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Abstract

Large language models (LLMs) can achieve above majority baseline performance1

on NLP tasks even when deprived of parts of the input, raising concerns that2

benchmarks reward artifacts rather than reasoning. Prior work has demonstrated3

this phenomenon in multiple-choice QA and natural language inference, but not in4

multiple-choice reading comprehension (MCRC), where both a passage and ques-5

tion are integral to the task. We study MCRC under a stricter ablation, removing6

both passage and question to leave only the answer options. Despite this severe7

ablation, models consistently exceed majority baselines across five benchmarks.8

To probe how such accuracy arises, we introduce two reasoning-based strategies:9

Process-of-Elimination, which iteratively discards distractors, and Abductive Pas-10

sage Inference, which infers a context to justify an option. Both strategies closely11

track choices-only accuracy, suggesting that strong performance reflects genuine12

reasoning procedures rather than dataset artifacts alone.13

1 Introduction14

Reading comprehension (RC) has long served as a core test of language understanding for humans15

and machines [3, 42, 44]. For humans, reading enables knowledge acquisition and reasoning [5, 25];16

in NLP, RC has become a natural proxy for evaluating model competencies [3, 46]. Open-ended RC,17

however, is costly to grade and often subjective, complicating large-scale, reliable evaluation [17, 19].18

Multiple-choice formats mitigate these issues by fixing a candidate set and enabling efficient, objective19

scoring [6, 22]. As a result, multiple-choice reading comprehension (MCRC) plays a central role in20

LLM evaluation, pairing RC’s cognitive depth with practical scoring [40].21

Yet improved scores may reflect dataset artifacts: superficial cues that allow success without genuine22

comprehension [12]. Partial-input studies show above-chance performance when critical components23

are withheld (e.g., hypothesis-only in NLI; passage- or question-only in RC/VQA) [18, 24, 36, 41, 47].24

However, training dedicated partial-input models is impractical, motivating inference-time probes.25

Balepur et al. propose partial-input prompting, showing that LLMs can exceed majority baselines26

with choices only, and advance Abductive Question Inference as an alternative explanation for such27

gains [2].28

We extend partial-input prompting to MCRC under a stricter ablation: we remove the question29

and passage and the model receives only the answer options, removing two thirds of the intended30

input. All evaluations are zero-shot and use closed-source LLMs common in practice. To probe how31

accuracy arises, we test two reasoning strategies: Process-of-Elimination (PoE), which iteratively32

discards distractors, and Abductive Passage Inference (API), which synthesizes a plausible passage33

and then answers against it. Both closely track choices-only performance, indicating that elevated34

partial-input accuracy need not stem solely from brittle artifacts; models appear able to organize35

option-set signals into usable structure. This motivates broader study of reasoning strategies under36

ablation to separate shallow shortcuts from genuine inference in modern LLMs.37
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2 Related Works38

2.1 Dataset artifacts39

Benchmarks can contain shortcuts that let models succeed without true comprehension, inflating40

headline scores [8, 47]. Such artifacts arise from annotation habits and templates [13, 16, 33] and,41

increasingly, from quirks in synthetic data [49]. Evidence spans many tasks in which systems perform42

well with only a subset of the input, such as hypothesis-only in NLI and passage-/question-only in RC43

and VQA, indicating that option sets or prompts can leak label information [15, 18, 24, 36, 41, 43].44

2.2 Probing and detecting artifacts45

Partial-input testing removes components (e.g., passage or question) to measure residual signal46

[24, 36]. Contrast sets and controlled perturbations provide complementary stress tests by minimally47

editing inputs or labels; robust models should flip predictions when semantics flip, yet often do48

not [10, 11, 14, 21, 30, 32, 45]. Mitigation attempts, which are adversarial or debiasing objectives,49

revised collection protocols, and context alterations, show mixed effectiveness and dataset sensitivity50

[4, 9, 27, 37, 43]. For modern LLMs, partial-input prompting turns artifact diagnosis into an inference-51

time probe and already yields above-majority choices-only accuracy in MCQA [2]; our work transfers52

this probe to stricter MCRC ablations.53

2.3 Reasoning in MCRC54

Multiple-choice reasoning involves integrating evidence while suppressing distractors; even humans55

benefit from elimination strategies [38, 39]. In LLMs, Process-of-Elimination (PoE) prompting56

changes decision dynamics and can improve full-input accuracy [1, 29], while sensitivity to option57

ordering suggests that choice-set structure itself shapes predictions [35]. Abductive Passage Infer-58

enceapproaches ask models to hypothesize latent explanations and then answer conditioned on them,59

improving reliability on reasoning tasks [23]. Closest to our setup, Balepur et al. show that Abductive60

Question Inference can match choices-only performance in MCQA, implying that high partial-input61

scores need not stem solely from brittle artifacts [2].62

3 Choices-Only Evaluation63

3.1 Task and Input64

We formulate our target problem as a zero-shot multiple-choice reading comprehension task. Each65

instance consists of a passage P , a question Q about the passage, and a fixed set of four candidate66

answers C = {A,B,C,D}. The model must select exactly one option from this set.67

In our partial input ablations, we evaluate on full-input and choices-only prompts. The full-input68

condition, in which the model receives P +Q+C, serves as the reference point. In the choices-only69

condition, we omit both the passage and the question, providing only C, eliminating about two-thirds70

of the original signal as opposed to prior work that ablates either P or Q alone (removing roughly71

half the input).72

Full prompt design and structure can be found in Appendix A.1.73

3.2 Datasets74

We evaluate our ablation prompts across four established passage-based MCRC benchmarks, chosen75

for their varied domain focus, difficulty, and community usage.76

QuALITY (Easy / Hard). QuALITY is a long-form reading comprehension dataset featuring77

passages with average token lengths of roughly 5,000. We report results separately on the Easy and78

Hard splits: the Easy subset contains questions answerable with minimal inference, while the Hard79

split tests deeper reasoning across the entirety of lengthy passages [7].80

RACE High. RACE consists of English reading comprehension exams used in Chinese middle and81

high schools [26]. We focus exclusively on the High School subset in our evaluations.82
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ReClor. ReClor is a reading comprehension and logical reasoning benchmark extracted from the83

GMAT and LSAT exams [48]. We report results on the development set, as the gold labels are not84

public for the test set.85

LogiQA 2.0. LogiQA 2.0 is another reading comprehension and logical reasoning benchmark86

constructed from Chinese Civil Service Examination questions [28]. We report results on the87

development set, as the gold labels for the test set are not public.88

3.3 Models89

We evaluate three state-of-the-art closed-source LLMs spanning varying architectures and scales:90

gpt-3.5-turbo-0125 and gpt-4o-2024-08-06, which represent popular, general models, as well as91

o3-2025-04-16 as a high-end reasoning model. Each model is accessed through the OpenAI API with92

a temperature of 0.0 and max_tokens set to None, and all other parameters left at their default values.93

We run three independent replicates per model and ablation, reporting the average accuracy across94

runs.95

4 Hypothesis Evaluation96

This section introduces two hypothesized mechanisms that may allow large language models to97

exceed majority-class performance even when both the passage P and question Q are withheld in98

multiple-choice reading comprehension (MCRC) benchmarks.99

4.1 Process-of-Elimination Reasoning100

Rationale. Even when deprived of semantic context, an LLM might still exploit world knowledge,101

stylistic cues, or answer-set regularities to discard unlikely distractors in a stepwise fashion. If the102

model can reliably isolate and remove implausible options, it could converge on the correct answer103

without ever reconstruing the missing passage or question. Our approach is inspired by prior work104

on Process-of-Elimination (PoE) prompting [1, 29], but importantly, these studies did not examine105

elimination under partial-input conditions, where artifact exploitation can be revealed most directly.106

Full prompt design and structure can be found in Appendix A.2107

4.1.1 Abductive Passage Inference108

Rationale. A more ambitious mechanism posits that a language model can generate a short passage109

whose content privileges one of the candidate answers, and then resolve the multiple-choice item110

against this synthetic context. This aligns with the classical notion of abduction as inference to the111

best explanation [34], but here instantiated in generative form: the model attempts to hypothesize a112

missing passage that would render one option most plausible. Success in this setting would suggest a113

capacity for substantive generative reasoning beyond elimination or question reconstruction.114

Full prompt design and structure can be found in Appendix A.3115

5 Results116

In Figure 1, we observe a consistent pattern in the zero shot setting across all MCRC benchmarks.117

Full-input remains strongest for every model and dataset. For choices-only, this is a stronger ablation118

than prior MCQA studies that remove only one component, so one would expect a sharper drop. Yet,119

despite ablating both the passage and the question, the choices only prompt still attains accuracy that120

is clearly above the majority baseline in the vast majority of model and dataset combinations. The121

ordering by model capacity that appears under full input also appears under ablation, with o3 above122

gpt-4o above gpt-3.5-turbo in nearly every panel, which indicates that the competencies that drive123

full input gains also transfer to settings where only the options are available.124

Our two hypothesis prompts closely track the choices only condition. In Figures 2 and 3, Abductive125

Passage Inference and Process of Elimination all lie in a narrow band around choices only on every126

dataset. In several panels the abductive variants slightly exceed choices only, while on others they are127

essentially indistinguishable. This parity is important. If choices only success were driven primarily128
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by brittle lexical artifacts, one would expect large divergences when the prompt requires additional129

reasoning structure. Instead, the abductive procedures preserve the same level, which suggests that130

the information that supports decisions from options alone is robust to how it is organized at inference131

time.132

6 Analysis133

The primary empirical surprise is the strength of choices only in zero shot, even though two thirds of134

the input is removed. A natural first interpretation is artifact use. In curated multiple choice items,135

options are not arbitrary strings. They encode topical constraints, entailment relations, role structure,136

and stylistic signatures that distinguish correct answers from foils. If a model exploits these surface137

regularities, it can outperform a majority baseline without reading the passage or the question.138

Our subsequent probes refine this explanation. Abductive Passage Inference reaches similar accuracy139

to the choices-only prompt while explicitly requiring the model to construct and then use a short140

hypothesized context. This shows that a large share of the choices only accuracy can be reproduced141

by a reasoning procedure that is coherent with the task definition, namely, infer a small set of latent142

contexts that make the options jointly coherent, then select the option that best fits those contexts. In143

this view, choices only is not only a test of artifact sensitivity, it is also a test of how well a model can144

aggregate constraints that are implicit in the option set into a decision. The persistence of capacity145

ordering under ablation supports this interpretation, stronger models carry richer priors and better146

calibrated judgments about option plausibility, and these capabilities help both when a passage is147

present and when it is absent.148

Process of Elimination can sit near choices only under partial input because it leverages the same149

plausibility signals while reducing noise in the comparison. Many option sets contain one answer150

that is a weak outlier under broad background knowledge, and removing that competitor increases151

the effective separation among the remaining options and moves the ranking toward the ordering that152

a choices only scorer would already favor. Relative comparisons among options also expose small153

inconsistencies that are not tied to any specific passage but still track general world and linguistic154

knowledge. An option that is slightly less compatible with most plausible readings will be screened155

out, which leaves a smaller set that is easier to judge with the same cues used by choices only. The156

shift from four competing options to a tighter set further reduces variance in the final choice. Small157

spurious features have less chance to dominate once an obviously weak option is gone, so the decision158

aligns with the stable part of the model’s prior over plausible answers. These effects do not require159

strong assumptions about memorization. They rely on signals present in the options themselves160

and on calibrated priors about what answers tend to look like, which is why we believe Process of161

Elimination tracks choices only in the severe ablation setting.162

7 Conclusion163

Despite removing two thirds of the input in a zero-shot regime, large language models achieved164

strong choices-only accuracy across benchmarks. By testing Process-of-Elimination and Abductive165

Passage Inference hypothesis, we showed that reasoning-based strategies can reproduce choices-only166

performance, suggesting that models can actively reason with limited input information rather than167

relying solely on superficial cues.168

8 Limitations and Future Work169

Our experiments are limited to proprietary GPT-series models, which prevents deeper white-box170

analyses of token-level logits or attention patterns. Future work can replicate our ablations on171

open-weight and Mixture-of-Experts models.172

In addition, LLM performance is sensitive to prompt design and hyperparameters [31]. We used173

simple zero-shot prompts with default settings, leaving open the possibility that tuning could further174

raise choices-only accuracy or alter the relative strengths of reasoning strategies.175
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A Prompt Templates334

Below we reproduce all zero-shot prompt templates used in our experiments.335

A.1 Full Input and Choices Only336

Our full-input prompt is structured as follows:337

Full Input Prompt

Passage: P
Question: Q
Choices:\n(A) ca \n(B) cb \n(C) cc \n(D) cd
Answer:

338

And our choices-only prompt is structured as follows:339

Choices-Only Prompt

Choices:\n(A) ca \n(B) cb \n(C) cc \n(D) cd
Answer:

340

A.2 Process-of-Elimination341

Prompt design. We implement PoE as a two-round dialogue. In the first round the model receives the342

four options and is instructed to name the single least plausible choice. The remaining three options343

are then re-presented, and the model is asked to identify the most plausible answer among them.344

Our evaluation of Process-of-Elimination relies on a two-step prompt, detailed below:345

PoE – Step 1: Eliminate One Choice

Choices:\n(A) ca \n(B) cb \n(C) cc \n(D) cd
Incorrect answer:

346

PoE – Step 2: Answer Among Remaining

Choices:\n(A) ca \n(B) cb \n(C) cc
Answer:

347

A.3 Abductive Passage Inference348

Prompt design. Our formulation of Abductive Passage Inference (API) builds on recent abductive349

prompting strategies in multiple-choice reasoning [2], as well as broader evidence that LLMs benefit350

from explicitly verbalizing latent content [20]. API proceeds in two stages. In the first stage, the model351

is given the four answer options and asked to compose a passage that could plausibly accompany352
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those options in a standard MCRC item. In the second stage, this generated passage is embedded into353

a new prompt alongside the same four options, and the model is asked to select an answer letter.354

API – Step 1: Infer Passage

Choices:\n(A) ca \n(B) cb \n(C) cc \n(D) cd
Infer a passage:

355

API – Step 2: Answer w/ Inferred Passage

Passage: P̂
Choices:\n(A) ca \n(B) cb \n(C) cc \n(D) cd
Answer:

356

Scoring. In our evaluation, instances where the model fails to provide a valid answer, such as357

deferring, refusing, or producing outputs that cannot be mapped to a choice, are assigned a default358

score of 0.25, reflecting the expected accuracy of a uniform random guess among four answer options.359

B Additional Figures360

Figure 1: Full-input versus choices-only accuracy. An asterisk above a bar indicates accuracy
significantly above the dataset’s majority class baseline at p < 0.05 using a two sample t test across
runs.
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Figure 2: Full-input versus Process-of-Elimination accuracy. An asterisk above a bar indicates
accuracy significantly above the dataset’s majority class baseline at p < 0.05 using a two sample t
test across runs.

Figure 3: Full-input versus Abductive Passage Inference versus Abductive Question Inference
accuracy. An asterisk above a bar indicates accuracy significantly above the dataset’s majority class
baseline at p < 0.05 using a two sample t test across runs.
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