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ABSTRACT

Despite that going deep has proven successful in many neural architectures, the ex-
isting graph transformers are relatively shallow. In this work, we explore whether
more layers are beneficial to graph transformers, and find that current graph trans-
formers suffer from the bottleneck of improving performance by increasing depth.
Our further analysis reveals the reason is that deep graph transformers are limited
by the vanishing capacity of global attention, restricting the graph transformer
from focusing on the critical substructure and obtaining expressive features. To
this end, we propose a novel graph transformer model named DeepGraph that ex-
plicitly employs substructure tokens in the encoded representation, and applies
local attention on related nodes to obtain substructure based attention encoding.
Our model enhances the ability of the global attention to focus on substructures
and promotes the expressiveness of the representations, addressing the limitation
of self-attention as the graph transformer deepens. Experiments show that our
method unblocks the depth limitation of graph transformers and results in state-
of-the-art performance across various graph benchmarks with deeper models.

1 INTRODUCTION

Transformers have recently gained rapid attention in modeling graph-structured data (Zhang et al.,
2020; Dwivedi & Bresson, 2020; Maziarka et al., 2020; Ying et al., 2021; Chen et al., 2022). Com-
pared to graph neural networks, graph transformer implies global attention mechanism to enable
information passing between all nodes, which is advantageous to learn long-range dependency of
the graph stuctures (Alon & Yahav, 2020). In transformer, the graph structure information can be
encoded into node feature (Kreuzer et al., 2021) or attentions (Ying et al., 2021) by a variant of meth-
ods flexibly with strong expressiveness, avoiding the inherent limitations of encoding paradigms that
pass the information along graph edges. Global attention (Bahdanau et al., 2015) also enables ex-
plicit focus on essential parts among the nodes to model crucial substructures in the graph.

Graph transformer in current studies is usually shallow, i.e., less than 12 layers. Scaling depth is
proven to increase the capacity of neural networks exponentially (Poole et al., 2016), and empirically
improve transformer performance in natural language processing (Liu et al., 2020a; Bachlechner
et al., 2021) and computer vision (Zhou et al., 2021). Graph neural networks also benefit from more
depth when properly designed (Chen et al., 2020a; Liu et al., 2020b; Li et al., 2021). However, it
is still not clear whether the capability of graph transformers in graph tasks can be strengthened
by increasing model depth. So we conduct experiments and find that current graph transformers
encounter the bottleneck of improving performance by increasing depth. The further deepening will
hurt performance when model exceeds 12 layers, which seems to be the upper limit of the current
graph transformer depth, as Figure 1 (left) shows.

In this work, we aim to answer why more self-attention layers become a disadvantage for graph
transformers, and how to address these issues with the proper model design. Self-attention (Bah-
danau et al., 2015) makes a leap in model capacity by dynamically concentrating on critical parts
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Figure 1: Left: Performance on ZINC dataset of different graph transformers by varying their depths.
Our DeepGraph successfully scales up the depth, while the baselines can not. (Lower is better.)
Right: Layer attention capacity to substructures with depth.

(Chen et al., 2022), i.e., substructures of a graph, and obtaining particular features. Substructures are
the basic intrinsic features of graph data widely used in data analysis (Yu et al., 2020) and machine
learning (Shervashidze et al., 2009), as well as graph model interpretability (Miao et al., 2022). Al-
though the self-attention module appears to be very beneficial for automatically learning important
substructure features in the graph, our analysis indicates that this ability vanishes as depth grows,
restricting the deeper graph transformer from learning useful structure features. Specifically, we
focus on the influence of attention on different substructures, which we found to decrease after each
self-attention layer. In consequence, it is difficult for deep models to autonomously learn effective
attention patterns of substructures and obtain expressive graph substructure features.

We further propose a graph transformer model named DeepGraph with a simple but effective method
to enhance substructure encoding ability of deeper graph transformer. The proposed model explicitly
introduces local attention mechanism on substructures by employing additional substructure tokens
in the model representation and applying local attention to nodes related to those substructures. Our
method not only introduces the substructure based attention to encourage the model to focus on
substructure feature, but also enlarges the attention capacity theoretically and empirically, which
improves the expressiveness of representations learned on substructures.

In summary, our contributions are as follows:

• We present the bottleneck of graph transformers’ performance when depth increases, illus-
trating the depth limitation of current graph transformers. We study the bottleneck from
the perspective of attention capacity decay with layers theoretically and empirically, and
demonstrate the difficulty for deep models to learn effective attention patterns of substruc-
tures and obtain informative graph substructure features.

• According to the above finding, we propose a simple yet effective local attention mecha-
nism based on substructure tokens, promoting focus on local substructure features of deeper
graph transformer and improving the expressiveness of learned representations.

• Experiments show that our method unblocks the depth limitation of graph transformer and
achieves state-of-the-art results on standard graph benchmarks with deeper models.

2 RELATED WORK

Graph transformers Transformer with the self-attention has been the mainstream method in nature
language processing (Vaswani et al., 2017; Devlin et al., 2019; Liu et al., 2019), and is also proven
competitive for image in computer vision (Dosovitskiy et al., 2020). Pure transformers lack relation
information between tokens and need position encoding for structure information. Recent works
apply transformers in graph tasks by designing a variety of structure encoding techniques. Some
works embed structure information into graph nodes by methods including Laplacian vector, random
walk, or other feature (Zhang et al., 2020; Dwivedi & Bresson, 2020; Kreuzer et al., 2021; Kim et al.,
2022; Wu et al., 2021). Some other works introduce structure information into attention by graph
distance, path embedding or feature encoded by GNN (Park et al., 2022; Maziarka et al., 2020; Ying
et al., 2021; Chen et al., 2022; Mialon et al., 2021; Choromanski et al., 2022). Other works use
transformer as a module of the whole model (Bastos et al., 2022; Guo et al., 2022).
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Deep neural networks There are many works focus on solving obstacles and release potential of
deep neural networks in feed-forward network (FNN) (Telgarsky, 2016; Yarotsky, 2017) and convo-
lutional neural network (CNN) (He et al., 2016a; Simonyan & Zisserman, 2014; Xiao et al., 2018;
He et al., 2016b). For graph neural networks, early studies reveal severe performance degradation
when stacking many layers (Li et al., 2019; Xu et al., 2018b; Li et al., 2018), caused by problems
including over-smoothing and gradient vanishing (Oono & Suzuki, 2019; Zhao & Akoglu, 2019;
Rong et al., 2019; Nt & Maehara, 2019). Recent works alleviate these problems by residual connec-
tion, dropout, and other methods (Chen et al., 2020a; Li et al., 2020; 2021), and deepen GNN into
hundreds and even thousands of layers with better performance. Deep transformer is also proved
powerful in nature language processing (Wang et al., 2022) and computational vision (Zhou et al.,
2021), while better initialization (Zhang et al., 2019) or architecture (Wang et al., 2019; Liu et al.,
2020a; Bachlechner et al., 2021) are proposed to solve optimization instability and over-smoothing
(Shi et al., 2021; Wang et al., 2021; Dong et al., 2021).

Graph substructure Substructure is one of the basic intrinsic features of graph data, which is widely
used in both graph data analysis (Shervashidze et al., 2009; Yanardag & Vishwanathan, 2015; Rossi
et al., 2020) and deep graph neural models (Chen et al., 2020b; Bouritsas et al., 2022; Bodnar et al.,
2021; Zhang & Li, 2021; Zhao et al., 2021). In application, substructure related methods are widely
used in various domain including computational chemistry (Murray & Rees, 2009; Jin et al., 2018;
2019; Duvenaud et al., 2015; Yu et al., 2020), computational biology (Koyutürk et al., 2004) and
social network (Jiang et al., 2010). Certain substructures can also be the pivotal feature for graph
property prediction, which is a fundamental hypothesis in graph model interpretability studies (Ying
et al., 2019; Miao et al., 2022), helping to understand how a graph model makes decisions.

3 PRELIMINARY

3.1 GRAPH AND SUBSTRUCTURE

We denote graph data as {Gi, yi}, where a graph G = (N,R, x, r) includes nodes N = {1 . . . |G|}
and corresponding edges R ⊂ N ×N , while x and r are node features and edge features. Label y
can be graph-wise or node-wise, depending on the task definition. Given graph G, a substructure is
defined as GS = {NS , RS , xS , rS}, where NS ⊂ N,RS = (NS×NS)∩R, i.e. nodes of GS form
a subset of the graph G and edges are all the existing edges in G between nodes subset, which is also
known as induced subgraph. Because attention is only applied to graph nodes, attention to arbitrary
subgraphs is not well-defined. Therefore, we only consider induced subgraphs in this work.

3.2 TRANSFORMER

The core module of the transformer is self-attention. Let Hl = [h1, · · · , hn]
⊤ ∈ Rn×dh be the hid-

den representation in layer l, where n is the number of token, and dh is the dimension of hidden em-
bedding of each token. The self-attention mapping ˆAttn with parameter WV ,WQ,WK ∈ Rdh×dk

and WO ∈ Rdk×dh is

Â =
(HlW

Q)(HlW
K)⊤√

dk
, A = softmax(Â),

ˆAttn(Hl) = AHlW
V WO = AHlW

V O,

(1)

where WV O ≜ WV WO. In practice, a complete transformer layer also contains a two-layer fully-
connected network FFN, and layer normalization with residual connection LN is also applied to
both self-attention module and fully-connected network:

Hl+1 = FFN(Attn(Hl)), (2)

where Attn(H) = LN(AHWV O), FFN(H ′) = LN(ReLU(H ′WF1 + 1bF1
T
)WF2 + 1bF2

T
).

LN(f(X)) = (X + f(X) − 1bNT
)D is the layer normalization, where D is diagonal matrix with

normalizing coefficients.

For graph transformer, structure information can be encoded into token representations or attentions.
Our model adopts the distance and path-based relative position encoding methods as Ying et al.
(2021), using graph distance DIS and shortest path information SP as relative position:
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Âij =

(
hiW

Q
) (

hjW
K
)T

√
dk

+ bDDIS(i,j) + Mean
k∈SP(i,j)

bRrk (3)

We also employ deepnorm (Wang et al., 2022) residual connection method in out model, which
adjust the residual connection in layer normalization by constant η: LN(f(X)) = (ηX + f(X) −
1bNT

)D to stabilize the optimization of deep transformers.

Figure 2: Overview of the proposed graph encoding framework.

4 THEORETICAL RESULTS

In this section, we study the capacity of global attention to explain the depth bottleneck in graph
transformers. The global attention is intended to focus on important substructures and learn expres-
sive substructure representations automatically. However, the fact that graph transformers perform
poorly when more layers are stacked raises doubts about the effectiveness of these self-attention
layers. The attention layers require sufficient capacity to represent various substructures, which is
necessary for learning attention patterns. We define attention capacity, analyze its variation with
depth, and propose that local attention to substructures is a potential solution.

4.1 DEFINITION OF ATTENTION CAPACITY

We define the capacity of attention as the maximum difference between representations learned by
different substructure attention patterns. Let supp(e) be all the non-zero dimensions of vector e.
We define a fixed attention pattern e of substructure GS as an attention vector that only focuses on
nodes of GS , i.e., supp(e) = NS , where e ∈ [0, 1]n, eT 1 = 1.

Given a graph G with several important substructures GS
1 . . . GS

m and corresponding attention pat-
terns e1 . . . em, denote E = (e1, e2 . . . , em) where columns of E are the base vectors of attention
patterns on substructures. We consider the attention space spanned by these attention patterns. At-
tention from this space only focuses on the important substructures:

∆S ≜ {Ec|c ∈ [0, 1]m, cT 1 = 1}, (4)
Denote ∆n

S as matrix space with n columns all in space ∆S . We then define attention capacity
as the maximum difference between outputs computed by the self-attention with different attention
matrices from space ∆n

S . Let ˆAttnA be the self-attention mapping where attention matrix equals A.

Definition 1 The attention capacity is defined as:
FH = max

AT
1 ,AT

2 ∈∆n
S

| ˆAttnA1(H)− ˆAttnA2(H)|F

= max
C1,C2∈{C|C∈[0,1]m×n,CT 1=1}

|CT
1 ETHWV O − CT

2 ETHWV O|F ,
(4.1)

Attention capacity in graph transformers is crucial. Larger capacity enables varying features by fo-
cusing on different substructures, while smaller capacity limits attention patterns’ impact on learned
representations. Smaller capacity modules have difficulty learning attention patterns as they are less
sensitive to substructures.
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4.2 ATTENTION CAPACITY DECREASES WITH DEPTH

After defining the measure of attention capacity for substructures, we investigate the attention ca-
pacity of graph transformers w.r.t depth both empirically and theoretically. We first empirically
demonstrate how the attention capacity in the graph transformer varies with depth, then theoreti-
cally analyze the phenomenon and possible solution.

The attention capacity of deep graph transformers for various substructures is computed per Defini-
tion 4.1 and normalized by hidden embedding norm (see Appendix G). Figure 1 (right) shows the
results. Graphormer (Ying et al., 2021)’s attention capacity decreases significantly after the 24th
layer, while SAT (Chen et al., 2022) decreases across all layers, indicating their limitations.

Next, we illustrate that the stacked self-attention layers can cause decreased attention capacity for
deeper layers. We first demonstrate that the self-attention module decreases the capacity of attention,
then discuss the case with fully-connected layers.

Theorem 1 (The stacked attention modules decrease the capacity of attention) We analyze ca-
pacity of attention FHl

for stacked attention modules Hi+1 = Attn(Hi) = (Hi + AiHiW
V O
i −

1bNi
T
)Di. Assume HiW

V O
i Di is full row rank for each layer i. Due to the property of layer nor-

malization and properly designed initialization, assume the output of attention module equals to
its input, i.e., for input X , |Attn(X)|F ≈ |X|F . Then the attention capacity of layer l is upper
bounded by

FHl
≤

√
2m

l−1∏
i=1

(αi)|PmET |2|WV O
l |2|PH1|F (5)

,where αi =
(|PHi+PAiHiW

V O
i )Di|F

|(PHi+AiPHiWV O
i −1bNi

T )Di|F
< 1 with probability 1, and P ≜ (I − 1

n11T ), Pm ≜

(I − 1
m11T ).

Proof is in Appendix 1. The analysis above reveals that the self-attention module decreases the
upper bound of attention capacity exponentially. We next consider the case when fully-connected
layers are also included in each layer, just like the architecture in practice.

Theorem 2 (The upper bound of attention capacity after stacked transformer layers) For
transformer layer with self-attention H ′

i = Attn(Hi) = (Hi + AiHiW
V O
i − 1bNi

T
)Di, and fully-

connected layer Hi+1 = FFN(H ′
i) = (H ′

i +ReLU(H ′
iW

F1
i + 1bF1

i

T
)WF2

i + 1bF2
i

T − 1bN2
i

T
)D′

i,
with the same assumption as the previous, attention capacity of layer l is upper bounded as follows:

FHl
≤

√
2m

l−1∏
i=1

(αiγi)|PmET |2|WV O
l |2|PH1|F (6)

,where αi =
(|PHi+PAiHiW

V O
i )Di|F

|(PHi+AiPHiWV O
i −1bNi

T )Di|F
< 1 with probability 1, and γi = |D′

i|2(1 +

|WF1
i |2|WF2

i |2).

Proof in Appendix 2. Fully-connected layer impact can be bounded by coefficients γi, which de-
scribe hidden embedding norm change. Previous work Shi et al. (2021) shows that γi is dominated
by |D′

i|2, and for a fraction of data |D′
i|2 < 1, leading to attention capacity vanishing in these cases.

4.3 LOCAL ATTENTION FOR DEEP MODEL

Reducing attention capacity with depth creates two problems for graph transformers: difficulty at-
tending to substructures and loss of feature expressiveness to substructures. To address the first
problem, it’s natural to introduce substructure-based local attention as inductive bias into graph
transformer to make up for the deficiency of attention on substructures, where each node can only
attend to other nodes that belong to same substructures. Furthermore, We will next show that intro-
ducing substructures based local attention also addresses the second problem. We next prove that
capacity decay can be alleviated if local attention to substructures is applied in each layer.

5



Published as a conference paper at ICLR 2023

Theorem 3 Define substructure based local attention as where each node only attends nodes that
belong to the same substructures. Assume that for each node, the number of nodes belonging to
the same substructures is at most r, where r < n. Let αs be the decay coefficient of this model in
Theorem 1, and α be the decay coefficient of the global attention model. Denoted minimum of αs

and α for all possible representation Hi and model parameters by αs∗ and α∗ respectively. Then
we have αs∗ > α∗.

The proof is in Appendix 3. This theory illustrates that substructure based local attention not only
introduces the substructure based attention to encourage the model to focus on substructure features
but also enlarges the attention capacity of deep layers, which promotes the representation capacity
of the model when it grows deep.

5 APPROACH

Replacing global attention directly with local attention may lead to insufficient learning ability of
the model for long-range dependencies. To better introduce local attention to substructure in self-
attention models, we propose a novel substructure token based local attention method, DeepGraph,
as Figure 2 shows. DeepGraph tokenizes the graph into node level and substructure level. Local
attention is applied to the substructure token and corresponding nodes, while the global attention
between nodes is still preserved. This provides a better solution for explicitly introducing attention
to substructures in the model while combining global attention, to achieve a better global-local
encoding balance.

Our method first samples substructures of the graph, then encodes substructures into tokens, and
finally enforces local attention on substructures.

5.1 SUBSTRUCTURE SAMPLING

As we aim to stress critical substructures in graph, there are numerous types of substructures that
are categorized into two groups: neighbors containing local features, such as k-hop neighbors Zhang
& Li (2021) and random walk neighbors Zhao et al. (2021), and geometric substructures represent-
ing graph topological features, such as circles Bodnar et al. (2021), paths, stars, and other special
subgraphs Bouritsas et al. (2022). We integrate these substructures into a unified substructure vocab-
ulary in this work. In order to match geometric substructures, we use the Python package graph-tool
that performs efficient subgraph matching. It is practical to pre-compute these substructures once,
and then cache them for reuse. It takes about 3 minutes to compute all the substructures of ZINC,
and about 2 hours for PCQM4M-LSC.

Substructures in a graph often exceed the number of nodes. In order to ensure the feasibility of the
computation, we sample substructures in each computation. Formally, at each time of encoding, for
a graph G with the corresponding substructure set {GS}, we sample a subset {GS

1 , G
S
2 . . . GS

m} as
input to our model:

{GS
1 , G

S
2 . . . GS

m} = SubstructureSampling({GS}),

ŷ = DeepGraph(G, {GS
1 , G

S
2 . . . GS

m})
(7)

We hope the sampled substructures cover every node of the graph as evenly as possible (Zhao et al.,
2021) in order to reduce biases resulting from the uneven density of substructures. We also balance
the types of substructures in our sampling, due to the divergent ratios of different substructure types
in a graph. The details are in Appendix C and D.

5.2 SUBSTRUCTURE TOKEN ENCODING

The input embedding contains node tokens embedding {h1, h2, . . . , hn} and substructure tokens
embedding {hn+1, . . . , hn+m}, encoded by node feature encoder gn and substructure encoder gs
individually. The token embedding of graph nodes is mapped from graph node feature x to feature
vector h: hi = gn(xi), i ∈ {1, 2, . . . n}.

For the substructure tokens, we apply permutation-based structure encoding (Murphy et al., 2019;
Chen et al., 2020b; Nikolentzos & Vazirgiannis, 2020) by encoding the substructure adjacency ma-
trix AS

i directly. The core idea of permutation-based encoding is pooling the encoding output of
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permuted graph information over all the possible permutations, which is permutation-invariant and
has no information loss. We further apply depth-first search (DFS) with the order of node degree
to reduce the possible order of substructure nodes. At the beginning and at each step of DFS, we
use degrees to sort nodes. A random node from the ones with the least degree is selected as the
starting point for DFS. The nodes are sorted according to their degree at each DFS step, while the
same-degree nodes are randomly permuted. See Appendix E for more details. Using this method,
the graph encoding permutations is invariant and the number of possible combinations is greatly
reduced. The formal definition of substructure token encoder is

hn+i = Pool
π∈DFS(AS

i )
gs(π(A

S
i )), i ∈ {1, 2, . . .m} (8)

In practice, sampling is applied instead of pooling. A single sample is sufficient during training to
allow the model to learn the substructure stably.

5.3 LOCAL ATTENTION ON SUBSTRUCTURES

The substructure and its corresponding nodes receive localized attention after substructure tokens
have been added. Given input embedding H1 = (h1, h2, . . . , hn+m), mask M is added in self-
attention module ˆAttnm(H,M) as

ˆAttnm(Hl,M) = softmax(Â+M)HlW
V O (9)

where Mij ∈ {0,−∞}, i.e., the elements of mask M can be 0 or −∞, leading to a sparse attention
matrix A with zero in position of −∞ in M . In our model, the mask is defined as follows to
induce local attention to substructure tokens and corresponding nodes: Mij = −∞ if i + n ∈
{n + 1, n + 2, . . . n +m}, j ̸∈ NS

i or j + n ∈ {n + 1, n + 2, . . . n +m}, i ̸∈ NS
j , and Mij = 0

otherwise. The substructure tokens only apply local attention to corresponding nodes.

The attention in our model is a combination of local attention on substructures and global atten-
tion. Substructure tokens are the core of local attention, attending only to corresponding nodes, and
integrating representation from the whole substructure. Nodes belonging to the same substructure
share a substructure token message, increasing distinguishability of substructures and promoting
substructure representation capacity.

6 EXPERIMENTS

In this section, we aim to validate the performance of DeepGraph empirically. Specifically, we
attempt to answer the following questions: (i) How does DeepGraph perform in comparison to
existing transformers on popular benchmarks? (ii) Does DeepGraph’s performance improve with
increasing depth? (iii) Is DeepGraph capable of alleviating the problem of shrinking attention ca-
pacity? (IV) What is the impact of each part of the model on overall performance? We first conduct
experiments to evaluate our model on four popular graph datasets, comparing it with state-of-the-art
graph transformer models, as well as their augmented deeper versions. Then we illustrate the atten-
tion capacity of DeepGraph by visualization. Finally, we validate the effect of different components
through ablation studies. Codes are available at https://github.com/zhao-ht/DeepGraph.

6.1 DATASETS

Our method is validated on the tasks of the graph property prediction and node classification,
specifically including PCQM4M-LSC (Hu et al., 2020), ZINC (Dwivedi et al., 2020), CLUSTER
(Dwivedi et al., 2020) and PATTERN (Dwivedi et al., 2020), widely used in graph transformer stud-
ies. PCQM4M-LSC is a large-scale graph-level regression dataset with more than 3.8M molecules.
ZINC consists of 12,000 graphs with a molecule property for regression. CLUSTER and PATTERN
are challenging node classification tasks with graph sizes varying from dozens to hundreds, contain-
ing 14,000 and 12,000 graphs, respectively.

6.2 BASELINES

We choose recent state-of-art graph transformer models: GT (Dwivedi & Bresson, 2020), SAN
(Kreuzer et al., 2021), Graphormer (Ying et al., 2021) and SAT (Chen et al., 2022), covering various
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Graph regression Node classification
PCQM4M-LSC ↓ ZINC ↓ CLUSTER ↑ PATTERN ↑

GCN 0.1691 0.367 ± 0.011 68.498 ± 0.976 71.892 ± 0.334
GIN 0.1537 0.526 ± 0.051 64.716 ± 1.553 85.387 ± 0.136

GT-sparse - 0.226 ± 0.014 73.169 ± 0.622 84.808 ± 0.068
GT-Full - 0.598 ± 0.049 27.121 ± 8.471 56.482 ± 3.549

SAN-Sparse - 0.198 ± 0.004 75.738 ± 0.106 81.329 ± 2.150
SAN-Full - 0.139 ± 0.006 76.691 ± 0.247 86.581 ± 0.037

Graphormer 0.1234 0.122 ± 0.006 - -
SAT - 0.094 ± 0.008 77.856 ± 0.104 86.865 ± 0.043

DeepGraph (12) 0.1220 0.078 ± 0.006 77.526 ± 0.122 90.015 ± 0.038
DeepGraph (24) 0.1206 0.076 ± 0.004 77.810 ± 0.167 90.522 ± 0.059
DeepGraph (48) 0.1193 0.072 ± 0.004 77.912 ± 0.138 90.657 ± 0.062

Table 1: Comparison of our DeepGraph to SOTA methods on graph regression and node classifica-
tion tasks.

graph transformer methods including absolute and relative position embedding. Graph neural net-
works baselines includes GCN (Kipf & Welling, 2016) and GIN (Xu et al., 2018a). We first compare
our model with the standard state-of-art models. Then we compare our model with the deepened
state-of-arts augmented by recent algorithms for deep transformers, including the fusion method
(Shi et al., 2021), and reattention method (Zhou et al., 2021). As we use deepnorm to stabilize our
training process, we compare DeepGraph to naive deepnorm in the ablation study.

6.3 SETTINGS

We implement DeepGraph with 12, 24, and 48 layers. The hidden dimension is 80 for ZINC and
PATTERN, 48 for CLUSTER, and 768 for PCQM4M-LSC. The training uses Adam optimizer,
with warm-up and decaying learning rates. Reported results are the average of over 4 seeds. Both
geometric substructure and neighbors are used as substructure patterns in our model. We imply both
geometric substructures and k-hop neighbors on ZINC and PCQM4M-LSC. As for CLUSTER and
PATTERN, only random walk neighbors are used due to the large scale and dense connection of
these two datasets. The effect of different substructure patterns is shown in the ablation study.

6.4 MAIN RESULTS

Table 1 summarizes our experimental results on the graph regression and node classification tasks.
The data for the baseline models are taken from their papers. The depth of our model varies from
12 to 48 layers. As the results illustrated, our 12-layer model outperforms baseline models on
PCQM4M-LSC, ZINC, and PATTERN, especially on ZINC and PATTERN, surpassing the pre-
vious best result reported significantly. As model depth increases, our model achieves consistent
improvement. Note that our model with 48 layers outperforms baseline models on all the datasets,
proving the effectiveness of more stacked DeepGraph layers. The parameter number of each model
for each dataset is provided in Appendix H.

6.5 EFFECT OF DEEPENING

We next compare DeepGraph with other deepened baseline models. We choose Graphormer and
SAT as baseline models, and we deepen them by 2 and 4 times compared to the original version.
Along with deepening naively, we also enhance baseline models through the fusion method and
reattention method.

DeepGraph 12 DeepGraph 48
ZINC CLUSTER ZINC CLUSTER

- local attention 0.135 76.167 0.141 76.133
- substructure encoding 0.085 76.531 0.124 77.884
- deepnorm 0.080 77.202 0.074 77.682
DeepGraph 0.078 77.526 0.072 77.912

Table 2: Ablation study of local attention, substructure
encoding, and deepnorm on ZINC and CLUSTER.

DeepGraph 12 DeepGraph 48
Geometric only 0.078 0.075
Neighbors only 0.086 0.079
Both 0.078 0.072

Table 3: Sensitivity study of different sub-
structure types on ZINC.
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Figure 3: Comparison of DeepGraph to SOTA methods deepened by different deep transformer
methods.

As shown in Figure 3, DeepGraph outperforms baselines by a significant margin. Naive deepening
decreases performance on all the datasets for both baseline models. Note that all the 4-time deep SAT
fail to converge on CLUSTER due to the training difficulty, as well as Graphormer with reattention.
Fusion improves deeper Graphormer on PCQM4M-LSC, and reattention boosts 2x deep SAT on
CLUSTER slightly, but none of them are consistent. Our methods surpass fusion and reattention
methods stably on all 4 datasets, supporting our theoretical claim that sensitivity to substructures is
crucial in deep graph transformers.

6.6 VISUALIZATION OF ATTENTION CAPACITY

We visualize attention capacity of our method and deep baselines on ZINC dataset, using the same
substructures as our model. Additionally, to illustrate the capacity of token representation of sub-
structures, we also directly compute the maximum difference between all the substructure tokens
value vectors. All the results are normalized by the corresponding representation norm. See Ap-
pendix G for details. The results are plotted in Figure 1 (right).

First, the attention capacity of our model remains high across all layers as compared to baselines,
indicating that substructure-based local attention can be a useful method for preventing attention
deficits. Second, substructure tokens have a much higher capacity than attention capacity computed
on nodes, demonstrating the benefits of using substructure tokens for substructure encoding.

6.7 ABLATION AND SENSITIVITY STUDY

Finally, we verify our model’s effectiveness through an ablation study on ZINC and CLUSTER
tasks, removing local attention, substructure encoding, and deepnorm to observe their impact. Note
that without local attention, the model is only a relative position-based graph transformer with deep-
norm residual connections. Without substructure encoding, randomly initialized embedding is ap-
plied to each substructure token. Results in Table 2 show that without local attention, performance
decreases significantly on both datasets, especially for deeper models, proving the effectiveness of
the proposed methods. Furthermore, substructure encoding also plays an instrumental role, em-
phasizing the importance of structural information. Finally, deepnorm also contributes to model
performance by stabilizing the optimization, especially for 48-layer models.

We validate the sensitivity of our model to different substructure types by testing the performance of
DeepGraph with only geometric substructures or neighbors. Table 3 indicates that both contribute
to performance, but geometric substructures are more critical for ZINC. This result is expected
because specific structures like rings are important fundamental features for the molecule data, and
it can be further strengthened when combined with neighbor substructures. Our model can flexibly
use different forms of substructure to fully utilize prior knowledge of data.

7 CONCLUSIONS

This work presents the bottleneck of graph transformers’ performance when depth increases. By
empirical and theoretical analysis, we find that deep graph transformers are limited by the capac-
ity bottleneck of graph attention. Furthermore, we propose a novel graph transformer model based
on substructure-based local attention with additional substructure tokens. Our model enhances the
ability of the attention mechanism to focus on substructures and addresses the limitation of encod-
ing expressive features as the model deepens. Experiments show that our model breaks the depth
bottleneck and achieves state-of-the-art performance on popular graph benchmarks.
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A PROOF OF THEOREMS

Proof 1 for brevity, define P ≜ (I− 1
n11T ), and Pm ≜ (I− 1

m11T ). We first introduce an important
property of P : For any matrix B with left eigenvector B1 = β1, we have PBC=PBPC,∀C. To
prove it, we can deompose C = PC + 1

n11TC. Then

PBC = PB(PC +
1

n
11TC) = PBPC + β

1

n
P11TC = PBPC

We next prove the main theorem by recursion. By definition,

FH = max
AT

1 ,AT
2 ∈∆n

S

| ˆAttnA1
(H)− ˆAttnA2

(H)|F

= max
C1,C2∈{C|C∈[0,1]m×n,CT 1=1}

|CT
1 E

THWV O − CT
2 E

THWV O|F

= max
C1,C2∈{C|C∈[0,1]m×n,CT 1=1}

|(C1 − C2)
TETHWV O|F

(10)

Note that (C1 − C2)
T 1 = 1 − 1 = 0, so we can multiply Pm before it:

FH = max
C1,C2∈{C|C∈[0,1]m×n,CT 1=1}

|(C1 − C2)
TETHWV O|F

= max
C1,C2∈{C|C∈[0,1]m×n,CT 1=1}

|(C1 − C2)
TPmETHWV O|F

≤ max
C1,C2∈{C|C∈[0,1]m×n,CT 1=1}

|(C1 − C2)
T |2|PmETHWV O|F

≤
√
2m|PmETHWV O|F

(11)

,where |(C1 − C2)
T |2 ≤

√
|(C1 − C2)T |1|(C1 − C2)T |∞ =

√
2m.

We further decompose |PmETHWV O|F into

|PmETHWV O|F = |PmETPHWV O|F ≤ |PmET |2|WV O|2|PH|F (12)

For layer l, we recursively compute |PHi+1|F by |PHi|F for layer i = l − 1, l − 2, . . . , 1:

|PHi+1|F = |P (Hi +AiHiW
V O
i − 1bNi

T
)Di|F

= |P (PHi +AiPHiW
V O
i − 1bNi

T
)Di|F

=
|P (PHi +AiPHiW

V O
i − 1bNi

T
)Di|F

|(PHi +AiPHiWV O
i − 1bNi

T
)Di|F

|(PHi +AiPHiW
V O
i − 1bNi

T
)Di|F

|PHi|F
|PHi|F

= αiλi|PHi|F
(13)

,where αi =
|P (PHi+AiPHiW

V O
i −1bNi

T
)Di|F

|(PHi+AiPHiWV O
i −1bNi

T )Di|F
, and λi =

|(PHi+AiPHiW
V O
i −1bNi

T
)Di|F

|PHi|F .

Note that P = (I − 1
n11T ) is a contraction mapping, so αi ≤ 1, and equal to 1 if and only

if AiPHiW
V O
i Di − 1bNi

T
Di is orthogonal to the 1-stretched space, which is usually impossible,

because −1bNi
T
Di is in the 1-stretched space, and the probability that projection of AiPHiW

V O
i Di

on 1-stretched space equals to 1bNi
T
Di is 0 due to the property of random matrix. We further show

that AiPHiW
V ODi is full-rank with probability 1: As assumption, HiW

V O
i Di is full-rank, and

1-stretched space is the only subspace that PHiW
V O
i Di is orthogonal to, i.e.

xTPHiW
V O
i Di = 0 ⇔ x = β1
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. So if 1TAiPHiW
V O
i Di = 0, 1TAi = β1T , i.e. AT

i 1 = β1, the probability of which is 0 for
random parameters in transformer.

For coefficient λi, due to the property of layer normalization and good parameter initialization that
keeps norm of output equals to input, i.e. |(X + AiXWV O

i − 1bNi )Di|F /|X|F ≈ 1,∀X , we have
λ ≈ 1.

Based on the analysis above, we can bound FHl
recursively:

FHl
≤

√
2m

l−1∏
i=1

(αi)|PmET |2|WV O
l |2|PH1|F (14)

, where αi =
|P (PHi+AiPHiW

V O
i −1bNi

T
)Di|F

|(PHi+AiPHiWV O
i −1bNi

T )Di|F
=

(|PHi+PAiHiW
V O
i )Di|F

|(PHi+AiPHiWV O
i −1bNi

T )Di|F
< 1 with probabil-

ity 1.

Proof 2 As the same method in the previous proof, we need to recursively bound |PHi+1|F by
|PHi|F for layer i = l − 1, l − 2, . . . , 1. Deote H ′

i = Attn(Hi), and Hi+1 = FFN(H ′
i). Similar

to the previous proof, we have

|PH ′
i|F = |P (Hi +AiHiW

V O
i − 1bNi

T
)Di|F

= |P (PHi +AiPHiW
V O
i − 1bNi

T
)Di|F

=
|P (PHi +AiPHiW

V O
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T
)Di|F
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T
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T
)Di|F
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= αiλi|PHi|F
(15)

As for PHi+1, we can bound it as

|PHi+1|F = |P (H ′
i +ReLU(H ′

iW
F1
i + 1bF1

i

T
)WF2
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i

T − 1bN2
i
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So the final conclusion is

FHl
≤

√
2m

l−1∏
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(αiγi)|PmET |2|WV O
l |2|PH1|F (17)

, where αi =
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T
)Di|F
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i |2|WF2
i |2).

Proof 3 We denote global attention and local attention by A and As, respectively.

By definition, αi =
(|PHi+PAiHiW

V O
i )Di|F

|(PHi+AiPHiWV O
i −1bNi

T )Di|F
. We analyse the worst case for αi:
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αi =
(|PHi + PAiHiW

V O
i )Di|F

|(PHi +AiPHiWV O
i − 1bNi

T
)Di|F

=
(|PHi + PAiHiW

V O
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n11T )AiPHiWV O
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Further analysis on | 1n11TAiPHiW
V O
i Di|F shows that

| 1
n

11TAiPHiW
V O
i Di|F = |1TAiPHiW

V O
i Di|2

≤ |HiW
V O
i Di|2|PAT

i 1|2,
(19)

where PAT
i 1 = AT

i 1 − 1, the element of which is between [−1, n− 1], and the sum of all elements
of which is 0. The maximum of |PAT

i 1|2 is achieved when one element is n− 1 and other elements
are −1.

However, for local attention As
i that each node is only attended by at most r nodes, where r < n,

the elements of |PAs
i
T 1|2 is only between [−1, r− 1], and thus the maximum |PAs

i
T 1|2 is less than

|PAT
i 1|2.

We further address that the two inequalities in 18 and 19 both can be achieved for proper Hi and
parameters. So we can conclude that for the worst case of αi and αs

i , denoted by α∗
i and αs

i
∗,

α∗
i < αs

i
∗

B DISCUSSION OF SUBSTRUCTURE BASED ATTENTION SPACE

In Definition 4.1, for a substructure GS , the fixed attention pattern e is an ideal attention pattern to
help to concentrate on the information of this substructure, for example, a uniform attention vector
on a benzene ring, or attention on a two-hop neighbor graph attenuating according to the distance
to the central node. Traditional GNN is also an example of such a fixed attention pattern, where
each node takes uniform attention to its’ neighbor nodes. Although we treat this pattern as fixed
on the substructure, we denote that the definition is general because the value can be any learnable
attention pattern.

The defined attention space construct attention patterns for all meaningful attention on substructures
by containing the combination of all the elementary substructure pattern. As this substructure at-
tention patterns are considered important indicative bias, the graph transformer is expected to learn
attention patterns in this space to utilize the substructure feature. This definition is also general and
expressive, as sufficient patterns can be added to include more general cases.

C SUBSTRUCTURES

The sizes of the different substructures used in this study are neighbor substructures including 2-hop
neighbor and 10-step random walk neighbor, and geometric substructures including circle with size
from 3 to 8, star with size from 2 to 6, and path with size from 4 to 8. For geometric substructures,
we use the python package graph-tool for substructure matching. It takes about 3 minutes to match
all the geometric substructures of ZINC, and about 2 hours for PCQM4M-LSC. We cache all the
substructures for reuse.

D SUBSTRUCTURESAMPLING

A greedy sampling algorithm is used for the substructure sampling process. In each step of the iter-
ation, nodes with less coverage have a greater probability of being covered in the next iteration. At
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the beginning of sampling, we randomly select ninit substructures from all the substructures, where
different types of substructures are balanced. In each iteration, we first mark nodes as set Nleft

that are covered less than threshold thre times by already sampled substructures. Then we calculate
cnti for each substructure left, which is the number of nodes in Nleft covered by substructure GS

i .
We select nsample from substructures with top k cnt randomly. The iteration ends when each node
is covered at least thre times, or no substructure is left. In the algorithm, ninit, k, and nsample

are determined by thre and nodes number to speed up the iteration and increase sampling variance,
while retaining that nodes are covered as evenly as possible.

E DEPTH-FIRST SEARCH (DFS)

We use degree to sort nodes at the beginning of DFS and each step. In the beginning, DFS start
from node uniformly sampled from nodes with the least degree. At each step, nodes are sorted
according to degree, while nodes with the same degree are permuted randomly. This method keeps
the graph encoding permutation invariant, and reduces possible permutations a lot. The drawback of
permutation-based encoding is that the number of possible permutations becomes intractable when
the graph is large. Fortunately, the substructure size is usually not larger than 10.

F RELATED WORK OF TOKEN UNIT

The most suitable basic unit for transformer as a token has been studied in many works in natural
language processing and computational vision. For nature language, sentences are separated into
sub-words containing a variant number of primary characters (Kudo & Richardson, 2018). In com-
putational vision, while previous works apply transformer directly on image pixels (Parmar et al.,
2018; Hu et al., 2019), recent works find it more beneficial to treat patches as tokens (Dosovitskiy
et al., 2020), indicating the importance of proper segmentation of the input. For graph transformers,
tokens in most current studies are nodes. We propose to encode substructures together with nodes
in the graph as tokens in the transformer.

G EMPIRICAL STUDY ON ATTENTION CAPACITY

We empirically explore the capacity of the model for the substructure, and validate our theoretical
results. We aim to answer the following three questions: (1) Do attention capacity really decreases
in deeper graph transformer? (2) Can our method, i.e., local attention with substructure tokens, help
to increase model capacity of representing substructures? (3) Can our method, i.e., local attention
with substructure tokens, help to alleviate attention capacity decrease?

We visualize the attention capacity of our method and deep baselines on the ZINC dataset. The
set of substructures is the same as the substructures used in our model, while the base vectors E
are defined as uniform distributions supported on corresponding substructures. Because attention
capacity in Definition 4.1 depends on the norm of hidden representations, we normalize it by the
norm of all the value vectors

∑
i=1...n |hiW

V O|2 to eliminate the influence of the representation
norm. Note that for our model, only node tokens are considered. Additionally, because we explicitly
tokenize substructures as tokens, we also directly compute the maximum difference between all the
substructure tokens value vectors, maxi,j∈{1...m} |hi+nW

V O − hj+nW
V O|2, and normalize it by

1
m

∑
i=1...m |hi+nW

V O|2, to illustrate the capacity of token representation of substructures. The
results are plotted in Figure 1 (right).

First, the result of Graphormer and SAT reveals that attention capacity of substructures decreases in
deep layers. Note that in the shallow layer the attention capacity of Graphormer increases, which
is not contradicting our theory because we only claim that the upper bound of attention capacity
decrease with depth. However, after the 24th layer, attention capacity decreases a lot, revealing the
problem of deepening graph transformer. Note that because SAT uses GNN to encode substructures
for query and key computation, it has a high attention capacity in the first layer. However, it decays
fast due to the property of global attention.

Second, the result of our model indicates that local attention-based substructure tokens improve
substructure representation capacity. The difference between substructure tokens is much larger
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than the representation learned by attention on substructures, indicating learning substructure token
representation by local attention can significantly improve the representation capacity of model,
which supports our first motivation that introducing substructure-based local attention help model to
encode substructures better.

Finally, compared to baselines, attention capacity of our model remains high across all the layers.
Although it drops from 0.96 to 0.90 after the 24th layer, the dropping ratio is smaller than the
baseline graph transformer. This supports our claim that substructure-based local attention helps
alleviate attention capacity decrease. Note that the capacity of substructure tokens also decreases
slower.

H PARAMETER NUMBER COMPARISON

We list parameter numbers of our model and baselines. Note that parameter numbers of Graphormer
and SAT are computed by running their official code directly, and other baselines are from papers.
The parameter number of SAT (*1) is different from reported in their papers, which may be due
to code updates. The parameter number of our base model is comparable to previous works, and
even less on CLUSTER. The parameter number of our deeper model is also comparable to deeper
baselines, while our performance surpasses them.

layer PCQM4M-LSC ZINC CLUSTER PATTERN
GCN - 2.0M 421k 571k 380k
GIN - 3.8M 495k 684k 455k
GT-Sparse - - 588,929 524,026 522,982
GT-Full - - 588,929 524,026 522,982
SAN-Sparse - - 494,865 530,036 493,340
SAN-Full - - 508,577 519,186 507,202
Graphormer x1 44,750,081 489,321 - -

x2 87,309,569 1,055,985 - -
x4 172,428,545 1,996,785 - -

SAT x1 - 499,681 741,990 825,986
x2 - 991,873 1,480,806 1,646,978
x4 - 1,976,257 2,958,438 3,288,962

Ours x1 45,563,393 612,705 382,865 612,705
x2 88,122,881 1,078,225 686,225 1,083,105
x4 173,241,857 2,019,025 989,585 2,023,905

I TIME COMPLEXITY

The time complexity of our methods is mainly due to the larger input size, which increases the
cost of transformer. Given graph size N and sampled substructure number M , the complexity of
transformer is O((M +N)2). However, as we use sampling to reduce the substructure number, the
substructure number is less than the graph size, i.e. M < N , so the complexity will not be more
than four times of the standard transformer and remains O(N2).

J ABLATION STUDY ON NEIGHBOR SIZE

We conduct ablation studies for random walk neighbors on CLUSTER and PATTERN datasets.
While we use size 10 neighbors in the paper, we compare the performance with sizes 5 and 15. The
result is as follows:

CLUSTER PATTERN
12 48 12 48

size 5 77.2 77.7 90.1 90.6
size 15 77.1 78 89.6 90.4
size 10 77.5 77.9 90 90.7
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The result shows that the performance remains robust to different substructure sizes, especially the
deeper model. Smaller substructures are easy for the model to learn its structure features, but they
may not cover enough nodes and provide good graph structure information. Larger substructures
are more informative about graph feature, but is more difficult for stable learning, especially for a
shallow model.
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