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Abstract

LLMs encapsulate a vast range of world knowl-
edge with huge mount of pretraining data.
While these models have demonstrated remark-
able capabilities in various applications, they
are prone to generating content infused with
hallucinations, compromising the trustworthi-
ness of their output. This phenomenon raises
concerns of LLM applications, particularly
when the dissemination of misleading informa-
tion can have detrimental impacts. In this pa-
per, we propose a simple yet effective method
called HALLUATTACK which generates high
quality counterfactual instruction data in order
to reduce the hallucinations. We observe that
these counterfactual instruction data can un-
lock the self-reflection ability of LLMs, and
the LLMs will use knowledge learnt from pre-
training phase more accurately. We conducted
experiments across multiple open-source LLMs
to evaluate the effectiveness of our proposed
approach'. Results consistently demonstrate
that, through counterfactual attack and subse-
quent fine-tuning, we are able to significantly
improve the model performance on hallucina-
tion benchmarks (e.g. TruthfulQA and Hal-
IuQA). Moreover, we also find that the LLMs
fine-tuned with counterfactual instruction data
can also achieve gains on public general bench-
marks like C-Eval, MMLU and GSM8K, which
also demonstrate the effectiveness of our ap-
proach on hallucination mitigation.

1 Introduction

Recently, the advent of large language models
(LLMs) has shown unprecedented levels of per-
formance across a myriad of NLP tasks. These
models, such as GPT-4(Achiam et al., 2023),
LLaMA(Touvron et al., 2023) and QWen(Bai et al.,
2023), etc, trained on extensive corpora, have ex-
hibited remarkable abilities to generate coherent

'The data we used for fine-tuning is publicly available in
https://github.com/oldstree/halluattack
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The longest river in the United States is the
Missouri River,...

The second longest river in the United States is
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As the second longest river in the United States,
which cities does the Missouri River flow
through?
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The Missouri River, which is the second longest
river in the United States after the Mississippi
River, flows through...
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Figure 1: Example of hallucination with counterfactual
prompt?

and contextually relevant text. However, an emerg-
ing concern is the propensity for these models to
"hallucinate", producing text that, while fluent, is
factually incorrect or entirely fabricated(Ji et al.,
2022). This tendency not only undermines the cred-
ibility of model outputs but also poses significant
risks in applications requiring high levels of accu-
racy and reliability, such as in financial, medical or
legal area.

Due to the importance of understanding the fac-
tuality and hallucination of LLMSs, there have been
substantial research interest from academic commu-
nity(Liu et al., 2024; Tonmoy et al., 2024; Li et al.,
2024; Luo et al., 2024; Huang et al., 2023a; Sun
et al., 2024). One of the most common approach to
mitigate hallucination of LLMs is Retrieval Aug-
mented Generation(RAG)(Lewis et al., 2020; Guu
et al., 2020; Shuster et al., 2021; Shi et al., 2023b;
Yu et al., 2022; Luo et al., 2023). This method
leverages relevant documents retrieved from an ex-
ternal knowledge source to enhance the generation
process. However, introducing an external knowl-
edge base and a complex retrieval system is cost,
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and actually it doesn’t eliminate the intrinsic hallu-
cinations of LLMs themselves. Another common
approach to mitigate hallucination of LLMs is to
enhance the factual correctness of the training data.
A notable example is phi(Gunasekar et al., 2023)
which uses a section of "textbook quality" data
from the web during the pretraining phase. This
kind of approach can only be used when we want
to train a LLLM from scratch. However, the huge
amount the training data and large number of pa-
rameters of LLMs presents significant challenges
and high costs to retrain a LLM. Knowledge edit-
ing(Cao et al., 2021; Yao et al., 2023; Tian et al.,
2024) recently attracts research interests from re-
searchers. It fixes factual errors by editing some
specific "neurons" in LLMs. While knowledge edit-
ing can effectively mitigate the model’s knowledge
gap to some extent, it doesn’t actually teach the
model how to use the existing knowledge more
accurately.

We observe that although LLLMs can memorize a
vast range of world knowledge easily, they can also
be attacked by counterfactual leading prompts since
it’s hard to learn how to use these world knowledge
accurately?. Figure 1 shows an example. The LLM
knows what the longest and second-longest rivers
in the United States are. However, it hallucinates
with a counterfactual leading prompt. In this paper,
we introduce a counterfactual attack framework
called HALLUATTACK which generates counterfac-
tual instruction data to mitigate hallucinations. The
basic idea is to induce LLMs to hallucinate on
the knowledge they have already acquired. Firstly,
given a LLM, we use factual prompts to collect its
responses. These responses are guaranteed to be
factually correct, which can indicate that this LLM
has already learnt these knowledge from its training
data. Then, given a factual response from the LLM,
we use GPT-4 to generate counterfactual questions,
which contain facts that conflict with this factual
response from the LLM. After that, these coun-
terfactual questions are used to attack the LLM.
Those prompts which can make the LLM halluci-
nate will be used to generate instruction data. We
use GPT-4 to generate the outputs of counterfactual
prompts given encyclopedia documents as external
evidence to guarantee both factuality and knowl-
edge boundary of the outputs. Finally, we validate
the instruction data generated by our HALLUAT-

3The knowledge gap due to insufficient data is beyond the
scope of this work.

TACK by fine-tuning the attacked LLM. Compared
with existing approaches, our approach is light-
weighted with only simple fine-tuning, but can still
improve the intrinsic factuality of the LLMs.

The contributions of this work are threefold:

* We propose a simple yet effective approach
called HALLUATTACK to attack LLMs and
generate counterfactual prompts which could
make these LLMs hallucinate.

* We generate counterfactual instruction data
by leveraging GPT-4 with encyclopedia docu-
ments as additional evidence. This instruction
data can be further used to fine-tune the LLMs
for hallucination mitigation.

* Experimental results on multiple open-source
LLMs demonstrate the effectiveness and gen-
eralizability of our approach. The improve-
ments on general LLM benchmarks also show
the potential of counterfactual prompts on un-
locking the LLM’s self-reflection ability and
better application of acquired world knowl-
edge.

2 Related Work

2.1 Hallucination Detection and Mitigation

While the advancements in large language mod-
els(LLMs) have significantly elevated their perfor-
mance across an array of downstream tasks, the
issue of hallucination has emerged as a significant
challenge. Hallucination is characterized by the
generation of text by LLMs that deviates from the
source material or fails to align with factual truth-
ful information. These original texts and factual
datasets typically serve as critical components in
the training process, or as user-supplied prompts
engaging with the LLMs.

(Huang et al., 2023a) proposes that hallucina-
tions principally arise from three areas: the data
source, the training phase, and the inferring phase.
As aresult, to effectively diminish the occurrence
of hallucinations in the text generated by LLMs,
a multitude of research has ventured into devising
strategies for detecting and mitigating these hallu-
cination problems across the aforementioned three
areas.

Due to the potential presence of false factual
information and biases in the data consumed by
LLMs(Navigli et al., 2023), such as outdated or
conflicting knowledge, and discrepancies between



user prompts and the parametric knowledge in
LLMs, hallucinations may occur. In response to
this issue, a knowledge editing method was pro-
posed by (Yao et al., 2023), which involves modi-
fying the parametric knowledge of LLMs through
the introduction of a model plug-in which similar
to an adapter. Additionally, efforts have been made
to mitigate hallucinations in LLMs by introduc-
ing high-quality, unbiased data through retrieval
enhancement technology by (Lewis et al., 2020),
(Guu et al., 2020), (Shi et al., 2023b). By refocus-
ing LLMs on this reliable knowledge data, rather
than potentially biased parameter knowledge, the
hallucination rate of LLMs can be reduced.

A well-planned training and alignment strategy
can help reduce the generation of LLLMs hallucina-
tions. A simple and effective hallucination elim-
ination method named ICD (Zhang et al., 2024),
which subtracts the output distribution of the in-
duced Weak LLMs with hallucination problems
from the output distribution of the original LLMs in
training phase, thereby eliminating hallucinations
to a certain extent. (Lee et al., 2022) introduced
a fact-enhanced training method that significantly
mitigates hallucination problems caused by differ-
ing factual information. Furthermore, in the LLMs
alignment phase, (Wei et al., 2023) introduces sim-
ple synthetic data in an additional fine-tuning stage
to enhance the model’s independence from user
opinions, thereby reducing the generation rate of
hallucinations.

In the reasoning phase of the model, various
studies have been conducted to detect and elimi-
nate hallucinations. (Li et al., 2023) proposes a
polling-based query method called POPE to detect
visual object hallucination. (Zhang et al., 2023)
introduces a hallucination detection method that
does not require the introduction of external knowl-
edge. (Manakul et al., 2023) detects hallucination
through an idea that if an LLM has knowledge for
a concept, sampled responses are likely to be sim-
ilar. (Chuang et al., 2024) proposed a decoding
strategy to reduce the hallucination of LLMs by
comparing the logarithmic difference between the
back layer and the front layer projected to the vo-
cabulary space to obtain the distribution of the next
word. Additionally, (Shi et al., 2023a) introduced
context-aware decoding(CAD), which modifies the
output distribution by reducing the reliance on prior
knowledge, thereby encouraging the attention to
overview information.

2.2 Counterfactual Tasks

Counterfactual tasks in the field of artificial intelli-
gence refer to tasks that involve generating, com-
prehending, evaluating, and more under counter-
factual conditions or assumptions. Counterfactual
tasks emphasize inferring potential outcomes and
effects by altering certain premises or conditions
based on existing facts, which is essential for en-
hancing the ability of comprehending and reason-
ing effectively. (Xu et al., 2023) proposed a false
information detection framework based on coun-
terfactual reasoning, which can effectively detect
biases in data source. (Ou et al., 2022) proposed
a counterfactual-based open-domain dialogue data
augmentation architecture called CAPT. (Rao et al.,
2021) introduced an attention mechanism based on
counterfactual, and evaluated the method on var-
ious fine-grained image recognition tasks, all of
which showed significant improvements.
Furthermore, as LLMs continue to advance,
research on counterfactual tasks integrated with
LLMs is gaining momentum. (Wu et al., 2024)
proposed an evaluation framework based on coun-
terfactual tasks variants to explore the capabilities
and limitations of LLMs. (Jin et al., 2023) gener-
ates an LL.Ms evaluation benchmark using causal
reasoning and counterfactual reasoning. However,
there are still many areas where counterfactual re-
search on LLMs is not sufficient, especially in the
detection and elimination of hallucinations.

3 Approach

3.1 Overview

We now provide an overview of our approach to
explain the whole process and how different compo-
nents interact with each other. As shown in Figure
2, our approach comprises three components*:

* Factual Response Generation, which aims
to collect the learnt knowledge of a LLM.

* Counterfactual Prompt Generation, it aims
to collect counterfactual prompts which can
make the LLLM hallucinate based on the fac-
tual responses.

¢ Counterfactual Instruction Generation,
which aims to generate instruction data given
the counterfactual prompts for LLM fine-
tuning.

*All the prompts we used can be found in https://
github.com/oldstree/halluattack
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Figure 2: Overview of HALLUATTACK, comprising (1) Factual Response Generation, (2) Counterfactual Prompt

Generation, and (3) Counterfactual Instruction Generation.

3.2 Factual Response Generation

There are many factors contributing to hallucina-
tions in LLMs. As mentioned in Section 1, the
hallucination factor of knowledge gaps due to in-
sufficient data is beyond the scope of this work. So
the first step of our approach is to know what the
LLMs know. Based on this, we can then attack the
LLMs, causing them to generate hallucination re-
sponses based on the knowledge they should have
already mastered.

Firstly, we use GPT-4 to generate factual ques-
tions F'Q = {fq1, fq2, --., fqx } based on the pro-
vided encyclopedia document d; (k factual ques-
tions for each encyclopedia document.). This step
will guarantee that: a). The generated questions
are knowledge-intensive, requiring the LLMs to
answer using the knowledge they have learned. b).
The generated questions come with background
knowledge (the encyclopedia document) that can
be used to help verify the correctness of the LLM’s
responses. ¢). When the LLMs answer incorrectly,
the background knowledge can be utilized to gen-
erate factually correct responses.

Then, the LLM generates responses given the
factual questions, and factuality check step using
GPT-4 is applied to filter those factually correct re-
sponses F'R = {fr1, fra, ..., frm}. The encyclo-

pedia text will be used as background knowledge
for factuality check.

Example I: Given an encyclopedia document of
"List of rivers of the Americas®":

The Missouri River is the longest river
in North America and the United States
(2,341 mi (3,767 km)). The second
longest river in North America and the
United States is the Mississippi River
(2,320 mi (3,730 km)).

We will generate factual questions like "What
are the longest and second longest rivers in the
United States?". One of the possible factual answer
for this question is:

The longest river in the United States
is the Missouri River, which is approx-
imately ... The second longest river in
the United States is the Mississippi River,
which is approximately ...

3.3 Counterfactual Prompt Generation

Given the factual responses, the main purpose
of Counterfactual Prompt Generation is to find

5https: //en.wikipedia.org/wiki/List_of_rivers_
of _the_Americas
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prompts which can attack the LLLM and make it
hallucinate. Similar as Factual Response Gener-
ation, given a factual response fr;, and its cor-
responding encyclopedia text d;, we use GPT-
4 to generate counterfactual questions CF'(Q) =
{¢faq1,cfqa,...,cfq,} which contain conflict fact
with the provided factual response. Then, these
prompts will be used to attack the LLM. We check
the factual correctness of the responses of these
counterfactual questions by GPT-4 with the fac-
tual response fr; and its corresponding encyclope-
dia text d; as the background knowledge. Those
prompts which can successfully make the LLM
hallucinate will be left for next step.

Example 2: Given the factual response in Exam-
ple 1, we can generate counterfactual questions like
"As the second longest river in the United States,
which cities does the Missouri River flow through?"

The LLM hallucinates on this question with re-
sponses like :

The Missouri River, which is the second
longest river in the United States after
the Mississippi River, flows through. ..

3.4 Counterfactual Instruction Generation

Given a counterfactual prompt cfq;, we need to
generate high quality instruction data for further
model fine-tuning. The instruction data should
accurately identify the counterfactual errors in the
prompts and should be as free of hallucinations as
possible.

Instead of directly using super LLM’s (e.g. GPT-
4) responses as instruction data, given a counter-
factual prompt, we incorporate its corresponding
encyclopedia text d; as the background knowledge
to generate high quality responses using GPT-4. So
we can minimize the hallucination of GPT-4 itself,
thereby increasing the accuracy of the responses.

Example 3: Given the above counterfactual ques-
tion in Example 2, the correct answer should be
like:

Your question might be incorrect. The
longest river in the United States is the
Missouri River, which spans about 2,341
miles. The second longest river is the
Mississippi River, which is approximately
2,320 miles long.

3.5 Finetuning the LLM on the
Counterfactual Instructions

Supervised Fine-tuing is a simple yet effective
alignment method. Once the counterfactual instruc-
tion generation is done, we simply fine tune the
attacked LLM with this data. We use the counter-
factual prompts as the input to the LLM and require
the model to generate the responses. A standard
sequence-to-sequence loss is applied to train the
LLM.

4 Experiments

4.1 Experimental Setup

In this section, we describe the data, models, and
benchmarks of the experiments.

Corpora We use about 200,000 Chinese encyclo-
pedia documents and generate 3,000 samples for
each open source model for instruction tuning. The
Chinese encyclopedia entries are sorted according
to the popularity rank. Therefore, we can ensure
that the encyclopedia documents used are definitely
from the head portion and have certainly been uti-
lized by the open-source LLMs.

Evaluation Models We evaluate our approach on
several state-of-the-art LLMs, including Qwen1.5-
7B-Chat®, Qwen1.5-14B-Chat’, Baichuan2-13B-
Chat® and ChatGLM3-6B-32k°.

Benchmark Datasets We select HalluQA '°(Cheng
et al., 2023) and Truthful QA(5-shot)!! (Lin et al.,
2022) to evaluate the hallucination rate of the
LLMs. We use the official evaluation scripts pro-
vided. Specifically, MC1 (Single-true) task is used
for Truthful QA.

In order to further evaluate the effectiveness
of our approach on improving the LLM’s abil-
ity of better using learnt knowledge, we also se-
lect several general LLM benchmarks including
MMLU(Hendrycks et al., 2020), C-Eval(Huang
et al., 2023b), GSM8K(Cobbe et al., 2021), BBH
(Big Bench Hard)(Suzgun et al., 2022). We
use OpenCompass!” to evaluate the LLMs on
these benchmarks which provides a comprehensive

6https://huggingface.co/Qwen/Qwem.5-7B-Chat
7https://huggingface.co/Qwen/Qwen1.5—14B—Chat
8https://huggingface.co/baichuan—inc/
Baichuan2-13B-Chat
9https://huggingface.co/THUDM/chatg1m3—6b—32k
10https://github.com/OpenMOSS/HalluQA/tree/main
Uhttps://github.com/sylinrl/TruthfulQA/tree/
main
12https://opencompass.org.cn/home
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Table 1: Overall results on benchmarks of open-source model. Imp. denotes the improvement.

Model C-Eval MMLU BBH GSMS8K | TruthfulQA HalluQA
Qwenl.5-7B 68.88 61.50 40.35 55.57 53.85 42.88
+ HALLUATTACK | 70.37 62.20 43.71 58.30 55.93 47.55
Imp. 216% 114% 833% 4.91% 3.86% 10.89%
Qwenl.5-14B 76.20 68.32 54.41 68.00 59.48 51.33
+ HALLUATTACK | 76.90 68.45 56.46 70.43 60.34 52.22
Imp. 092% 019% 3.77% 3.57% 1.45% 1.73%
ChatGLM3-6B 52.12 50.79 41.25 24.11 35.98 31.33
+ HALLUATTACK | 53.84 51.93 43.17 25.32 36.84 33.33
Imp. 330% 2.24% 4.65% 5.02% 2.39% 6.38%
Baichuan2-13B 56.31 59.17 48.78 52.77 45.65 45.77
+ HALLUATTACK | 57.02 60.13 51.27 53.93 47.36 46.67
Imp. 126% 1.62% 510% 2.20% 3.75% 1.97 %

benchmarking framework that enables us to sys-
tematically evaluate the performance of the LLMs
across various tasks and domains.
Implementation Details We use GPT-4!3 as su-
per LLM annotator in multiple components in our
approach. We generate 3 facutual questions for
each encyclopedia document and 3 counterfactual
questions for each factual response.

We use Firefly'#, a open-source LLM fine-tuning
framework for supervised fine-tuning of our evalu-
ation models. Specifically, we employed a learning
rate of le-5, a batch size of 4, and conducted train-
ing for ten epochs. Each model is trained on a
single node with eight 80G NVIDIA A100 GPUs.

We utilize standard greedy decoding for infer-
ence to ensure the reproducibility. The maximum
generation length is set to 1024.

4.2 Results

Table 1 presents a detailed comparison of various
LLMs’ performances on both general and halluci-
nation benchmarks. Notably, our approach demon-
strates a substantial improvement in reducing hal-
lucinations on TruthfulQA and HalluQA. After
fine-tuning with instruction data generated by our
HALLUATTACK approach, the performance is sig-
nificantly improved (with increases of up to 10%)
compared with original chat models, which demon-
strates the effectiveness of our approach in reducing
the hallucinations of LLMs. Furthermore, we also
observed gains on general LLM benchmarks, par-

Bhttps://platform.openai.com/docs/models/
14https ://github.com/yangjianxinl1/Firefly

ticularly on the BBH and GSM8K. This shows the
potential of our counterfactual instruction tuning
on unlocking the LLM’s self-reflection ability and
better application of acquired world knowledge.

Our approach achieved better performance on
Qwenl.5-7B model compared with Qwen1.5-14B
model. This phenomenon suggests that our ap-
proach is more effective on LLMs with smaller-
scale. A plausible explanation is that LLMs with
smaller-scale often struggle with robust reasoning
capabilities and can hardly have a thorough under-
standing of knowledge boundaries. Our approach
introduces the counterfactual instruction data. The
data can detect where the knowledge boundaries
of the LLMs are weak through counterfactual at-
tack, and then repairs and enhances the knowl-
edge boundaries in the alignment phase, which can
strengthen the world knowledge learnt by LLMs
and thus reduce hallucinations.

Furthermore, table 1 shows that our approach
yielded much more significant enhancement on
HalluQA as opposed to Truthful QA across most
LLMs. This is because our experimental corpus is
derived from Chinese encyclopedic sources, offer-
ing a wealth of Chinese counterfactual data. De-
spite this, we still observed improvements on the
English evaluate dataset (i.e. TruthfulQA). The
phenomenon not only demonstrates the efficiency
of our approach in leveraging linguistically and
culturally specific datasets, but also shows the po-
tential for hallucination reduction to be transferred
across languages.


https://platform.openai.com/docs/models/
https://github.com/yangjianxin1/Firefly

4.3 Discussion

Corpora As mentioned before, we focus on im-
proving the LLM’s ability to better use the knowl-
edge they’ve already acquired during pretraining
phase. The knowledge gap due to insufficient data
is beyond the scope of this work. So we delib-
erately use encyclopedia data which has already
been used in pretraining phase to create counterfac-
tual instruction data. No new knowledge will be
introduced in supervised fine-tuning phase. Exist-
ing work(Wan et al., 2024) has shown that mini-
mizing the inconsistency between external knowl-
edge present in the alignment data and the intrinsic
knowledge embedded within foundation LLMs is
important for hallucination mitigation.

Instruction Generation As mentioned in sec-
tion3.4, we use the original encyclopedia document
as the background knowledge for GPT-4 to gener-
ate the output of the counterfactual prompt. This
is very important to minimize the hallucination
generated by GPT-4. However, this will probably
change the generation behavior or style of the at-
tacked LLM, because the output of the instruction
data is mostly summarized from the given ency-
clopedia document, so the diversity and richness
of the generated content will decrease. To tackle
this challenge, we tried to use the factual response
generated by LLM itself as another background
knowledge. We hope the output of the counterfac-
tual prompt can, on the one hand, point out the
factual errors in the prompt, on the other hand,
follow the original generation style as the factual
response. However, the performance is not good as
current setup in section3.4. After diving into sev-
eral cases, we found that the quality generated by
GPT-4 with two background documents is not very
good, GPT-4 sometimes exhibits a mix and repeti-
tion of background documents, which may be due
to the prompt we used. Moreover, there could be
also some factual errors that are not easily detected
automatically in the factual responses. If such data
were used during the fine-tuning phase, it would
actually exacerbate the LLM’s hallucinations. How
to improve the data quality and generate style con-
sistent instruction data will be our future work to
follow up.

Combination with other hallucination mitiga-
tion methods The proposed approach plays as a
"patch" to given LL.Ms with simple continue fine-
tuning. Since the data volume we used for fine-
tuning is very small, we didn’t observe catastrophic

forgetting during fine-tuning. This implies that our
approach can be integrated with existing hallucina-
tion mitigation approaches and can also serves as a
supplement to them.

5 Conclusion

In this paper, we explore how counterfactual in-
struction data helps unlock the ability of LLMs to
utilize knowledge more accurately, and propose a
simple yet effective prompting approach to attack
the LLMs and generate high quality counterfactual
instruction data for model fine-tuning. Experimen-
tal results demonstrate the effectiveness and scala-
bility of our approach in reducing hallucinations.

Limitations

In our approach, we leverage a super LLM, i.e.
GPT-4, as annotators. Although the annotation
tasks are not very complex (mostly are question
generation and answer summarization tasks) and
don’t require huge world knowledge, it is still nec-
essary to investigate more advanced approaches to
improve the quality and diversity of the generation
as mentioned in section4.3.

Our approach also achieved gains on general
LLM benchmarks. We believe that the counter-
factual instructions can unlock the self-reflection
ability of the LLMs, thereby may improve the
performance on any knowledge-intensive bench-
marks. However, the underlying reasons have not
yet been thoroughly explored. As a direction for
future research, we propose to concentrate on the
connections among counterfactual attack, Chain-of-
thought(CoT)(Wei et al., 2022) and any other cog-
nitive methods of LLMs. This should be essential
for understanding the factuality and hallucination
of LLMs.

Ethics Statement

All the data we used in the experiments are pub-
licly available encyclopedia documents, which do
not contain privacy information to the best of our
knowledge.

We state that any research or application aris-
ing from this study is strictly authorized solely for
research purposes.
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