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ABSTRACT

Strategic learning studies how decision rules interact with agents who may strate-
gically change their inputs/features to achieve better outcomes. In standard set-
tings, models assume that the decision-maker’s sole scope is to learn a classifier
that maximizes an objective (e.g., accuracy) assuming that agents will best re-
spond. However, real decision-making systems’ goals do not always align exclu-
sively with producing good predictions. They may need to consider the down-
stream effects of inducing certain incentives, which translates into certain features
being regarded as more desirable to change for the decision maker. Not only that,
but the principal may also need to incentivize desirable feature changes equally
across heterogeneous agents. How much does this constrained optimization (i.e.,
maximize the principal’s objective, while minimizing the disparity in terms of in-
centivizing desirable effort) cost the principal? We propose a unified model of
principal-agent interaction that captures this trade-off under three additional com-
ponents: (1) causal dependencies between features, such that changes in one fea-
ture affect others; (2) heterogeneous manipulation costs across the agent popula-
tion; and (3) peer learning, through which agents infer the principal’s algorithm.
We provide theoretical guarantees on the principal’s optimality loss constrained
to a particular desirability fairness tolerance for multiple broad classes of fair-
ness measures. Finally, we demonstrate through experiments on real datasets an
explicit tradeoff between maximizing accuracy and fairness in desirability effort.

1 INTRODUCTION

Most automated decision-making systems–whose task is to assign a human agent a numeric score or
a classification based on which a decision on the individual is made–must contend with the fact that,
given sufficient information and ability, agents may strategically alter their features to improve their
assigned outcomes, thus jeopardizing the effectiveness of the originally proposed decision-making
policies; e.g., a bank’s loan-approval algorithm may incentivize applicants to take out additional
credit cards even when this does not improve true creditworthiness. Similar human adaptations to
automated decision-making rules have been observed in healthcare (Chang et al., 2024; Efthymiou
et al., 2025) and recommendation systems (Haupt et al., 2023; Fedorova et al., 2025).

In the classic strategic learning literature (e.g., (Hardt et al., 2015; Dong et al., 2018; Chen et al.,
2020)), this is modeled as a Stackelberg game: the principal publicly commits to an accuracy-
maximizing algorithm, anticipating that agents will best respond by submitting altered features that
maximize their utility about predicted outcomes. In its most classical form, the game is the follow-
ing: the principal commits to a scoring rule w ∈ Rd, the agents observe w along with their true
feature-score pair (x, y) (where x ∈ Rd and y ∈ [0, 1]), and they report feature x′ (where x′ is their
“best-response”, i.e., it maximizes their underlying utility function for obtaining a better outcome
w⊤x′). The principal’s goal is to identify the optimal w such that the loss between predictions on
the altered features w⋆⊤x′ and the true scores y is minimized.

This classical model–albeit great at highlighting some of the complexities that arise from the agents’
best-responding behavior–fails to capture several of the intricacies of the real-world settings they
wish to model, as discussed next. Take for example a content recommendation platform (e.g.,
YouTube) that algorithmically determines how much to promote a video based on various video
features such as topic, title, explicitness etc. Content creators want their videos highly promoted and
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can change their videos (to an extent) so that they are more likely to be promoted. This is a nuanced
interaction between creators and the platform. On a creator’s side, there are several issues that com-
plicate her video changes beyond the perfect best response (i.e., the perfect video edit for maximum
promotability): (1) She may only know about the algorithm what she/friends can test or learn; (2)
Her video edits influence each other (e.g., changing topic may also affect how explicit the video is);
and (3) Some changes really do change how popular a video should be, i.e., they are not purely gam-
ing of the recommender system! As for the platform, independent of promotion accuracy, creating
incentives to alter certain video features might be (un)desirable. For example, clickbait titles may
genuinely make clicking the video more appealing, but becoming known as a platform inundated
with clickbait titles (if creators are incentivized to use them) will hurt the platform’s reputation to
advertisers and users alike. In the same vein, to be neutral in the eyes of advertisers, a platform may
further be concerned with which creators are more/less incentivized to clickbait.

Altogether, the aforementioned example illustrates several complexities for the modeling of the
agents and the principal in algorithmic decision making systems. For the agents: (A1) they may not
know the principal’s algorithm fully when choosing their best responses; (A2) changes in certain
features can causally trigger changes in other features; (A3) not all feature alterations are “bad”–
instead, some represent genuine improvement. And for the principal: (P1) independent of their
predictive power, some feature changes may be more/less desirable for external stakeholders to
whom the principal is accountable; and so (P2) the principal may need to create equitable incentives
to improve desirable features even for heterogeneous agents. Putting the complex considerations
(A1) – (A3) and (P1) – (P2) together and focusing on the principal’s perspective, we ask:

How much of his objective value (e.g., optimal accuracy) does the principal trade off to give
heterogeneous agents equitable incentives with respect to desirable features?

1.1 OUR CONTRIBUTIONS

Our model. In Section 2, we present a game-theoretic model capturing the principal-agent inter-
action with stakeholder input, under properties (P1), (P2) for the principal and (A1)–(A3) for the
agents. We assume that the agent population is comprised by 2 heterogeneous groups. An external
stakeholder selects which features are desirable for change and the definition of the desirable ef-
fort discrepancy function; as its name suggests, this is the function measuring how disparate the 2
groups are in terms of desirable effort that they exert when altering their features. The principal in
turn chooses a tolerance β capturing the extent to which he is willing to constrain his scoring rule to
achieve more equitable incentives according to the discrepancy function set by the stakeholder. He
then deploys the optimal (according to either accuracy or social welfare) such constrained scoring
rule. Agents, belonging to one of 2 groups, best respond to a peer-learned estimate of the principal’s
rule by adding “exogenous effort” to their features. An agent’s final altered feature set is determined
using a causal graph that captures how exogenous feature changes affect each other. While some
of these complications have been modeled in prior work, we are the first to study them all together
while formally reasoning about the principal’s tradeoffs of optimality vs desirable effort discrepancy.

Our goal is to reason about the principal’s tradeoffs without restricting ourselves to a single dis-
crepancy function; after all, different stakeholders can have vastly different ways of quantifying
discrepancy in terms of desirable effort exerted across different groups. For that, our analysis is split
into two parts based on broad families of discrepancy functions, outlined below.

Optimality loss guarantees under convex constraints. In Section 3, we provide theoretical guar-
antees on the maximum optimality loss (as a function of tolerance) a principal suffers in equilibrium
given that the stakeholders’ function of desirable effort discrepancy is convex and satisfies certain
natural regularity properties; we also provide examples of discrepancy measures that satisfy said
properties. In particular, natural vector comparison functions such as sum of squared or absolute
value differences are within the classes of functions captured.

Optimality loss guarantees under nonconvex constraints. What if the stakeholders measure de-
sirable effort discrepancy in a way that is asymmetric (i.e., one group may be more desirably incen-
tivized, but not the other way around)? Such a function may be nonconvex and thus yield nonconvex
constraints on the principal’s problem. In Section 4, we provide the theoretical guarantees for the
maximum optimality loss (as a function of tolerance) a principal suffers in equilibrium given the
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measure of desirable effort discrepancy selected by the stakeholders is nonconvex and satisfies var-
ious properties. We also provide natural nonconvex discrepancy measures a stakeholder may be
interested in, particularly when one agent group is already privileged over another.

Experiments. In Section 5, we run experiments on the ADULT dataset to map out the desirable effort
fairness and optimality trade-off a principal experiences for different tolerance selections under con-
vex discrepancy function examples from Section 3. Because we compute the optimal rule for every
β, we can analyze the impact of group disparities on the equilibria. In particular, the results high-
light that in cases where groups’ disparity aligns with desirability, constraining policies to induce
equitable desirable incentives forces the principal to lose more accuracy at a given β-fair equilibrium
and increases the maximum tolerance at which the principal is no longer at lower optimal accuracy.

1.2 SUMMARY OF RELATED WORKS

Our work is related to streams of literature: strategic learning and algorithmic recourse. We give a
brief overview, and defer a more thorough discussion to Appendix A.1.1.

Strategic learning/classification models (see Podimata (2025) for a review) consider a princi-
pal/learner robustness problem, in which the principal wishes to construct an optimal (in terms
of accuracy) algorithm under the assumption that agents will have knowledge of this algorithm and
“game” their features to earn a better score/classification (Hardt et al., 2015; Dong et al., 2018; Chen
et al., 2020; Ahmadi et al., 2021; Trachtenberg & Rosenfeld, 2025; Rosenfeld & Rosenfeld, 2024;
Podimata, 2025). However, further work (including ours) complicates this idea by rejecting the
assumption that all feature alterations are gaming and studies what this means for various learner
and agent perspectives (Efthymiou et al., 2025; Bechavod et al., 2022; Alhanouti & Naghizadeh,
2025; Miller et al., 2020; Shavit et al., 2020; Bechavod et al., 2021; Kleinberg & Raghavan, 2019;
Harris et al., 2021; Alon et al., 2020; Haghtalab et al., 2021; Tsirtsis & Gomez-Rodriguez, 2020;
Horowitz & Rosenfeld, 2023) Additionally, existing research also considers the added complication
that agents may not have full information about the learner’s policy and what this means for optimal
algorithms, accuracy, agents’ feature alterations, and social welfare (Bechavod et al., 2022; Avasar-
ala et al., 2025; Braverman & Garg, 2020; Ghalme et al., 2021; Cohen et al., 2025; Ahmadi et al.,
2023; Ebrahimi et al., 2025; Efthymiou et al., 2025) as we do for its impact on equity in induced
desirable effort. Finally, there exists a connection between our focus on constraining only to poli-
cies that create fair incentives and strategic learning analysis that considers other types of fairness
induced by the learner’s optimal policies (Estornell et al., 2023; Milli et al., 2019; Diana et al., 2025;
Alhanouti & Naghizadeh, 2024; Keswani & Celis, 2023; Levanon & Rosenfeld, 2021; Alhanouti &
Naghizadeh, 2025). Outside of strategic classification/learning, in algorithmic recourse, rather than
a learner who induces feature alterations through the incentives of his algorithm, researchers study
how a learner may provide explanations or recommended actions to agents who receive unfavorable
scores (von Kügelgen et al., 2020; Ehyaei et al., 2023; Karimi et al., 2021; Perello et al., 2025; Gupta
et al., 2019), see Karimi et al. (2022) for a review.

2 MODEL

2.1 NOTATION

We use I... as an indicator function s.t. I... = 1 if subscript is satisfied and I... = 0 otherwise.
Matrices are capital (i.e., C ∈ Rd×d), vectors are lower-case and bolded (i.e., w ∈ Rd), and one-
dimensional variables are lower-case (i.e., y ∈ R). Cj,i corresponds to the element in the jth row
and ith column of a matrix C. We use ker(C) to denote the kernel of a matrix C, i.e., all w s.t.
Cw = 0. We use H(M) to denote the Hoffman constant of matrix M ∈ Rk×d (see Appendix
A.2.1 for details). λd(M) and σd(M) are the d-th largest eigenvalues and singular values of M
respectively. For a vector, w ∈ Rd, w+ denotes a vector ∈ Rd, such that (w+)i = Iwi≥0wi. We
use capital calligraphic letters for sets (e.g., W(·, ·)). We use B(ρ) to denote the Euclidean ball of
radius ρ, i.e., {w ∈ Rd : ⟨w,w⟩ ≤ ρ}. We use ⟨·, ·⟩G and ∥ · ∥G to be generalized inner products
and norms w.r.t to some positive definite matrix G. Thus, ⟨·, ·⟩G = ∥ · ∥2G = ⟨·, G·⟩. For a function,
f , ∂f(x) denotes its set of subgradients at x. A table of notation can be in Appendix A.2.
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Protocol 1 Principal-Agent Interaction with Stakeholder Input

Nature selects G, w⋆, A1, and A2. ▷ causal graph, ground truth rule, and cost matrices
Stakeholder selects ΠD and ∆(w). ▷ desirability scores and discrepancy measure
Principal chooses β. ▷ desirability discrepancy tolerance
Principal deploys an optimal (based on OBJ(·, ·)) w subject to ∆(w) ≤ β.
Agents draw initial features x ∼ Dg .
Agents alter and reveal features: x′ ∈ argmax(Score(x′, g)− Cost(xe, g)).

2.2 MODEL SUMMARY

We begin by summarizing our model’s components; in the following subsections, we analyze each
of the moving pieces in detail.

We focus on a Stackelberg game between a principal and an agent population comprised by 2 sub-
populations, with different distributions over the feature space and movement costs encoded as cost
matrices A1, A2. An agent (she) belongs to group g ∈ {1, 2} and has initial features x ∈ X ⊆ Rd

drawn from distribution Dg over the feature subspace Sg ⊆ X . Let Πg ∈ Rd×d be the orthogonal
projection matrix into a group subspace. Let w∗ ∈ Rd denote the ground truth linear scoring rule;
i.e., E[y|x] = ⟨w∗,x⟩ is the expected (true) quality of an agent with features x ∈ X . Similarly to
(Bechavod et al., 2022), w⋆ may be optimal for prediction accuracy, but it may not be optimal for
satisfying all of the other principal concerns that we are analyzing.

Altered features. In response to information she has learned about w from her group, g, (see
Section 2.3 for details) an agent alters her feature vector to x′ in order to maximize her anticipated
score, Score(x′, g), minus the cost of alteration, Cost(xe, g). Following (Efthymiou et al., 2025),
we assume that altering one feature may causally affect others thus, x′ := Cxe+x where C ∈ Rd×d

is a “contribution matrix” of a causal graph, G, representing relationships between features and
xe ∈ Rd is the actual (exogenous) effort an agent added to each feature.

External stakeholder & principal’s goals. An external stakeholder assigns a “desirability score”
to each feature, des(i) > 0 where i ∈ [d]; let ΠD := Diag({des(i)}i∈[d]) denote the desirability
score matrix. Roughly, a higher desirability score for a feature i means that the stakeholder wants
to incentivize the agent to exert effort and improve i. Additionally, we assume that the external
stakeholder selects a function ∆(w) ∈ [0, 1], that measures the group discrepancy in desirable
effort incentivized by w. To remain trustworthy to the external stakeholder, the principal chooses a
desirability discrepancy tolerance, β, and must find the optimal policy (also referred to as rule) w
(according to their own objective function OBJ(w;w⋆)); see Section 2.4 for details.

2.3 AGENTS

In our model, we assume that the agents do not have full information about the scoring rule w.
Instead, they engage in peer learning as modeled in (Bechavod et al., 2022); each agent sees their
features xg,i (chosen by nature) and policy outcomes, ŷg,i = ⟨xg,i,w⟩, of Ng random (nonstrategic)
agents from her own group g and does empirical risk minimization (ERM) to get wEST, the estimated
policy; note that this model captures agents that are risk-averse, fully rational, and have no other
information about w except the peer dataset. Formally, wEST(g) is the solution to the following:

min
w̃∈W

⟨w̃, w̃⟩

subject to W = {w : w = argmin
w′

∑
i∈Ng

(x⊤
g,iw

′ − ŷg,i)
2} (1)

In anticipation of the principal’s policy w, an agent modifies her features from x to x′ by exerting
exogenous effort, xe ∈ Rd, that is added (after a linear transformation) to her original features.
The final x′ is a best response, meaning it is the maximizer of her utility function: U(x,x′, g) :=
Score(x′, g)−Cost(xe, g) where Score(x′, g) := ⟨wEST,x

′⟩ is the score she believes she will have
after modification and Cost(xe, g) :=

1
2x

⊤
e Agxe is the cost she must incur for her exogenous effort,

xe determined by a known positive definite (PD) cost matrix Ag . Formally, we write x′(x;w, g) to

4
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denote the best-response of an agent from group g with original features x; we drop the dependence
on x, g whenever clear from context.

Relationship between x′ and xe. Effort on one feature may induce changes in another. We refer
to the initial effort as “exogenous”, to distinguish it from the “spillover” effects across features.
These spillovers are modeled using a weighted causal graph, where nodes represent features. The
contribution matrix C captures the weighted flow of effort across features. (Note that C is the
transpose of the matrix used in Efthymiou et al. (2025), who adopt a similar causal-flow perspective.)

Definition 2.1 (Contribution matrix) Given a weighted directed acyclic graph (DAG) G =
([d],A, ω) where [d] is the set of feature-nodes, A is the set of edges indicating causality between
features, and ω is a weight function on the edges, the contribution matrix C is such that:

Cii = 1 ∀i ∈ [d]

Cij =
∑

p∈Pij

ω(p) ∀i, j ∈ [d], i ̸= j (2)

where Pij is the set of all direct paths from node i to node j on G and ω(p) for p ∈ Pij is the sum of
the weights along path p, i.e., : ω(p) =

∑
a∈p

ω(a). Note that ker(C) = ∅ (Lemma A.1).

Hence, although an agent’s exogenous effort is characterized by xe, the causal interactions between
features result in x′ = x+Cxe, which is ultimately what the principal observes. Putting everything
together, we can find the closed form for xe; see Appendix A.2.2 for the proof.

Proposition 2.1 Given w, the effort of an agent from group g is x(g)
e (w) = A−1

g C⊤Πgw.

2.4 THE PRINCIPAL’S PROBLEM

We compare the Stackelberg equilibrium (SE) of Protocol 1 for a selected β (Eq. (3)) to the Stack-
elberg equilibrium were there no stakeholder (Eq. (4)). We refer to Equations (3) and (4) as the
fairness-constrained and unconstrained principal problem respectively.

max
w∈B(1)

OBJ(w;w⋆), subject to ∆(w) ≤ β (3)

max
w∈B(1)

OBJ(w;w⋆) (4)

Importantly, these problems have the same objectives and only differ by feasible region! The feasible
region of the fairness-constrained problem is B(1)∩ {w ∈ Rd : ∆(w) ≤ β} while the other is only
B(1). Notice that because we analyze equilibrium, optimizations are done as if w⋆ is known. If w⋆

is unknown, then one can follow (Bechavod et al., 2022) (Appendix A) and obtain the same results
(up to a small error term). To simplify exposition, we stick with the known w⋆ assumption. The
principal may choose between two different objectives: Accuracy, ACC, or Social Welfare, SW. Recall
that ∆(w) is a function capturing the discrepancy (between agent groups) in terms of desirable effort
incentivized by policy w; the function ∆(·) is chosen by the external stakeholder.

Formally, the accuracy and social welfare objectives are defined as follows:

ACC(w;w⋆) := −
∑
g∈[2]

Ex∼Dg

[
(⟨w⋆,x′(x;w, g⟩)− ⟨w,x′(x;w, g)⟩)2

]
SW(w;w⋆) :=

∑
g∈[2]

Ex∼Dg [⟨x′(x; g),w⋆⟩]

Remark 2.1 We define accuracy to be the negative of squared loss in order to discuss both problems
as a maximization. Our results can viewed equivalently as for a minimization of squared loss.

2.4.1 DESIRABILITY FAIRNESS CONSTRAINT

The function ∆(w)–chosen by the external stakeholder–represents the group-discrepancy in incen-
tivized desirable effort induced by w. After choosing tolerance β, the principal constrains his prob-
lem such that no deployed rule induces desirable effort incentives whose discrepancy across agents,
as measured by ∆(w), is greater than β. We call the set of w that satisfy this constraint, β-fair.
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Table 1: Upper bounds on opt loss in β-fair SE under Properties 3.1–3.3. Propositions yielding
bounds are in Appendix A.3.1. w̃ := (CA−1

1 C⊤Π1 + CA−1
2 C⊤Π2)

⊤w⋆, w′ = Iw⋆∈B(1)w
⋆ +

Iw⋆ /∈B(1)w
⋆/∥w⋆∥, smin =

√
β/λ1(Q) and r = (∥w⋆∥ − 1)+

Prop. 3.1 Prop. 3.2 Prop. 3.3 Accuracy SW

4
(
∥w⋆∥2 + 1

)
2∥w̃∥2

✓
[
H(M) ∥(Mw′ − β1)+∥2

]2
2∥w̃∥2

✓ 4
(
∥w⋆∥2 + 1

) √
2

✓ ✓ (2r + 1− smin)(r + 1− smin) ∥w̃∥2 −
√
β ∥w̃∥Q−1

Definition 2.2 (W(β; ∆), the set of β-fair rules) W(β; ∆) := {w ∈ Rd : ∆(w) ≤ β}.

Our theoretical guarantees assume little about ∆(·) beyond its satisfaction of broad properties, so we
briefly provide intuition for natural structures of ∆(·) that will appear throughout the paper. Recall
that x(g)

e (w) is the exogenous effort vector across features a group-g-agent exerts in best response
to what she knows about a policy, w, via peer learning. Thus, ΠDx

(g)
e (w) is a desirability-weighted

effort vector for the agent. Therefore, a natural measure of the desirability discrepancy of a rule is
∆(w) = Dist(ΠDx

(1)
e (w),ΠDx

(2)
e (w)) where Dist is some vector comparison function.

3 CONVEX FAIRNESS CONSTRAINTS

In this section, we present optimality loss bounds for the principal’s β-fair SE when the discrepancy
functions, ∆(·), are convex in w. We focus on ∆(·) such that the β-fair rules, W(β; ∆), form an
ellipsoidal or polyhedral feasible region for the fairness-constrained principal problem (Eq. (3));
the formal definitions follow next. Common vector comparison functions (e.g., sum of absolute or
squared value differences) create such regions.

Property 3.1 (Constrained feasible region is polyhedral (Fig 1a)) W(β; ∆) is such that B(1) ∩
W(β; ∆) = {w : w ∈ Rd,Mw ≤ β1} for some M ∈ Rk×d and 1 ∈ Rk where k ∈ N.

Property 3.2 (β-fair space is ellipsoidal (Fig 1b)) W(β; ∆) = {w : w ∈ Rd,w⊤Qw ≤ β} for
some Q ≻ 0.

Property 3.3 (Constrained feasible region is ellipsoidal (Fig 1c)) W(β; ∆) is such that B(1) ∩
W(β; ∆) = {w : w ∈ Rd,w⊤Qw ≤ β} for some Q ≻ 0.

(a) Feasible region of the fairness
constrained problem (Equation 3)
is polyhedral (Property 3.1)

(b) β-fair space is ellipsoidal (Prop-
erty 3.2)

(c) Feasible region of the fairness
constrained problem (Equation 3)
is ellipsoidal (Property 3.3)

Figure 1: Examples of β-fair spaces in 2 dimensions that satisfy Properties 3.1 (feasible region
polyhedral), 3.2 (β-fair space ellipsoidal), and/or 3.3 (feasible region ellipsoidal)

6
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Table 1 provides upper bounds on accuracy and welfare loss of an algorithmic decision making
system in β-fair SE as a function of setting parameters, alteration incentive desirability, and the
definition of desirable incentive fairness that stakeholders care about. For a principal, given the
stakeholders’ discrepancy function satisfies any of the properties, if he has knowledge/estimates of
the system parameters (C, Ag , Πg , and w⋆), he has an estimate of his worst-case loss in the system’s
equilibrium. Note, several bounds are in terms of his discrepancy tolerance. Meaning, he may use
these to get (worst case) trade-offs he will suffer for selecting different βs when this system reaches
equilibrium! To concretely illustrate these guarantees, we present numerical examples A.1 and A.2.

3.1 EXAMPLES OF PROPERTY-SATISFYING CONSTRAINTS

Properties 3.1–3.3 are not niche. Polyhedral/ellipsoidal spaces form when the discrepancy func-
tion, ∆, compares ΠDx

(1)
e (w) and ΠDx

(2)
e (w) (desirability-weighted effort vectors) using a sum

of either the absolute or squared values of the difference. Consider Examples 3.1 and 3.2.

Example 3.1 (Sum of absolute value differences) Let the space of β-fair policies be defined as:
W(β; ∆) :=

{
w : w ∈ Rd,∆(w) ≤ β

}
, where ∆(w) :=

∑
i∈[d]

∣∣∣(ΠDx
(1)
e (w)−ΠDx

(2)
e (w))i

∣∣∣
Example 3.2 (Sum of squared differences) Let the space of β-fair policies be defined as:
W(β; ∆) := {w : w ∈ Rd,∆(w) ≤ β} where ∆(w) :=

∑
i∈[d]

(ΠDx
(1)
e (w)−ΠDx

(2)
e (w))i)

2

In Example 3.1, the feasible region for the fairness constrained problem forms a polyhedron (i.e.,
Property 3.1). Likewise, in Example 3.2, the set of β-fair rules form an ellipsoid (i.e., Property
3.2). Technically, both of these require mild regularity conditions (Appendices A.3.2 and A.3.3):
the kernel of a product of setting parameters must be empty. However, should not be hard to satisfy
as randomness in matrix entries (e.g., that which is induced by noise in estimating parameters)
generally induces non-singularity with high probability.

4 NON-CONVEX FAIRNESS CONSTRAINTS

What if the stakeholder wants a non-convex desirability discrepancy function, ∆? This may happen
if the stakeholder compares desirability effort vectors, ΠDx

(1)
e (w) and ΠDx

(2)
e (w), asymmetrically,

which is natural if one group is already privileged. We present optimality loss bounds for β-fair
Stackelberg equilibrium (SE) when the space of β-fair policies, W(β; ∆), belongs to class F :

Definition 4.1 (F , a class of nonconvex fairness constraints) W(β; ∆) ∈ F if the following is
true for some Q ∈ Rd×d and Q ≻ 0:

• ∆(w) = ⟨w,w⟩Q − f(w) where f : Rd → R is nonnegative in w
• β ≤ λd(Q)

F is a class of β-fair spaces such that ∆ is a generalized inner product minus a positive function.
Thus, ∆ is (generally) nonconvex. F ensures a simple, nonempty ellipsoidal restriction of the β-
fair space, allowing us to get optimality loss bounds using Property 3.3 from Section 3. While
nonnegative assumptions on f may seem strong, recall that ∆ measures the desirability discrepancy
of effort vectors. As we will see in Example 4.1, a function defined by norms, which is a natural
measurement of the size of ΠDx

(g)
e (w), the desirability effort vector, fits this definition.

4.1 OPTIMALITY LOSS BOUNDS

We can easily restrict any W(β; ∆) ∈ F to a nonempty ellipsoid, E(β) = {w ∈ Rd : w⊤Qw ≤ β},
inside the feasible region of the principal’s fairness constrained problem (Appendix A.4.1). Invoking
Table 1 bounds for internal ellipsoids (Property 3.3) we have:

Accuracy loss ≤ (2r + 1− smin)(r + 1− smin) and SW loss ≤ ∥w̃∥2 −
√
β∥w̃∥Q−1 (5)
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Equation 5 is an upper bound to accuracy and welfare loss of an algorithmic decision making system
in β-fair SE. Given the stakeholders’ discrepancy function satisfies (1) in Definition 4.1, for any
tolerance that satisfies (2), the principal has an estimate of worst-case optimality loss in the system’s
equilibrium (when he has knowledge/estimates of system parameters). Because bounds are in terms
of the tolerance, he thus has a (worst-case) trade-off he will suffer for β selection when this system
reaches equilibrium!

4.2 EXAMPLE OF SUCH A NONCONVEX RESTRICTION

In Section 3, we present discrepancy functions based on sum of square or absolute value differences
(Examples 3.1, 3.2). They share two traits: (1) Desirability unfairness is constrained symmetrically,
(2) Difference in desirable effort is calculated by feature then summed. Although (1) seems natural,
a group g might be already privileged, making it only worthwhile to intervene if group g′ is poorly
incentivized. Additionally, (2) ensures convexity, but may be too granular if a stakeholder cares
about overall desirability. The ∆ of Example 4.1 represents an alternative to both of these traits.

Example 4.1 (Asymmetric desirability fairness) Let the space of β-fair rules be defined as:
W(β; ∆) := {w : w ∈ Rd,∆(w) ≤ β}, ∆(w) := ∥ΠDx

(g)
e (w)∥22 − ∥ΠDx

(g′)
e (w)∥22

In Example 4.1, ∆(w) > 0 when group g is more desirably incentivized. Thus, upper bounding by
β means that the principal’s rules cannot better incentivize group g than g′ by more than β, but better
incentivizing group g′ is fine. This may be useful if group g is already externally privileged. When
∆ is defined as described in Example 4.1, we have that W(β; ∆) ∈ F meaning bounds of Equation
5 hold! Technically, this requires mild regularity conditions formally presented in Appendices A.4.2,
but they are not hard to satisfy. What are these conditions intuitively? Equation 5 will hold as long
as the following is true: (1) the feature subspace of the privileged group, g, spans the whole space
(2) principal’s tolerance toward group g being more desirably incentivized is not too big.

5 EXPERIMENTAL EVALUATION

In Sections 3 and 4, we presented upper bounds on principal trade-offs. However, it is unclear how
much group disparities (i.e., along subspace, Πg , and cost, Ag) change the impact of β-desirability
fairness. On the ADULT dataset, we analyze how the same constraint impacts the principal’s SE
optimal value were groups variously disparate. We see that when disparity aligns with desirability,
imposing β-fairness particularly hits the principal’s optimal accuracy harder than when groups are
disparate randomly. Interestingly, social welfare is less sensitive disparity/desirability correlation.

5.1 EXPERIMENTAL SETUP

We use the ADULT dataset and study 3 agent groupings. By: age, country, and education level.
These are used to form 3 sets of Π1 and Π2. We then compute the β-fair equilibrium for various
cost matrices, A1, A2, and desirable feature sets, ΠD. Further details are in Appendix A.5.1

5.2 RESULTS

Figure 2 plots of the optimal value at various β-fair equilibria using the discrepancy function of
Example 3.1, henceforth called the ℓ1-fairness constraint, under different groupings and cost dispar-
ities. In general, as the tolerance, β, increases, the fairness constraint relaxes and the optimal value
(accuracy, social welfare) increases. In Figure 2a, the Education split, which separates agents into
well and less educated groups, is consistently the most constrained, its curve starts at the lower point
and improves most slowly. In this case, the desirable attributes (education, workclass, occupation)
are very aligned with this group disparity, so the discrepancy function, ∆, penalizes movements
along the most predictive directions. Interestingly, from Figure 2b, we see that Social Welfare is not
very sensitive to disparities in Πg as for all groups, the constrained optimal value approaches the
unconstrained very quickly. We then introduce group disparity by cost (A1 ̸= A2). In Figure 2c, we
see that optimality loss for the Education split retains the same shape, though the maximum β until
recovery has increased. Meanwhile, both Country and Age have significant optimality loss at the
tightest fairness constraints, though recover 0 accuracy much faster than Education. This behavior

8
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(a) Accuracy comparison: Uniform costs A1 = A2;
desirable: occupation, workclass, education, under

ℓ1-fairness constraint

(b) Social-welfare comparison: Uniform costs
A1 = A2; desirable: occupation, workclass,

education, under ℓ1-fairness constraint

(c) Accuracy comparison: Non-uniform costs
A1 = I, A2 = 2A1; desirable: occupation,

workclass, education, under ℓ1-fairness constraint

(d) Social-welfare comparison: Non-uniform costs
A1 = I, A2 = 2A1; desirable: occupation,

workclass, education, under ℓ1-fairness constraint

Figure 2: Optimal value in various β-fair equilibria.

follows from the conclusions under uniform costs. The Education split is actually correlated with
desirable characteristics and thus fairness constraints continue to have long lasting effects even at
high β. Now that disparity has increased, optimality in β-fair equilibria for Country and Age suffers
at the harshest constraints, but as they are not closely aligned with desirability, it does not impact
looser constraints. In Figure 2d we continue to see a similar effect. As Social welfare is not so
sensitive to disparities in Πg (Fig 2b), creating similar cost disparities on all groups similar invokes
optimality loss for all groups, but there is no relative difference. In the appendix (A.5.2) we include
experiements under ℓ2-fairness constraint (see Example 3.2 for the definition of this constraint) and
random cost matrices.

6 DISCUSSION

We formalize and study the problem of guaranteeing that strategic principals induce equitable in-
centives across heterogeneous agents. We do so by analyzing the trade-offs a principal may take
in an algorithmic decision making system that must fairly incentivize heterogeneous agents toward
changes that have external value outside of the chosen outcome. Theoretically, we provide guaran-
tees on the principal’s maximum loss in the system’s Stackelberg Equilibrium were he to commit
to providing fair incentives. In an empirical study, we map the optimality loss a fairly-incentivizing
principal suffers in the β-fair equilibrium of a real setting. We see that for an accuracy-maximizing
principal, fair incentivization “hurts more” when agents are disparate in a way that is aligned with
the alterations that are externally important to incentive. There are a couple natural avenues for
future work. (1) In order to compute their best response, agents should have access to the causal
graph, this may be replaced with looser assumptions such as estimates or even group-disparate mis-
specified beliefs. (2) While we focus on equilibria, they may be non-trivial to reach, thus it would
be interesting to consider the [online] learning perspective.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Saba Ahmadi, Hedyeh Beyhaghi, Avrim Blum, and Keziah Naggita. The strategic perceptron. In
Proceedings of the 22nd ACM Conference on Economics and Computation, EC ’21, pp. 6–25,
New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450385541. doi:
10.1145/3465456.3467629. URL https://doi.org/10.1145/3465456.3467629.

Saba Ahmadi, Avrim Blum, and Kunhe Yang. Fundamental bounds on online strategic classification.
In Proceedings of the 24th ACM Conference on Economics and Computation, EC ’23, pp. 22–58,
New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400701047. doi:
10.1145/3580507.3597818. URL https://doi.org/10.1145/3580507.3597818.

Sura Alhanouti and Parinaz Naghizadeh. Could anticipating gaming incentivize improvement in
(fair) strategic classification? In 2024 IEEE 63rd Conference on Decision and Control (CDC),
pp. 6028–6035, 2024. doi: 10.1109/CDC56724.2024.10886604.

Sura Alhanouti and Parinaz Naghizadeh. Anticipating gaming to incentivize improvement: Guid-
ing agents in (fair) strategic classification, 2025. URL https://arxiv.org/abs/2505.
05594.

Tal Alon, Magdalen Dobson, Ariel Procaccia, Inbal Talgam-Cohen, and Jamie Tucker-Foltz. Mul-
tiagent Evaluation Mechanisms. Proceedings of the AAAI Conference on Artificial Intelligence,
34(02):1774–1781, April 2020. doi: 10.1609/aaai.v34i02.5543. URL https://ojs.aaai.
org/index.php/AAAI/article/view/5543.

Srikanth Avasarala, Serena Wang, and Juba Ziani. The disparate effects of partial information in
bayesian strategic learning, 2025. URL https://arxiv.org/abs/2506.00627.

Yahav Bechavod, Katrina Ligett, Steven Wu, and Juba Ziani. Gaming helps! learning from strategic
interactions in natural dynamics. In Arindam Banerjee and Kenji Fukumizu (eds.), Proceed-
ings of The 24th International Conference on Artificial Intelligence and Statistics, volume 130
of Proceedings of Machine Learning Research, pp. 1234–1242. PMLR, 13–15 Apr 2021. URL
https://proceedings.mlr.press/v130/bechavod21a.html.

Yahav Bechavod, Chara Podimata, Steven Wu, and Juba Ziani. Information discrepancy in strategic
learning. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and
Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pp. 1691–1715. PMLR, 17–23 Jul
2022. URL https://proceedings.mlr.press/v162/bechavod22a.html.

Mark Braverman and Sumegha Garg. The Role of Randomness and Noise in Strategic Classification.
In Aaron Roth (ed.), 1st Symposium on Foundations of Responsible Computing (FORC 2020),
volume 156 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 9:1–9:20, Dagstuhl,
Germany, 2020. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISBN 978-3-95977-142-
9. doi: 10.4230/LIPIcs.FORC.2020.9. URL https://drops.dagstuhl.de/entities/
document/10.4230/LIPIcs.FORC.2020.9.

Trenton Chang, Lindsay Warrenburg, Sae-Hwan Park, Ravi Parikh, Maggie Makar, and Jenna
Wiens. Who’s gaming the system? a causally-motivated approach for detecting strategic adapta-
tion. Advances in Neural Information Processing Systems, 37:42311–42348, 2024.

Yiling Chen, Yang Liu, and Chara Podimata. Learning strategy-aware linear classifiers. Advances
in Neural Information Processing Systems, 33:15265–15276, 2020.

Silvia Chiappa and Thomas P. S. Gillam. Path-specific counterfactual fairness, 2018. URL https:
//arxiv.org/abs/1802.08139.

Lee Cohen, Saeed Sharifi-Malvajerdi, Kevin Stangl, Ali Vakilian, and Juba Ziani. Bayesian strate-
gic classification. In Proceedings of the 38th International Conference on Neural Informa-
tion Processing Systems, NIPS ’24, Red Hook, NY, USA, 2025. Curran Associates Inc. ISBN
9798331314385.

10

https://doi.org/10.1145/3465456.3467629
https://doi.org/10.1145/3580507.3597818
https://arxiv.org/abs/2505.05594
https://arxiv.org/abs/2505.05594
https://ojs.aaai.org/index.php/AAAI/article/view/5543
https://ojs.aaai.org/index.php/AAAI/article/view/5543
https://arxiv.org/abs/2506.00627
https://proceedings.mlr.press/v130/bechavod21a.html
https://proceedings.mlr.press/v162/bechavod22a.html
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FORC.2020.9
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FORC.2020.9
https://arxiv.org/abs/1802.08139
https://arxiv.org/abs/1802.08139


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Emily Diana, Saeed Sharifi-Malvajerdi, and Ali Vakilian. Minimax group fairness in strategic clas-
sification. In 2025 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML), pp.
753–772, 2025. doi: 10.1109/SaTML64287.2025.00047.

Jinshuo Dong, Aaron Roth, Zachary Schutzman, Bo Waggoner, and Zhiwei Steven Wu. Strate-
gic classification from revealed preferences. In Proceedings of the 2018 ACM Conference on
Economics and Computation, pp. 55–70, 2018.

Raman Ebrahimi, Kristen Vaccaro, and Parinaz Naghizadeh. The double-edged sword of behavioral
responses in strategic classification: Theory and user studies. In Proceedings of the 2025 ACM
Conference on Fairness, Accountability, and Transparency, FAccT ’25, pp. 868–886, New York,
NY, USA, 2025. Association for Computing Machinery. ISBN 9798400714825. doi: 10.1145/
3715275.3732056. URL https://doi.org/10.1145/3715275.3732056.

Valia Efthymiou, Chara Podimata, Diptangshu Sen, and Juba Ziani. Incentivizing desirable effort
profiles in strategic classification: The role of causality and uncertainty, 2025. URL https:
//arxiv.org/abs/2502.06749.

Ahmad-Reza Ehyaei, Amir-Hossein Karimi, Bernhard Schoelkopf, and Setareh Maghsudi. Ro-
bustness implies fairness in causal algorithmic recourse. In Proceedings of the 2023 ACM
Conference on Fairness, Accountability, and Transparency, FAccT ’23, pp. 984–1001, New
York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400701924. doi:
10.1145/3593013.3594057. URL https://doi.org/10.1145/3593013.3594057.

Andrew Estornell, Sanmay Das, Yang Liu, and Yevgeniy Vorobeychik. Group-fair classification
with strategic agents. In Proceedings of the 2023 ACM Conference on Fairness, Account-
ability, and Transparency, FAccT ’23, pp. 389–399, New York, NY, USA, 2023. Association
for Computing Machinery. ISBN 9798400701924. doi: 10.1145/3593013.3594006. URL
https://doi.org/10.1145/3593013.3594006.

Ekaterina Fedorova, Madeline Kitch, and Chara Podimata. User altruism in recommendation sys-
tems. arXiv preprint arXiv:2506.04525, 2025.

Ganesh Ghalme, Vineet Nair, Itay Eilat, Inbal Talgam-Cohen, and Nir Rosenfeld. Strategic classifi-
cation in the dark. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp.
3672–3681. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/
ghalme21a.html.

Vivek Gupta, Pegah Nokhiz, Chitradeep Dutta Roy, and Suresh Venkatasubramanian. Equalizing
recourse across groups, 2019. URL https://arxiv.org/abs/1909.03166.

Nika Haghtalab, Nicole Immorlica, Brendan Lucier, and Jack Z. Wang. Maximizing welfare with
incentive-aware evaluation mechanisms. In Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence, IJCAI’20, 2021. ISBN 9780999241165.

Moritz Hardt, Nimrod Megiddo, Christos H. Papadimitriou, and Mary Wootters. Strategic classifi-
cation. CoRR, abs/1506.06980, 2015. URL http://arxiv.org/abs/1506.06980.

Keegan Harris, Hoda Heidari, and Zhiwei Steven Wu. Stateful strategic regression. In Proceedings
of the 35th International Conference on Neural Information Processing Systems, NIPS ’21, Red
Hook, NY, USA, 2021. Curran Associates Inc. ISBN 9781713845393.

Andreas Haupt, Dylan Hadfield-Menell, and Chara Podimata. Recommending to strategic users.
arXiv preprint arXiv:2302.06559, 2023.

Alan J. Hoffman. On approximate solutions of systems of linear inequalities. Journal of Research
of the National Bureau of Standards, 49(4):263–265, 1952.

Guy Horowitz and Nir Rosenfeld. Causal strategic classification: a tale of two shifts. In Proceedings
of the 40th International Conference on Machine Learning, ICML’23. JMLR.org, 2023.

11

https://doi.org/10.1145/3715275.3732056
https://arxiv.org/abs/2502.06749
https://arxiv.org/abs/2502.06749
https://doi.org/10.1145/3593013.3594057
https://doi.org/10.1145/3593013.3594006
https://proceedings.mlr.press/v139/ghalme21a.html
https://proceedings.mlr.press/v139/ghalme21a.html
https://arxiv.org/abs/1909.03166
http://arxiv.org/abs/1506.06980


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Lily Hu, Nicole Immorlica, and Jennifer Wortman Vaughan. The disparate effects of strategic manip-
ulation. In Proceedings of the Conference on Fairness, Accountability, and Transparency, FAT*
’19, pp. 259–268, New York, NY, USA, 2019. Association for Computing Machinery. ISBN
9781450361255. doi: 10.1145/3287560.3287597. URL https://doi.org/10.1145/
3287560.3287597.

Amir-Hossein Karimi, Bernhard Schölkopf, and Isabel Valera. Algorithmic recourse: from counter-
factual explanations to interventions. In Proceedings of the 2021 ACM Conference on Fairness,
Accountability, and Transparency, FAccT ’21, pp. 353–362, New York, NY, USA, 2021. Associ-
ation for Computing Machinery. ISBN 9781450383097. doi: 10.1145/3442188.3445899. URL
https://doi.org/10.1145/3442188.3445899.

Amir-Hossein Karimi, Gilles Barthe, Bernhard Schölkopf, and Isabel Valera. A survey of algo-
rithmic recourse: Contrastive explanations and consequential recommendations. ACM Com-
put. Surv., 55(5), December 2022. ISSN 0360-0300. doi: 10.1145/3527848. URL https:
//doi.org/10.1145/3527848.

Vijay Keswani and L. Elisa Celis. Addressing strategic manipulation disparities in fair classifica-
tion. In Proceedings of the 3rd ACM Conference on Equity and Access in Algorithms, Mech-
anisms, and Optimization, EAAMO ’23, New York, NY, USA, 2023. Association for Com-
puting Machinery. ISBN 9798400703812. doi: 10.1145/3617694.3623252. URL https:
//doi.org/10.1145/3617694.3623252.

Jon Kleinberg and Manish Raghavan. How do classifiers induce agents to invest effort strate-
gically? In Proceedings of the 2019 ACM Conference on Economics and Computation, EC
’19, pp. 825–844, New York, NY, USA, 2019. Association for Computing Machinery. ISBN
9781450367929. doi: 10.1145/3328526.3329584. URL https://doi.org/10.1145/
3328526.3329584.

Sagi Levanon and Nir Rosenfeld. Strategic classification made practical. In Marina Meila and Tong
Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pp. 6243–6253. PMLR, 18–24 Jul 2021.
URL https://proceedings.mlr.press/v139/levanon21a.html.

John Miller, Smitha Milli, and Moritz Hardt. Strategic classification is causal modeling in disguise.
In Proceedings of the 37th International Conference on Machine Learning, ICML’20. JMLR.org,
2020.

Smitha Milli, John Miller, Anca D. Dragan, and Moritz Hardt. The social cost of strategic classifi-
cation. In Proceedings of the Conference on Fairness, Accountability, and Transparency, FAT*
’19, pp. 230–239, New York, NY, USA, 2019. Association for Computing Machinery. ISBN
9781450361255. doi: 10.1145/3287560.3287576. URL https://doi.org/10.1145/
3287560.3287576.

Razieh Nabi and Ilya Shpitser. Fair inference on outcomes. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial In-
telligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelli-
gence, AAAI’18/IAAI’18/EAAI’18. AAAI Press, 2018. ISBN 978-1-57735-800-8.

Nicholas Perello, Cyrus Cousins, Yair Zick, and Przemyslaw Grabowicz. Discrimination induced
by algorithmic recourse objectives. In Proceedings of the 2025 ACM Conference on Fairness,
Accountability, and Transparency, FAccT ’25, pp. 1653–1663, New York, NY, USA, 2025. Asso-
ciation for Computing Machinery. ISBN 9798400714825. doi: 10.1145/3715275.3732110. URL
https://doi.org/10.1145/3715275.3732110.

Javier Peña, Juan C. Vera, and Luis F. Zuluaga. New characterizations of Hoffman constants
for systems of linear constraints. Mathematical Programming, 187(1):79–109, May 2021.
ISSN 1436-4646. doi: 10.1007/s10107-020-01473-6. URL https://doi.org/10.1007/
s10107-020-01473-6.

Chara Podimata. Incentive-aware machine learning; robustness, fairness, improvement & causality.
arXiv preprint arXiv:2505.05211, 2025.

12

https://doi.org/10.1145/3287560.3287597
https://doi.org/10.1145/3287560.3287597
https://doi.org/10.1145/3442188.3445899
https://doi.org/10.1145/3527848
https://doi.org/10.1145/3527848
https://doi.org/10.1145/3617694.3623252
https://doi.org/10.1145/3617694.3623252
https://doi.org/10.1145/3328526.3329584
https://doi.org/10.1145/3328526.3329584
https://proceedings.mlr.press/v139/levanon21a.html
https://doi.org/10.1145/3287560.3287576
https://doi.org/10.1145/3287560.3287576
https://doi.org/10.1145/3715275.3732110
https://doi.org/10.1007/s10107-020-01473-6
https://doi.org/10.1007/s10107-020-01473-6


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Elan Rosenfeld and Nir Rosenfeld. One-shot strategic classification under unknown costs. In Pro-
ceedings of the 41st International Conference on Machine Learning, ICML’24. JMLR.org, 2024.

Yonadav Shavit, Benjamin L. Edelman, and Brian Axelrod. Causal strategic linear regression. In
Proceedings of the 37th International Conference on Machine Learning, ICML’20. JMLR.org,
2020.

Benyamin Trachtenberg and Nir Rosenfeld. Strategic classification with non-linear classifiers, 2025.
URL https://arxiv.org/abs/2505.23443.

Stratis Tsirtsis and Manuel Gomez-Rodriguez. Decisions, counterfactual explanations and strategic
behavior. In Proceedings of the 34th International Conference on Neural Information Processing
Systems, NIPS ’20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.
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A SUPPLEMENTAL MATERIAL

A.1 SUPPLEMENTAL MATERIAL FOR SECTION 1

A.1.1 SUPPLEMENTAL MATERIAL FOR SECTION 1.2

Strategic learning/classification models (see Podimata (2025) for a review) consider a learner (or
principal) robustness problem, in which the learner must construct an optimal (according to accu-
racy or loss) algorithm under the assumption that agents will have knowledge of this algorithm and
“game” their features to earn a better score/classification subject to some (potentially unknown to
the learner) costs (Hardt et al., 2015; Dong et al., 2018; Chen et al., 2020; Ahmadi et al., 2021;
Trachtenberg & Rosenfeld, 2025; Rosenfeld & Rosenfeld, 2024). However, as discussed by Miller
et al. (2020), who create a formal causal framework in which to study strategic learning, agents’
feature alterations are not always gaming. To this end, further work (including ours) complicates
this idea by rejecting the assumption that all feature alterations are gaming. Several works con-
sider different optimal algorithms for the learner in a causal setting. Horowitz & Rosenfeld (2023)
present maximally accurate algorithms for learner under a setting in which agents’ features may be
causal, non-causal, or unobserved. Shavit et al. (2020) find a learner algorithm that, under similar
causality assumptions, maximizes agent outcomes and show that if all causal features are observed,
estimates of ground truth model parameters are improved. Bechavod et al. (2021) show that in an
online setting with “meaningful” features, the learner can use strategic behavior to purposefully
uncover those features that lead to real improvements and thus purposefully incentivize them. Oth-
ers, directly create learner rules or algorithms to incentivize good feature alterations. Kleinberg &
Raghavan (2019) present algorithms for the learner which allow him to incentivize chosen “good”
effort profiles. While Harris et al. (2021) consider a similar learner problem of incentivizing ef-
fort, but in a setting where the agent and principal interact multiple times and the agent’s effort
accumulates to form different states. Another perspective is mechanism design under strategic be-
havior (Alon et al., 2020; Haghtalab et al., 2021),which aims to promote beneficial effort—and, in
some cases, provide counterfactual explanations that guide individuals on how to improve outcomes
(Tsirtsis & Gomez-Rodriguez, 2020). While, like all of these, our work also allows agents to gen-
uinely change their features rather than game, our approach differs in that we take an equilibrium
analysis perspective i.e., we study the learner’s optimal value rather than provide specific algorithms,
and we study a learner who must provide fair incentives to improvement across agents. Most rele-
vant to our model’s approach toward improvement/causality is Efthymiou et al. (2025), who study
agents’ desirable effort profiles when they must determine how to make alterations to their features
given features causally affect each other and potentially partial information on both the causal graph
and the learner’s rule. Though we similarly model causal flow between features and analyze ef-
fort desirability, our focus and results are on inducing fair desirable incentives from the principal’s
perspective.

Models also consider the added complication that agents may not have full information about the
learner’s policy. One such work that also studies improvements (rather than gaming) is Bechavod
et al. (2022). They find that in cases where agents must learn about the learner’s rule from peers, un-
der some types of group disparity, the learner’s optimal policy may induce deterioration (i.e. feature
manipulations that cause agents to have worse ground truth outcomes). Our work uses their model
of peer learning but adds causal flow between features to study how the use of desirable (exoge-
nous) effort constraints on the learner’s policy impact his optimal value. Additional relevant models
of agent’s incomplete information include (Ebrahimi et al., 2025) where they explore how agent’s
biases/misconception affect their ability to best-respond, (Ghalme et al., 2021) where similarly with
us they consider a scenario where a classifier is not publicly available, and (Avasarala et al., 2025)
where agents have access only to a noisy signal of the rule. In addition, there are works that exam-
ine strategic classification under the lens of Bayesian theory (see (Cohen et al., 2025)) where agents
hold priors over a class of possible classification rules. Another related line of research studies the
deployment of random classifiers, which is a natural resource of incomplte infomation and studies
its effect on the classification quality as well as agent’s ability to best-respond (Braverman & Garg,
2020; Ahmadi et al., 2023).

Finally, there exists a natural connection between our focus on constraining only to policies that
induce fair incentives and strategic learning analysis that considers other types of fairness induced
by the learner’s optimal policies. Most related, (Alhanouti & Naghizadeh, 2024) find that in a strate-
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gic classification setting, imposing fairness constraints that equalize true positive rates or equalize
acceptance rates actually hurts incentive equity between advantaged and disadvantaged agents. Our
work attempts to address the issue they document in directly constraining (desirable) incentive dis-
crepancy between agent groups. Other works include Estornell et al. (2023) and Ahmadi et al. (2021)
who show that traditionally fair classifiers experience no longer achieve these goals when considered
in a strategic setting, Milli et al. (2019) and Hu et al. (2019) who analyze the disparate effects of an
optimal strategic learning rule on heterogeneous agents. And Diana et al. (2025), which deals with
fairness from an algorithmic point of view, present learner algorithms that provide optimal rules
subject to minimax fairness constraints.

Outside of strategic classification/learning, in algorithmic recourse, rather than a learner who in-
duces feature alterations through the incentives of his algorithm, researchers study how a learner
may provide explanations or recommended actions to agents who receive unfavorable scores (von
Kügelgen et al., 2020; Ehyaei et al., 2023; Karimi et al., 2021; Perello et al., 2025; Gupta et al.,
2019), see Karimi et al. (2022) for a review. While these settings similarly consider agents who may
change their features, our model (and strategic classification as a whole) takes a more mechanism
design approach in that the learner indirectly creates “recourse” for agents by incentivizing changes
exclusively through deploying the algorithm or policy rather than direct recommendations to agents.

A.2 SUPPLEMENTAL MATERIAL FOR SECTION 2

Table 2: Notation Table

Symbol Meaning
d dimension of features
C Contribution matrix
Ag group g cost matrix
Πg group g projection matrix
ΠD diagonal desirability score matrix

des(i) feature i desirability score
g group
Dg group g distribution of features
Sg group g feature subspace
x initial feature
x′ altered feature
xe exogenous effort
w principal’s rule
w⋆ ground truth rule

Score(x′, g) group g agent’s estimated score
Cost(xe; g) agent cost for exerting effort xe

∆(w) discrepancy in desirable effort incentivized by w
G causal graph
A set of edges
ω edge weights
Pij set of all direct paths from node i to node j
ω(p) sum of weights on path p ∈ Pij

β principal’s discrepancy tolerance
U(x,x′, g) group g agent’s utility as a function alteration

B(1) euclidean ball with radius 1
ACC(w,w⋆) accuracy of rule w
SW(w,w⋆) social welfare of rule w
W(β; ∆) set of β-fair rules

ΠDx
(g)
e (w) desirability-weighted effort vector for group g agent

H(M) Hoffman constant of matrix M

E(β̃) ellipsoidal restriction of a W(β; ∆) ∈ F
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A.2.1 SUPPLEMENTAL MATERIAL FOR SECTION 2.1

Hoffman constant. We use H(M) to denote the Hoffman constant of matrix M ∈ Rk×d, i.e., a
constant such that ∀b ∈ M+ Rk

≥0 and ∀z ∈ Rd it is true that

Dist(z, PA(b)) ≤ H(M)∥(Mz− b)+∥2

where Dist(z, PA(b)) := min{∥z − x∥2 : x ∈ PA(b). M := {Mw : w ∈ Rd} and PA(b) :=
{w ∈ Rd : Mw ≤ b}.

In particular, this is a Hoffman constant for p = 2 (i.e., Dist is the l2 norm). This is an equivalent
definition to the one used by Peña et al. (2021).

A.2.2 SUPPLEMENTAL MATERIAL FOR SECTION 2.3

Lemma A.1 (Contribution matrix of a DAG is invertible and kernel zero) Let C be the contri-
bution matrix of a DAG. Then ker(C) = ∅. Equivalently, C is invertible.

Proof of Lemma A.1. Recall that for some exogenous effort xe ∈ Rd, we have the post-causality
effort x := Cxe. We shall prove ker(C) = ∅ by contradiction. Suppose ker(C) ̸= ∅, then it must
be the case that there exists xe where xe ̸= 0, s.t. Cxe = 0 and thus this exogenous effort “cancels
itself out”. Let xe be a nonzero vector in ker(C) and define I := {i ∈ [d] : xei ̸= 0}. Because
Cxe = 0, ∀i ∈ I, node i in the causal graph must have at least one in-degree from some j ∈ I or
else there is no way that ci⊤xe = 0. To see this, recall that by construction, a row ci, of C is made
up of paths into node i and Ci,i = 1. Consider the subgraph, G̃, represented by the collection of
nodes in I and the edges between them. Each of these nodes have at least one in-degree from another
in the subgraph. Thus, no node in the finite directed subgraph has 0 in-degree. Clearly this means
there must be cycle because if we consider traversing the graph from any vertex, we must eventually
repeat a vertex as they are finite and all have an in-degree. However, this poses a contradiction to
our assumption that C comes from a DAG. Therefore, it must be the case that ker(C) = ∅. □

Proof of Proposition 2.1. From Lemma 3.1 of Bechavod et al. (2022), agents’ estimate of west

can be solved in closed form as a function of Πg,w: west(g) = Πgw. Thus:

U(x,x′; g) : = ⟨Πgw,x′⟩ − 1

2
||
√

Ag(xe)||2

= ⟨Πgw,x+ Cxe⟩ −
1

2
||
√
Ag(xe)||2

This function should be concave (sum of 3 concave functions: a constant plus a linear term minus a
norm) and hence:

∇U(x,x′; g) = C⊤Πgw −Agxe = 0 ⇐⇒
xe = A−1

g C⊤Πgw

Therefore the best-response is:

x′(x; g) = x+ CA−1
g C⊤Πgw (6)

□

A.2.3 SUPPLEMENTAL MATERIAL FOR SECTION 2.4

Lemma A.2 (Equivalent Accuracy Objective) An accuracy-maximizing principal can solve ei-
ther Problem 3 or 4 using the following objective to find the optimal wACC policy in equilibrium

max
w∈Rd

− ∥w⋆ −w∥22 (7)
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Proof of Lemma A.2. Using the solution from 2.1

−ACC =
∑
g∈[2]

Ex∼Dg

[(
w⋆⊤x̂(x; g)−w⊤x̂(x; g)

)2]
=

∑
g∈[2]

Ex∼Dg

[
(w⋆⊤x̂(x; g))2 + (w⊤x̂(x; g))2 − 2(w⋆⊤x̂(x; g))(w⊤x̂(x; g))

]
= ⟨w⋆,w⋆⟩+ ⟨w,w⟩ − 2⟨w⋆,w⟩
= ⟨w⋆ −w,w⋆ −w⟩
= ∥w⋆ −w∥22

□

Lemma A.3 (Equivalent SW Objective) A social-welfare-maximizing principal can solve either
Problem 3 or 4 using the following objective to find the optimal wSW policy in equilibrium

max
w∈Rd

⟨(CA−1
1 C⊤Π1 + CA−1

2 C⊤Π2)
⊤w⋆,w⟩ (8)

Proof of Lemma A.3. Recall that SW :=
∑

i∈[2] Ex∼Dg [⟨x̂(x; g),w⋆⟩]. Using the x̂ solution from
2.1, we see that this is equivalent to the following

SW =
∑
g∈[2]

Ex∼Dg [⟨x̂(x; g),w⋆⟩]

= Ex∼D1
[⟨x+∆1(w),w⋆⟩] + Ex∼D2

[⟨x+∆2(w),w⋆⟩]
= ⟨∆1(w),w⋆⟩+ ⟨∆2(w),w⋆⟩+ Ex∼D1 [⟨x,w⋆⟩] + Ex∼D2 [⟨x,w⋆⟩]
= ⟨CA−1

1 C⊤Π1w,w⋆⟩+ ⟨CA−1
2 C⊤Π2w,w⋆⟩+ Ex∼D1

[⟨x,w⋆⟩] + Ex∼D2
[⟨x,w⋆⟩]

= ⟨w⋆, CA−1
1 C⊤Π1w⟩+ ⟨w⋆, CA−1

2 C⊤Π2w⟩+ Ex∼D1
[⟨x,w⋆⟩] + Ex∼D2

[⟨x,w⋆⟩]
= w⋆⊤CA−1

1 C⊤Π1w +w⋆⊤CA−1
2 C⊤Π2w + Ex∼D1

[⟨x,w⋆⟩] + Ex∼D2
[⟨x,w⋆⟩]

= ⟨(CA−1
1 C⊤Π1)

⊤w⋆,w⟩+ ⟨(CA−1
2 C⊤Π2)

⊤w⋆,w⟩+ Ex∼D1 [⟨x,w⋆⟩] + Ex∼D2 [⟨x,w⋆⟩]
= ⟨(CA−1

1 C⊤Π1 + CA−1
2 C⊤Π2)

⊤w⋆,w⟩+ Ex∼D1 [⟨x,w⋆⟩] + Ex∼D2 [⟨x,w⋆⟩]

The two expectation terms are constants with respect to w, so they can be ignored when finding
an optimal solution. Since the learner wants to maximize the linear objective, this is equivalent to
minimizing the negative. □

A.3 SUPPLEMENTAL MATERIAL FOR SECTION 3

A.3.1 SUPPLEMENTAL MATERIAL OF TABLE 1

We will now derive the bounds that correspond to each combination in the table.

First, notice that Accuracy and Social Welfare objectives are very nice. We can use this to loosely
bound the optimality loss even when the only property satisfied by the fairness space is convexity.

Proposition A.1 (Optimality loss bounds with no fairness space properties) For the Accuracy
objective, the optimality loss between the unconstrained and fairness-constrained equilibrium is
upper-bounded:

|f(w⋆
c )− f(w⋆

u)| ≤ 4(∥w⋆∥+ 1) (9)

For the Social Welfare objective, the optimality loss between the unconstrained and fairness-
constrained equilibrium is upper-bounded:

|f(w⋆
c )− f(w⋆

u)| ≤ 2LSW (10)

Where LSW := ∥(CA−1
1 C⊤Π1 + CA−1

2 C⊤Π2)
⊤w⋆∥2
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Proof. Notice that for an L-lipschitz objective function:

|f(w⋆
c )− f(w⋆

u)| ≤ L∥w⋆
u −w⋆

c∥2 ∀w⋆
c ,w

⋆
u ∈ B(1) (def of L-lipschitz in ball)

≤ L sup
w∈W(β)∩B(1)

∥w⋆
u −w∥2 (def of constrained problem)

≤ 2L (diameter of B(1))
Now we shall just prove that the accuracy and social welfare objectives are 2(∥w⋆∥+1)- and LSW-
lipschitz on the euclidean ball respectively.

Accuracy objective is simply the squared l2 distance between w⋆ (Lemma A.2) and its projection
onto the feasible region.

|f(w)− f(w′)| = | − ∥w⋆ −w∥22 + ∥w⋆ −w′∥22|
= |(∥w⋆ −w′∥2 + ∥w⋆ −w∥2)(∥w⋆ −w′∥2 − ∥w⋆ −w∥2)|
= (∥w⋆ −w′∥2 + ∥w⋆ −w∥2)|∥w⋆ −w′∥2 − ∥w⋆ −w∥2|
≤ (∥w⋆ −w′∥2 + ∥w⋆ −w∥2)∥w −w′∥ triangle ineq

≤ 2(∥w⋆∥+ 1)∥w −w′∥ ∀w,w′ ∈ B(1)

Recall that Social Welfare is a linear objective (Lemma A.3). Specifically: ⟨c,w⟩ where c :=
(CA−1

1 C⊤Π1 + CA−1
2 C⊤Π2)

⊤w⋆

|f(w)− f(w′)| = |⟨c,w −w′⟩|
≤ ∥c∥2∥w −w′∥2 ∀w,w′ Cauchy-schwarz

□

Proposition A.2 (Ellipsoidal (Property 3.2) social welfare loss) For fairness spaces satisfying
Property 3.2, when the learner’s objective, f , is social welfare, optimality loss is upper bounded.

|f(w⋆
u)− f(w⋆

c )| ≤
√
2

Proof. Recall that Social Welfare is a linear objective (Lemma A.3). Specifically: ⟨c,w⟩ where
c := (CA−1

1 C⊤Π1 + CA−1
2 C⊤Π2)

⊤w⋆

Using KKT in the unconstrained problem we get that the optimum w∗
u lies in the direction of c.

1. If W(β) ⊃ B2(1) then the constrained optimum coincides with the unconstrained (it lies
in the L2-ball), and the angle is zero.

2. If W(β) ⊂ B2(1) then in the constrained optimization problem the ball constraint is not
active and therefore by KKT we infer that the optimimum lies in the direction of Q−1c and
in particular : w∗

c = Q−1c
c⊤Qc

. Now observe that

cos(x∗
u, x

∗
c) = cos(c, A−1c) =

c⊤A−1c

∥c∥∥A−1c∥
> 0

since we know that A ≻ 0 (by definition of ellipsoid) and therefore A−1 exists and it is
also a PD.

3. If neither of the above is happening, then the KKT conditions tell us that 2λ1w
∗
c +

2λ2Qw∗
c = c where λ1, λ2 ≥ 0 are the Langrange multipliers. Clearly, if λ1, λ2 > 0*

, A = λ1I + λ2Q must be invertible as the sum of two PD matrices is a PD matrix. Hence
w∗

c = 1
2A

−1c does not follow the direction of either c or Q−1c but a linear combination of
those. In any case, A−1 is a PD matrix itself and therefore:

cos(x∗
u, x

∗
c) =

c⊤A−1c

∥c∥∥A−1c∥
> 0, ∀c ̸= 0

* If λ1 = 0, λ2 > 0 then w∗
c = 1

2λ2
Q−1c and since Q ≻ 0 from assumption we will also

have c⊤Q−1c ≻ 0 ∀c ∈ Rn =⇒ cos(x∗
u, x

∗
c) > 0.

If λ1 > 0, λ2 = 0 then w∗
c and w∗

u lie in the same direction and the angle is 0.
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Using the generalized pythagorean:

∥x∗
c − x∗

u|| ≤ ∥x∗
c∥2 + ∥x∗

u∥2 − 2 cos(x∗
u, x

∗
c) ≤ ∥x∗

c∥2 + ∥x∗
u∥2

Since both x∗
c and x∗

u belong in the ball we get:

∥x∗
c − x∗

u|| ≤ ∥x∗
c∥2 + ∥x∗

u∥2 ≤ 1 + 1 =
√
2

□

Proposition A.3 (Internal polyhedron (Property 3.1) accuracy loss) For fairness spaces satisfy-
ing Property 3.1, when the learner’s objective, f , is accuracy, optimality loss is upper bounded.

if w⋆ ∈ B(1) : |f(w⋆
u)− f(w⋆

c )| ≤ [H(M)∥(Mw⋆ − β1)+∥2]2

if w⋆ /∈ B(1) : |f(w⋆
u)− f(w⋆

c )| ≤
[
H(M)∥(M w⋆

∥w⋆∥2
− β1)+∥2

]2
Where M ∈ Rk×d and 1 ∈ Rk define the polyhedral representation of the fairness space. That is,
the feasible region, B(1) ∩W(β) = {w ∈ Rd : Mw ≤ b}

Proof. First, recall that accuracy optimization is simply euclidean projection onto the respective
feasible region (Lemma A.2). Therefore, w∗

u and w∗
c are projections of w∗ onto B(1) and B(1) ∩

W(β) respectively. In order to prove Proposition A.3, we will leverage that w∗
c is closer to w⋆ than

the projection of w∗
u would be onto W(β) ∩ B(1). Let z := PW(β)∩B(1)(w

∗
u) be this projection.

Clearly, we have:

∥w⋆
c −w⋆∥22 ≤ ∥z−w⋆∥22 (w⋆

c is optimal)

≤ ∥w⋆
u −w⋆∥22 + ∥z−w⋆

u∥22 (triangle ineq)

Using Lemma A.2 this implies that

|f(w⋆
u)− f(w⋆

c )| = ∥w⋆
c −w⋆∥22 − ∥w⋆

u −w⋆∥22 ≤ ∥z−w⋆
u∥22

Note that clearly ∥w⋆
c −w⋆∥2 ≥ ∥w⋆

u −w⋆∥2. So now, we must simply upper bound ∥z−w⋆
u∥2.

Using a Hoffman bound (Hoffman (1952)), we have that ∃w0 ∈ W(β) ∩ B(1), H(M) > 0 such
that,

[H(M)∥(Mw⋆ − β1)+∥2]2 ≥ ∥w⋆
u −w0∥22 ≥ ∥w∗

u − z∥22
Of course, we want this bound in terms of w⋆ not w⋆

u, but this is simple because since w⋆
u is the

projection onto B(1), we have a closed form in terms of w⋆. In particular, if w⋆ ∈ B(1), then
w⋆ = w⋆

u. Otherwise, we normalize it by the l-2 norm: w⋆/∥w⋆∥2 = w⋆
u □

Lemma A.4 Consider the following convex optimization problem, where Q ∈ Rd×d and Q ≻ 0.
and w̃ ̸= 0

minimizew∈Rd ⟨w̃,w⟩
subject to w⊤Qw − β ≤ 0

(11)

The optimal solution is

ŵ∗
ellipsoid =

−
√
βQ−1w̃

∥
√

Q−1w̃∥2

Proof. By Slater’s condition, we have that the KKT conditions are necessary and sufficient for
optimality. Therefore, any w satisfying them must be optimal. We shall proceed by solving the
KKT conditions.

minimizew∈Rd ⟨w̃,w⟩
subject to w⊤Qw − β ≤ 0

(12)

The KKT conditions state:
−w̃ = 2λQw

λ ≥ 0

λ(w⊤Qw − β) = 0

w⊤Qw ≤ β
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λ ̸= 0 because if it were, then w̃ = 0, which would be a contradiction. Therefore it must be the
case that λ > 0.

Using the first KKT condition we have that w = −Q−1w̃
2λ . Q is PD, therefore it is also invertible.

Because λ > 0, it must be the case that w⊤Qw = β (3rd KKT condition). Thus we have:

w⊤w =

[
−Q−1w̃

2λ

]⊤
Q
−Q−1w̃

2λ
=

1

4λ2
w̃⊤Q−1w̃ = β

Notice that if Q is PD, it is symmetric. Solving for λ, we see that λ⋆ = 1
2
√
β
∥
√

Q−1w̃∥2. Substi-

tuting this into w = −Q−1w̃
2λ we have

ŵ∗
ellipsoid =

−
√
βQ−1w̃

∥
√

Q−1w̃∥2
□

Proposition A.4 (Internal ellipsoid (Property 3.3) SW loss) Assume desirability fairness space,
W(β) satisfies property 3.3. Then social welfare loss is exactly:

SW(w⋆
u)−SW(w⋆

c ) = ∥(CA−1
1 C⊤Π1+CA−1

2 C⊤Π2)
⊤w⋆∥2−

√
β∥(CA−1

1 C⊤Π1+CA−1
2 C⊤Π2)

⊤w⋆∥Q−1

Proof. Recall that Social Welfare is a functionally linear objective (Lemma A.3). Specifically:
⟨c,w⟩ where c := (CA−1

1 C⊤Π1 + CA−1
2 C⊤Π2)

⊤w⋆

Using Lemma A.4 we get the closed from for the solution for the unconstrained and fairness
constrained problem, which we then plug back in for the optimal value. In each case, w̃ :=
−(CA−1

1 C⊤Π1 + CA−1
2 C⊤Π2)

⊤w⋆

Equation 4: Q = I , β = 1. This yields:

w⋆
u :=

(CA−1
1 C⊤Π1 + CA−1

2 C⊤Π2)
⊤w⋆

∥(CA−1
1 C⊤Π1 + CA−1

2 C⊤Π2)⊤w⋆∥2
(13)

SWu = ⟨(CA−1
1 C⊤Π1 + CA−1

2 C⊤Π2)
⊤w⋆,

(CA−1
1 C⊤Π1 + CA−1

2 C⊤Π2)
⊤w⋆

∥(CA−1
1 C⊤Π1 + CA−1

2 C⊤Π2)⊤w⋆∥2
⟩

= ∥(CA−1
1 C⊤Π1 + CA−1

2 C⊤Π2)
⊤w⋆∥2

Equation 3: Q = Q, β = β. This yields:

ŵ⋆
c :=

√
βQ−1(CA−1

1 C⊤Π1 + CA−1
2 C⊤Π2)

⊤w⋆

∥
√
Q−1(CA−1

1 C⊤Π1 + CA−1
2 C⊤Π2)⊤w⋆∥2

(14)

SWc = ⟨(CA−1
1 C⊤Π1 + CA−1

2 C⊤Π2)
⊤w⋆,

√
βQ−1(CA−1

1 C⊤Π1 + CA−1
2 C⊤Π2)

⊤w⋆

∥
√

Q−1(CA−1
1 C⊤Π1 + CA−1

2 C⊤Π2)⊤w⋆∥2
⟩

=
√
β∥(CA−1

1 C⊤Π1 + CA−1
2 C⊤Π2)

⊤w⋆∥Q−1

Subtracting the two yields the result of the proposition. □

Proposition A.5 (Internal ellipsoid(Property 3.3) accuracy loss) Assume property 3.3 is satis-
fied. Let w′ be a maximizer on the problem:

max−∥w −w⋆∥22
w⊤Qw ≤ β

Then we can bound the accuracy loss between w′ and unconstrainted (normalized on L2) policy w⋆
u

|ACC(w′)− ACC(w∗
u)| ≤ (2r + 1− smin)(r + 1− smin)

where w⋆ is the ground-truth policy, smin =
√

β
λmax(Q) and r = (∥w⋆∥ − 1)+
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Observation 1: When w∗ lies in the L2 ball then r = 0 and the bound is (1− smin)
2.

Observation 2: When the ellipsoid tends to cover the L2, i.e smin → 1 the bound becomes simply
2r2 (the optimal w∗

u and w′ will coincide and the bound will only depend on the position of w∗ with
relation to the L2-ball).

Figure 3: Useful visual: smin is the minimum distance of any point in the boundary of the ellipsoid
from its origin, w∗ is the optimal while wB is its projection onto the ball, wE is the optimal over the
intersection of the ellipsoid with the ball.

Proof. Define E(β) := {w ∈ Rd : w⊤Qw ≤ β} to be the ellipsoid internal to the euclidean ball.

Let smin =
√

β
λmax(Q) be the shortest radius from the origin to E(β)’s boundary. Let PE(β)(w) be

the projection of w onto E(β) then ∥PE(β)(w
⋆
u)−w⋆

u∥ = 1− s where s is the distance between the
origin and the point projection point on the boundary of E(β). Clearly

s ≥ smin =⇒ ∥PE(β)(w
⋆
u)−w⋆

u∥ = 1− s ≤ 1− smin

Thus,

∥w′ −w⋆
u∥2 = ∥PE(β)(w

⋆)−w⋆
u∥2

≤ ∥PE(β)(w
⋆)− PE(β)(w

⋆
u)∥2 + ∥PE(β)(w

⋆
u)−w⋆

u∥2 (triangle ineq)

≤ ∥w⋆ −w⋆
u∥+ 1− smin, (non-expansiveness of projections)

≤ (∥w⋆∥2 − 1)+ + 1− smin

where the last inequality comes from the fact that if w⋆ is in the boundary of L2 then distance is 0
and otherwise it is w⋆

u = w⋆/∥w⋆∥.

Now we can write using Lemma A.2:

|Acc(w′)− Acc(w⋆
u)| = |−∥w′ −w⋆∥22 + ∥w⋆

u −w⋆∥|22|
= |(∥w′ −w⋆∥2 + ∥w⋆

u −w⋆∥2)(|w′ −w⋆∥2 − ∥w⋆
u −w⋆∥2)|

≤ (∥w′ −w⋆
u∥2 + ∥w⋆

u −w⋆∥2)(∥w′ −w⋆
u∥2) (triangle ineq)

≤ (r + 1− smin + r)(r + 1− smin)

= (2r + 1− smin)(r + 1− smin)

where r = (∥w⋆∥ − 1)+ □

To supplement Table 1 bounds, one may consider the following numerical examples.

Example A.1 (Bounded optimality loss given non-disparate costs) Let agents have 2 features
(d = 2). Cost is non-disparate and changing either feature requires unit cost, so Ag = I2. Features
do not have any causal flow between one another, so C = I2. The first feature is desirable, while
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the 2nd feature is slightly less so, ΠD : diag(1, 3/4). Agents come from a feature distribution that
results in Π1 := diag(1, 0) and Π2 := diag(0, 1). Finally w⋆ = (1/2, 1/2). Using the fairness
constraint of Example 3.1, how much social welfare or accuracy is lost in Stackelberg equilibrium?

By Corollary A.2, if β ≤ 3/4, this satisfies Property 3.1. Thus using the polyhedral construction of
Lemma A.5 and the bound in Table 1, accuracy loss is bounded:

|f(w⋆
u)− f(w⋆

c )| ≤
[
H(M̂)

]2
[(1/8− β)+]

2 + (7/8− β)2]

if we further have 1/8 ≤ β ≤ 3/4:

|f(w⋆
u)− f(w⋆

c )| ≤

[
3H(M̂)

4

]2

Where:

M̂ =

−1 −3/4
1 −3/4
1 3/4
−1 3/4


Social welfare loss is also bounded:

|f(w⋆
u)− f(w⋆

c )| ≤ 2∥(CA−1
1 C⊤Π1 + CA−1

2 C⊤Π2)
⊤w⋆∥2 =

√
1/2

Example A.2 (Bounded accuracy loss given non-disparate feature distributions) Let agents
have 2 features (d = 2). Feature space is non-disparate and nonskewed, so Πg = I2. Features
do not have any causal flow between one another, so C = I2. The first feature is desirable, while
the 2nd feature is slightly less so, ΠD : diag(1, 3/4). Agents have disparate costs such that
all change is easier for group 1 agents: Π1 := diag(1/2, 1/2) and Π2 := diag(1, 1). Finally
w⋆ = (1/2, 1/2). Using the fairness constraint of Example 3.1, how much social welfare or
accuracy is lost in Stackelberg equilibrium?

By Corollary A.3 if β ≤ 3/4, this satisfies Property 3.1. Thus using the polyhedral construction of
Lemma A.5 and the bound in Table 1, accuracy loss is bounded:

|f(w⋆
u)− f(w⋆

c )| ≤
[
H(M̂)

]2
[(1/8− β)+]

2 + (7/8− β)2]

if we further have 1/8 ≤ β ≤ 3/4:

|f(w⋆
u)− f(w⋆

c )| ≤

[
3H(M̂)

4

]2

Where:

M̂ =

−1 −3/4
1 −3/4
1 3/4
−1 3/4


Social welfare loss is also bounded:

|f(w⋆
u)− f(w⋆

c )| ≤ 2∥(CA−1
1 C⊤Π1 + CA−1

2 C⊤Π2)
⊤w⋆∥2 =

√
1/2

A.3.2 SUPPLEMENTAL MATERIAL FOR EXAMPLE 3.1

First we note some usually assumptions used in this Appendix section and Appendix A.3.3

Assumption A.1 (Unknown feature space is exclusive) ker(Π1) ∩ ker(Π2) = ∅

Assumption A.2 (Estimated w is different) Π1w ̸= Π2w ∀w ̸= 0

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Lemma A.5 (W(β) from Example 3.1 is a polyhedron) W(β) of Example 3.1 can be rewritten
as:

W(β) = {w : w ∈ Rd,a⊤Mw ≤ β ∀a ∈ A}

Where M := ΠDA−1
1 C⊤Π1 − ΠDA−1

2 C⊤Π2 and A := {(a1, . . . , ad) ∈ Rd : ai ∈ {−1, 1}∀i ∈
[d]}
This is clearly a polyhedron of 2d constraints each defined by a⊤M

Proof. ∑
i∈[d]

|(ΠDx(1)
e (w)−ΠDx(2)

e (w))i| =
∑
i∈[d]

|(ΠDA−1
1 C⊤Π1w −ΠDA−1

2 C⊤Π2w)i|

=
∑
i∈[d]

|((ΠDA−1
1 C⊤Π1 −ΠDA−1

2 C⊤Π2)w)i|

= ∥Mw∥1

Where M := ΠDA−1
1 C⊤Π1 −ΠDA−1

2 C⊤Π2

Recall that {y : y ∈ Rd, ∥y∥1 ≤ β} describes a d-dimensional cube in y space, such shapes are
clearly polyhedra. We will show that ∥Mw∥1 ≤ β creates the polyhedron described by the lemma.

We can describe {y : y ∈ Rd, ∥y∥1 ≤ β} equivalently as: {y : y ∈ Rd,a⊤y ≤ β ∀a ∈ A}
where A := {(a1, . . . , ad) ∈ Rd : ai ∈ {−1, 1}∀i ∈ [d]} Note that |A| = 2d. Let y = Mw and
this gives polyhedron of the lemma. □

Importantly, Property 3.1 requires that B(1) ∩W(β) is a polyhedron! Therefore, for the optimality
loss bound associated with this Property, we should ensure that W(β) ⊆ B(1)

Proposition A.6 (Necessary and sufficient conditions for Example 3.1 to satisfy property 3.1)
The fairness function described by Example 3.1 satisfies Property 3.1 if and only if M , where
M := ΠDA−1

1 C⊤Π1−ΠDA−1
2 C⊤Π2 is such that (1) ker(M) = ∅ and (2) β ≤ inf∥w∥2=1 ∥Mw∥1

Proof. First, notice that by Lemma A.5, the fairness space, W(β) is a polyhedron for any M
and β > 0. Because B(1) is an ellipsoid, this means that for W(β) ∪ B(1) to be a polyhedron,
W(β) ⊆ B(1). So we must show that conditions (1) and (2) are necessary and sufficient to ensure
that W(β) ⊆ B(1).We will first prove that conditions (1) and (2) are necessary.

Notice that if ker(M) ̸= 0, then there exists some w0 ∈ ker(M) s.t. ∥w∥2 ≥ 1, but ∥Mw0∥1 =
0 < β. That would mean W(β) ̸⊆ B(1) Thus ker(M) = ∅ must be necessary.

Let µ(M) := inf∥w∥2=1 ∥Mw∥1 Now notice that ∥Mw∥1 = ∥w∥2∥M w
∥w∥2

∥1 ≥
µ(M)∥w∥2 ∀w This implies ∥Mw∥1

µ(M) ≥ ∥w∥2. Of course ∀w ∈ W(β):

β

µ(M)
≥ ∥Mw∥1

µ(M)
≥ ∥w∥2

From this, we see that in order for W(β) ⊆ B(1), it is necessary that β ≤ inf∥w∥2=1 ∥Mw∥1.

Now we will show that conditions (1) and (2) are sufficient. We will do this by contradiction.
Suppose that w0 ∈ W(β), but w0 /∈ B(1) while both (1) and (2) hold. This means that ∥w0∥2 > 1
and ∥Mw0∥1 ≤ β. From condition (2), ∥w0∥2∥M w0

∥w0∥2
∥1 = ∥Mw0∥1 ≤ β. From condition (1)

we know that µ(M) > 0 and then from the definition of µ(M): ∥M w0

∥w0∥2
∥1 ≥ µ(M). Thus it

must be the case that ∥w0∥2 ≤ 1. But this poses a contradiction! Thus we see that when conditions
(1) and (2) hold, there cannot exist such a w where w0 ∈ W(β), but w0 /∈ B(1), which means
W(β) ⊆ B(1). □

Corollary A.1 (Sufficient conditions for Example 3.1 to satisfy property 3.1) The fairness func-
tion described by Example 3.1 satisfies Property 3.1 if M , where M := ΠDA−1

1 C⊤Π1 −
ΠDA−1

2 C⊤Π2 is such that ker(M) = ∅ and β ≤ σd(M)
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Proof. We should show that β ≤ σd(M) =⇒ β ≤ inf∥w∥2=1 ∥Mw∥1 This is simple. Note that
rank of M must be d because it is a d× d matrix with an empty kernel. So the dth singular value is
the smallest nonzero singular value. So we have inf∥w∥2=1 ∥Mw∥2 = σd(M) from the Min-Max
theorem for singular values. And because ∀y ∈ Rd, ∥y∥2 ≤ ∥y∥2, we have inf∥w∥2=1 ∥Mw∥2 =
σd(M) ≤ inf∥w∥2=1 ∥Mw∥1. Thus clearly β ≤ σd(M) =⇒ β ≤ inf∥w∥2=1 ∥Mw∥1 □

These conditions, even in only the sufficient form are hard to interpret in the context of the setting
specifically given that M is a function of several setting parameters. To make things a clearer, we
can simplify to more specific settings in which groups have either cost or information discrepancy:

Corollary A.2 (Sufficient conditions for Example 3.1 to satisfy property 3.1 w/ no cost asymmetry)
Suppose that agents in our setting have the same cost to feature change (i.e. A1 = A2 = Ag).
Then, the fairness function described by Example 3.1 satisfies Property 3.1 if Assumption A.1 is
satisfied, Π1w ̸= Π2w ∀w,w ̸= 0, and β ≤ σd(ΠdA

−1
g C⊤[Π1 −Π2]).

Proof.
M = ΠDA−1

1 C⊤Π1 −ΠDA−1
2 C⊤Π2

= ΠDA−1
g C⊤[Π1 −Π2]

Clearly, the singular value condition is the same as the sufficient condition from A.1. Thus, all we
must prove that Assumption A.1 and Π1w ̸= Π2w ∀w,w ̸= 0 =⇒ ker(M) = ∅. Notice
that that ker(ΠDA−1

g C⊤) = ∅ because ΠD and Ag are positive definite by setting assumptions and
ker(C) = ∅ by Lemma A.1. Thus all that matters is ker(Π1 −Π2). Clearly, as long as

1. ∀w ∈ ker(Π1), w /∈ ker(P2) and ∀w′ ∈ ker(Π2), w′ /∈ ker(P1)

2. Π1w ̸= Π2w ∀w,w ̸= 0

then ker(ΠDA−1
g C⊤[Π1 −Π2]) will be empty. □

Corollary A.3 (Sufficient conditions for Example 3.1 to satisfy property 3.1 w/ no info asymmetry)
Suppose that agents in our setting have the same information (i.e. Π1 = Π2 = Πg). Then, the
fairness function described by Example 3.1 satisfies Property 3.1 if ker(Πg) = ∅, A2 ≻ A1 and
β ≤ σd(ΠD[A−1

1 −A−1
2 ]C⊤Πg).

Proof.
M = ΠDA−1

1 C⊤Π1 −ΠDA−1
2 C⊤Π2

= ΠD[A−1
1 −A−1

2 ]C⊤Πg

Clearly, the singular value condition is the same as the sufficient condition from A.1. Thus, all
we must prove that ker(Πg) = ∅, A2 ≻ A1 is sufficient to show that ker(M) = ∅. ΠD and
Ag are positive definite by setting assumptions and ker(C) = ∅ by Lemma A.1. So we consider
ker(A−1

1 −A−1
2 ) and ker(Πg). Clearly if ker(A−1

1 −A−1
2 ) = ∅ and ker(Πg) = ∅ then ker(ΠD[A−1

1 −
A−1

2 ]C⊤Πg) = ∅. Note that:

A2 ≻ A1 =⇒ A−1
1 ≻ A−1

2 =⇒ A−1
1 −A−1

2 ≻ 0 =⇒ ker(A−1
1 −A−1

2 ) = ∅
□

A.3.3 SUPPLEMENTAL MATERIAL FOR EXAMPLE 3.2

Proposition A.7 (Example 3.2 is (sometimes) an ellipsoid) Example 3.2 represents and ellipsoid
if and only if M = ΠD(A−1

1 CTP1 −A−1
2 CTP2) is invertible.

Proof. Expanding x
(1)
e ,x

(2)
e according to the closed-form solutions we identified in Proposition 2.1,

we can think of Example 3.2 as ∥Aw − Bw∥22 = ∥(A− B)w∥22 ≤ β where A = ΠD(A−1
1 CTP1)

and B = ΠD(A−1
2 CTP2). Now can rewrite ∥(A − B)w∥22 = (A − B)⊤(A − B) ≤ β. This set

represents an ellipsis when M = (A−B)⊤(A−B) ≻ 0. Now we know M ⪰ 0 always and M ≻ 0
when (A−B) is invertible.
Now we can study (A−B) = ΠD(A−1

1 C⊤P1 −A−1
2 C⊤P2).

Hence A−B is invertible iff M = ΠD(A−1
1 C⊤P1 −A−1

2 C⊤P2) is invertible

□
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Corollary A.4 (Sufficient conditions for Example 3.2 to satisfy property 3.2 w/ no cost asymmetry)
Suppose that agents in our setting have the same cost to feature change (i.e. A1 = A2 = Ag).
Then, the fairness function described by Example 3.2 satisfies Property 3.2 if Assumptions A.1 and
A.2 are satisfied.

Proof.
M = ΠDA−1

1 C⊤Π1 −ΠDA−1
2 C⊤Π2

= ΠDA−1
g C⊤[Π1 −Π2]

All we must prove that Assumptions A.1 and A.2 =⇒ ker(M) = ∅. Notice that that
ker(ΠDA−1

g C⊤) = ∅ because ΠD and Ag are positive definite by setting assumptions and
ker(C) = ∅ by Lemma A.1. Thus all that matters is ker(Π1 −Π2). Clearly, as long as

1. ∀w ∈ ker(Π1), w /∈ ker(P2) and ∀w′ ∈ ker(Π2), w′ /∈ ker(P1)

2. Π1w ̸= Π2w ∀w,w ̸= 0

then ker(ΠDA−1
g C⊤[Π1 −Π2]) will be empty. □

Corollary A.5 (Sufficient conditions for Example 3.2 to satisfy property 3.2 w/ no info asymmetry)
Suppose that agents in our setting have the same information (i.e. Π1 = Π2 = Πg). Then, the
fairness function described by Example 3.2 satisfies Property 3.2 if ker(Πg) = ∅, A2 ≻ A1.

Proof.
M = ΠDA−1

1 C⊤Π1 −ΠDA−1
2 C⊤Π2

= ΠD[A−1
1 −A−1

2 ]C⊤Πg

Thus, all we must prove that ker(Πg) = ∅, A2 ≻ A1 is sufficient to show that ker(M) = ∅.
ΠD and Ag are positive definite by setting assumptions and ker(C) = ∅ by Lemma A.1. So we
consider ker(A−1

1 − A−1
2 ) and ker(Πg). Clearly if ker(A−1

1 − A−1
2 ) = ∅ and ker(Πg) = ∅ then

ker(ΠD[A−1
1 −A−1

2 ]C⊤Πg) = ∅. Note that:

A2 ≻ A1 =⇒ A−1
1 ≻ A−1

2 =⇒ A−1
1 −A−1

2 ≻ 0 =⇒ ker(A−1
1 −A−1

2 ) = ∅

□

A.4 SUPPLEMENTAL MATERIAL FOR SECTION 4

A.4.1 SUPPLEMENTAL MATERIAL FOR SECTION 4.1

Proposition A.8 (E(β) ∈ W(β; ∆)) If W(β) ∈ F , then E(β) ⊆ W(β) ∩ B(1) Where E(β) :=
{w : w ∈ Rd,w⊤Qw ≤ β}

Proof. Clearly if w ∈ E(β) then we have: w⊤Qw ≤ β. But by assumption F we have ∆(w) ≤
w⊤Qw ≤ β thus E(β) ⊆ W(β).

For the last part, note that (application of Löwner) a E(β) ∈ B(1) iff β ≤ λd(Q) and this is true by
definition of F □

A.4.2 SUPPLEMENTAL MATERIAL FOR SECTION 4.2

Proposition A.9 (W(β) ∈ F where W(β) defined by Definition 4.1) W(β) ∈ F if and only if
ker(Πg) = ∅ and β ≤ λd(M

⊤M) where M := ΠDA−1
g C⊤Πg

Proof.
∆(w) = ∥ΠDx(g)

e (w)∥22 − ∥ΠDx(g′)
e (w)∥22

= ⟨w,w⟩M⊤
g Mg

− ⟨w,w⟩M⊤
g′Mg′

Where Mg := ΠDA−1
g C⊤Πg . Point one of definition of F is that M⊤

g Mg is PD. This is an iff with
ker(Mg) = ∅. The β conditions follows directly from the definition. □

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

A.5 SUPPLEMENTAL MATERIAL FOR SECTION 5

A.5.1 SUPPLEMENTAL MATERIAL FOR SECTION 5.1

We set the parameters C,Π1,Π2, A1, A2,ΠD, and w⋆ as follows.

Causal graph. We follow prior work on recourse/causal modeling for Adult von Kügelgen
et al. (2020); Nabi & Shpitser (2018); Chiappa & Gillam (2018) (see their cited sources for the
SCM) and instantiate an 8-node acyclic causal graph with nodes { sex,age,western,married,edu-
num,workclass,occupation,hours}. Edge weights are sampled as non–negative values on the exist-
ing edges (respecting a topological order so the adjacency is strictly upper–triangular), yielding a

weighted adjacency A ∈ R8×8 and the contribution matrix C =
7∑

k=0

Ak.

Groups and projectors. Following Bechavod et al. (2022), we form three sets of different 2 group
splits. Groups sets are as follows:

• Age (≤35 vs. >35),

• Country (western world vs. other)

• Education (≥ high-school vs. < high-school).

For each split g ∈ {1, 2}. We build a projection matrix Πg ∈ Rd×d by running SVD on the data
points belonging to group g, taking the top k right singular vectors (k = 5), and setting Πg =
Vg,kV

⊤
g,k.

Cost-matrices. For each group g ∈ {1, 2} we sample a random matrix Gg ∈ R8×8 (with i.i.d.
entries) and define Ag = G⊤

g Gg + ρ I, ρ > 0. so that Ag is random yet invertible (symmetric
positive definite).

Desirability. We choose education, occupation, and workclass as desirable, since these attributes
are realistic to improve and likely to have downstream, external effects outside of income. Thus, to
external entities (e.g. government bodies) they should be desirable to incentivize.

Group truth rule. We train a logistic-regression classifier on the ADULT dataset restricted to the
eight variables that correspond to the nodes of our SCM (see above). Let w̃ ∈ R8 denote the learned
coefficient vector. To make the comparisons, we project this vector onto w̃ the unit ℓ2 ball, let w∗

denote the projection. Our accuracy loss reports ∥w −w⋆∥22, and our social welfare uses the linear
utility u(w) = c⊤w with c defined in Lemma A.3. Constrained learners are optimized under the
ℓ1-β-desirability fairness constraint ∥Mg w∥1 ≤ β (see example 3.1). This normalization ensures
the baseline is bounded for the social welfare problem while at the same time yields scale-invariant
results.

A.5.2 SUPPLEMENTAL MATERIAL FOR SECTION 5.2

In this part we present the experiments using the ℓ2-fairness desirability constraint (as defined in
Example 3.2).

The results for ℓ2 remain consistent with the results for ℓ1 with the only noticeable difference being
that the optimal accuracy is reached at a much faster rate (smaller value of β). This can be explained
by the fact that ∥Mw∥2 ≤ ∥Mw∥1 and therefore the ℓ2 fairness constraint is more relaxed that the
ℓ1-fairness.

Interestingly, when we allow the cost matrices to be more complex than the unit (e.g random) then
information disparities become more irrevelant. However, that’s not suprising considering the fact
that the fairness-desirability function values equally the desirability matrix and the projection matri-
ces of the groups.
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(a) Accuracy comparison: Uniform costs A1 = A2;
desirable: occupation, workclass, education, under

ℓ2-fairness constraint

(b) Social-welfare comparison: Uniform costs
A1 = A2; desirable: occupation, workclass,

education, under ℓ2-fairness constraint

(c) Accuracy comparison: Non-uniform costs
A1 = 2A2 = 2I; desirable: occupation, workclass,

education, under ℓ2-fairness constraint

(d) Social-welfare comparison: Non-uniform costs
A1 = 2A2 = 2I; desirable: occupation, workclass,

education, under ℓ2-fairness constraint

Figure 4: Optimal values for varying β for different group splits under ℓ2-fairness constraint

(a) Accuracy comparison: Non-uniform random
costs A1 = 2A2; desirable: occupation, workclass,

education, under ℓ1-fairness constraint

(b) Social-welfare comparison: Non-uniform
random costs A1 = 2A2; desirable: occupation,
workclass, education, under ℓ1-fairness constraint

Figure 5: Optimal values for varying β for different group splits under non-uniform random cost
matrices and the ℓ1-fairness consntraint
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