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ABSTRACT

Accurate whole-brain computational modeling grounded in single-neuron reso-
lution connectivity is crucial for understanding how large-scale brain structures
give rise to complex behaviors and cognition. Conventional mouse whole-brain
models are typically constructed from coarse-grained regional or voxel-level con-
nectivity, without considering single-neuron biological plausibility in the mouse
brain connectome. In this study, we build a mouse digital twin brain (mouse
DTB) at single-neuron resolution with large-scale spiking neural network, able to
support complex behavioral tasks at whole-brain scale. We developed the mouse
brain connectivity at single-neuron resolution through a data-driven pipeline that
integrates high-resolution axonal projection data and spatial distributions of cells
from the mouse brain cell atlas. The resulting neuronal connectivity is coupled
with leaky integrate-and-fire (LIF) neurons and conductance-based synapses to
form a large-scale spiking neural network of the mouse brain. The mouse DTB
successfully reproduced blood-oxygen-level-dependent (BOLD) signals observed
in both resting state and olfactory Go/No-Go discrimination task with high cor-
relation, and exhibits correct behavioral responses aligned with perceptual odor
inputs. This model leverages diffusion ensemble Kalman filtering (EnKF) and
hierarchical Bayesian inference for parameter estimation. Our work provides a
single-neuron resolution, whole-brain mouse DTB, offering a powerful tool for
studying neural dynamics, behavior and cognition underlying mouse intelligence
during complex tasks.

1 INTRODUCTION

Brain connectivity plays a crucial role in understanding how neural circuits give rise to behavior,
cognition, and complex brain functions (Cook et al., 2019; Dorkenwald et al., 2024). Computa-
tional models of brain connectivity have been served as powerful tools for simulating how these
structural networks support dynamic brain activity, offering insights into the mechanisms under-
lying perception, decision-making, and learning (Zhao et al., 2024; Shiu et al., 2024). However,
current knowledge of mouse brain connectivity are constrained to either a detailed description of
specific circuits (Glickfeld et al., 2013; Kleinfeld et al., 2011; Seeman et al., 2018; Lefort et al.,
2009) and localized tissue (Tavakoli et al., 2025) or a coarse description of connectivity between
larger brain regions (Oh et al., 2014) or voxels (Knox et al., 2018), which fails to capture the fine-
grained long-range connectivity between individual neurons across the brain. Recent advances in
tracing techniques and image processing have made it increasingly feasible to construct more refined
and comprehensive connectivity (Oh et al., 2014), enabling the development of whole-brain compu-
tational models for investigating how network structures support complex cognitive processes and
brain functions (Lu et al., 2024b;a).

Previous whole-brain models of mouse rely on coarse-grained connectivity at the scale of brain re-
gion or 100 µm voxel inferred from viral tracer experiments (Oh et al., 2014; Knox et al., 2018).
Despite the mesoscale models have enhanced spatial resolution in connectivity and enabled predic-
tion of brain-wide projection patterns, they are based on strong assumptions of homogeneity within
voxels and fail to capture the variability of connectivity at the single-neuron level. Other efforts
have focused on modeling specific isolated circuits, enabling detailed investigations of local neural
dynamics (Billeh et al., 2020; Geiller et al., 2022; Ausborn et al., 2019; Oldenburg et al., 2024;
Galván Fraile et al., 2024), but are inherently limited in revealing how distributed circuits across
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the brain interact to support complex intelligent behaviors involving perception, decision-making,
memory and motor control. As a result, these models are insufficient for uncovering the causal rela-
tionships between structural connectivity and emergent brain-wide dynamics that underlie complex
brain functions.

To address these gaps, we aim to develop a digital mouse brain at single-neuron resolution based
on high-resolution structural data and large-scale computational modeling. Our objective includes:
(1) to infer a whole-brain neuronal connectivity based on 10 µm voxel resolution axonal projections
and cell atlas data, and (2) to simulate brain dynamics in resting state and in action to validate the
model’s structural and functional realism. This effort opens the door to studying how brain-wide
neuronal interactions support intelligent behaviors.

In this work, we proposed a data-driven pipeline to build a digital mouse brain model at single-
neuron resolution from high-resolution structural data and functional magnetic resonance imaging
(fMRI) signals in resting state and in action (Han et al., 2019), as show in Figure 1. First, 10
µm voxel-level connectivity are derived from axonal projections by employing kernel regression
to approximate the projection weight of a given voxel as the distance-weighted sum of nearby in-
jections (Oh et al., 2014; Knox et al., 2018). Neuronal density of each 10 µm voxel is estimated
based on the spatial distribution of neurons from cell atlas (Zhang et al., 2023; Wang et al., 2020),
and voxels are incorporated into individual neurons in breadth-first search (BFS) ordering, which
enables the inference of neuronal connectivity from voxel-level connectivity. Secondly, the inferred
neuronal connectivity are iteratively optimized to achieve a balanced distribution of neuronal out-
degrees across different regions. Thirdly, Gaussian local connectivity are incorporated into the net-
work (Potjans & Diesmann, 2014; Schmidt et al., 2018; Campagnola et al., 2022) to compensate
for the loss of local connections within injection sites in projection data. Finally, we developed a
large-scale spiking neuronal network with the resulting mouse brain neuronal connectivity using
leaky integrate-and-fire (LIF) neurons and conductance-based synapses on the Digital Brain (DB)
platform (Lu et al., 2024a;b). To estimate its parameters and align simulated activity with empirical
observations, we employed a data assimilation framework combining diffusion ensemble Kalman
filter (EnKF) and hierarchical Bayesian inference (Zhang et al., 2024). Our main contributions are
as follows:

1. We derived a full-scale single-neuron resolution weighted connectivity of the mouse brain
registered to Allen Mouse Brain Common Coordinate Framework (CCFv3) (Wang et al.,
2020) based on 10 µm voxel-scale axonal projections (Oh et al., 2014) and spatially re-
solved cell-type distributions (Zhang et al., 2023).

2. We developed the mouse DTB, a large-scale spiking neuronal network model of the mouse
brain, with the inferred mouse brain connectivity on the Digital Brain platform (Lu et al.,
2024a). It’s validated to be able to reproduce blood-oxygen-level-dependent (BOLD) sig-
nals observed in both resting state and olfaction-based Go/No-Go discrimination task (Han
et al., 2019) with a high correlation coefficient, and demonstrated correct behavioral re-
sponses consistent with perceptual odor inputs.

The mouse DTB provides a platform for in silico exploration of whole-brain dynamics and fine-scale
neural mechanisms in the mouse brain.

2 RELATED WORKS

Whole brain modelling. Understanding how large-scale brain networks give rise to complex cog-
nitive functions and behaviors has long motivated the development of whole-brain computational
models (Xiong et al., 2023). By simulating whole-brain dynamics based on anatomical connectivity
derived from multimodal neuroimaging data, these models provide a systematic approach for study-
ing the mechanisms of brain function under both normal and perturbed conditions. The digital twin
brain (DTB) simulates the human whole brain as a large-scale spiking neural network with up to 86
billion neurons and 47.8 trillion synapses, constructed based on multimodal structural imaging data
(Lu et al., 2024a). Leveraging hierarchical mesoscale data assimilation (HMDA) method for param-
eter estimation, the DTB can reproduce resting-state BOLD signals with high fidelity, and accurately
predicted task-evoked responses and evaluation performance (Burkitt, 2006). In parallel, the virtual
brain twin (VBT) frameworks simulate individual brain dynamics with neural field models, by fit-
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Neuron density and E/I ratio
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19.7%/1.0%/79.3% neurons in CH/BS/CB

Single neuron projections
Gaussian local connectivity
1.02 trillion synapses
8000/14000/16000 degrees in CH/BS/CB

Mouse Virtual rodent

DA

Decoded behavior

Mouse DTB

MRI
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Olfactory task fMRI scan: 9 sessions
Each session: 118 EPI volumes
TR=1500 ms
Odor 1 or 2 was delivered every 15s

Resting-state fMRI scan: 1 session
Each session: 400 EPI volumes
TR=800 ms

Figure 1: Overview of the mouse DTB at single-neuron resolution. The mouse DTB is based on
single-neuron resolution connectivity derived from Allen Mouse Brain cell atlas and axonal projec-
tion data, and capable of reproducing BOLD signals observed in resting state and olfaction-based
Go/No-Go discrimination task.

ting simulated neural activity to empirical functional recordings (Wang et al., 2024). They have
been successfully applied to clinical scenarios including epilepsy and neurodegenerative diseases,
where they reproduce patient-specific dynamics, predict surgical outcomes, and identify disease-
relevant network alterations, supporting personalized diagnosis and treatment planning. In contrast,
whole-brain modelling of the mouse remains unexplored, despite the availability of structural data
including axonal projections and cell atlas (Knox et al., 2018; Oh et al., 2014). Establishing a mouse
whole brain model would address this gap and enable in silico exploration of the neural mechanisms
underlying cognition and behavior in the mouse brain.

Mouse brain modelling. Recent advances in structural imaging of the mouse brain have laid the
foundation for constructing mouse brain connectivity and enabling whole brain modelling. The
Allen Mouse Brain cell atlas provide cell type identities and spatial distributions of neurons across
the mouse brain (Zhang et al., 2023), registered to a common coordinate framework (Wang et al.,
2020). Brain-wide axonal projection data at 100 µm resolution have been mapped in the mouse brain
based on systematic anterograde viral tracing experiments across hundreds of injection sites cover-
ing nearly the entire brain (Oh et al., 2014). Based on the axonal projections, a voxel-level weighted
connectivity of the mouse brain at 100 µm resolution has been inferred using a kernel regression
approach (Knox et al., 2018). While whole brain neuronal connectomes have been mapped in
model organisms with smaller nervous systems, such as C. elegans, Drosophila, and zebrafish (Cook
et al., 2019; Zheng et al., 2018; Svara et al., 2022), no single-neuron level connectivity is currently
available for the mouse brain. Therefore, it’s essential to construct a whole-brain connectivity at
single-neuron resolution of the mouse brain, for investigating how fine-scale neural circuits support
cognitive functions and behavior (Li & Wei, 2025).

Data Assimilation. Facing the challenge of parameter inference in large-scale neuronal network
models with limited observational data, traditional Bayesian inference becomes intractable when
the number of parameters far exceeds the number of observations, leading to overfitting. The hierar-
chical mesoscale data assimilation (HMDA) method addresses this issue by combining the diffusion
ensemble Kalman filter (EnKF) with hierarchical Bayesian inference, introducing hyperparameters
that govern the distribution of neuron-level parameters within each sub-unit to reduce model com-
plexity while preserving biological structure, (Zhang et al., 2024; Lu et al., 2024a), with details in
Section B.1.

3 METHODS

3.1 MODELING OF MOUSE BRAIN CONNECTIVITY AT SINGLE-NEURON RESOLUTION

We propose a data-driven pipeline for constructing a biologically plausible, weighted directed con-
nectivity of the whole mouse brain at single-neuron resolution based on high-resolution axonal pro-
jection data (Oh et al., 2014) and spatial distribution of cells from cell atlas (Zhang et al., 2023), as
depicted in Figure 2a. The pipeline comprises three main steps: (1) inference of neuronal projection
connectivity based on axonal projections and spatial distribution of neurons from cell atlas, (2) iter-
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Figure 2: Modeling of mouse brain connectivity at single-neuron resolution. (a) The data-driven
pipeline for constructing the mouse brain connectivity at single-neuron resolution. (b) Inference of
neuronal projection connectivity. (c) Iterative optimization of neuronal projection connectivity. (d)
Inclusion of Gaussian local connectivity.

ative optimization of neuronal projection connectivity to achieve topological balance in projection
degrees (out-degrees) across the whole brain, and (3) inclusion of Gaussian local connectivity to
compensate for missing short-range local connectivity in injection sites.

3.1.1 INFERENCE OF NEURONAL PROJECTION CONNECTIVITY.

Inference of voxel-level connectivity via kernel regression. To construct voxel-level neuronal
connectivity, we utilized axonal projection data at the scale of 10 µm voxels from the Allen Mouse
Brain Connectivity Atlas (Oh et al., 2014). Each of the 469 injection experiments in the dataset in-
volves an injection vector X and an projection pattern Y . The goal is to infer a voxel-level weighted
directed adjacency matrix W ∈ RN×N

≥0 such that Y ≈ WX , where N ≈ 506 million is the number
of voxels. We made a simplified assumption that the projection weights from any given voxel vary
smoothly across space, and the projections Y of an injection experiment come from the center of
mass ce of the injection. First, the projection density Y:,e from injection e is normalized by the total
injection density X:,e, resulting in the normalized projection pattern Ȳ:,e = (Y:,e +X:,e)/ΣvXv,e.
Then, as depicted in Figure 2b, we adopt kernel regression method (Knox et al., 2018) to approx-
imate the projection weights W:,j from voxel j to all voxels as the distance-weighted sum of the
projection patterns Ȳ:,e of nearby injections:

W:,j =
Σe:ce∈Sk

K(∥vj − ce∥)Ȳ:,e
Σf :cf∈Sk

K(∥vj − cf∥)
(1)

where Sk is the set of centers of mass of nearby injections, vj is the position of voxel j, and K(·)
adopts Gaussian radial basis function kernel.

Reconstruction of individual neurons. Based on the spatial distribution of neuron cells from the
mouse brain cell atlas (Zhang et al., 2023), we derived the distribution of neurons across brain re-
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gions, and it is further scaled according to the known regional composition of mouse brain neurons:
19.7% in the cerebrum (CH), 1.0% in the brainstem (BS), and 79.3% in the cerebellum (CB) (Erö
et al., 2018). Thus, the neuron density of 10 µm voxels is assigned based on the regional neu-
ron density, and scaled to a total of approximately 71 million neurons (Herculano-Houzel et al.,
2006) across the mouse whole brain. Each voxel with incomplete neurons are incorporated with
its spatially adjacent voxels using BFS, until an individual neuron is formed. As a result, individ-
ual neurons are reconstructed, which further enables the inference of neuronal connectivity from
voxel-level connectivity. In addition, we derived the excitatory-to-inhibitory (E/I) ratio of neurons
in each brain region based on the spatial distribution of glutamatergic and GABAergic neurons from
the mouse brain cell atlas (Zhang et al., 2023). Individual neurons in each region were randomly
assigned as either excitatory or inhibitory.

Inference of neuronal connectivity. Based on the previously inferred voxel-level connectivity and
reconstruction of individual neurons, the connection weight W̄n,m from neuron m to n is defined as
the average of all voxel-level connection weights between the voxels occupied by neuron m and n.
As the maximum average synaptic degree of mouse brain regions is approximately 16,000 (Braiten-
berg & Schüz, 2013), we retain the top 16,000 in-degrees with highest weights for each individual
neuron, resulting in a neuronal projection connectivity of the mouse whole brain.

3.1.2 ITERATIVE OPTIMIZATION OF NEURONAL PROJECTION CONNECTIVITY

Despite normalizing the projection pattern of each injection experiment by the total injection den-
sity, no normalization is performed across different experiments. As a result, brain regions exhibit
highly variable synaptic out-degrees. Combined with the fact that only the top 16,000 in-degrees are
retained for each neuron due to storage limitations, this leads to an extremely skewed distribution
of synaptic degrees, ranging from over 47 million neurons with no outgoing connections to a small
subset of neurons with more than 4 million synaptic targets. Such an imbalanced connectivity results
in biologically implausible patterns of neuronal out-degrees across brain regions, and deviates sig-
nificantly from experimental findings reported in the human hippocampus, where the distributions
of synaptic out-degrees closely resembles that of in-degrees (Gandolfi et al., 2023). To address this
inconsistency and promote a more biologically realistic and regionally balanced projection struc-
ture, we iteratively optimized the neuronal projection connectivity matrix to enforce a more uniform
distribution of neuronal out-degrees across brain regions, one that approximates the distribution of
in-degrees, while constraining the in-degree of each neuron to a maximum of 16,000.

As shown in Figure 2c, In iteration t, we compute the out-degree Pt(n) of each neuron n from the
current connectivity matrix, and updated the sampling probability for connections originating from
neuron n according to pt(n) = Q/Pt(n) ∗ pt−1(n), where Q = 16000 is the target out-degree
(equal to the fixed in-degree), and the initial value p0(n) is 1. The updated pt is capped at 1 and
normalized to the sum of 1. Next, 16,000 in-degrees are sampled for each neuron based on the up-
dated probability distribution pt, yielding a new connectivity matrix with updated out-degrees Pt+1.
The iterative optimization process continues until convergence, defined as either ∥Pt −Q∥ < e or
∥Pt − Pt+1∥ < ess, where e is the target error and ess is the steady state error. Through the itera-
tive optimization procedure, the sampling probability of neurons with excessive out-degrees is pro-
gressively reduced, allowing their connections to be redistributed toward neurons with insufficient
out-degrees. This results in a more balanced projection structure across brain regions and yields
a distribution of synaptic out-degrees that closely resemble that of in-degrees. For the optimized
connectivity, the top 8,000, 14,000, and 16,000 in-degree connections with the highest weights are
retained for neurons in CH, BS and CB, respectively (Braitenberg & Schüz, 2013).

3.1.3 GAUSSIAN LOCAL CONNECTIVITY

Due to the relatively large injection volume (∼0.24 mm3 on average), short-range axonal projec-
tions within the injection site are often obscured and thus underrepresented in the observed pro-
jection data. To compensate for this loss and restore the intrinsic local connectivity, we introduce
Gaussian-distributed local connections among spatially proximal neurons (Potjans & Diesmann,
2014; Schmidt et al., 2018; Campagnola et al., 2022), as depicted in Figure 2d. These connections
are sampled according to Gaussian local connectivity model, C(r) = C0exp(

−r2

2σ2 ) (Potjans & Dies-
mann, 2014), where r denotes the distance between neurons. The parameters are set to C0 = 0.1
and σ = 100µm (Campagnola et al., 2022), with sampling constrained within a 300 µm radius.
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These sampled connections compensate for the loss of local projections and contribute to a more
complete and biologically faithful reconstruction of the mouse brain connectivity.

3.2 SIMULATION AND ASSIMILATION OF MOUSE DTB

Simulation. We simulate a large-scale spiking neural network of the mouse DTB on the DB
platform (Lu et al., 2024a). Individual neurons are modeled based on leaky integrate-and-fire
(LIF) neuron model and connected via conductance-based synapses with exponential postsynap-
tic currents (Burkitt, 2006), which includes 4 types of synapses: AMPA and NMDA for excitatory
synapses, and GABAA and GABAB for inhibitory synapses. Simulations of the full-scale mouse
DTB with approximately 71 million neurons and 1.02 trillion synapses are performed on a GPU-
based high-performance computing (HPC) system comprising 160 nodes and 640 GPUs. This simu-
lation framework enables efficient large-scale simulation and assimilation experiments for the mouse
DTB.

Assimilation. We adopt the HMDA method (Zhang et al., 2024) to infer voxel-wise synaptic pa-
rameters of the mouse DTB from observed BOLD signals. In resting-state and task experiments, we
assume that neural activity in task-relevant perceptual regions of interest (ROIs) drives whole-brain
dynamics. Therefore, we infer the input currents of neurons in the perceptive ROIs by assimilating
voxel-level BOLD signals of ROIs. These assimilated currents are then injected into the mouse DTB
model, enabling stimulus-evoked neural activity propagation across the entire brain.

4 RESULTS

4.1 STRUCTURE OF MOUSE BRAIN CONNECTIVITY AT SINGLE-NEURON RESOLUTION

Spatial distribution of neurons. The average neuronal densities across 580 mouse brain regions
range from 71.8 neurons/mm3 ( in a region of the pons, P ), to 2247765.9 neurons/mm3 (in a region
of CB), as shown in Figure 3(a). The mean neuronal densities of brain regions in CH, BS and CB are
41759.3±19746.2, 6439.4±7102.8 and 804863.3±788219.1 neurons/mm3, respectively, revealing
substantial variability in spatial distribution of neurons at the whole-brain scale. Across the whole
brain, excitatory neurons account for 60.68% and inhibitory neurons for 39.32% of the total neuronal
population. The fraction of excitatory neurons varies substantially across brain regions, ranging from
0 to 1.

Connectivity. The initial neuronal projection connectivity of the mouse brain exhibits substantial
heterogeneity, with average regional out-degrees ranging from 3.8 to 1,471,999.7 and a global mean
of 33,844.4, as depicted in Figure 3(b). This wide range of projection degree reflects a highly un-
balanced projection structure, where a small number of regions dominate outgoing connections.
To address this imbalance, we applied the iterative optimization procedure to balance the distri-
bution of out-degree across regions. As a result, the average out-degree of region was adjusted
to 15,833.0±263.0, closely aligning with the fixed in-degree and achieving a balanced projection
pattern across the whole brain. In the resulting mouse brain connectivity, inter-regional connec-
tion strengths span approximately 10 orders of magnitude, encompassing both sparse long-range
projections and dense local subnetworks, as shown in Figure 3(c). Notably, strong bidirectional
connectivity is observed within the cerebrum, within the cerebellum, and between these two major
brain regions. In contrast, the initial neuronal projection connectivity is dominated by a small set
of regions with disproportionately high out-degrees, leading to a highly imbalanced structure that
disregards many biologically important connections and pathways. This suggest that the optimized
connectivity successfully captures biologically plausible patterns of inter-regional communication
by promoting global balance in projection degrees.

Activity propagation in mouse DTB. To experimentally probe the structural organization of neural
circuits in the mouse DTB, we applied stimulus current into specific brain regions and analyzed the
spatiotemporal propagation of neural activity. To quantify and visualize the propagation of neural
activity, we the total energy of the response variations in the average firing rate of each voxel,
defined as E = Σt|r(t)|2, where r(t) denotes the average firing rate at time-step t (Qi et al., 2024).
Stimulation was delivered to neurons within a target brain region using a 0.2 nA input current lasting
800 ms, after which the stimuli were removed. We then computed the time series of energy E(t),
using a sliding window of 100 ms with a step size of 1 ms. Through this approach, we are able to
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Figure 3: Structure of the mouse brain connectivity at single-neuron resolution. (a) Spatial distri-
bution of neurons. (b) Distribution of projection degrees before and after iterative optimization. (c)
Connectivity between brain regions. (d) Neural activity propagation across the mouse DTB.

track the propagation of neural responses across the whole brain following stimulus removal, and
identify the spatial structure of underlying neural pathways, as shown in Figure 3(d). The observed
activity patterns reflect both direct anatomical projections and indirect multi-synaptic pathways that
are difficult to infer directly from structural connectivity, with detailed analysis in Section D.4.

4.2 MOUSE DTB IN RESTING STATE

Rest-state fMRI data. The empirical resting-state fMRI data consisted of 400 contiguous EPI vol-
umes with a spatial resolution of 400µm×400 µm×400 µm, covering 6,131 voxels in the mouse
brain. To enable voxel-wise comparison of BOLD signals, we grouped the neurons in the mosue
DTB model into neuron populations with the same spatial resolution, resulting in 8,930 voxel popu-
lations. Neural activity within each population was aggregated to generate simulated BOLD signals
at the same resolution as the empirical data.

Interoception-driven resting state. The afferent interoceptive pathways are known to convey in-
formation about the internal physiological state of the body, and are thought to play a critical role
in shaping intrinsic brain activity (Berntson et al., 2019), as shown in Figure 4(a). To investigate
the influence of interoceptive circuits on the resting state, we simulated the spontaneous brain dy-
namics in the mouse DTB under interoception-driven input. Specifically, we assimilated the input
currents of neurons in key interoceptive regions, including SSp, HIP, Amy, AI, mPFC, TH, HY and
PAG (Berntson & Khalsa, 2021), by fitting their empirical BOLD signals, as depicted in Figure 4(b).
We achieved a high average correlation coefficient of 0.948 across 2,147 voxels within these regions,
indicating accurate estimation of interoception-driven inputs. Driven by the assimilated currents, the
mouse DTB successfully reproduced resting-state BOLD signals across the whole brain, reaching
an average correlation coefficient of 0.901 with empirical BOLD signals across all 6,131 voxels, as
depicted in Figure 4(c). These results demonstrate that the interoception-driven mouse DTB can ef-
fectively replicate the spatiotemporal patterns of spontaneous whole-brain neural activity observed
in the mouse resting state.

Effect of synaptic degree on interoception-driven resting state. We conducted interoception-
driven resting-state simulations on mouse DTB models with varying synaptic degrees of 200, 2,000,
4,000, 8,000, 12,000, and 16,000. As the synaptic degree increased, the average correlation coef-
ficient between simulated and empirical BOLD signals across the whole brain improved steadily,
rising from 0.835 at a degree of 200 to 0.901 at 16,000, as shown in Figure 4(d). This indicates that
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Figure 4: Mouse DTB in resting state. (a) Resting-state of mouse. (b) Framework of interoception-
driven resting-state experiments. (c) Average correlation coefficient of the mouse DTB in resting-
state. (d) Effect of synaptic degree on interoception-driven resting state. (e) Effect of excluded
interoceptive regions on interoception-driven resting state. (f) Effect of individual interoceptive
region on interoception-driven resting state.

more biologically realistic connectivity enables more effective propagation of interoceptive inputs
and better supports the emergence of large-scale resting-state dynamics in the mouse DTB.

Effect of interoceptive regions on interoception-driven resting state. To evaluate the relative
importance of individual interoceptive regions in driving resting-state brain dynamics, we conducted
two sets of ablation experiments: (1) removing the input to one interoceptive region while keeping
the others active, and (2) providing input to only one interoceptive region at a time. SSp and HIP
emerged as the most critical interoceptive regions, as illustrated in Figure 4(e-f). Removing either
region caused the largest reduction in whole-brain performance, while driving the DTB with only
one of them resulted in the strongest individual effects. These results indicate that both regions
play essential roles in mediating interoception-driven resting-state dynamics. Conversely, HY and
PAG showed minimal impact on resting-state dynamics, regardless of whether they were removed
or served as the sole source of input.

4.3 MOUSE DTB IN ACTION

Olfactory Go/No-Go discrimination task. Olfactory discrimination is a well-established decision-
making task, involving in sensory processing, reward expectation, motor planning, and inhibitory
control (Han et al., 2019). It serves as a model paradigm for examining how the brain integrates
sensory cues and behavioral rules to generate goal-directed actions under temporally structured con-
ditions.

In the olfactory Go/No-Go discrimination task, mice were trained to distinguish between two odors
(odor 1 and 2) and respond with a corresponding lick or no-lick behavior, as shown in Figure 5(a).
During scanning, odor stimuli were delivered every ∼15 s for the duration of 1 s, and both fMRI
data and behavioral responses were recorded (Han et al., 2019). A total of 9 sessions from a single
subject were collected from a single subject, each consisted of 118 contiguous EPI volumes with the
spatial resolution, covering 6,800 voxels in the mouse brain.

Olfactory task state. To investigate the neural mechanisms underlying the olfactory Go/No-Go
discrimination task, we simulated olfactory task-state brain dynamics in the mouse DTB. Specif-
ically, we assumed that the task-evoked dynamics are primarily driven by olfactory sensory input
and partially contributed by from interoceptive input. Therefore, we assimilated the input currents
of neurons in OLF and two significant interoceptive regions, SSp and HIP, identified in previous
experiments, as depicted in Figure 5(b). Assimilation was performed by fitting the empirical BOLD
signals within these regions, achieving a high average correlation coefficient of 0.948 across 2,002
voxels.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Licking 
behavior

a

Odor

Olfactory Go/No-Go discrimination task Assimilated current Olfactory regions

b

Input

Mouse DTB in action

OLF

c

0

1

r

Average correlation coefficient: 0.887 / 0.572 in assimilated / all voxels Decoder

Decoded
behavior

Simulated
BOLD

d

Logistic
regression

Virtual rodent in Go/No-Go task

Empirical
BOLD

Empirical
behavior

Training
Odor valve

Water pump

e

1 2 3 4 5 6 7 8 9
Session

0.4

0.6

0.8

1.0

C
or

re
la

tio
n 

co
ef

fic
ie

nt

Correlations of BOLD signals

Assimilated voxels
All voxels

f

1 2 3 4 5 6 7 8 9
Session

0

0.5

1.0

A
cc

ur
ac

y

Accuracy of decoded behavior sequence

Decoded from empirical BOLD
Decoded from simulated BOLD

1 2 3 4 5 6 7 8 9
Session

0

0.5

1.0

A
cc

ur
ac

y

Accuracy of Go/No-Go task

Subject
Decoded from empirical BOLD
Decoded from simulated BOLD

Figure 5: Mouse DTB in action. (a) Olfactory Go/No-Go discrimination task. (b) Framework of
olfactory task state experiments. (c) Average correlation coefficient of the mouse DTB in action.
(d) Go/No-Go behavior decoding. (e) Correlation coefficients across all sessions. (f) Accuracy of
behavior decoded from simulated BOLD generated by mouse DTB.

Driven by the assimilated olfactory sensory and interoceptive inputs, the mouse DTB successfully
reproduced task-state BOLD signals across the whole brain, achieving an average correlation coef-
ficient of 0.901 across 6,800 voxels in session 1, as shown in Figure 5(c). Across all 9 sessions,
the mouse DTB achieved an average whole-brain correlation of 0.554±0.019, as shown in Figure
5(e). These results indicate that the mouse DTB can robustly capture the spatiotemporal dynamics
of brain-wide activity during olfactory decision-making.

Go/No-Go behavior decoding. To evaluate whether the simulated task-state dynamics in the mouse
DTB can support behavior prediction, we trained a logistic regression decoder to classify binary
Go/No-Go behavioral responses of the mouse DTB. The decoder was trained using the empirical
task-state fMRI data and the corresponding behavioral sequences, and was then applied to decode
the simulated BOLD signals generated by the mouse DTB, yielding a predicted sequence of behav-
ioral responses, as shown in Figure 5(d). The predicted sequence of Go/No-Go behavior is further
simulated in the virtual rodent environment (Merel et al., 2019; Aldarondo et al., 2024).

To validate the fidelity of the behavior generated by the mouse DTB, we compared the decoded
behavioral sequence with the empirical behavioral responses. Two metrics were used for evaluation:
the accuracy of overall sequence, and the Go/No-Go discrimination accuracy under odor stimulus
onset. Across 9 sessions, the DTB achieved an average sequence accuracy of 67.33±6.64%, and an
average odor discrimination accuracy of 55.56±9.39%, as shown in Figure 5(f). While the decoding
performance does not yet reach the level of empirical prediction models, the above-chance accuracy
suggests that the simulated dynamics capture task-relevant neural representations to a meaningful
extent. The suboptimal performance may be attributed to insufficient assimilation accuracy in brain
regions critical for olfactory-guided behavior, limiting the decoder’s ability to recover fine-grained
behavioral patterns from the simulated dynamics.

5 CONCLUSION

In this study, we deliver a biologically realistic, brain-wide, neuronal-level mouse DTB model that
bridges structural connectivity and dynamic function across the whole brain. By validating the
model’s ability to reproduce BOLD signals and intelligent behavioral responses observed in resting-
state and in action, we highlight its potential as a general platform for in silico exploration of neural
dynamics and emergent functions of the mouse brain. Our framework also provides new opportuni-
ties to investigate fine-grained neural mechanisms of individual neurons across the whole brain with
experimentally recorded neuronal activity (de Vries et al., 2020; Xue et al., 2024; Lai et al., 2023).
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predicts the structure of neural activity across behaviours. Nature, 632(8025):594–602, 2024.

Jessica Ausborn, Natalia A Shevtsova, Vittorio Caggiano, Simon M Danner, and Ilya A Rybak.
Computational modeling of brainstem circuits controlling locomotor frequency and gait. Elife, 8:
e43587, 2019.

Brandon Barker. Message passing interface (mpi). In Workshop: high performance computing on
stampede, volume 262. Cornell University Publisher Houston, TX, USA, 2015.

Gary G Berntson and Sahib S Khalsa. Neural circuits of interoception. Trends in neurosciences, 44
(1):17–28, 2021.

Gary G Berntson, Peter J Gianaros, and Manos Tsakiris. Interoception and the autonomic nervous
system: Bottom-up meets top-down. 2019.

Yazan N Billeh, Binghuang Cai, Sergey L Gratiy, Kael Dai, Ramakrishnan Iyer, Nathan W
Gouwens, Reza Abbasi-Asl, Xiaoxuan Jia, Joshua H Siegle, Shawn R Olsen, et al. System-
atic integration of structural and functional data into multi-scale models of mouse primary visual
cortex. Neuron, 106(3):388–403, 2020.
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A SIMULATION OF MOUSE DTB

We performed large-scale spiking neural network simulations of the mouse digital twin brain (DTB)
on the Digital Brain (DB) platform (Lu et al., 2024a;b). The mouse DTB is constructed based on the
inferred mouse brain connectivity at single-neuron resolution, and modeled using leaky integrate-
and-fire (LIF) neurons and conductance-based synapses (Burkitt, 2006).
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A.1 HARDWARE AND SOFTWARE ENVIRONMENT

All mouse DTB simulations and assimilations were executed on a Linux-based high-performance
computing (HPC) cluster, comprising 160 compute nodes and 640 GPUs. Each compute node is
equipped with a single 32-core CPU operating at 2.0 GHz and 128 GB of DRAM. Additionally, each
node includes 4 GPUs operating at 1.10 GHz, each with 16 GB of HBM2 memory running at 800
MHz, and delivering up to 1 TB/s of memory bandwidth. GPUs within the same node communicate
via shared memory, while inter-node GPU communication is performed over a 200 Gbps full-duplex
InfiniBand network. The C++ simulation framework was compiled using g++ version 7.3.1 with
support for MPI-based distributed communication (Barker, 2015) and GPU acceleration via hipcc
from the ROCm 4.1.0 toolkit. Simulation and assimilation of the mouse DTB were implemented in
Python (version 3.7.11).

A.2 COMPUTATIONAL MODEL OF THE MOUSE DTB

The mouse DTB contains approximately 71 million neurons and 1.02 trillion synapses, constructed
based on the inferred mouse brain connectivity at single-neuron resolution. Each neuron in the
mouse DTB follows a leaky integrate-and-fire (LIF) model with conductance-based synaptic in-
puts (Burkitt, 2006). The membrane potential Vi of neuron i evolves according to:

Ci
dVi
dt

= −gL,i(Vi − VL) +
∑
u

Isyn,i + Ibg,i + Iext,i, Vi < Vth,i (2)

where:

• Ci is the neuron membrane capacitance,

• gL,i is the leakage conductance,

• VL is the leakage voltage,

• Isyn,i is the total synaptic current from four types of synapses (AMPA, NMDA, GABAA,
GABAB),

• Ibg,i is the background current serving as noises, and

• Iext,i is the external current serving as the external injection stimuli for tasks, which are
independently sampled from a Gamma distribution with the assimilated hyperparameters.

Each spike causes a discontinuous reset. When Vi = Vth,i at time tin, a spike is emitted, and the
potential is reset to Vrest for a refractory period.

In the mouse DTB, four synapse types are considered, which are AMPA, NMDA, GABAA, and
GABAB. The synaptic input current of type u from neuron j to neuron i, is described as:

Iu,i = gu,i(Vu − Vi)Ju,i (3)
dJu,i
dt

= −Ju,i
τu,i

+
∑
k,j

wu
i,jδ(t− tjk) (4)

Here, gu,i is the maximal synaptic conductance, Vu is the voltage, τu,i is the decay constant, wu
i,j

is the connection weight from neuron j to neuron i, δ(·) is the Dirac-delta function, and tjk are
presynaptic spike times.

The background current is modeled by an Ornstein–Uhlenbeck (OU) processes:

τbgdIbg,i = (µbg − Ibg,i)dt+
√

2τbg σbgdWi,t (5)

where τbg, µbg, and σbg are time constant, mean, and standard deviation shared across neurons, and
Wi,t is standard Brownian motion.

The parameters used in the computational neuron and synapse model and their corresponding val-
ues are listed in Table1. All numerical updates of neuron states are based on a first-order Euler-
Maruyama method with a time-step of 1 ms. Spike communication across GPUs is achieved with
message-passing interface (MPI) (Barker, 2015), and synchronized at 1 ms intervals.
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Table 1: Parameters used in the computational neuron and synapse model.
Category Parameter Symbol Value

Neuron model Membrane capacitance C 0.5 nF
Leak conductance gL 25 nS
Leak reversal potential VL −70 mV
Spiking threshold Vthreshold −50 mV
Reset potential Vreset −55 mV
Refractory period Tref 2 ms

Synapse model AMPA reversal potential VAMPA 0 mV
GABA reversal potential VGABA −70 mV
AMPA time constant τAMPA 2 ms
GABA time constant τGABA 20 ms
AMPA synaptic conductance gAMPA 2 nS
GABA synaptic conductance gGABA 10 nS
Range of synaptic weight wij [0, 1]

OU background current Mean background current µbg 0.4 nA
Std. dev. of background current σbg 0.15 nA
Background current time constant τbg 4 ms

A.3 BALLOON–WINDKESSEL MODEL

We employed the Balloon-Windkessel hemodynamic model to generate simulated BOLD signals
from the neural activities of the mouse DTB (Friston et al., 2000). This model provides a biophysi-
cally grounded mapping from neural activity to the blood-oxygen-level-dependent (BOLD) response
by modeling neurovascular coupling dynamics at the voxel level. Specifically, the population-
averaged firing rate of each voxel, denoted by zi(t) for voxel i, is transformed into the corresponding
BOLD signal yi(t). The dynamics of this model is governed by the following system of coupled
differential equations:

ṡi = zi − κisi − γi(fi − 1) (6)

ḟi = si (7)

τiv̇i = fi − v
1
α
i (8)

τiq̇i =
fiE(fi, ρi)

ρi
− v

1/α
i qi/vi (9)

yi = V0

[
k1(1− qi) + k2(1−

qi
vi
) + k3(1− vi)

]
(10)

where:

• si is the vasodilatory signal of voxel i,

• zi is the neural activity (firing rate) of voxel i,

• fi is the blood inflow,

• vi is the blood volume,

• qi is the deoxyhemoglobin content,

• E(fi, ρi) = 1− (1− ρi)
1/fi is the fraction of oxygen extracted from the inflowing blood,

• yi is the BOLD signal.

The model parameters are set to standard physiological value:

• κi = 1.25 is the the inverse of the decay time constant of the vasodilatory signal si,

• γi = 2.5 is the the inverse of the time constant of the inflow fi,
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Table 2: Simulation performance of the mouse DTB with different synaptic degrees in resting-state.
Nodes GPUs CH degree BS degree CB degree Firing rate (Hz) Real-time factor

2 8 100 175 200 4.237 19.90
20 80 1,000 1,750 2,000 4.261 8.56
40 160 2,000 3,500 4,000 4.220 8.76
80 320 4,000 7,000 8,000 4.201 10.18
120 480 6,000 10,500 12,000 4.207 11.19
160 640 8,000 14,000 16,000 4.251 12.96

• τi = 1 is the the time constant of the blood volume vi, which is the same with that of the
deoxyhemoglobin content qi,

• α = 0.2 is a stiffness exponent which specifies the flow–volume relationship of the venous
balloon,

• ρi = 0.8 is the the resting oxygen extraction fraction

• V0 = 0.02 is the the resting blood volume fraction, and

• k1 = 7ρi, k2 = 2, k3 = 2ρi − 0.2 are the BOLD signal coefficients.

Simulated BOLD time series were generated for both resting-state and task-state conditions, and
compared to empirical fMRI data using voxel-wise Pearson correlation. These signals were also
used as input for data assimilation and behavioral decoding, providing a consistent observation
model across the entire mouse DTB simulation pipeline.

A.4 SIMULATION PERFORMANCE OF THE MOUSE DTB

In order to evaluate the effect of synaptic degree on interoception-driven resting state, we simulated
the mouse DTB in resting-state, under varying synaptic degrees, as shown in Figure 4d and discussed
in Section 4.2. The detailed configuration of synaptic degrees and the computational efficiency of
the mouse DTB is displayed in Table 2. For simulations with average firing rates of approximately
4.2 Hz, we have achieved a performance in which 1 s of biological time requires 19.90 s and 12.96
s of computation time, corresponding with real-time factors of 19.90 and 12.96, respectively. This
demonstrates that even at full biological resolution, the mouse DTB can be simulated efficiently in
near real-time, enabling scalable exploration of neural dynamics of the mouse whole brain.

B ASSIMILATION OF MOUSE DTB

We employed the Hierarchical Mesoscale Data Assimilation (HMDA) method, which integrates a
diffusion Ensemble Kalman Filter (EnKF) with hierarchical Bayesian inference, to enable param-
eter estimation in large-scale neuronal network models under conditions of limited observational
data (Zhang et al., 2024; Lu et al., 2024a).

B.1 FRAMEWORK OF THE HMDA METHOD

In high-dimensional neuronal network models, the number of parameters to be inferred often far
exceeds the number of available data points. This imbalance renders canonical Bayesian inference
intractable and prone to overfitting. To overcome this challenge, we adopt a hierarchical Bayesian
inference framework by introducing hyperparameters that define the prior distribution of model
parameters, as illustrated in Figure 6.

Let yt denote the observed data (e.g., BOLD signals), xt the internal latent states (e.g., membrane
potentials, synaptic currents, and hemodynamic variables), θ the model parameters (e.g., synaptic
conductances and external currents), and ϑ the hyperparameters that govern the distribution of θ.
The joint posterior of the model can be expressed as:

P (ϑ | yt) ∝
∫
P (yt | xt, θ)P (xt | θ)P (θ | ϑ)P (ϑ) dxt dθ (11)
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Hyperparameter layer

Parameter layer

Computational model layer

Experimental data layer

Resampling

Figure 6: Framework of the hierarchical Bayesian inference.

This hierarchical formulation introduces an intermediate layer between parameters and their priors,
allowing parameter values to be flexibly adapted at the voxel level while being regularized by voxel-
level hyperparameters. By learning ϑ instead of directly estimating every element of θ, the number
of free variables is significantly reduced, thereby alleviating overfitting while preserving biological
heterogeneity across the brain. The balance between model expressiveness and statistical tractability
is achieved by simultaneously inferring both the hyperparameters and the parametric distribution of
the parameters.

In addition, we considered neurons within each 400×400×400 µm3 voxel as an individual neuron
population, and assumed that neurons of the same type (e.g., excitatory and inhibitory) within a
population shared the same hyperparameters. The time-series BOLD signals of the voxels were
used as observations of the mouse DTB.

The framework consists of four layers. The hyperparameter layer performs a random walk update
of the region-level hyperparameters from λ(t) to λ′. The parameter layer samples the parameter
vector θ(t) from λ(t) using a sampling operator Φ(·), and modifies it based on the change from λ(t)
to λ′, yielding θ(t + 1). The computational model layer evolves the hidden neural state x(t) by
integrating the dynamical system ẋ = F (x, θ) parameterized by θ(t). The experimental data layer
generates the observation y(t+1) from the updated hidden state x(t+1) and uses it to update both
the hidden state and the parameters, and importantly, to resample the hyperparameters from λ′ to
λ(t+ 1).

The computational complexity of each EnKF update scales with the dimension of the observations.
What’s more, combining high-resolution experimental BOLD signals with a limited number of
time points results in both high computational cost and potential ill-posedness. To address this,
we adopted diffusion ensemble Kalman filter, treated each voxel-level BOLD signal as an indepen-
dent observer and established an independent EnKF, as demonstrated in Algorithm 1. The correction
of states, parameters, and hyperparameters for each voxel is computed as a weighted average of its
own EnKF update and those of other voxels. This diffusion-based update is controlled by a fusion
coefficient γ for balancing the fusion of corrections from itself and all others.

B.2 EVALUATION METRICS

To quantitatively evaluate the fidelity of simulated BOLD signals produced by the mouse DTB, we
employed voxel-wise Pearson correlation coefficients (PCC) as the primary metric. Specifically, for
each voxel, we calculated the correlation between the time series of simulated BOLD signals and
the corresponding empirical BOLD signals. This voxel-level PCC reflects how well the temporal
dynamics of the digital model align with empirical brain activity.

Due to the inherent latency introduced by the data assimilation process, there is often a slight delay
in tracking fast-varying signals. To compensate for this, we adopt a lagged version of the PCC,
defined as:

PCC(yDTB(t+ lag), yemp(t)) (12)
where yDTB(t) and yemp(t) denote the simulated and experimental BOLD signals, respectively, and
lag= 3 time steps.
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Algorithm 1 Diffusion Ensemble Kalman Filter (EnKF) with hierarchical Bayesian inference.
1: Input:
2: Ensemble member number N ,
3: Initial distribution parameters [µ0, C0],
4: Evolution function F0:T (·),
5: Hyperparameter random walk covariance matrix Σh,
6: Model noise covariance matrix Σx,
7: Parameters evolution noise η0:T ,
8: Observation matrix H ,
9: Observation error covariance matrix Γ,

10: Observation (voxel-wise BOLD signals in ROIs) y0:T ,
11: Fusion coefficient γ.
12: Output: State estimation {Xn

0 : T}Nn=1

13: draw X
(n)
0 ∼ N (µ0, C0), Θ

(n)
0 ∼ ψ(·|h̄(n)0 ), ĥ(n)0 = h

(n)
0 , ∀n = 1 : N

14: for t = 1 : T do
15: draw ĥ

(n)
t ∼ N (h

(n)
t−1,Σh), ∀n = 1 : N

16: Θ
(n)
t = Φ(Θ

(n)
t−1, ĥ

(n)
t , ĥ

(n)
t−1, ηt), ∀n = 1 : N

17: draw X̂
(n)
t ∼ N (Ft−1(X

(n)
t−1,Θ

(n)
t ),Σx), ∀n = 1 : N

18: compute X̄t =
1
N

∑N
n=1 X̂

(n)
t

19: Ĉt =
1

N−1

∑N
n=1(X̂

(n)
t − X̄t)(X̂

(n)
t − X̄t)

⊤

20: derive Kalman gain St = HĈtH
⊤ + Γ

21: Kt = ĈtH
⊤S−1

t

22: draw ∆y
(n)
t ∼ N (0,Γ), ∀n = 1 : N

23: δ
(n)
t = yt +∆y

(n)
t −HX̂

(n)
t , ∀n = 1 : N

24: filter by X(n)
t+1/2 = X̂

(n)
t +Ktδ

(n)
t , ∀n = 1 : N

25: correct X(n)
t = diag(X

(n)
t+1/2Υ(γ)), where [Υ(γ)]i,i = γ, and [Υ(γ)]i,j =

1−γ
L−1 , i ̸= j

return {Xn
0 : T}Nn=1
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B.3 ASSIMILATION OF MOUSE DTB IN RESTING-STATE

As the HMDA framework allows joint estimation of all hidden states and parameters in the model,
we made the simplifying assumption that the network dynamics are primarily driven by variations
in maximum synaptic conductance under resting-state condition. Accordingly, we assimilate exper-
imental resting-state BOLD signals to estimate the voxel-wise hyperparameters governing synaptic
conductance gu,i of each voxel i, where u = AMPA is the assimilated synapse type. After assimi-
lation of the hyperparameters, we resimulated the mouse DTB by assigning the maximum synaptic
conductance to each neuron based on samples drawn from the inferred hyperparameter distributions.

Specifically, assimilation with ensemble number N = 50 is conducted on mouse DTB with 100,
175 and 200 synaptic degrees in CH, BS and CB, respectively. Next, we conducted simulations of
the mouse DTB with different synaptic degrees, by employing the assimilated hyperparameters. For
a given average synaptic degreeD, the synaptic conductance of type u assigned to neuron i is scaled
from the original estimated value at degree d as:

gu,i,D = gu,i,d ·
D

d
(13)

Resting-state BOLD signals were assimilated using this model configuration to estimate synaptic
conductance parameters of the mouse DTB. The resulting mouse DTB in resting-state is used for
stimulation experiments demonstrated in Section 4.1 and Figure 3d. Additionally, the deployed
mouse DTB comprises 100, 175 and 200 synaptic degrees in CH, BS and CB, respectively, and
the computed energy of each stimulation experiment are based on firing rates averaged from 300
repeated simulations.

B.4 ASSIMILATION OF MOUSE DTB IN INTEROCEPTION-DRIVEN RESTING-STATE AND IN
ACTION

For assimilations of mouse DTB in interoception-driven resting-state and in action, we adopted
a dual inference strategy: (1) the hyperparameters of maximum synaptic conductance gu,i in the
mouse whole brain were estimated from resting-state fMRI data, as discussed in previous section,
(2) the hyperparameters of the external currents Iext,i injected into voxels within ROIs were inferred
from the corresponding resting-state and task-state fMRI data. Specifically, we focused on estimat-
ing the hyperparameters of Iext,i for neurons in voxels within the perceptive ROIs. In the case for
interoception-driven resting-state, brain regions SSp, HIP, Amy, AI, mPFC, TH, HY and PAG are
considered, while for olfactory task-state, additional brain region OLF is considered.

We applied the HMDA method on the voxels within corresponding perceptive ROIs to decode the
sensory stimulus. The assimilated hyperparameters of the voxels within perceptive ROIs were then
used for sampling external currents injected into perceptive ROIs during re-simulation, which drove
stimuli-evoked neural activity in the mouse DTB. For each session of resting-state and task-state
fMRI data, we conducted 10 repeated simulations and computed the averaged voxel-wise PCC.

C EXPERIMENTS ON MOUSE DTB

C.1 PROCEDURE OF MOUSE DTB EXPERIMENTS

Detail description of our mouse DTB model’s experiment procedure are as follows:

1. Data assimilation (”training”): We estimated the parameters governing the stimulation
currents into the olfactory and key interoceptive regions, by fitting simulated BOLD signals
to empirical BOLD signals in these regions using the HMDA method, described in detail
in Supplementary Section B. As a result, driven by the estimated stimulation currents, the
simulated and empirical BOLD signals in the stimulated regions exhibit high correlation,
and we can assume that the stimulation input of olfactory signals and interoceptive signals
is faithfully reproduced in our computational model.

2. Simulation (testing): Stimulated by the estimated currents, the stimulated regions (olfac-
tory and key interoceptive regions) will then drive whole-brain neural activity in the mouse
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Table 3: Comparison between traditional machine learning models and the Mouse DTB model.
Traditional ML Model Mouse DTB Model

Training Input Training data with input-output
pairs

Empirical BOLD signals in stimu-
lated brain regions

Training Target Model weights Parameters governing the stimula-
tion currents into the olfactory and
key interoceptive regions

Training Goal Fit output labels Fit simulated BOLD to empirical
BOLD in stimulated regions

Training Method Supervised learning (loss mini-
mization)

Data assimilation (the HMDA
method)

Testing Test on hold-out input-output
pairs

Predict whole-brain BOLD re-
sponses outside the stimulated
regions driven by the estimated
stimulation currents

Evaluation Prediction accuracy on test set Correlation between simulated
(predicted) and empirical BOLD in
non-stimulated regions

Assumption Train/test are i.i.d. or split by
condition

Stimulated regions drive down-
stream activity across the whole
brain

DTB model, and then we evaluate how well the simulated (predicted) BOLD responses in
the rest of the brain match the empirical BOLD signals.

3. The goal of assimilation and simulation: Through the process of assimilation and sim-
ulation, we can verify if the mouse DTB can reproduce the correct brain-wide BOLD re-
sponses when driven by the estimated stimulation currents. Therefore, we can validate the
biological plausibility of the mouse brain connectivity at single-neuron, and the effective-
ness of our mouse DTB model.

4. Behavior decoding: We would further decode the olfactory discrimination behavior based
on the simulated BOLD signals of mouse DTB model to ascertain whether the neural ac-
tivity of our model successfully encodes olfactory behavior. This allows us to assess the
model’s capability to generate the correct whole brain dynamics under localized stimula-
tion.

C.2 METHODOLOGY OF MOUSE DTB EXPERIMENTS

In conventional machine learning methodology, neural network models are trained on train sets
to match the output, and later tested on hold-out test sets for their performance in predicting the
correct output. In contrast, in our mouse DTB model, parameters are fitted to match the BOLD
signals in the stimulated regions (a part of the whole brain), and the model is then evaluated by
predicting the BOLD responses in the rest of the brain with correct decoded behaviors, driven by
the these estimated stimulation inputs. In addition, Table 3 provides the comparison between the
experimental paradigm of our mouse DTB model and traditional machine learning model.

D STRUCTURE OF MOUSE DTB

We constructed the biologically plausible, weighted directed connectivity of the mouse whole brain
at single-neuron resolution based on high-resolution axonal projection data (Oh et al., 2014) and
spatial distribution of cells from mouse brain cell atlas (Zhang et al., 2023) through the proposed
data-driven pipeline, as discussed in Section 3.1 and depicted in Figure 2. Referenced names and
abbreviations of mouse brain regions are listed in Table 4.
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Table 4: List of referenced mouse brain regions.
Category Brain regions

Major brain divisions Cerebrum (CH), brainstem (BS), cerebellum (CB)
Major brain regions Isocortex, olfactory areas (OLF), hippocampal formation (HPF),

cortical subplate (CTXsp),striatum (STR), pallidum (PAL),
thalamus (TH), hypothalamus (HY),midbrain (MB),
pons (P), medulla (MY), cerebellum (CB)

Interoceptive regions primary somatosensoty area (SSp), hippocampal region (HIP),
amygdala (Amy), agranular insular area (AI),
medial prefrontal cortex (mPFC), thalamus (TH),
hypothalamus (HY), periaqueductal grey (PAG)

Olfactory regions olfactory areas (OLF)
SSp related brain regions motor area (MO), secondary somatosensory area (SSs),

thalamus (TH)
HIP related brain regions emporal association areas (TEa), retrohippocampal region (RHP),

auditory area (AUD), SSp
OLF related brain regions agranular insular area (AI), endopiriform nucleus (EP)
VIS related brain regions the retrosplenial area (RSP),

posterior parietal association areas (PTLp), TH
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Figure 7: Connectivity between brain regions before and after iterative optimization. (a) Neuronal
projection connectivity before iterative optimization. (b) Optimized connectivity.

D.1 INFERENCE OF NEURONAL PROJECTION CONNECTIVITY

The initial neuronal projection connectivity is depicted in Figure 7a. Although the projection pattern
of each injection experiment is normalized by its total injection density, no global normalization is
applied across different experiments. Therefore, brain regions exhibit highly variable synaptic out-
degrees, ranging from over 47 million neurons with no outgoing connections to a small subset of
neurons with more than 4 million synaptic targets. As a result, the network became fragmented into
several disconnected components, preventing coherent whole-brain communication. To resolve this
inconsistency and promote a biologically plausible and regionally balanced projection architecture,
it’s necessary to iteratively optimize the neuronal projection connectivity matrix to enforce a more
uniform distribution of neuronal out-degrees across brain regions.
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Figure 8: Loss curve of the iterative optimization of neuronal projection connectivity.

D.2 ITERATIVE OPTIMIZATION OF NEURONAL PROJECTION CONNECTIVITY

To obtain a biologically plausible and regionally balanced projection structure, we performed itera-
tive optimization on the neuronal projection connectivity matrix. The loss at iteration t was defined
as the L2 distance between the current neuronal out-degree Pt and the target neuronal out-degree
Q = 16, 000, aggregated over all neurons. Accordingly, the relative loss change was computed as:

∆loss =
Losst − Losst+1

Losst
(14)

At iteration t = 113, the relative change in loss reached ∆loss = 0.0099, indicating that the op-
timization had reached a steady-state error of 1%, as depicted in Figure 8. We therefore generate
the optimized mouse brain connectivity with 16,000 degrees by sampling connections based on the
sampling probability of iteration 113. As shown in Figure 7b, the optimized mouse brain connectiv-
ity achieves balanced projection connectivity across brain regions, and ensures that the mouse whole
brain network remains interconnected.

D.3 GAUSSIAN LOCAL CONNECTIVITY

Due to the inherent limitations of axonal projection data, local connectivity within the injection sites
are not represented in the axonal projection data. Thus, local connectivity is absent in the inferred
neuronal projection connectivity. Therefor, we compensate for the missing local connectivity with
additional Gaussian local connections.

To determine the appropriate proportion of local connectivity to be added, we conducted a set of
interoception-driven resting-state simulations on mouse DTB models with varying synaptic degrees.
These models were constructed using the optimized neuronal projection connectivity, but without
any Gaussian local connections. As shown in Figure 9, the average correlation coefficient between
the simulated and empirical BOLD signals across the whole brain increased steadily with synaptic
degree. However, the improvement plateaued around a synaptic degree of 4,000, beyond which fur-
ther increases did not yield significant gains. Given that the resting-state fMRI data mostly cover the
cerebrum, the plateau at 4,000 degree suggests that approximately 50% of the synaptic degrees in
the cerebrum’s 8,000 degrees is sufficient to capture the functionally relevant mouse brain connec-
tivity. Based on this finding, we replaced the other 50% of the neuronal projection connections in
both the cerebrum and cerebellum with Gaussian local connections. However, in the brainstem, due
to its significantly lower neuronal density, it’s unable to sample enough Gaussian local connectivity.
As a result, only 10% of the neuronal projection connections in the brainstem were replaced with
Gaussian local connections to restore its local connectivity to the greatest extent possible.

By adding the Gaussian local connectivity, the cosine similarity for HPF neurons is 0.8834, signif-
icantly higher than 0.5973 for not adding local connectivity; while it is 0.6918 for PFC neurons,
which is also significantly higher than 0.5611 for not adding local connectivity. Therefore, the
single-neuron mouse brain connectivity with Gaussian local connectivity is consistent with inde-
pendently measured single-neuron axonal projection data and is thus biologically plausible.
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Figure 9: Effect of synaptic degree on interoception-driven resting state. Experiments are conducted
on mouse DTB constructed with optimized connectivity and without Gaussian local connectivity.

Table 5: Details of the resting-state and olfactory Go/No-Go discrimination task fMRI data.
T TR (s) Task Brain regions Voxels

Mouse DTB All voxels 8930
400 0.8 Resting-state Voxels with fMRI data 6131

SSp, HIP, Amy, AI, mPFC, TH, HY and PAG 2147
118 1.5 Task-state Voxels with fMRI data 6800

OLF 982
OLF, SSp, HIP 2002
OLF, SSp, HIP, Amy, AI, mPFC, TH, HY and PAG 3059
SSp, HIP, Amy, AI, mPFC, TH, HY and PAG 2161

D.4 ACTIVITY PROPAGATION ANALYSIS

1. Stimulation of the primary somatosensory area (SSp) leads to activation in the motor area
(MO), secondary somatosensory area (SSs), and thalamus (TH), which are strongly con-
nected to SSp.

2. Stimulation of the hippocampus (HIP) results in activity propagation to the temporal as-
sociation areas (TEa) and retrohippocampal region (RHP) via direct connections, while
auditory area (AUD) and SSp are likely activated through indirect pathways, demonstrat-
ing the ability of stimulation experiments on to reveal hidden multi-step connections.

3. Stimulation of the olfactory areas (OLF) elicits responses in the agranular insular area
(AI) and endopiriform nucleus (EP), which are anatomically adjacent to and structurally
connected with OLF.

4. Stimulation of the visual areas (VIS) activates the retrosplenial area (RSP), posterior pari-
etal association areas (PTLp), and TH, which are involved in visual and visuospatial pro-
cessing.

E DETAILS OF THE FMRI DATA

The fMRI data used in this study were obtained and preprocessed following the procedures described
in the original publication (Han et al., 2019). Details of the fMRI data are summarized in Table 5.

F MOUSE DTB IN RESTING-STATE

F.1 VALIDATION OF THE BIOLOGICAL PLAUSIBILITY OF THE ITERATIVE OPTIMIZATION.

The mouse DTB model without applying the iterative optimization discussed in Section 3.1.2
achieve a significantly lower correlation of 0.738 compared to the correlation of 0.901 for the base-
line in the interoceptive-driven resting-state. This indicated that the iterative optimization is biolog-
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Table 6: Resting-state correlation of randomly rewired mouse DTB.
Rewiring percentages. 0 0.2 0.4 0.6 0.8 1.0

Stimulated regions corr. 0.948 0.904 0.898 0.892 0.885 0.876
Whole brain corr. 0.901 0.729 0.699 0.659 0.606 0.527

ically plausible and necessary for simulating the resting-state dynamics. What’s more, when com-
paring with the independent single-neuron axonal projection data (Qiu et al., 2024), by adding the
Gaussian local connectivity, the cosine similarity for HPF neurons is 0.8834, significantly higher
than 0.5973 for not adding local connectivity; while it is 0.6918 for PFC neurons, which is also
significantly higher than 0.5611 for not adding local connectivity. Therefore, the single-neuron
mouse brain connectivity with Gaussian local connectivity is consistent with independently mea-
sured single-neuron axonal projection data and is thus biologically plausible.

F.2 VALIDATION OF SINGLE-NEURON CONNECTIVITY WITH INDEPENDENT AXONAL
PROJECTION DATA.

We compared the cosine similarity of brain region level connectivity matrix between our single-
neuron connectivity and the single-neuron axonal projections of 10,100 hippocampal (HPF) neurons
and 6357 prefrontal cortex (PFC) neurons (Qiu et al., 2024). For HPF neurons, the cosine similarity
of brain region level connectivity matrix (with 11 source regions across HPF and 30 target regions
across the whole brain) is 0.8834. For PFC neurons, the cosine similarity reaches 0.6918. These
results indicate that the projection patterns of key regions of our inferred single-neuron connectiv-
ity are consistent with independently measured single-neuron axonal projection data and are thus
biologically plausible.

F.3 COMPARISON WITH VOXEL-LEVEL MOUSE DTB.

We constructed a mouse DTB with a 400 µm voxel-level weighted connectivity of the mouse brain.
The voxel-level mouse DTB shares the same spatial distribution of neurons and exc/inh neuron
assignment with the single-neuron resolution mouse DTB. The voxel-level connectivity is inferred
based on the axonal projections using the kernel regression approach in previous work (Knox et al.,
2018), and governs the distribution of synaptic connections between voxels in the voxel-level mouse
DTB. In each voxel, the in-coming connections are randomly distributed among all neurons in this
voxel. In the interoceptive-driven resting-state, the voxel-level mouse DTB achieve a correlation of
0.819 across the whole brain, while our single-neuron mouse DTB achieve a significantly higher
correlation of 0.901. This indicates that the single-neuron connectivity is not only consistent with
the voxel-level connectivity constructed with well-established approach (Knox et al., 2018), but also
enables simulation of mouse brain dynamics with higher correlation, due to its biological plausible
heterogeneity of single-neuron connectivity.

F.4 COMPARISON WITH RANDOMLY REWIRED OR LESIONED MOUSE DTB.

We tested the correlation of resting-state after randomly rewired a given percentage of synapses.
As the percentage of rewired synapses increases, the connectivity becomes more arbitrary, and the
correlation steadily drops from 0.901 to 0.527 (Table 6). We also ablated the synapses connecting
to key brain regions, and tested the effect of individual brain region lesion on the correlation co-
efficients of resting-state (Table 7). Therefore, rewired or lesioned mouse DTB models exhibit a
significant decrease in the correlation, demonstraing the vital role of the single-neuron connectivity
for simulating whole brain dynamics in resting-state.

The details of random rewiring and lesion experiments:

1. Data assimilation (re-training): We re-estimated the parameters governing the stimula-
tion currents into the olfactory and key interoceptive regions, by fitting again the simulated
BOLD signals to empirical BOLD signals in these regions using the HMDA method. As
a result, driven by the estimated stimulation currents, the simulated and empirical BOLD
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Table 7: Resting-state correlation of lesioned mouse DTB.
Lesion region Baseline VIS HPF PFC MO TH SSp

Number of neurons - 678k 1849k 717k 1035k 137k 1277k
Stimulated regions corr. 0.948 0.909 0.896 0.908 0.909 0.900 0.901
Whole brain corr. 0.901 0.737 0.678 0.715 0.694 0.743 0.656

signals in the stimulated regions still exhibit high correlation (close to the original score of
0.948), as shown by Corr. of the stimulation region in the following tables. We can assume
that the stimulation input of olfactory signals and interoceptive signals is again faithfully
reproduced in our rewired or lesioned mouse DTB model.

2. Simulation (testing): Driven by the faithfully reproduced stimulation currents, the mouse
DTB models with rewired or lesioned connectivity exhibited a significant loss in the corre-
lation between the simulated (predicted) and empirical BOLD signals in the whole brain,
demonstrating the significant role of the single-neuron connectivity in reproducing whole
brain dynamics in resting-state.

G MOUSE DTB IN ACTION

G.1 OLFACTORY TASK STATE

To investigate the influence of different brain regions in driving task-related dynamics, we evaluated
the performance of the mouse DTB under four different input configurations during the olfactory
discrimination task. As shown in Figure 10, the average Pearson correlation coefficient between
simulated and empirical BOLD signals increased as more functionally relevant regions were incor-
porated as inputs.

When driven solely by the olfactory areas (OLF), the model achieved a relatively low correlation
( 0.247±0.018), suggesting that OLF input alone was insufficient to reproduce the observed brain-
wide dynamics. Adding the somatosensory and hippocampal inputs (OLF, SSp, HIP), which are
previously proved to be significant for driving resting-state neural dynamics, substantially improved
the correspondence (0.554±0.019), indicating that interoceptive regions also play a significant role
in shaping task-related BOLD activity. The best performance was achieved when combining both
olfactory sensory and interoceptive inputs (OLF + all interoceptive regions), reaching a correlation
of 0.666±0.014, which again highlights the importance of jointly modeling external stimuli and
internal resting states for accurate task-state simulation.

G.2 GO/NO-GO BEHAVIOR DECODING

To evaluate whether the simulated BOLD signals generated by the mouse DTB can support behav-
iorally meaningful readout, we applied a logistic regression decoder to classify Go versus No-Go
responses.

To decode behavioral responses from BOLD signals, we adopted a cross-validation strategy across
sessions. For each target session, the decoder was trained on empirical BOLD signals from the
remaining sessions, and then applied to decode both the empirical BOLD data and the simulated
BOLD data of the target session. This ensures that the decoding performance reflects generalizable
stimulus-response mappings rather than session-specific overfitting.

As shown in Figure 11, behavior decoding performance was evaluated using three metrics: (a)
Accuracy, defined as the overall proportion of correctly predicted trials (both Go and No-Go); (b)
Hit rate, defined as the proportion of trials with odor 1 stimulation in which a correct Go response
was predicted; (c) Correct rejection rate, defined as the proportion of trials with odor 2 stimulation
in which a correct No-Go response was predicted.

Across all sessions, the mean decoding accuracy based on simulated BOLD signals reached
55.56%± 9.39%. While this does not match the performance level achieved by decoding with em-
pirical BOLD data, it is significantly above chance, suggesting that the simulated dynamics preserve
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Figure 10: Correlation coefficients across all sessions driven by different set of brain regions. (a)
Correlation coefficients driven by OLF. (b) Correlation coefficients driven by OLF, SSp and HIP.
(c) Correlation coefficients driven by SSp, HIP, Amy, AI, mPFC, TH, HY and PAG. (d) Correlation
coefficients driven by OLF, SSp, HIP, Amy, AI, mPFC, TH, HY and PAG.

task-relevant neural representations to a meaningful degree. The correct rejection rate achieved
a mean of 87.17% ± 10.13%, which is comparable to performance levels observed in biological
experiments, indicating that the DTB successfully captures the neural mechanisms underlying in-
hibitory responses. In contrast, the hit rate was lower, averaging 24.45% ± 20.14%, reflecting a
limited ability of the DTB to consistently reproduce Go-related activation patterns. Nevertheless, in
specific sessions (e.g., sessions 1, 6, and 9), the hit rate was substantially higher, indicating that the
model can recover meaningful Go-responses under certain conditions.

Several factors may explain the limited performance observed when decoding behavior from simu-
lated BOLD signals.

• First, the assimilation quality in certain perceptive regions may be insufficient. Some key
ROIs within the assimilated region may not have achieved high correlation with the em-
pirical BOLD, and important task-relevant regions outside the assimilated subset may also
show poor alignment. These mismatches can limit the decoder’s ability to extract consistent
stimulus–response mappings from the simulated data.

• Second, although the simulated BOLD signals exhibit high voxel-wise Pearson correlation
with empirical signals, this only reflects temporal similarity. In practice, the amplitude or
baseline of simulated BOLD responses may differ due to multiplicative scaling factors or
additive biases, which can adversely affect the decoder’s output.

• Third, the decoder was trained on empirical data and may have overfitted to specific pat-
terns present only in the experimental distribution. As a result, its generalization to DTB-
generated data, which differ in scale, variability, or noise characteristics, may be impaired.

Simulation of Go/No-Go behavior under odor stimulation in the virtual rodent environment, includ-
ing visualization of decoded behavior, neuronal spiking activity, and corresponding BOLD signals,
is provided in the supplementary video.

H DISCUSSION

While our study presents a biologically grounded, single-neuron resolution digital model of the
mouse brain, several limitations remain. The inferred connectivity relies on voxel-level projection
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Figure 11: Performance of behavior decoded from simulated BOLD generated by mouse DTB.
(a) Accuracy of decoded behavior. (b) Hit rate of decoded behavior. (c) Correct rejection rate of
decoded behavior.

data and statistical approximation, which may not fully capture neuron-level or cell-type-specific
variability. The spiking network model adopts simplified neuronal and synaptic dynamics. Future
work will aim to incorporate plasticity, adaptive behavior, and more detailed physiological dynamics
to further enhance the model’s fidelity and utility for brain-wide functional simulation.
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