.88 0.94 5.83 1.00 1.00 5.91 0.94 0.96 5.69

DAgger MPPI-s 0.00 0.58 1.96 0.00 0.83 1.62 0.00 0.79 1.68
Vanilla PPO MPPI-s 0.00 0.14 0.38 0.00 0.25 0.49 0.00 0.37 0.40

PPO+BC MPPI-s 0.00 0.25 0.94 0.00 0.40 0.78 0.00 0.32 0.84
Vanilla SAC MPPI-s 0.00 0.01 1.71 0.00 0.16 1.64 0.00 0.24 1.61

SAC+Teacher MPPI-s 0.00 0.50 1.21 0.00 0.29 1.24 0.00 0.58 1.24
IQL MPPI-s 0.25 0.49 4.85 0.13 0.71 5.01 0.07 0.76 5.03

TADPO† MPPI-s† 0.75 0.87 4.99 0.85 0.96 5.26 0.67 0.88 5.30

Table 1: Our method (†) compared with baselines, where sr denotes success rate, cp denotes
average completion percentage, and ms denotes mean speed. MPPI-d refers to the local planner
which outputs dense waypoints. MPPI-s refers to the global planner which outputs sparse waypoints.
“Extreme Slopes” and “Obstacles” represent the challenging trajectories within the test set, while
“Hybrid” refers to a combination of simpler and difficult trajectories. More information regarding
the metrics is in A.7

Table 1 provides a comparison of our method with various RL and imitation learning baselines. Be-
low, we briefly describe various intuitive and pre-existing RL baseline methods and their integration
into our setup. All these policies that utilize teacher guidance are trained with same teacher trajec-
tories using dense waypoint guidance from the MPPI planner. We also provide their quantitative
performance in our test environment and discuss the reasons for any observed poor performance.
We also provide their training reward curves in A.2.

4.2.1 IMITATION LEARNING METHODS

DAgger DAgger Ross et al. (2011) provides a straightforward method for supervising the policy
by allowing queries to a teacher during training. Initially, the teacher trajectories are utilized for
behavior cloning (BC) on the student. Subsequently, the student policy is enhanced by penalizing
the discrepancy between the actions predicted by the student and those of the teacher at each state
encountered. In complex environments like off-road driving, DAgger fails because of compounding
errors. As the policy accumulates error and deviates from expert trajectories, it encounters unseen
or irrecoverable states, thus severely degrading its performance.
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4.2.2 ON-POLICY METHODS

Vanilla PPO Vanilla PPO is trained as described in 2.1. This method does not utilize demon-
strations from a teacher and is trained only on sparse waypoints. As described in 2.1, Vanilla PPO
encounters exploration challenges in obstacle-rich terrains, which hinders its ability to learn an op-
timal strategy. Without guidance, the policy fails to differentiate between various types of terrains
and defaults to a sub-optimal, overly-cautious strategy.

PPO+BC A naive approach to distill teacher actions into the student is to incorporate a KL diver-
gence loss between the predicted action distributions of the student and teacher. PPO+BC introduces
a loss term that aligns the policy π with the teacher policy µ across all encountered states. The vanilla
PPO loss function is modified to LKL for training.

LKL = LPPO − βKL[π(at|sπt ), µ(at|s
µ
t )] (12)

While this provides strong supervision, a issue similar to DAgger arises when the student queries the
expert from out-of-distribution states and optimizes using sub-optimal action labeling. Additionally,
the updates from the KL divergence term are unconstrained, which leads to unstable training and
results in convergence to a sub-optimal policy.

4.2.3 OFF-POLICY METHODS

Vanilla SAC SAC (Haarnoja et al. (2018)) is an off-policy RL algorithm that optimizes a stochastic
policy and value function, enabling efficient and stable learning for continuous control tasks. SAC
struggles in our high-exploration, multi-task setup because its entropy maximization can lead to
excessive exploration of irrelevant actions, reducing its focus on task-specific objectives. This makes
it less effective in environments requiring targeted exploration and adaptation to multiple tasks with
distinct strategies.

SAC+Teacher As an off-policy algorithm, SAC can utilize trajectories from teacher demonstra-
tions without requiring any modifications to the algorithm. A portion of the replay buffer is pre-
populated during the training. In this case, the buffer size remains consistent with TADPO, with the
teacher trajectory ratio set at p = 0.5. As also shown in Yu et al. (2019), SAC does not perform well
when it has to handle various different kinds of tasks (in this case, a very diverse set of terrains).

IQL Implicit Q-learning (Kostrikov et al. (2021)) which extends Q-learning and actor critic meth-
ods is an off-policy reinforcement learning method that estimates Q-values without directly opti-
mizing a policy, allowing the agent to implicitly select actions that maximize the value function.
It is used in our teacher-student setup by following the actions suggested by the teacher’s demon-
strations, reinforcing behavior through the learning of Q-values associated with those actions. IQL
demonstrates some success in navigating extreme slope terrains, but its overall performance does
not match that of TADPO. As noted in Janner et al. (2022), IQL excels in single-task scenarios but
faces challenges in multi-task environments, such as off-road autonomy. Given that off-road auton-
omy involves dynamically handling obstacle avoidance and rapid changes in how the vehicle and
terrain interacts, IQL struggles to perform effectively in this setup.

4.3 MODEL-BASED BASELINES

The first section of Table 2 provides performance of the planner baselines for comparison. These
planners are run while simulation is paused, allowing them to provide the next action before contin-
uing. They show that with enough samples and planning horizon, these planners perform similarly
well. The trained dense waypoint tracking policy, while following MPPI-d waypoints, perform sim-
ilarly to a PID controller, but is more aggressive as indicated by its higher mean speed.

A key difference between these planners is their time of inference. We observe that inference time
is more sensitive to h than N , which reduces long-horizon understanding and, in turn, degrades
real-time performance. Compared to MPPI, CEM takes a more iterative approach to sampling and
evaluating action sequences, thus requires more compute time to plan. RL+MPPI enhances MPPI

9
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by learning a terminal value function and a state-dependent action distribution, thereby reducing its
required number of trajectories sampled and sampling horizon.

Planner Controller Extreme Slopes Obstacles Hybrid

sr cp ms sr cp ms sr cp ms ti

CEM-d PID 0.88 0.96 5.51 1.00 1.00 5.16 0.87 0.94 5.13 3.47
MPPI-d PID 0.88 0.96 5.39 1.00 1.00 5.87 0.87 0.94 5.43 2.02

RL+MPPI-d PID 0.88 0.96 5.26 1.00 1.00 5.88 0.87 0.94 5.40 1.77
MPPI-d Teacher 0.88 0.94 5.83 1.00 1.00 5.91 0.94 0.96 5.69 2.02

CEM-d∗ PID 0.38 0.49 5.52 0.25 0.38 5.16 0.27 0.43 5.13 0.13
MPPI-d∗ PID 0.38 0.57 5.43 0.25 0.48 5.48 0.27 0.46 5.54 0.12

RL+MPPI-d∗ PID 0.38 0.61 5.32 0.25 0.50 5.46 0.27 0.52 5.63 0.12
MPPI-s†∗ TADPO† 0.75 0.87 4.99 0.85 0.96 5.26 0.67 0.88 5.30 0.002

Table 2: Our method (†) compared with baselines, where sr denotes Success Rate, cp denotes
Completion Percentage, ms denotes mean speed, and ti is the Time of Inference for one control
step. ∗ denotes allotting a limited compute budget for main control loop necessary for real-time
deployment. -d denotes planning at dense waypoint distances while -s denotes planning at sparse
waypoint distances.

When running in real-time (as shown in the second section of Table 2), all three methods degrade
drastically in performance because of a significantly reduced horizon h and number of sampled
trajectories N . This forces the planner to generate globally suboptimal waypoints, leading to worse
performace. Because of the sparsity of the waypoints, MPPI-s can be run in parallel as the TADPO
controller tracks the sparse waypoints. This enables MPPIs to select waypoints more efficiently
and effectively, leading to significantly better real-time driving performance of MPPI-s+TADPO
compared to other methods.

Hyperparamters are provided in A.3, and more details about MPPI implementation is provided in
A.4.

4.4 TADPO

TADPO outperforms state-of-the-art RL baseline methods, demonstrating its ability to learn to nav-
igate a diverse set of off-road terrains. The policy’s success rate (sr) significantly surpasses that of
other baseline methods. Additionally, TADPO attains a high mean speed (ms) across all test trajec-
tory sets compared to all other controller baselines. For model-based baselines, MPPI-s+TADPO
significantly outperforms all other planner baselines in real-time driving. The inference time of
TADPO is notably lower than that of model-based methods, highlighting its effectiveness in envi-
ronments with diverse terrains, where quick adaptive maneuvers are essential.

Through ablations we find that ϵµ = 0.5 and a constant p = 0.5 provides best performance of
the algorithm which has been used for comparing with baselines. We include ablation studies with
hyperparameters configurations in A.1.

5 CONCLUSION

We propose (i) a hierarchical off-road autonomy pipeline and (ii) a new hybrid policy optimization
method TADPO. The pipeline combines the strengths of MPPI and RL to provide a robust solution
for off-road autonomous driving in complex terrains. TADPO leverages a teacher-student paradigm
with a novel policy gradient formulation to resolve the challenges of exploration and planning. Our
experimental results demonstrate significant improvements in navigating challenging environments
compared to existing RL and imitation learning methods, validating the potential of our approach.
We plan to deploy this algorithm onto real vehicles in our future work. Source code for TADPO and
videos of the pipeline in action are available at https://github.com/tadpo-iclr/tadpo.
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A APPENDIX
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We experiment with various hyperparameters in the TADPO implementation, using the best-
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We ablate on the ratio of teacher and student ratio p with values 0.5, 0.7 and 0.3. and ϵµ values 0.5,
0.3, 0.7.

Figure 5: Smoothed mean reward

We find p = 0.5 and ϵµ = 0.5 to be optimal for our task.

A.2 RL AND IMITATION LEARNING BASELINE TRAINING CURVES

We experimented with various RL and Imitation Learning baselines. We provide their training
curves below.

Figure 6: Smoothed mean reward comparison for baselines

A.3 PLANNER HYPERPARAMETERS
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Planner N h Number of iterations

MPPI-d 1× 107 30 1
CEM-d 1× 106 30 3
RL+MPPI-d 1× 105 20 1
MPPI-d∗ 1× 105 4 1
CEM-d∗ 5× 104 4 3
RL+MPPI-d∗ 1× 105 4 1
MPPI-s∗ 1× 105 4 1

Table 3: Comparison of Common Hyperparameters for Different Methods. ∗ denotes alloting a
limited compute budget for real-time deployment.

For training of RL+MPPI, the following hyperparameters are used.

Hyperparameters Value

Replay Buffer Size 1× 105

Batch Size 256
Discount Factor (γ) 0.99
Critic Learning Rate 1× 10−5

Actor Learning Rate 2× 10−5

Learning Rate of α 1× 10−5

Model Learning Rate 1× 10−4

Expected Entropy (H) H = −4
Learning Rate for Target 0.005
Maximum Episode Length 1000
Training Iteration Number 1× 106

Table 4: RL+MPPI: RL Module Hyperparameters

A.4 MPPI PLANNER IMPLEMENTATION DETAILS

The MPPI Planner for this problem is designed in accordance with Han et al. (2024), employing
the same model dynamics and cost function. The key difference lies in the waypoint sampling
method: while Han et al. (2024) uses a fixed time-based sampling approach, our approach utilizes a
fixed distance-based sampling method, where distance is a hyperparameter. The predicted trajectory
rollout given by the bicycle kinematics model Kong et al. (2015). We use this fixed distance-based
sampling to provide distance-based waypoints to the PPO policy. The algorithm takes in the final
goal position (g) and outputs the waypoints wi for i ∈ 1, .., h where h is the planning horizon. It
is important to note that MPPI uses a depth map to compute rollover and toppling costs, and an
annotation map to calculate segmentation costs. The cost is calculated at time t for all sampled wj,i

where j ∈ {1, ..., N} where N is the number of samples.

The cost function is:

1. Goal cost: u1 ∗ ||wj,i − g||

2. Rollover Cost: u2∗ Same as Han et al. (2024)

3. Toppling Cost: u3∗ Same as Han et al. (2024)

4. Segmentation Cost: u4 ∗ swj

5. Smoothness Cost: u5 ∗ s2t

and the weights ui for i ∈ {1, 5} are re-tuned for optimal performance for our vehicle, being 1, 10,
10, 100, 0.8 respectively. Segmentation weights swj for j ∈ 1, ....5 are obstacles = 1, rocks = 0.8,
dirt = 0, sand = 0.2 and else = 0.
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A.5 OBSERVATION SPACE

The non-visual inputs to the teacher and student policies are the same except for the observed way-
points.

At a time step t, given the environment state st, the vehicle has position pt, velocity vt, acceleration
at, roll θt, pitch ϕt, and yaw ψt in Tait-Bryant format in the world frame O.

For a planning horizon h, waypoint distance d, the MPPI planner generates wi,t ∈ R for
i ∈ {1, ..., h}, where d2(wi,t,wi+1,t) = d for i ∈ {1, ..., h − 1} and wi,t are in the vehi-
cle frame. We also set wk,t = wh,t∀k > h. The vehicle’s relative yaw to waypoint wi,t is
βi = arctan2(w0

i,t,wi,t
1), where wj

i,t is the j-th element of wi,t using 0-based indexing. The
global planner plans with d = 80 from the starting position to goal position using a coarse global
map. The local planner plans between waypoints generated by the global planner using detailed
local maps.

At time step t, the environment maintains an index it which indicates the next waypoint the vehicle
should traverse through. If the vehicle is within some switching threshold distance rswitch, it+1 =
it + 1; otherwise, it+1 = it. When it+1 > h, we consider the traversal of the planned route
successful.

We define the signed waypoint distance for time step t and waypoint at index i as

dit =

{
d2(p⃗t, w⃗i,t) if π

2 ≤ βt ≤
3π
2 ,

−d2(p⃗t, w⃗i,t) otherwise.
(13)

The non-visual inputs to the policies then are Ot = (ditt , d
it+1
t , βit , βit+1,

|v⃗t|
vmax

, θr, θp) where vmax

is an arbitrary maximum speed of the vehicle being driven.

All observations made by the teacher and student are stacked with that generated by st−1 and st−2.

Also, we define C td
t (rad,res,chan) to be a visual observation generated by a top-down camera

at time t. The camera field-of-view is maintained so that when viewing flat ground at the level of
the vehicle’s center of mass, it would be able to observe a square with each side measuring 2 · rad
m. The camera’s resolution is set to (res,res). chan could be either rgbd, in which case a color
image is stacked with a depth image, or depth, in which case only a depth image is presented. The
camera uses a perspective camera model with a z-position of 240 m above the vehicle.

Additionally, we define C f
t to be the observation of a front-facing camera at time t. The camera

generates a 64 × 64 image in rgbd. It is positioned (0.0,−1.5, 2.0) m offset from the center of
mass of the vehicle. It has a field-of-view of 84◦.

A.5.1 TEACHER POLICY

The teacher policy’s observation at time t is

sµt = (Oµ
t , C

td
t (15, 64,rgbd), C

f
t)

with Oµ
t generated by rswitch = 3, d = 6.

A.5.2 STUDENT POLICY

The student policy’s observation at time t is

sπt = (Oπ
t , C

td
t (30, 64,rgbd), C

td
t (90, 64,depth), C

f
t)

with Oπ
t generated by rswitch = 3, d = 80.

A.6 ACTION SPACE

The action space used is defined to be (τt, st) where τt is throttle and st is the steering at time
instance t. st ranges from -1 (full right turn) to +1 (full left turn) and τt controls the gas pedal, with
+1 for full forward acceleration and -1 for full reverse. Gear shifts are managed by the simulator’s
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controller, and brakes are applied when the vehicle’s direction opposes τt. Otherwise, τt controls
the engine, moving the vehicle forward for positive values and backward for negative values.

A.7 EVALUATION METRICS

For an episode, with vehicle position pt and speed vt at time t ∈ {1...T}, goal position pg , accep-
tance radius raccept, control period τ , the evaluation metrics are given as follows:

sr =

{
1 d2(pT ,pg) < raccept

0 otherwise
(14)

cp = 1− min
t∈{1...T}

d2(pt,pg) (15)

ms =

∑T−1
i=1 d2(pt,pt+1)

τ · T
(16)

A.8 HYPERPARAMETERS

A.8.1 TEACHER POLICY (PPO)

Hyperparameters Value

Learning Rate 3e-4
Discount Factor (γ) 0.99
GAE Parameter (λ) 0.95
Clip Range (ϵ) 0.2
Number of Epochs 10
Mini-batch Size 256
Number of Steps per Update 2048
Value Function Coefficient (λv) 0.5
Entropy Coefficient (λe) 0.001
MLP Network Architecture [128,64,64]
CNN Feature Extractor NatureCNN (Mnih et al. (2013))
CNN Latent Space 256

Table 5: Hyperparameters for Teacher and Student Training

A.8.2 STUDENT POLICY (TADPO)

The PPO part of the student is trained using the same hyperparameters as in A.8.1. Hyperparameters
for the TADPO update are as follows.

Hyperparameters Value

Update ratio (ϵµ) 0.5
Teacher policy ratio (p) 0.5
Learning Rate 3e-4
Discount Factor (γ) 0.99
Clip Range (ϵ) 0.2
Number of Epochs 20
Mini-batch Size 256
Number of Steps per Update 2048
Value Function Coefficient (λv) 0.5
Entropy Coefficient (λe) 0.001
MLP Network Architecture [128,64,64]
CNN Feature Extractor NatureCNN (Mnih et al. (2013))
CNN Latent Space 256
Teacher Demonstration Buffer Size 1e5

Table 6: Hyperparameters for Teacher and Student Training

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.9 REWARDS

The reward function is designed to encourage progress towards the desired waypoint at t, while
penalizing collisions, excessive jerk, and vehicle damage. Additionally, a success reward is granted
upon reaching the final waypoint.

1. Progress: c1 ∗ (|| ⃗pt−1 − w⃗i,t|| − ||p⃗t − w⃗i,t||)

2. Collision:
{
c2 if dam > damthresh

0 otherwise

3. Damage: c3 ∗ dam
4. Jerk: c4 ∗ (||at − at−1||/dt)

5. Success:
{
c5 if || ⃗pt−1 − w⃗i,t|| < wthresh

0 otherwise

where ci for i ∈ {1, . . . , 5} are scaling factors for the rewards, with values of 1, -2, -1, -0.003, and
1, respectively. The progress reward reflects the distance the vehicle travels toward the goal, with
the maximum reward between two waypoints being equal to the distance between them.

These rewards are significantly sparse for exploration in the off-road navigation problem that involve
navigating diverse terrains and obstacles.

A.10 SIMULATOR

A.10.1 BEAMNG

We use BeamNG.tech (BeamNG GmbH) as the simulator for training and evaluating our algorithms.
BeamNG.tech offers a highly realistic simulation environment, featuring advanced vehicle dynam-
ics and damage modeling. BeamNG.tech offers detailed vehicle dynamics and damage modeling,
allowing us to test our algorithms in a realistic environment that closely mirrors real-world condi-
tions.

We use etk800 as our vehicle. The car has dimensions of 2 meters in width, 4.7 meters in length,
and 1.4 meters in height. It features a simulated internal combustion engine, an automatic transmis-
sion, and an artificially imposed speed limit of 30m/s.

A.11 ALGORITHM IMPLEMENTATIONS

We use existing software packages for the implementations of the baselines. We use exist-
ing implementation of MPPI by https://github.com/UM-ARM-Lab/pytorch mppi and CEM by
https://github.com/LemonPi/pytorch cem for our planners. We use the official TD-MPC implemen-
tation by Hansen et al. (2022). We use the DAgger implementation included in imitation by
Gleave et al. (2022). We also use the official implementation of IQL (Kostrikov et al. (2021)). For
SAC and PPO, we use Stable Baselines 3 (SB3) by Raffin et al. (2021). We implement our algo-
rithm and other baseline algorithms based on the SB3 framework. We publish the source code for
our method at https://github.com/tadpo-iclr/tadpo.
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