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Abstract
We address the problem of online Bayesian state and parameter tracking in autoregressive (AR)
models with time-varying process noise variance. The involved marginalization and expectation
integrals cannot be analytically solved. Moreover, the online tracking constraint makes sampling
and batch learning methods unsuitable for this problem. We propose a hybrid variational message
passing algorithm that robustly tracks the time-varying dynamics of the latent states, AR coeffi-
cients and process noise variance. Since message passing in a factor graph is a highly modular
inference approach, the proposed methods easily extend to other non-stationary dynamic modeling
problems.
Keywords: Autoregressive models, hierarchical Gaussian filter, factor graphs, online learning,
variational message passing

1. Introduction

Autoregressive (AR) models are of fundamental importance to problems in physics, economics and
engineering. Although standard AR models have been successfully applied to various practical do-
mains (Akaike, 1998; Hill et al., 2012), the underlying dynamics are often assumed to be stationary.
Still, many applications involve modeling of signals where time-varying process statistics would
lead to better performance. For example, good models for stock market prices contain time-varying
variance parameters (Barber, 2012, Chapter 24). It is therefore important to be able to track slowly-
varying parameters along with fast-changing latent states. Unfortunately, for many dynamic models,
online Bayesian tracking leads to intractable equations.

Here, we introduce an AR model with a hierarchy of coupled Gaussian random walks (known by
itself as a Hierarchical Gaussian Filter (HGF) (Şenöz and de Vries, 2018; Mathys, 2012)) to capture
the slowly time-varying dynamics of process noise. The proposed (AR-HGF) model is flexible in
terms of prior assumptions for the parameter dynamics. We present an online variational inference
technique based on hybrid message passing and a quadrature rule. The proposed inference method
allows for online tracking of states and parameters as well as tracking of variational free energy as
a performance measure.

Classical alternatives for modeling this type of signal include time-varying AR and generalized
AR conditional heteroskedasticity models (Bollerslev, 1986; Jiang and Kitagawa, 1993; Barber,
2012). These techniques are powerful, but lack the advantages of the Bayesian approach. Modern
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MCMC sampling-based methods generally track these types of dynamics well (Barnett et al., 1996;
Andrieu et al., 2003; Gençağa et al., 2010), but are often too slow for online inference. Variational
Bayes approaches are both fast and robust to overfitting. Roberts and Penny (2002) model pro-
cess noise with a Gaussian mixture model, achieving time-varying variance via dynamic selection
of components. In contrast, our approach is based on message passing-based inference on factor
graphs, which makes inference extensible and automatable.

Our contributions include the following: first, in Sec. 2 we introduce our AR-HGF model for
modeling non-stationary signals and present a corresponding Forney-style Factor Graph in Sec. 3.2.
We derive message passing update rules that support online joint state and parameter tracking (Table
1). In Sec. 4 we experimentally validate the performance of an AR(2)-HGF model in an online state
and parameter tracking task.

2. Model specification

We consider an M -th order autoregressive model (AR(M )) for an observed signal yt = y1:t with
yt ∈ R, specified by

yt =
M∑
m=1

θmyt−m + εt where εt ∼ N (0, ϑt) . (1)

This model is parameterized by autoregressive coefficients θ = (θ1, θ2, . . . , θM ) ∈ RM and time-
varying process noise variance ϑt ∈ R+. Our goal is to infer both θ and ϑt in an online fashion
from an observed data stream y1:t.

We take a Bayesian viewpoint on inference and proceed to introduce some priors. For the
process noise variance ϑt, we impose a Gaussian random walk prior that is mapped to the positive
domain to serve as a variance parameter. This prior model is known as a hierarchical Gaussian filter
(Mathys, 2012; Şenöz and de Vries, 2018). Here we consider only a single layer, which is specified
by

zt = zt−1 + ηt where ηt ∼ N (0, γ−1) , (2a)

ϑt = exp (κzt + ω) , (2b)

with initial state z0 ∼ N (mz0 , vz0), which we usually choose as rather uninformative (e.g., zero
mean and large variance). We will refer to zt ∈ R as a control state since it controls the variance
of εt. The control state is perturbed by Gaussian transition noise as well, but we initially assume
that its variance γ−1 is fixed. The hierarchical extension assumes a similar Gaussian walk prior on
variance γ−1. Parameters κ and ω afford an affine transformation of the control state to the positive
real domain via the exponential function.

With this dynamical prior on ϑt, the inference task now evaluates to online tracking of control
states zt and parameters Ψ = (θ, γ, κ, ω). To complete the model, we use the following priors on
the parameters:

θ ∼ N (mθ,Vθ), γ ∼ Γ(α, β), κ ∼ N (mκ, vκ), ω ∼ N (mω, vω) . (3)

We will execute online inference by message passing on a (Forney-style) factor graph (Loeliger
et al., 2007). Factor graphs naturally take advantage of the (abundance of) conditional indepen-
dencies between the variables in our model. Note that we can rewrite Eq. 1 as a state-space model
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yt = θTxt−1 + εt (4a)

xt = Sxt−1 + cyt (4b)

where

xt , (yt, yt−1, . . . , yt−M+1), S ,

[
0

IM−1 0

]
, c , (1, 0, . . . , 0)T . (5)

We refer to xt as a data buffer, since it retains M previous observations. Note that xt is fully
observed and therefore does not need to be estimated. The factor graph can now be constructed by
rewriting the full model as the following factorized probability distribution:

p(y, z,x,Ψ) = p(z0,Ψ)︸ ︷︷ ︸
priors

T∏
t=1

p(yt|zt,xt−1,Ψ)︸ ︷︷ ︸
observation

p(zt|zt−1,Ψ)︸ ︷︷ ︸
state transition

p(xt|xt−1, yt)︸ ︷︷ ︸
data buffer

(6)

where the priors are given by Eq. 3, the observation p(yt|zt,xt−1,Ψ) = N (yt|θ>xt−1, ϑt), the state
transition p(zt|zt−1,Ψ) = N (zt|zt−1, γ−1) and the data buffer p(xt|xt−1, yt) = δ(xt − (Sxt−1 +
cyt)). Inference in the factor graph will be discussed in Sec. 3.2.

3. Online inference

We are interested in joint tracking of state zt and parameters Ψ in model Eq. 6. Online inference
can be achieved by sequential Bayesian updating which leads to a Chapman-Kolmogorov integral:

p(zt,Ψ|y1:t)︸ ︷︷ ︸
posterior

∝
∫
p(yt|zt,xt−1,Ψ)︸ ︷︷ ︸

observation

p(zt|zt−1,Ψ)︸ ︷︷ ︸
state transition

p(xt|xt−1, yt)︸ ︷︷ ︸
data buffer

p(zt−1,Ψ|y1:t−1)︸ ︷︷ ︸
prior

dzt−1 . (7)

Due to non-linearities, this integral is not tractable. We choose a variational inference approach to
approximate the integral.

3.1. Variational Inference

Variational methods approximate the intractable posterior distribution by a simpler distribution. The
nature of approximation requires a measure of approximation error, which in variational inference
is usually the Kullback-Leibler (KL) divergence. Let q(z,Ψ) ≈ p(z,Ψ|y) for the AR model. The
KL divergence is defined as

DKL [q(z,Ψ)||p(z,Ψ|y)] , Eq(z,Ψ)

[
log

q(z,Ψ)

p(z,Ψ|y)

]
. (8)

Since the KL divergence is always non-negative, we can write

F [q(z,Ψ)] , Eq(z,Ψ)

[
log

q(z,Ψ)

p(z,Ψ,y)

]
≥ − log p(y) , (9)

where F [q(z,Ψ)] is known as the (variational) free-energy functional, which is an upper bound
to negative log-evidence, since the Kullback-Leibler divergence is always non-negative. In order
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to simplify the inference computations, we assume a factorization q(z,Ψ) = q(z)q(Ψ), where
q(Ψ) = q(θ)q(κ)q(ω)q(γ). We will not further assume that the recognition distribution factorizes
over time. With these assumptions, the free-energy functional can be minimized by variational
calculus, leading to the following solution for the control states:

q(z) ∝ exp
(
Eq(Ψ)q(x,y) [log p(y|x, z,Ψ)p(z|Ψ)]

)
. (10)

Similarly, the solutions for the parameters are given by:

q(θ) ∝ p(θ)

∫
p(x) exp

(
Eq(ω)q(κ)q(z) [log p(y|x, z,Ψ)]

)
dx (11a)

q(κ) ∝ p(κ) exp
(
Eq(ω)q(z)q(x,y) [log p(y|x, z,Ψ)]

)
(11b)

q(ω) ∝ p(ω) exp
(
Eq(κ)q(z)q(x,y) [log p(y|x, z,Ψ)]

)
(11c)

q(γ) ∝ p(γ) exp
(
Eq(z) [log p(z|γ)]

)
. (11d)

Derivations for these results follow from section 5 in (Dauwels, 2007). Next, in Sec. 3.2 we show
how these equations can be used to derive message passing-based inference in a factor graph.

3.2. Inference by message passing on the factor graph

A Forney-style factor graph (FFG) is a graphical representation of a factorized probability distri-
bution (Loeliger et al., 2007). Nodes in an FFG represent factors and edges represent variables.
An edge is connected to a node if and only if the (edge) variable is part of the argument list of the
(node) function. Fig. 1 is an FFG corresponding to one time-segment of the model in Eq. 6. The
FFG contains Gaussian nodes N , a dot product node · , a data buffer update node S,c , equal-

ity nodes = and a Gaussian-with-Controlled-Variance GCV node. The Gaussian nodes describe
stochastic relations between variables, with their perturbations driven by variance parameters. The
GCV node is a generalization of the Gaussian node in that it takes an unconstrained variable as its
variance parameter, which is mapped to the positive domain inside the node (see Eq.2b). Inference
in the current GCV node deviates from the GCV node in Şenöz and de Vries (2018) in that it uses
a structured factorization as opposed to the earlier mean-field factorization. Moreover, Şenöz and
de Vries (2018) relies on Laplace approximation to tackle with non-linearities while in the current
version quadrature methods are used. The other nodes implement deterministic relations between
the variables. The dot product and data buffer nodes execute Eq.4 (without adding process noise).
The equality node consists of the factor f(x, y, z) = δ(x− y)δ(x− z) and constrains the marginals
of associated variables to be equal (Loeliger et al., 2007).

8 N (yt | E[θ>]xt, ξ2ξ3) ξ1 E[zt]
2V[κ]+E[κ]2V[zt]+V[zt]V[xt]

10 N (θ>xt | yt, ξ2ξ3) ξ2 exp(−E[zt]E[κ] + 1
2ξ1)

12 exp
(
−1

2

(
ω + ξ1(yt − E[θ>]xt)

2 exp (−ω)
))

ξ3 exp(−E[ω] + 1
2V[ω])

13 exp
(
−1

2

(
E[zt]κ+ ξ3(yt − E[θ>]xt)

2ξ4
))

ξ4 exp
(
−E[zt]κ+ 1

2κ
2
tV[zt]

)
14 exp

(
−1

2

(
E[κ]zt + ξ3(yt − E[θ>]xt)

2ξ5
))

ξ5 exp
(
−E[κ]zt + 1

2z
2
tV[κ]

)
Table 1: Messages associated with GCV node, used in Fig. 1.
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=... S,c ...xt−1 xt

·

GCV

=

yt

1 ↓

3 ↓ 10↑

8 ↓ 9↑

=... ...

11
←

2
→

15
→ θ

=... ...

12↑

4
→

16
→ ω

=... ...

13↑

5
→

17
→ κ

=N... ...

14↑

zt−1 7
→

18
→ zt

γ

6 ↓ 19↑

Figure 1: One time segment of a Forney-style factor graph (FFG) for AR(M )-HGF defined by
Eq. 6. The S,c node denotes the data buffering operation (Eq. 4b), GCV represents the
observationN (yt|,θ>xt, ϑt) and · a dot product. The small black node corresponds to
an observation yt. Medium-sized nodes represent deterministic factors and larger nodes
denote stochastic factors. Solid and dashed edges are associated with states and parame-
ters respectively. The arrowheads are not used in any computations but visually indicate
the ”generative” direction (towards observations).

Variational inference in an FFG can be made efficient by recognizing that the conditional in-
dependence structure of the model is hard-coded in the graph structure. For instance, updating the
joint q(z) at an arbitrary time point t′ involves:

q(zt′) =

∫
q(z)dz\t′ ∝

∫
exp

(
Eq(Ψ)q(x,y) [log p(y|x, z,Ψ)p(z|Ψ)]

)︸ ︷︷ ︸
from eq. 10

dz\t′ (12a)

∝
∫ ∏

t

exp
(
Eq(Ψ)q(x,y) [log p(yt|xt, zt,θ, κ, ω)p(zt|zt−1, γ)]

)
dz\t′ (12b)

∝
∫

exp
(
Eq(γ) [log p(zt′ |zt′−1, γ)]

)−→ν (zt′−1)dzt′−1︸ ︷︷ ︸
−→ν (zt′ ) 7

× exp
(
Eq(κ)q(ω)q(yt′ ,θ>xt′ )

[log p(yt′ |xt′ , zt′ ,θ, κ, ω)]
)

︸ ︷︷ ︸
←−ν (zt′ ) 14

. (12c)
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where Eq. 12c can be recognized as a multiplication of two colliding messages 7 and 14 that are
called forward and backward message respectively.

Online inference in the model (Eq. 6) consists of computing the messages in the order indicated
in Fig. 1. Update rules for messages 1 , 2 , 3 , 4 , 5 , 6 , 7 , 11 , 15 , 16 , 17 , 19 are tabulated in
(Korl, 2005, Table 4.2 of Chapter 4). The remaining computational issues are (1) the computation of
outgoing messages 8 , 10 , 12 , 13 and 14 for the GCV node, and (2) getting a closed-form solution
to the multiplication of messages to approximate the marginals q(zt) and q(Ψ). With respect to the
first issue, Table 1 presents the derived variational message update rules.1 Next, we discuss how to
compute marginals.

3.3. Computation of marginals through Gaussian quadrature

When a colliding forward and backward message are not conjugate, the product needs to be ex-
plicitly normalized to obtain a proper marginal. For example, consider the posterior q(zt) that is
represented by message 18 , which is proportional to the multiplication of messages 7 and 14 .
Message 7 is a Gaussian and message 14 is neither a Gaussian nor conjugate to a Gaussian. We
denote messages 7 and 14 with −→ν (zt) and←−ν (zt), respectively. The marginal of message 18 is

q(zt) =
−→ν (zt)

←−ν (zt)∫ −→ν (zt)
←−ν (zt)dzt

(13a)

=

exp

(
− (zt−−→m(z)

t )2

2−→v (z)
t

)
exp

(
−1
2

(
m

(κ)
t z+γ4γ3 exp

(
−m(κ)

t z+z2v
(κ)
t /2

)))
∫

exp

(
−(zt−−→m(z)

t )2

2−→v (z)
t

)
exp

(
−1
2

(
m

(κ)
t z+γ4γ3 exp

(
−m(κ)

t z+z2v
(κ)
t /2

)))
dzt

. (13b)

Since the integral is one-dimensional, a quadrature method can be used to obtain the normalization
constant Zt =

∫ −→ν (zt)
←−ν (zt)dzt (Särkkä, 2013), leading to

Zt =

∫
←−ν (zt)N (−→m(z)

t ,−→v (z)
t )dzt ≈

1√
π

r∑
i=1

W(i)←−ν
(
−→m(z)
t + ξ(i)

√
2−→v (z)

t

)
, (14)

where W are the quadrature weights and ξ are the sigma points (Eqs. 6.17, 6.18, Särkkä, 2013).
Here, r is the order of Gauss-Hermite polynomial that is used to obtain the weights and points. Once
Zt has been obtained we can determine the moments of q(zt) by computing:

Eq(zt)[z
n
t ] =

1

Zt

∫
znt
←−ν (zt)N (−→m(z)

t ,−→v (z)
t )dzt

≈ 1

Zt
√
π

r∑
i=1

W(i)

(
−→m(z)
t + ξ(i)

√
2−→v (z)

t

)n
←−ν
(
−→m(z)
t + ξ(i)

√
2−→v (z)

t

)
. (15)

We approximate q(zt) with a Gaussian distribution by matching the first two moments. Note that
the unscented Kalman filter is a special case of Eq. 15 (Ch. 5 Särkkä, 2013; Meyer et al., 2013). In
the present application, we have used this quadrature-based normalization procedure to propagate
non-conjugate incoming pairs through equality nodes. This procedure can applied generally to
message-passing-based inference in factor graphs.

1. Derivations of update rules can be found at https://biaslab.github.io/pdf/l4dc2020/i senoz a podusenko L4DC
online learning AR HGF.pdf
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4. Experimental validation

To validate the proposed model and inference algorithm, we modeled a synthesized data stream of
1000 points. The data was generated by the model of Eq. 6, with AR order M = 2 (see Fig. 2 top
left). In the data generating process, we used (non-informative) priors γ ∼ Γ(10−4, 10−4), θ ∼
N ([0, 0], 10I) and (informative) priors κ ∼ N (1.5, 0.1) and ω ∼ N (−3, 0.1), along with initial
state z0 ∼ N (0, 10). For each time step, we iterate the full message passing schedule (messages
1 through 19 ) 10 times in order to drive the free energy to convergence. The simulations2 were

implemented in the open source Julia package ForneyLab (Cox et al., 2019).
Figure 2 (second and third row left) shows the inference tracks for the control state zt and

variance ϑt. The table in Figure 2 (top right) presents the inferred posterior parameters after 1000
samples. Note that the posterior over ϑt captures the process noise variance of the autoregressive
model, even though the inferred means of κ and ω are underestimated. Figure 2 (second and third
row right) shows the evolution from t = 10 to t = 500 of the marginal posterior for q(θ). We
observe that the inferred parameter values converge to the true values. Figure 2 (bottom row) shows
the free energy tracks, both as a function of time after ten iterations (left) and as a function of
iterations, averaged over time (right). The free energy is an upper bound on negative log-evidence
and is used as a performance measure. New observations add free energy temporarily in the form
of prediction errors, which are subsequently squashed by message passing in between observations
(left). Note that each message passing iteration drives the free energy further down, thus improving
model fit (right).

We compared the performance of AR-HGF to an AR model with gamma prior on process noise
precision (i.e., ϑ−1t = ϑ−1 ∼ Γ(10−4, 1.0)). Averaged over time, the static variant (AR-static) has
a higher free energy than the AR-HGF (see Figure 2 bottom right). The AR-static model is less able
to track the signal in volatile periods, which can be seen by the blue spikes in free energy around t
= 240, t = 320 and t = 550. It also cannot cope with a sudden drop in process noise variance (see
t = 740 and t = 750 in top left): the AR-HGF’s free energy drops to 0 and below, while that of the
AR-static stays almost flat around 2.

5. Conclusions

We presented a message passing-based online inference method for joint state and parameter track-
ing in autoregressive models. Our model includes a dynamical prior on process noise variance,
which can be extended hierarchically. New update rules for the Gaussian node with externally con-
trolled variance parameter were derived. In principle, as message passing in factor graphs is a highly
modular inference approach, the presented methods are re-usable in a wider application context.
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Figure 2: Experimental results. (First row left). Example of a synthetic signal of an AR process
with time-varying process noise variance. (First row right) True values for θ, κ, ω, γ
used for generating the synthetic signal (top left), and inferred values (posterior mean
and variance). (Second row left) Real (pink solid) vs inferred (black dashed) tracks for
variance parameter ϑt. (Second row right) Posterior for θ at t = 10. (Third row left) Real
(pink solid) vs inferred (black dashed) control states zt. (Third row right) Posterior for θ
at t = 500. (Last row left) Free energy of final estimates, for each time-step. (Last row
right) Free energy averaged over time as a function of the number of message-passing
iterations for AR-HGF and AR-static models. AR-HGF outperforms AR-static with a
lower-free energy profile over iterations.
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