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Abstract

Metaphor detection, as a key task in the field001
of natural language processing, has received002
sustained academic attention in recent years.003
Current research focuses on the development of004
supervised metaphor detection systems, which005
usually require large-scale, high-quality labeled006
data support. With the rapid development of007
large-scale generative language models, e.g.,008
ChatGPT, they have been widely used in multi-009
ple domains, including automatic summariza-010
tion, sentiment analysis, and question and an-011
swer systems. However, it is worth noting that012
the use of ChatGPT for downstream metaphor013
detection tasks is often challenged with less-014
than-expected performance. Therefore, we pro-015
pose a new method that aims to fully utilize016
the implicit knowledge of ChatGPT to support017
the task of detecting zero-shot verb metaphors.018
The method first uses ChatGPT to generate lit-019
eral meaning collocations of verbs. For the text020
to be detected, subject-object pair of the tar-021
get verbs in the text are parsed. Subsequently,022
these literal collocations and subject-object pair023
are mapped to the same set of topics, and the024
metaphors are finally identified through the025
analysis of entailment relations. The results026
show that the performance of ChatGPT in the027
verb metaphor detection task can be signifi-028
cantly improved by bootstrapping and integrat-029
ing the implicit knowledge of ChatGPT.030

1 Introduction031

Metaphors are essentially mapping relationships be-032

tween two different domains (Hesse, 1965; Lakoff033

and Johnson, 2008). According to Lakoff and John-034

son (2008)’s theory of conceptual metaphors, lin-035

guistic metaphors derive from underlying concep-036

tual metaphors that map a source concept (source037

domain) to another, more abstract, domain target038

concept (target domain). The goal of automatic039

metaphor detection is to model non-literal expres-040

sions (e.g., metaphors and metonymy) and gener-041

ate corresponding metaphor annotations. Improv-042

ing metaphor detection is important for improv- 043

ing many natural language processing (NLP) tasks, 044

including information extraction (Tsvetkov et al., 045

2013), sentiment analysis (Cambria et al., 2017), 046

and machine translation (Babieno et al., 2022). 047

Metaphor detection as an important part of the 048

field of Natural Language Processing (NLP), has 049

a variety of outstanding approaches emerge in re- 050

cent years. In terms of supervised classification, 051

Su et al. (2020) delved into the application of lo- 052

calized textual information, which is reduced to 053

the position of the target word in a sentence seg- 054

ment. Meanwhile, Choi et al. (2021) was the first 055

to introduce the Metaphor Identification Program 056

(MIP) (Group, 2007) and (SPV) (Wilks et al., 2013) 057

structures into a pre-training model. They also de- 058

veloped a multi-task-based gating mechanism in 059

which lexical annotation was introduced as an aux- 060

iliary task. In addition, Zhang and Liu (2023) also 061

proposed a multi-task learning approach that facili- 062

tates knowledge fusion between different tasks by 063

means of adversarial learning. 064

Supervised methods mostly rely on carefully la- 065

beled datasets, and although they show excellent 066

performance on the corresponding test sets, they 067

perform poorly when generalized to different do- 068

mains. In the field of unsupervised metaphor de- 069

tection, Heintz et al. (2013) constructed a topic 070

table based on the latent Dirichlet allocation (LDA) 071

and aligned it to the source and target domains, 072

respectively. While Shutova and Sun (2013) con- 073

structed a clustering map based on grammatical 074

features of verbs, the metaphor detection system 075

of Gandy et al. (2013) relied on lexical abstraction. 076

Furthermore, Pramanick and Mitra (2018) calcu- 077

lated the abstraction levels of adjectives and nouns 078

separately, along with the cosine distances between 079

them, and subsequently employed the k-means al- 080

gorithm for clustering. While Mao et al. (2018); 081

Shutova et al. (2016) employed cosine similarity 082

to determine whether the focal words belong to 083
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the same conceptual domain. Although the afore-084

mentioned approaches achieved a certain level of085

advancement, they frequently depended on intricate086

manual coding rules (Heintz et al., 2013; Shutova087

and Sun, 2013; Gandy et al., 2013) or cannot com-088

pletely escape the reliance on manually labeled089

datasets (Mao et al., 2018; Shutova et al., 2016).090

To address the above problems, this paper pro-091

poses a zero-shot metaphor detection method de-092

signed to bootstrap and integrate the implicit knowl-093

edge of ChatGPT. This method does not require the094

construction of cumbersome manual coding rules,095

nor does it rely on manually labeled data. First, we096

create a verb table that recorded each verb literal097

meaning collocation. Next, we introduce topical098

features that map the subject and object of the tar-099

get verb to one or more topical categories. In the100

metaphor detection process, we first analyze the101

subjects and objects of the verbs to be detected in102

the input text and map them to topical categories as103

well. Finally, we make metaphor judgments based104

on Selectional Preference Violation (SPV) (Wilks105

et al., 2013). We tested it on the MOH-X and TroFi106

datasets, and the results show that by bootstrap-107

ping and integrating the implicit knowledge of a108

large language model, we can effectively improve109

its performance on the metaphor detection task.110

In summary, the main contributions of this paper111

are summarized as follows:112

1. We are the first to introduce ChatGPT to113

the task of metaphorical sequence annotation.114

Our method do not need to rely on tedious115

hand-coding rules or manually labeled data.116

2. We used ChatGPT to generate a verb table117

that provides reference information about all118

literal meaning collocations for each verb.119

3. We introduce topical features that act as ad-120

ditional semantic information to provide the121

method with richer background knowledge.122

4. The experimental results show that by boot-123

strapping and integrating implicit knowledge124

from a large language model, the performance125

of ChatGPT on the metaphor detection task is126

significantly improved.127

2 Related Work128

The task of metaphor detection has been received129

a lot of attention in the field of natural language130

processing. Karov and Edelman (1998) used a131

word sense disambiguation (WSD) algorithm to 132

cluster sentences with target words, and then made 133

metaphor predictions based on the principle of dis- 134

tance between literal meanings of words. Shutova 135

and Sun (2013) also drew on the idea of cluster- 136

ing, and it used the Gigaword corpus (Graff et al., 137

2003) with noun-related of verb-noun combina- 138

tions (grammatical features) to cluster the 2000 139

common nouns of the BNC. In this approach, the 140

words to be detected acquire knowledge informa- 141

tion at a certain layer in the clustering map, i.e., the 142

nouns at that layer are non-metaphorically related 143

to the words to be detected. 144

Mao et al. (2018) presented an approximately un- 145

supervised metaphor detection system. The system 146

selects the best alternative to the target word by con- 147

sidering superlatives and synonyms in the context. 148

When the cosine distance between the best alterna- 149

tive and the target word is greater than a specific 150

threshold, it is detectd as a literal meaning. In addi- 151

tion, other studies Shutova et al. (2016); Pramanick 152

and Mitra (2018) have considered the cosine dis- 153

tance, although Pramanick and Mitra (2018) did 154

not use a priori labeled data to set the threshold, 155

instead it adopted a feature construction approach 156

using clustering for metaphorical judgments. 157

The studies in Turney et al. (2011); Gandy et al. 158

(2013) explored the relationship between the ab- 159

straction degree of focus words and the expression 160

of language metaphors. In Turney et al. (2011), the 161

abstraction degrees of nouns, proper nouns, verbs 162

and adverbs were first calculated, and then logis- 163

tic regression was used to learn high-dimensional 164

metaphoric features. In contrast, Gandy et al. 165

(2013) used WordNet to generate n common col- 166

locations of the words to be detected and sorted 167

these collocations according to the abstraction level. 168

A metaphorical relationship word is detectd as a 169

metaphor if it is not between the first k most con- 170

crete words. This idea is also reflected in the study 171

of Krishnakumaran and Zhu (2007), which inves- 172

tigated three metaphorical relations, Subject-be- 173

Object, Verb-Object and Adjective-Noun, and iden- 174

tified metaphors by determining whether the two 175

focal words have a hyponymy relation. 176

Although the above methods have been effective 177

to a certain extent, there are still problems such 178

as complex parsing of metaphorical relationships, 179

cumbersome construction of hand-coded knowl- 180

edge, or over-reliance on manually labeled data. To 181

overcome these challenges, this paper attempts to 182
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introduce generative language modeling into the183

metaphor detection task. The main function of184

generative language models is to generate natu-185

ral language text, which can be used for convers-186

ing with humans or performing text generation187

tasks. These models perform self-supervised learn-188

ing from large-scale textual data without relying on189

task-specific labeling or guidance.190

In previous research, Wachowiak and Gromann191

(2023) introduced generative language modeling192

to the field of metaphor detection for the first time,193

albeit with only preliminary attempts. This study194

first provided input text and target domain informa-195

tion, and then utilized ChatGPT to predict source196

domain information and achieved a weighted ac-197

curacy of 60.22% on the combined dataset. In-198

spired by this research, this paper introduces Chat-199

GPT to the task of metaphorical sequence annota-200

tion and achieves significant performance improve-201

ments by bootstrapping and combining the model’s202

tacit knowledge.203

3 Method204

In this section, we present the zero-shot metaphor205

detection method in detail, dividing its core con-206

cepts into three parts: Defining Verb Metaphors,207

Topic Mapping, and Construction of Verb Lists.208

The last subsection elaborates on the specific im-209

plementation details of the proposed method.210

3.1 Defining Verb Metaphors211

Our study about verb metaphors is based on the212

theory of Selectional Preference Violation (SPV)213

(Wilks et al., 2013). As an important concept in lin-214

guistics, SPV reflects the relatedness and semantic215

compatibility between lexical units. For example,216

in the phrase "kill time", the verb "kill" is originally217

preferred to describe the behavior of animate ob-218

jects, but here it modifies the inanimate "time", so219

there is a case of Selectional Preference Violation.220

In previous studies, Shutova et al. (2012, 2016)221

usually categorized verb-metaphor relations into222

two main types, i.e., Subject-Verb (SV) pair and223

Verb-Direct Object (VO) pair. For example, in the224

sentence "He planted good ideas in their minds.",225

"ideas" is the direct object of the verb, and the226

verb "planted" forms a VO pair with "ideas". the227

subject of the target verb "planted" is "he", which228

forms an SV pair. To capture the metaphorical229

relations of verb pair more comprehensively, we230

considered both SV pair and VO pair. We consider231

the target verb to be non-metaphorical only if both 232

sub-relations exhibit literal meaning relations. 233

In other studies, Krishnakumaran and Zhu 234

(2007); Gandy et al. (2013) have also introduced 235

Subject-be-Object (SbeO) relations. For example, 236

in the sentence "Her love is a warm blanket on 237

a cold night.", "love" is metaphorized as a warm 238

blanket. In this structure, the verb "is" connects 239

two focus words, "love" and "blanket". However, it 240

should be noted that "is" as an auxiliary verb does 241

not have an independent lexical meaning by itself; 242

it needs to be combined with other verbs. There- 243

fore, when judging the metaphor of SbeO relations, 244

it is necessary to consider whether there is an en- 245

tailment relationship between the subject or object. 246

This is more similar to the Adjective-Noun (AN) 247

relation pair discussed by Pramanick and Mitra 248

(2018). Therefore, we categorize SbeO relations in 249

the same category as AN pair, instead of including 250

them among the verb metaphors studied. 251

3.2 Topic Mapping 252

Metaphorical relationships originated from concep- 253

tual mappings in different domains (Lakoff and 254

Johnson, 2008). Inspired by it, we introduce the 255

concept of topic, which can be viewed as broader 256

and abstract concepts to correspond to domains 257

in metaphors. Consider an example of a verb 258

metaphor using the Oxford topic, the verb "guz- 259

zle" is often used with the subjects "baby" and the 260

objects "milk". However, in the sentence "The car 261

guzzled down the gasoline.", the subject and object 262

of the target verb "guzzled" are "car" and "gaso- 263

line", respectively. This leads to the verb selective 264

preference violation. In addition, since "bus" or 265

"taxi" belongs to the same topic "Transport by car 266

or lorry" as "car". Therefore, replacing the subject 267

of the above example sentence with "bus" or "taxi" 268

also constitutes a metaphorical expression. 269

We introduce three kinds of topics, namely 270

Oxford topics, WordNet topics, and LDA topics. 271

These three topic categories are set up in line with 272

both the SPV (Wilks et al., 2013) and the ab- 273

stractness principle defined in Turney et al. (2011); 274

Gandy et al. (2013). The principle of abstraction 275

holds that focus words under the same topic usually 276

have similar or close levels of abstraction. For ex- 277

ample, in the example in the Oxford topic, "Anger," 278

"Fear," and "Happiness" all belong to the "People- 279

Feelings" topical category, and these words have 280

similar levels of abstraction. However, it is impor- 281
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tant to note that, since a single word may have more282

than one denotation, the word may correspond to283

more than one different Oxford topic.284

The LDA topics were derived from a category285

list containing 60 topics constructed by Heintz et al.286

(2013). The method first used the LDA (Blei et al.,287

2003) model to capture a variety of candidate topics288

from WiKipedia. Then, based on the metaphori-289

cal information contained in the input corpus, the290

topics with high relevance to metaphorical rela-291

tions were selected as the final metaphorical topics,292

and they were summarized into 60 different topic293

categories. The constructed topics would be cat-294

egorized according to the order of similarity in295

WordNet from high to low for the central words.296

Similar to the infix relation defined in Krish-297

nakumaran and Zhu (2007), we introduce the set of298

superlatives and synonyms in WordNet (Kilgarriff,299

2000) as a third topic (WordNet topic). In WordNet,300

superordinates are defined as semantically more301

general or abstract words, while synonyms denote302

words with similar or identical meanings that can303

provide complementary information. Since both304

superlatives and synonyms are considered, each305

central word in a WordNet topic contains all syn-306

onyms and superlatives compared to LDA topics307

that select one or more topics by similarity.308

3.3 Construction of Verb Lists309

Currently, supervised metaphor detection systems310

(Choi et al., 2021; Zhang and Liu, 2023) usually311

require large-scale labeled data for training to learn312

the generalized distribution of metaphors. How-313

ever, this data labeling process is time-consuming314

and labor-intensive, thus limiting its feasibility in315

large-scale applications. Furthermore, when su-316

pervised models are applied to transfer learning,317

a sharp decrease in their performance in new do-318

mains is often observed (Wang et al., 2023). This319

phenomenon suggests the existence of a domain320

bias problem (i.e., a significant difference between321

the metaphor dataset and the actual metaphor ap-322

plication environment). In addition, the dynamic323

nature of metaphors is also a challenge (Shutova324

et al., 2013). Over time, old metaphors may gradu-325

ally evolve into generic expressions, e.g., "email"326

initially denoted the transmission of messages over327

a physical distance, but with the popularity of send-328

ing emails over the Internet, it gradually evolved329

into the literal meaning of "sending and receiving330

emails". Therefore, models trained on traditional331

datasets (e.g., TroFi or MOH-X) may be difficult 332

to adapt to the metaphorical usage contexts of real- 333

world applications. 334

To address these challenges, we construct a verb 335

collocation table. This verb list requires no ad- 336

ditional training and can be used to establish a 337

metaphorical reference standard appropriate to a 338

particular need. As in the above example "Email 339

me the report", we categorize the VO pair "Email 340

me" as a literal relation to adapt to the current lan- 341

guage usage. However, given that the main goal of 342

this paper is to investigate the rationality of using 343

verb lists in a zero-shot metaphor detection, we did 344

not consider artificially customized verb lists. 345

Subject(Topic) Object(Topic)

person
(people)

Food or meals
(Cooking and eating)

Children
(Life stages)

Snacks
(Cooking and eating)

Adults
(Life stages)

Meat
(Food)

diners
(Cooking and eating)

Vegetables
(Food)

Table 1: The subject and object of the verb "eat" are
literally paired, with the corresponding Oxford topic
category indicated in parentheses.

In this experiment, we generate literal or non- 346

metaphorical collocations of verbs using GPT-3.5 347

Turbo (hereafter Turbo), a lightweight text gen- 348

eration model developed by OpenAI that can be 349

adapted to a wide range of use cases through fine- 350

tuning. First, we use the Turbo model to generate 351

subject and object collocations for the target verbs. 352

Then, SV and VO pairs are extracted separately by 353

regular expressions and stored as a list. Noting that 354

each target verb corresponds to two lists (i.e., the 355

subject list and the object list), which do not corre- 356

spond to each other. Next, we map the subject and 357

object contents of the lists to one or more topics 358

(see Section 3.2 for details), and the same topics 359

for the same verb will be merged. Table 1 shows 360

the Oxford topical information for the verb "eat". 361

In the table, both "Children" and "Adult" belong 362

to the topical category ’Life stages’, so they are 363

merged into the same category. Similarly, the ob- 364

ject content of "Food and meals", "Snacks", "Meat" 365

and "Vegetables" are categorized separately. 366
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3.4 Method Implementation Details367

In this section, we will delve into SVO-type verb368

metaphor relations, and the detailed details of the369

related algorithms can be found in Algorithm 1.370

First, we build a table of containing verbs D as371

described in Section 3.3. This verb table is in the372

form of a dictionary, where each particular verb is373

used as an indexing keyword, and the correspond-374

ing subject or object is stored in the form of a list,375

labeled as Sw and Ow, respectively. To perform376

metaphor detection, the input text needs to be pro-377

cessed first. Similar to the manipulation of verb378

lists, we will extract the subject and object in each379

input text.380

In previous studies, researchers Wilks et al.381

(2013); Shutova et al. (2016); Gandy et al. (2013)382

usually used the Stanford Dependency Parser to383

extract SV and VO pairs of metaphorical rela-384

tions, while another study Krishnakumaran and385

Zhu (2007) employed PCFG (Klein and Manning,386

2003) for grammatical parsing. However, these ap-387

proaches usually require the specification of com-388

plex rules to take into account complex grammati-389

cal structures such as inversions, implied subjects390

or objects, and subordinate clauses. Concretely,391

the Turbo model is used to generate the subject-392

verb-object structure of sentences. For each input393

sample n, we use regular expressions to parse the394

results generated by Turbo and store them as a list.395

If the generated SV or VO pair contain pronouns or396

named entities, we first obtain their basic meanings397

in the Oxford dictionary. For example, "it" corre-398

sponds to "used to refer to an animal or a thing that399

has already been mentioned or that is being talked400

about now". In this case, we usually choose the401

first 3 nouns (if they exist) as the center words of402

"it", such as "animal" and "thing".403

Since the subjects and objects in the SV or VO404

pair output by the model are usually presented as405

phrases, we will select the first k nouns in the406

phrases as the center words of the subjects or ob-407

jects and notate them as subj_nouns and obj_nouns,408

respectively. Then, depending on the lexical mean-409

ing of these center words, we map them to one or410

more topics, denoted as subj_topics and obj_topics,411

respectively. For example, in the sentence "He was412

detained on June 23, and for two weeks he was413

regularly assaulted by South African police", the414

subject of the sentence is "South African police".415

We extract the first k nouns as the center word, i.e.,416

"police". According to the lexical meaning, we417

map "police" to the Oxford topic "Law and justice". 418

Finally, we make metaphorical judgments based on 419

the relationship between the parsed topics and the 420

reference topics in the verb list. 421

4 Experiments 422

In this section, we detail the dataset used, the ex- 423

perimental steps, and perform an in-depth analysis 424

of the results. 425

Dataset Tokens Sent. %Met.

MOH-X 647 647 48.7%
TroFi 3,737 3,737 43.5%

Table 2: Statistical information on MOH-X and TroFi.
"Tokens" denotes the total number of sentences, "Sent."
denotes the number of samples, and "%Met" denotes
the percentage of metaphorical samples.

4.1 Test Datasets 426

To evaluate our approach, we use the MOH-X 427

(Birke and Sarkar, 2006) and TroFi (Charniak et al., 428

2000) datasets. The statistics of these two datasets 429

are presented in Table 2. 430

MOH-X. The MOH dataset was originally created 431

by Mohammad et al. (2016), who first extracted 432

polysemous verb samples from WordNet, and then 433

hired 10 annotators through the crowdsourcing plat- 434

form CrowdFlower3 to metaphorically annotate the 435

sentences. To ensure the annotation quality of the 436

dataset, Mohammad et al. (2016) used the principle 437

of 70% annotation consistency. Furthermore, they 438

claimed that their sample contained only two cate- 439

gories, literal or metaphorical, which is consistent 440

with our hypothesis. Here, we consider only the 441

subset of verbs (i.e., MOH-X) in the MOH dataset 442

processed according to Shutova et al. (2016). This 443

subset excludes instances with pronouns or subor- 444

dinate subjects or objects. The dataset ultimately 445

contained 647 verb-noun combinations, of which 446

316 pairs are metaphorical and 331 pairs are literal. 447

During data preprocessing, we use a specialized 448

tool to extract the subject-verb-object relationship 449

of each verb to be detected and removed samples 450

that are incorrectly parsed or lacked subjects and 451

objects. It is worth mentioning that the MOH-X 452

dataset we used is not further divided into a training 453

set and a test set, but is used as a whole for model 454

testing and evaluation. 455

TroFi. The TroFi dataset (Birke and Sarkar, 2006), 456
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Algorithm 1 Metaphor Detection

Require: D: Dictionary of verb forms
Require: Sw: List of literal or non-metaphorical subject topics for each target verb
Require: Ow: List of literal or non-metaphorical object topics for each target verb
Require: N : Input corpus containing sentences with target verbs
Require: wn: Target verb in sentence n
Require: in: Index of the target verb in sentence n

1: for n in N do
2: Swn ← D[wn][0] ▷ Retrieve subject topics
3: Own ← D[wn][1] ▷ Retrieve object topics
4: Extract the subject and object from the sentence at index in.
5: subj_nouns← get_top_k_noun(subject)
6: obj_nouns← get_top_k_noun(object)
7: subj_topics← get_topics_from_oxford(subj_nouns)
8: obj_topics← get_topics_from_oxford(obj_nouns)
9: if_sub_literal← subj_topics ∈ Swn ▷ Is subject literal?

10: if_ob_literal← obj_topics ∈ Own ▷ Is object literal?
11: if ¬(if_sub_literal ∧ if_ob_literal) then
12: if_metaphor← True ▷ Metaphor detected
13: else
14: if_metaphor← False ▷ No metaphor
15: end if
16: end for

derived from the Wall Street Journal corpus (Char-457

niak et al., 2000), contains literal and metaphori-458

cal usage of 50 English verbs, totaling 3,717 sam-459

ples, for the study of verb metaphors. Compared460

to the MOH-X dataset, the subject and object col-461

locations with the target verbs in the TroFi dataset462

are more diverse, including pronouns, clauses, and463

named entities, which increases the complexity of464

metaphor detection. Consistent with our treatment465

of the MOH-X dataset, we extract subject-verb-466

object features for each sample in the TroFi dataset467

and excluded cases where parsing was wrong or468

where both subject and object were absent. It is469

worth noting that similar to the MOH-X dataset,470

the TroFi dataset is not further divided into training471

and testing sets.472

4.2 Experimental Setup473

Three different topics are considered in this ex-474

periment, including WordNet topics, LDA topics,475

and Oxford topics. For the WordNet topic, we476

use WordNet’s built-in API to extract the superla-477

tives and synonyms of the central noun, and then478

combine all of them into the WordNet topic set479

corresponding to the target verb. For the second480

topic, we use Wu-Palmer Similarity (WUPS) (Shet481

et al., 2012) to compute the similarity between482

the central noun and the 60 LDA subject terms. 483

WUPS relies on lexical relations and hierarchical 484

structures in the WordNet database. In the lexi- 485

cal relation network, it finds the Lowest Common 486

Subsumer (LCS) of two words in WordNet. Then, 487

the similarity is determined by calculating the path 488

length between them and the LCS. The formula for 489

similarity is usually shown below: 490

WUPS (w1, w2) =
2 · depth (LCS (w1, w2))

depth (w1) + depth (w2)
,

where ω1 and ω2 represent the two words to be 491

detected, LCS denotes their lowest common an- 492

cestor, and "depth" denotes the depth of the word in 493

the WordNet hierarchy. For Oxford topics, we first 494

access the Oxford lexicon for pronoun disambigua- 495

tion and named entity conversion, and then convert 496

the parsed central noun into one or more topic cat- 497

egories corresponding to the Oxford lexicon, if 498

applicable, based on one or more lexical meanings 499

of the parsed central noun. Since each subject or 500

object in the target verb list usually contains multi- 501

ple central nouns, the same topical transformation 502

step needs to be performed for each central noun. 503

Concretely, we first parse the input text to extract 504

the subject and object corresponding to the target 505
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Models TroFi MOX-H

Acc. Pre. Rec. F1 Acc. Pre. Rec. F1

GPT-3.5 Turbo 58.7 11.4 64.2 19.3 60.1 20.0 91.3 32.8

WordNet_Topic 46.0 96.8 44.6 61.0 53.6 90.1 51.4 65.4
WordNet_Topic_k 46.2 95.9 44.5 60.6 54.1 88.6 51.7 65.3
LDA_Topic 45.9 91.4 44.2 59.6 51.2 94.0 50.0 65.3
LDA_Topic_k 44.5 96.9 43.9 60.4 52.2 92.9 50.3 65.3
Oxford_Topic 47.0 90.4 44.6 59.8 62.9 86.7 58.1 69.6
Oxford_Topic_k 45.8 93.7 44.2 60.1 61.2 93.3 56.1 70.1

Table 3: Performance comparison of TroFi and MOX-H datasets. The WordNet_Topic, LDA_Topic, and Ox-
ford_Topic represent three different topics, respectively. The ones ending with "k" indicate that the first three nouns
are extracted as the center nouns, while the ones without "k" indicate that one is extracted.

1 2 3 4 5 6 7 8 9
k1

1

2

3

4

5

6

7

8

9

k2

0.665

0.670

0.675

0.680

0.685

0.690

0.695

0.700

F1
score

Figure 1: Effect of parameters k1, k2 on model per-
formance, where k1 represents the number of literal or
non-metaphorical collocations selected from the verb
list and k2 denotes the number of topics that may be
covered by the subject and object corresponding to the
target verb.

verb (labeled as "none" if they do not exist). Since506

subject-object pair usually contain multiple nouns507

or proper nouns, we select the first k nouns as the508

subject content to be transformed by default, where509

k is a hyperparameter for the number of central510

nouns to be extracted. To balance the set size and511

metaphor detection accuracy when introducing the512

topic set, we also introduce two additional hyperpa-513

rameters for control. Specifically, k1 represents the514

number of literal or non-metaphorical collocations515

selected from the verb list, while k2 denotes the516

number of topics that may be covered by the sub-517

jects and objects corresponding to the target verbs.518

Larger values of k1 imply that the model’s pre-519

dictions cover more literal-meaning collocations520

of verbs, while larger values of k2 indicate that521

more meanings of centered words are used in the522

metaphorical relations parsed in the text. 523

In the first experiment, we process different 524

ways of extracting the central nouns of the sub- 525

ject or object in the input text, including the 526

case of extracting 1 or 3 central nouns, which is 527

achieved by adjusting the hyperparameter k. We 528

chose the default k1 and k2 optimal combination 529

approach for our experiments, and the specific 530

types include WordNet_Topic, WordNet_Topic_k, 531

LDA_Topic, LDA_Topic_k, Oxford_Topic, and 532

Oxford_Topic_k, where k denotes the extraction of 533

the first 3 nouns as the center nouns, while Word- 534

Net_Topic, LDA_Topic, and Oxford_Topic corre- 535

spond to three different topics. It is worth noting 536

that we use GPT-3.5 Turbo as the parsing tool when 537

constructing the verb table. Therefore, we also con- 538

duct a controlled experiment to predict the results 539

of the input corpus directly using GPT. 540

For the second experiment, we explore the ef- 541

fect of two hyperparameters, k1 and k2, on the 542

model metaphor detection performance. For the 543

experimental design, we used only Oxford topics. 544

Considering the results of Experiment 1, we find 545

that Oxford_Topic_k with three central nouns ex- 546

tracted performs better relative to Oxford_Topic 547

with one central word extracted. In addition, when 548

only one central noun is extracted, there are rel- 549

atively fewer topic types (which depends on the 550

number of different meanings of that central noun). 551

Therefore, in this experiment, we fixed the hyperpa- 552

rameter of the central term to k = 3, while setting 553

the value range of k1 and k2 between 0 and 9. 554

4.3 Results and Discussion 555

We use four common evaluation metrics, i.e., ac- 556

curacy, precision, recall, and F1 score, to evaluate 557
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our approach.558

For Experiment 1 (see the results in Table 3), the559

best performance is achieved on the entire TroFi560

dataset using the WordNet topic with an F1 score561

of 61.0%. And on the MOX dataset, the best perfor-562

mance is obtained using the Oxford topic, with an563

F1 score of 70.1%. For the hyperparameter k, we564

observe no significant performance difference be-565

tween the two datasets by setting k to 1 or 3 when566

using WordNet topics or LDA topics. However, set-567

ting k to 3 slightly improves the performance when568

using the Oxford Dictionary topic. This may be569

due to the presence of polysemy in Oxford topics570

(i.e., different noun meanings correspond to multi-571

ple topic information), which extends the scope of572

the verb table to cover literal topics. In addition, we573

find that all methods perform better on the MOX574

dataset than on the TroFi dataset. This may be due575

to the fact that the TroFi dataset contains more sam-576

ples and contains a large number of pronouns and577

substantive nouns. In the test results on the TroFi578

dataset, the performance of the three topic types is579

relatively close, whereas on the MOX dataset, the580

WordNet topic and the LDA topic perform simi-581

larly, while the Oxford topic has a higher F1 score582

than the other two (4.8%).583

Finally, it is worth noting that we observe that584

the performance using the topic approach is much585

higher than the results of metaphor detection us-586

ing only GPT. This suggests that by bootstrapping587

and combining GPT-generated surface knowledge,588

such as common literal collocations of verbs, and589

adapting it to the domain of metaphor detection, it590

can significantly improve the performance of GPT591

in detecting verb metaphors.592

In Experiment 2 (cf. Figure 1), we exclusively593

employ the MOH-X dataset and maintained the594

hyperparameter k at a fixed value of 3. The ex-595

perimental findings demonstrate that augmenting596

the value of k1 results in an enhancement of the597

model’s ability to detect metaphors, albeit to a cer-598

tain extent. This improvement can be attributed to599

the fact that increasing k1 introduces a greater num-600

ber of literal-meaning collocations from the verb601

list. Consequently, this equips the model with a bet-602

ter capacity to identify non-metaphorical content603

associated with specific verbs, thereby reducing604

instances of misjudgment. In addition, the perfor-605

mance peaks when the hyperparameter k2 is set606

to 3. However, when continuing to increase the607

value of k2, the model’s performance in detect-608

ing metaphors decreases instead. This suggests 609

that considering multiple meanings of the focal 610

word may introduce metaphorical information or 611

redundant topics, which may affect performance. 612

Thus, our experimental results emphasize the need 613

to weigh the model performance and the impact of 614

topic introduction when choosing the value of k2. 615

5 Conclusion 616

We present a novel approach that aims to intro- 617

duce the model knowledge of ChatGPT into the 618

metaphor detection task. This approach does not 619

rely on manually encoded knowledge, nor does it 620

need to rely on manually labeled datasets. First, 621

we construct a literal meaning collocation lookup 622

table for each target verb. When parsing the input 623

text, we pay special attention to the subjects and 624

objects corresponding to the verbs to be detected. 625

We introduce a variety of topics, including Word- 626

Net topics, LDA topics, and Oxford topics. We 627

determine whether a text contains metaphorical ex- 628

pressions by comparing the relationships between 629

subject and object topic categories in the input text 630

and the target verb topic categories given in the 631

verb list. The results show that by delicately com- 632

bining and bootstrapping model knowledge, we are 633

able to significantly improve the performance level 634

of ChatGPT in the metaphor detection task. 635

6 Limitations 636

We introduce a verb table containing literal subject- 637

verb and verb-object collocations for each target 638

vocabulary. However, the literal collocations gener- 639

ated using ChatGPT are not always comprehensive, 640

which leads to some literal samples being incor- 641

rectly categorized as metaphorical usage. In addi- 642

tion, due to varying syntactic structures, when ana- 643

lyzing subject-verb-object relations in input texts 644

using ChatGPT, there may be parsing errors or 645

structures that are not present, which also affects 646

the performance of the overall method. In future 647

work, we would like to investigate more powerful 648

generative models or natural language parsing tools 649

to improve the coverage of literal collocations in 650

verb lists or to improve the accuracy of parsing 651

subject-verb-object relations of input texts. 652

7 Ethics Statement 653

Metaphor, as a linguistic phenomenon that conveys 654

implicit semantics, is capable of concretizing ab- 655

stract concepts or enriching substantive concepts. 656
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This makes it possible for metaphors to be used as657

a tool for communicating political positions and658

gaining voter support in the political domain. How-659

ever, our proposed zero-shot metaphor detection660

approach can also be used to identify metaphorical661

expressions and address the above issues from a662

governance perspective. In addition, we advocate663

the inclusion of tasks related to metaphor detection664

and generation, especially the application of Chat-665

GPT to downstream metaphor applications, into666

the AI ethical code.667
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