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Abstract

Large language models (LLMs) can achieve above majority baseline performance
on NLP tasks even when deprived of parts of the input, raising concerns that
benchmarks reward artifacts rather than reasoning. Prior work has demonstrated
this phenomenon in multiple-choice QA and natural language inference, but not in
multiple-choice reading comprehension (MCRC), where both a passage and ques-
tion are integral to the task. We study MCRC under a stricter ablation, removing
both passage and question to leave only the answer options. Despite this severe
ablation, models consistently exceed majority baselines across five benchmarks.
To probe how such accuracy arises, we introduce two reasoning-based strategies:
Process-of-Elimination, which iteratively discards distractors, and Abductive Pas-
sage Inference, which infers a context to justify an option. Both strategies closely
track choices-only accuracy, suggesting that strong performance reflects genuine
reasoning procedures rather than dataset artifacts alone.

1 Introduction

Reading comprehension (RC) has long served as a core test of language understanding for humans
and machines [3| 42| 44]. For humans, reading enables knowledge acquisition and reasoning [} 25];
in NLP, RC has become a natural proxy for evaluating model competencies [3}46]. Open-ended RC,
however, is costly to grade and often subjective, complicating large-scale, reliable evaluation [17,[19].

Multiple-choice formats mitigate these issues by fixing a candidate set and enabling efficient, objective
scoring [6} 22]. As a result, multiple-choice reading comprehension (MCRC) plays a central role in
LLM evaluation, pairing RC’s cognitive depth with practical scoring [40].

Yet improved scores may reflect dataset artifacts: superficial cues that allow success without genuine
comprehension [[12]. Partial-input studies show above-chance performance when critical components
are withheld (e.g., hypothesis-only in NLI; passage- or question-only in RC/VQA) [18}124, 36,41, 147].
However, training dedicated partial-input models is impractical, motivating inference-time probes.
Balepur et al. propose partial-input prompting, showing that LLMs can exceed majority baselines
with choices only, and advance Abductive Question Inference as an alternative explanation for such
gains [2].

We extend partial-input prompting to MCRC under a stricter ablation: we remove the question
and passage and the model receives only the answer options, removing two thirds of the intended
input. All evaluations are zero-shot and use closed-source LLMs common in practice. To probe how
accuracy arises, we test two reasoning strategies: Process-of-Elimination (PoE), which iteratively
discards distractors, and Abductive Passage Inference (API), which synthesizes a plausible passage
and then answers against it. Both closely track choices-only performance, indicating that elevated
partial-input accuracy need not stem solely from brittle artifacts; models appear able to organize
option-set signals into usable structure. This motivates broader study of reasoning strategies under
ablation to separate shallow shortcuts from genuine inference in modern LLMs.
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2 Related Works

2.1 Dataset artifacts

Benchmarks can contain shortcuts that let models succeed without true comprehension, inflating
headline scores [8}47]]. Such artifacts arise from annotation habits and templates [[13} (16} 33]] and,
increasingly, from quirks in synthetic data [49]]. Evidence spans many tasks in which systems perform
well with only a subset of the input, such as hypothesis-only in NLI and passage-/question-only in RC
and VQA, indicating that option sets or prompts can leak label information [15} 18| 24} 36} 41} 43].

2.2 Probing and detecting artifacts

Partial-input testing removes components (e.g., passage or question) to measure residual signal
[24.,136]. Contrast sets and controlled perturbations provide complementary stress tests by minimally
editing inputs or labels; robust models should flip predictions when semantics flip, yet often do
not [10} 11} [14} 21} 130,132, 145]]. Mitigation attempts, which are adversarial or debiasing objectives,
revised collection protocols, and context alterations, show mixed effectiveness and dataset sensitivity
[411911271377,143]]. For modern LLMs, partial-input prompting turns artifact diagnosis into an inference-
time probe and already yields above-majority choices-only accuracy in MCQA [2]]; our work transfers
this probe to stricter MCRC ablations.

2.3 Reasoning in MCRC

Multiple-choice reasoning involves integrating evidence while suppressing distractors; even humans
benefit from elimination strategies [38) 39]. In LLMs, Process-of-Elimination (PoE) prompting
changes decision dynamics and can improve full-input accuracy [1} 29], while sensitivity to option
ordering suggests that choice-set structure itself shapes predictions [35]]. Abductive Passage Infer-
enceapproaches ask models to hypothesize latent explanations and then answer conditioned on them,
improving reliability on reasoning tasks [23]. Closest to our setup, Balepur et al. show that Abductive
Question Inference can match choices-only performance in MCQA, implying that high partial-input
scores need not stem solely from brittle artifacts [2].

3 Choices-Only Evaluation

3.1 Task and Input

We formulate our target problem as a zero-shot multiple-choice reading comprehension task. Each
instance consists of a passage P, a question () about the passage, and a fixed set of four candidate
answers C' = {A, B, C, D}. The model must select exactly one option from this set.

In our partial input ablations, we evaluate on full-input and choices-only prompts. The full-input
condition, in which the model receives P + @) + C, serves as the reference point. In the choices-only
condition, we omit both the passage and the question, providing only C, eliminating about two-thirds
of the original signal as opposed to prior work that ablates either P or () alone (removing roughly
half the input).

Full prompt design and structure can be found in Appendix [A.T}

3.2 Datasets

We evaluate our ablation prompts across four established passage-based MCRC benchmarks, chosen
for their varied domain focus, difficulty, and community usage.

QuALITY (Easy / Hard). QuALITY is a long-form reading comprehension dataset featuring
passages with average token lengths of roughly 5,000. We report results separately on the Easy and
Hard splits: the Easy subset contains questions answerable with minimal inference, while the Hard
split tests deeper reasoning across the entirety of lengthy passages [[7].

RACE High. RACE consists of English reading comprehension exams used in Chinese middle and
high schools [26]. We focus exclusively on the High School subset in our evaluations.
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ReClor. ReClor is a reading comprehension and logical reasoning benchmark extracted from the
GMAT and LSAT exams [48]. We report results on the development set, as the gold labels are not
public for the test set.

LogiQA 2.0. LogiQA 2.0 is another reading comprehension and logical reasoning benchmark
constructed from Chinese Civil Service Examination questions [28]. We report results on the
development set, as the gold labels for the test set are not public.

3.3 Models

We evaluate three state-of-the-art closed-source LLMs spanning varying architectures and scales:
gpt-3.5-turbo-0125 and gpt-40-2024-08-06, which represent popular, general models, as well as
03-2025-04-16 as a high-end reasoning model. Each model is accessed through the OpenAl API with
a temperature of 0.0 and max_tokens set to None, and all other parameters left at their default values.
We run three independent replicates per model and ablation, reporting the average accuracy across
runs.

4 Hypothesis Evaluation

This section introduces two hypothesized mechanisms that may allow large language models to
exceed majority-class performance even when both the passage P and question () are withheld in
multiple-choice reading comprehension (MCRC) benchmarks.

4.1 Process-of-Elimination Reasoning

Rationale. Even when deprived of semantic context, an LLM might still exploit world knowledge,
stylistic cues, or answer-set regularities to discard unlikely distractors in a stepwise fashion. If the
model can reliably isolate and remove implausible options, it could converge on the correct answer
without ever reconstruing the missing passage or question. Our approach is inspired by prior work
on Process-of-Elimination (PoE) prompting [[1, 29]], but importantly, these studies did not examine
elimination under partial-input conditions, where artifact exploitation can be revealed most directly.
Full prompt design and structure can be found in Appendix [A.2]

4.1.1 Abductive Passage Inference

Rationale. A more ambitious mechanism posits that a language model can generate a short passage
whose content privileges one of the candidate answers, and then resolve the multiple-choice item
against this synthetic context. This aligns with the classical notion of abduction as inference to the
best explanation [34]], but here instantiated in generative form: the model attempts to hypothesize a
missing passage that would render one option most plausible. Success in this setting would suggest a
capacity for substantive generative reasoning beyond elimination or question reconstruction.

Full prompt design and structure can be found in Appendix

5 Results

In Figure[T} we observe a consistent pattern in the zero shot setting across all MCRC benchmarks.
Full-input remains strongest for every model and dataset. For choices-only, this is a stronger ablation
than prior MCQA studies that remove only one component, so one would expect a sharper drop. Yet,
despite ablating both the passage and the question, the choices only prompt still attains accuracy that
is clearly above the majority baseline in the vast majority of model and dataset combinations. The
ordering by model capacity that appears under full input also appears under ablation, with 03 above
gpt-4o above gpt-3.5-turbo in nearly every panel, which indicates that the competencies that drive
full input gains also transfer to settings where only the options are available.

Our two hypothesis prompts closely track the choices only condition. In Figures [2]and 3] Abductive
Passage Inference and Process of Elimination all lie in a narrow band around choices only on every
dataset. In several panels the abductive variants slightly exceed choices only, while on others they are
essentially indistinguishable. This parity is important. If choices only success were driven primarily
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by brittle lexical artifacts, one would expect large divergences when the prompt requires additional
reasoning structure. Instead, the abductive procedures preserve the same level, which suggests that
the information that supports decisions from options alone is robust to how it is organized at inference
time.

6 Analysis

The primary empirical surprise is the strength of choices only in zero shot, even though two thirds of
the input is removed. A natural first interpretation is artifact use. In curated multiple choice items,
options are not arbitrary strings. They encode topical constraints, entailment relations, role structure,
and stylistic signatures that distinguish correct answers from foils. If a model exploits these surface
regularities, it can outperform a majority baseline without reading the passage or the question.

Our subsequent probes refine this explanation. Abductive Passage Inference reaches similar accuracy
to the choices-only prompt while explicitly requiring the model to construct and then use a short
hypothesized context. This shows that a large share of the choices only accuracy can be reproduced
by a reasoning procedure that is coherent with the task definition, namely, infer a small set of latent
contexts that make the options jointly coherent, then select the option that best fits those contexts. In
this view, choices only is not only a test of artifact sensitivity, it is also a test of how well a model can
aggregate constraints that are implicit in the option set into a decision. The persistence of capacity
ordering under ablation supports this interpretation, stronger models carry richer priors and better
calibrated judgments about option plausibility, and these capabilities help both when a passage is
present and when it is absent.

Process of Elimination can sit near choices only under partial input because it leverages the same
plausibility signals while reducing noise in the comparison. Many option sets contain one answer
that is a weak outlier under broad background knowledge, and removing that competitor increases
the effective separation among the remaining options and moves the ranking toward the ordering that
a choices only scorer would already favor. Relative comparisons among options also expose small
inconsistencies that are not tied to any specific passage but still track general world and linguistic
knowledge. An option that is slightly less compatible with most plausible readings will be screened
out, which leaves a smaller set that is easier to judge with the same cues used by choices only. The
shift from four competing options to a tighter set further reduces variance in the final choice. Small
spurious features have less chance to dominate once an obviously weak option is gone, so the decision
aligns with the stable part of the model’s prior over plausible answers. These effects do not require
strong assumptions about memorization. They rely on signals present in the options themselves
and on calibrated priors about what answers tend to look like, which is why we believe Process of
Elimination tracks choices only in the severe ablation setting.

7 Conclusion

Despite removing two thirds of the input in a zero-shot regime, large language models achieved
strong choices-only accuracy across benchmarks. By testing Process-of-Elimination and Abductive
Passage Inference hypothesis, we showed that reasoning-based strategies can reproduce choices-only
performance, suggesting that models can actively reason with limited input information rather than
relying solely on superficial cues.

8 Limitations and Future Work

Our experiments are limited to proprietary GPT-series models, which prevents deeper white-box
analyses of token-level logits or attention patterns. Future work can replicate our ablations on
open-weight and Mixture-of-Experts models.

In addition, LLM performance is sensitive to prompt design and hyperparameters [31]. We used
simple zero-shot prompts with default settings, leaving open the possibility that tuning could further
raise choices-only accuracy or alter the relative strengths of reasoning strategies.
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A Prompt Templates

Below we reproduce all zero-shot prompt templates used in our experiments.

A.1 Full Input and Choices Only

Our full-input prompt is structured as follows:

Full Input Prompt

Passage: P

Question: Q9

Choices:\n(A) ¢, \n(B) ¢ \n(C) c. \n (D) cq
Answer:

And our choices-only prompt is structured as follows:

Choices-Only Prompt

Choices:\n (A) ¢, \n(B) ¢ \n(C) c. \n (D) cq
Answer:

A.2 Process-of-Elimination

Prompt design. We implement PoE as a two-round dialogue. In the first round the model receives the
four options and is instructed to name the single least plausible choice. The remaining three options
are then re-presented, and the model is asked to identify the most plausible answer among them.

Our evaluation of Process-of-Elimination relies on a two-step prompt, detailed below:

PoE — Step 1: Eliminate One Choice

Choices:\n(A) ¢, \n(B) ¢ \n(C) c. \n (D) cq
L Incorrect answer:

PoE — Step 2: Answer Among Remaining

Choices:\n (A) cq \n(B) ¢, \n (C) cc
kAnswer:

A.3 Abductive Passage Inference

Prompt design. Our formulation of Abductive Passage Inference (API) builds on recent abductive
prompting strategies in multiple-choice reasoning [2]], as well as broader evidence that LLMs benefit
from explicitly verbalizing latent content [20]. API proceeds in two stages. In the first stage, the model
is given the four answer options and asked to compose a passage that could plausibly accompany
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those options in a standard MCRC item. In the second stage, this generated passage is embedded into
a new prompt alongside the same four options, and the model is asked to select an answer letter.

API — Step 1: Infer Passage

Choices:\n(A) ¢q \n(B) ¢ \n(C) cc \n (D) cq
Infer a passage:

API — Step 2: Answer w/ Inferred Passage

Passage: P
Choices:\n(A) ¢, \n(B) ¢ \n(C) c. \n (D) cq
Answer:

Scoring. In our evaluation, instances where the model fails to provide a valid answer, such as
deferring, refusing, or producing outputs that cannot be mapped to a choice, are assigned a default
score of 0.25, reflecting the expected accuracy of a uniform random guess among four answer options.

B Additional Figures

QUALITY Hard QUALITY Easy RACE High

X 0.0
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gpt-3.5-turbo gpt-3.5-turbo

B Full Input [ Choices Only = — Majority Baseline

Figure 1: Full-input versus choices-only accuracy. An asterisk above a bar indicates accuracy
significantly above the dataset’s majority class baseline at p < 0.05 using a two sample ¢ test across
runs.
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Figure 2: Full-input versus Process-of-Elimination accuracy. An asterisk above a bar indicates
accuracy significantly above the dataset’s majority class baseline at p < 0.05 using a two sample ¢
test across runs.
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Figure 3: Full-input versus Abductive Passage Inference versus Abductive Question Inference
accuracy. An asterisk above a bar indicates accuracy significantly above the dataset’s majority class
baseline at p < 0.05 using a two sample ¢ test across runs.
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