
Unifying Homophily and Heterophily for Spectral
Graph Neural Networks via Triple Filter Ensembles

Rui Duan1, Mingjian Guang2, Junli Wang3, Chungang Yan3, Hongda Qi4,

Wenkang Su1∗, Can Tian1∗, Haoran Yang3

1School of Computer Science and Cyber Engineering, Guangzhou University, China,
2Donghua University, China, 3Tongji University, China 4Shanghai Normal University, China

1{duan, swk1004, tiancan}@gzhu.edu.cn; 2guangmingjian@dhu.edu.cn;
3{junliwang, yanchungang, 2010498}@tongji.edu.cn; 4hongda_qi@shnu.edu.cn

Abstract

Polynomial-based learnable spectral graph neural networks (GNNs) utilize polyno-
mial to approximate graph convolutions and have achieved impressive performance
on graphs. Nevertheless, there are three progressive problems to be solved. Some
models use polynomials with better approximation for approximating filters, yet
perform worse on real-world graphs. Carefully crafted graph learning methods,
sophisticated polynomial approximations, and refined coefficient constraints leaded
to overfitting, which diminishes the generalization of the models. How to design a
model that retains the ability of polynomial-based spectral GNNs to approximate
filters while it possesses higher generalization and performance? In this paper, we
propose a spectral GNN with triple filter ensemble (TFE-GNN), which extracts ho-
mophily and heterophily from graphs with different levels of homophily adaptively
while utilizing the initial features. Specifically, the first and second ensembles are
combinations of a set of base low-pass and high-pass filters, respectively, after
which the third ensemble combines them with two learnable coefficients and yield a
graph convolution (TFE-Conv). Theoretical analysis shows that the approximation
ability of TFE-GNN is consistent with that of ChebNet under certain conditions,
namely it can learn arbitrary filters. TFE-GNN can be viewed as a reasonable com-
bination of two unfolded and integrated excellent spectral GNNs, which motivates
it to perform well. Experiments show that TFE-GNN achieves high generalization
and new state-of-the-art performance on various real-world datasets. The source
code of GEN is publicly available at https://github.com/graphNN/TFEGNN

1 Introduction

Graph neural networks (GNNs) are competitive in graph-related tasks (Scarselli et al., 2008; Yang
et al., 2023; Shirzad et al., 2023; Duan et al., 2024) and can be divided into two main categories:
spatial-based (Xu et al., 2019) and spectral-based (Shirzad et al., 2023; Tao et al., 2023; He et al.,
2022; Bo et al., 2023b; Guo et al., 2023) GNNs. Spectral graph convolutions in the spectral domain
of the graph Laplace matrix, i.e., the spectral graph filters, are the core component of spectral-based
GNNs. We further classify spectral-based GNNs into two categories based on whether their graph
convolutions can be learned or not.

The first class of spectral-based GNNs’ graph convolutions are predetermined, i.e., they filter the
graph signals (features) in a fixed way. Graph convolutional networks (GCNs) (Kipf & Welling, 2016)

∗Corresponding authors

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/graphNN/TFEGNN

and their variants (Rong et al., 2020; Chen et al., 2020; Yang et al., 2021) utilize only the first two
Chebyshev polynomials to simplify ChebNet (Defferrard et al., 2016), and their graph convolutions
are the fixed low-pass filters.

The second class of spectral-based GNNs’ graph convolutions are learnable, i.e., their filters are
variable and they filter the graph signals in learnable way. ChebNet (Defferrard et al., 2016) utilizes
Chebyshev polynomials to approximate the graph convolutions and it can learn arbitrary filters
in theory (Balcilar et al., 2021; He et al., 2022). CayleyNet (Levie et al., 2018) utilizes Cayley
polynomials to learn the graph convolutions, and ARMA (Bianchi et al., 2021a) learns the rational
graph convolutions by using the Auto-Regressive Moving Average filters family (Narang et al.,
2013). GPR-GNN (Chien et al., 2021) and BernNet (He et al., 2021a) use Monomial and Bernstein
polynomials to approximate the graph convolutions. ChebNetII (He et al., 2022) revisits ChebNet and
makes learned coefficients more legal through Chebyshev interpolation. EvenNet (Lei et al., 2022)
ignores odd-hop neighbors and improves the robustness of GNNs by using the even-polynomial
graph filter. PCNet (Li et al., 2023) uses the Possion-Charlier polynomials to approximate the graph
filter and constrain the coefficients. Just like EvenNet, the heterophilic graph heat kernel provided by
PCNet pushes odd-hop neighbors away and aggregates even-hop neighbors. FavardGNN (Guo & Wei,
2023) learns a polynomial basis from the space of possible orthonormal bases and OptBasisGNN
(Guo & Wei, 2023) computes the optimal basis for a given graph structure and signal. Specformer
(Bo et al., 2023a) encodes the set of eigenvalues and performs self-attention in the spectral domain,
which leads to a learnable set-to-set spectral filter.

Despite polynomial-based learnable spectral GNNs have achieved impressive performance on graphs,
there are three progressive problems to be solved. First, some polynomial-based models use polyno-
mials with better approximation than some other models when approximating filters, but the former’s
performance is lagging behind that of the latter on real-world graphs. For example, GPR-GNN and
BernNet outperform ChebNet, even though they use polynomials that are weaker than Chebyshev
polynomials in approximation theory (He et al., 2022). ChebNetII, an enhanced version of ChebNet,
whose performance still lags behind that of PCNet using Possion-Charlier polynomials. The important
factors influencing the real-world performance of such GNNs are graph learning methods, polynomial
approximation and coefficient constraints, but of course there are others as well, in any case not
only the polynomial approximation ability. The following two facts exist: ChebNetII outperforms
GPR-GNN and BernNet through refined coefficient constraints; and PCNet outperforms ChebNetII
through the carefully crafted graph learning method, i.e., pushing odd-hop neighbors away to match
the structural properties of heterophilic graph.

The second problem was raised based on the answer to the first problem. Carefully crafted graph
learning methods, sophisticated polynomial approximations, and refined coefficient constraints
leaded to overfitting while improving models’ performance, which diminishes the generalization of
the models. FFKSF (Zeng et al., 2023) attributes the degradation of polynomial filters’ performance
to the overfitting of polynomial coefficients. ChebNetII (He et al., 2022) further constrains the
coefficients to enable them easier to be optimized. ARMA (Bianchi et al., 2021b) suggests that
the filter will overfit the training data when aggregating high-order neighbor information. Whereas
the order of polynomial-based spectral GNNs is usually large to increase the approximation of the
polynomials, which directs them to obtain high-order neighborhood information, and then leads
to overfitting. Therefore, it is reasonable to assume that carefully crafted graph learning methods,
sophisticated polynomial approximations, and refined coefficient constraints lead to overfitting of
the models, which diminishes generalization of the models. Desired learnable spectral GNNs can
learn various graph convolutions, which motivates them to extract homophily from heterophilic graph
and vice versa. Instead of ignoring odd-hop or even-hop neighbors, which makes the model miss
important neighbor information.

Finally, the third problem was raised. How to design a model that retains the ability of polynomial-
based spectral GNNs to approximate filters while it possesses higher generalization and performance?
In this paper, inspired by ensemble learning (Schapire, 1990; Hansen & Salamon, 1990; Zhou, 2012)
(see in section 3.1), we design triple filter ensemble (TFE) mechanism to adaptively extract homophily
and heterophily from graphs with different levels of homophily while utilizing the initial features,
where the first and second ensembles combine a set of base low-pass and high-pass graph filter,
respectively, and the third ensemble combines them by two learnable coefficients. The third ensemble
of TFE will yield a graph convolution (TFE-Conv) used to filter the graph signal. The filtered signal is

2

fed into a fully connected linear neural network (NN), whose output is then passed through a softmax
layer to obtain the prediction.

TFE-GNN does not impose refined constraints on the coefficients and does not design very complex
learning methods, which possesses higher generalization. The key difference between TFE-GNN
and prior models is that TFE-GNN retains the ability of polynomial-based spectral GNNs while
getting rid of polynomial computations, coefficient constraints, and specific scenarios. We describe
the differences between TFE-GNN and several other recent methods (Li et al., 2024; Huang et al.,
2024b,a) in Appendix B.7. TFE-GNN also offers the following three advantages. We theoretically
demonstrate that the approximation ability of TFE-GNN agrees with that of ChebNet under certain
conditions, as outlined in Theorem 1, i.e., can learn arbitrary filters. Theorem 2 shows that TFE-GNN
is a reasonable combination of two excellent polynomial-based spectral GNNs, which motivates it to
perform well. TFE extract the initial information, homophily and heterophily from graphs adaptively,
which allows TFE-GNN to be applied to various homophily level cases. Experiments show that
TFE-GNN achieves new state-of-the-art performance on datasets, and the homophily levels measured
by the edge homophily ratio (Zhu et al., 2020) for these datasets is 0.06, 0.21, 0.23, 0.30, 0.57, 0.74,
0.80, 0.81, and 0.93.

Figure 1: An illustration of TFE-GNN.

2 Preliminaries

Notations. Given a graph G = (E, V) with node set V and edge set E ⊆ V ×V . Let n = |V | denote
the size of the node set, i.e., the number of nodes. This paper uses x ∈ Rn to denote the graph signals,
and x(i) to denote the signal at node i. Y ∈ {0, 1}n×C denotes label matrix of G, and Yi is the label
vector of node i, where C is the number of classes. We denote X ∈ Rn×d0 as the initial feature
matrix of G, denote the adjacency matrix of G as A ∈ {0, 1}n×n, and denotes the degree matrix
as D, where Dii =

∑n
j=0 Aij , and d0 is the initial feature dimension. The (combinatorial) graph

Laplacian is defined as L = D −A, and its eigendecomposition is L = UΛUT . The columns ui of
U ∈ Rn×n are orthonormal eigenvectors, namely the graph Fourier basis, and Λ = diag([λ1, ..., λn])
is the diagonal matrix of eigenvalues. We also call these eigenvalues frequencies.

2.1 Metrics of Homophily

The homophily metrics are used to define the homophily level of a graph by considering the different
relationships between node labels/features and graph structures, including edge homophily (Zhu et al.,
2020), node homophily (Pei et al., 2020), class homophily (Lim et al., 2021b), etc. In this paper, we
use the edge homophily ratio ehr to measure the ratio of intra-class edges contained in a graph as the
homophily level:

ehr =
|(u, v) : (u, v) ∈ E ∧ Yu = Yv|

|E|
, (1)

3

where u, v are nodes, Yu is the label vector of u, and Yv is the label vector of v. The value of
ehr close to 1 corresponds to strong homophily, while the value of ehr close to 0 indicates strong
heterophily.

2.2 Graph Filter

The graph filters are core components of spectral GNNs. We classify the graph filters into three
categories based on the type of signal they filter: low-pass, high-pass and full-pass filters. The
high-pass filter Hhp are more suitable for extracting high-frequency signals (Bo et al., 2023a;
Yang et al., 2022). Empirically, the commonly used high-pass filters are the symmetric normalized
Laplacian Lsym = D−1/2LD−1/2 = I−D−1/2AD−1/2 and the random walk normalized Laplacian
Lrw = D−1L = I −D−1A. The low-pass filter Hlp are more suitable for extracting low-frequency
signals and it is the affinity (transition) matrix of Hhp, i.e., Hlp corresponding to Hhp above are
La
sym = I − Lsym = D−1/2AD−1/2 and La

rw = I − Lrw = D−1A. The full-pass filter Hfp is the
identity matrix I and retains all graph initial signals.

2.3 Learnable Spectral GNNs

Spectral-based GNNs create the spectral graph convolutions (filters) in the domain of Laplacian
spectrum and many methods use the polynomial spectral filters to achieve graph convolutions, such
as ChebNet Defferrard et al. (2016), GPR-GNN Chien et al. (2021), BernNet He et al. (2021a),
ChebNetII He et al. (2022), PCNet (Li et al., 2023), FavardGNN (Guo & Wei, 2023), etc. We begin
by describing how the signal x is filtered by h:

y = h(L)x = h(UΛUT)x = Uh(Λ)UTx = Udiag([h(λ1), ..., h(λn)])U
Tx, (2)

where y denotes the filtering results of x, and h denotes the spectral filter, which is a function on the
eigenvalues of the graph Laplacian matrix L. Existing studies have replaced nonparametric filters
with polynomial filters:

h(Λ) =

K−1∑
k=0

θkΛ
k, (3)

where θk ∈ RK is a vector of polynomial coefficients. We bring Equation 3 into Equation 2:

y = U

K−1∑
k=0

θkΛ
kUTx =

K−1∑
k=0

θkUΛkUTx =

K−1∑
k=0

θkL
kx, (4)

We describe polynomial-based spectral GNNs in terms of ChebNet (Defferrard et al., 2016) and its
enhanced version ChebNetII (He et al., 2022), including how they approximate graph convolution
with polynomials and how constraining the coefficients. Other related methods are similar, such
as EvenNet (Lei et al., 2022) and PCNet (Li et al., 2023). ChebNet uses Chebyshev polynomial to
approximate the filtering operation, which is a remarkable attempt:

y =

K−1∑
k=0

θkTk(L̃)x, (5)

where L̃ = 2Lsym/λmax − I denotes the scaled graph Laplacian matrix, λmax is the largest
eigenvalue of L and θ is a vector of Chebyshev coefficients. Chebyshev polynomial Tk(x) of order
k can be recursively defined as Tk(x) = 2xTk−1(x)− Tk−2(x) with T0(x) = 1 and T1(x) = x.
ChebNet’s structure is:

Ŷ =

K−1∑
k=0

Tk(L̃)XWk, (6)

where Wk are the trainable weights, which contain the Chebyshev coefficients θk. ChebNetII (He
et al., 2022) proposes ChebBase to determine who is more competitive, Chebyshev basis or other
bases.

Ŷ =

K∑
k=0

θkTk(L̃)f(X), (7)

4

where f(X) is a Multi-Layer Perceptron (MLP). ChebNetII believes that ChebNet learns the illegal
coefficient by analyzing a series of polynomial filters. Therefore, it then proposes ChebBase/k, which
is an improvement on ChebNet and constrains the coefficients with θk/k (Equation 7). Finally,
ChebNetII is proposed.

Ŷ =
2

K + 1

K∑
k=0

K∑
j=0

γjTk(xj)Tk(L̃)f(X), (8)

where γj is the learnable coefficient, and it links Equation 7 and Equation 8 with θk =
2

K+1

∑K
j=0 γjTk(xj), i.e., the learnable coefficients constrain.

3 Methodology

We propose a spectral GNN with triple filter ensemble (TFE-GNN) to solve three progressive
problems in polynomial-based learnable spectral GNNs. In this section, we describe the methodology
of TFE-GNN in detail and theoretically prove its approximation capabilities, including motivations,
TFE-Conv, TFE-GNN, time complexity and scalability and theoretical analysis.

3.1 Motivations

Polynomial-based learnable spectral GNNs (He et al., 2022; Li et al., 2023; Guo & Wei, 2023)
performs well on homophilic and heterophilic graphs, because their graph convolutions are flex-
ible and variable. However, carefully crafted graph learning methods, sophisticated polynomial
approximations, and refined coefficient constraints leaded to overfitting, which diminishes GNNs’
generalization.

Inspired by the following properties of ensemble learning (Schapire, 1990; Hansen & Salamon,
1990; Zhou, 2012): the strong classifier determined by the base classifiers can be more accurate
than any of them if the base classifiers are accurate and diverse; and this strong classifier retains the
characteristics of the base classifier to some extent. First, we combine a set of weak base low-pass
filter to determine a strong low-pass filter that can extract homophily. Then, we use the same method
to extract heterophily. Finally, TFE-Conv is generated by combining the above two strong filters
with two learnable coefficients, which retains the characteristics of both two strong filters, i.e., it can
extract homophily and heterophily from graphs adaptively. TFE-Conv and TFE-GNN are shown in
Figure 1.

3.2 TFE-Conv

We design triple filter ensemble (TFE) mechanism for combining low-pass and high-pass filters to
yield a graph convolution (TFE-Conv), which can match various graph structures adaptively without
carefully crafted graph learning methods, i.e., can extract homophily and heterophily adaptively from
graphs with different homophily level. The first ensemble of TFE is formalized as follows:

TFE1 = EM1{ω0I, ω1Hlp, ω2(Hlp)
2, · · · , ωKlp

(Hlp)
Klp}, (9)

where TFE1 denotes the result of combining a set of base low-pass filters, which is a graph
convolution that can extract homophily while utilizing the initial signals, EM1 denotes the ensemble
method of the first ensemble, EM1{h0, h1, · · · , hK} denotes the combination of elements h0, h1,
· · · , hK with EM1, ω are the learnable coefficients, and Klp is the order of the first ensemble. The
second ensemble is similar to the first ensemble and is formalized as follows:

TFE2 = EM2{ω′
0I, ω

′
1Hhp, ω

′
2(Hhp)

2, · · · , ω′
Khp

(Hhp)
Khp}, (10)

where TFE2 denotes the result of the second ensemble, which can extract heterophily while utilizing
the initial signals, EM2 denotes the ensemble method of the second ensemble, ω′ are the learnable
coefficients, and Klp is the order of the second ensemble. The third ensemble combines TFE1 and
TFE2 with two learnable coefficients ϑ1 and ϑ2:

TFE3 = EM3{ϑ1TFE1, ϑ2TFE2}, (11)
where TFE3 denotes the result of the third ensemble, i.e., TFE-Conv, and EM3 denotes the ensemble
method of the third ensemble. The learnable coefficients ϑ1 and ϑ2 used to combine the two strong
graph convolutions TFE1 and TFE2 guarantee TFE3’s adaptivity.

5

3.3 TFE-GNN

TFE-Conv matches various graph structures adaptively, which facilitates the filtering of the graph
signals (features) X . The filtered signal is fed into an MLP, whose output is then passed through
a softmax layer for obtaining the prediction. This is the forward propagation of TFE-GNN and
is coupled with the cross-entropy loss and the backpropagation mechanism to form the complete
TFE-GNN. The formalization of X being filtered by TFE-Conv is:

Z = TFE3 ·X = EM3{ϑ1TFE1, ϑ2TFE2} ·X = EM3{ϑ1TFE1 ·X,ϑ2TFE2 ·X}, (12)

where TFE1 and TFE2 are the graph convolutions obtained from the first and second ensembles,
respectively, which are similar to TFE3 in that they filter the graphical signal as follows: Zlp =
TFE1 ·X and Zhp = TFE2 ·X . Thus, Equation 12 can be rewritten in the following form:

Z = EM3{ϑ1Zlp, ϑ2Zhp}. (13)

We decouple transformation/prediction and feature propagation (Rong et al., 2020; He et al., 2022)
for TFE-GNN and formalize TFE-GNN used for node classification:

Z̃ = fmlp(Z)

Z∗ = softmax(Z̃)

L = −
∑
r∈YL

Y ⊤
r log(Z∗

r),
(14)

where L denotes the cross-entropy loss, YL denotes the training set with labels, and ⊤ denotes the
vector transpose.

3.4 Time Complexity and Scalability

Similar to some spectral GNNs (He et al., 2022; Li et al., 2023), the triple filter ensemble mechanism
does not influence the time complexity magnitude of the TFE-GNN, i.e., the time complexity of
TFE-GNN is linear to Klp+Khp when EM1, EM2, and EM3 take summation. Specifically, the time
complexity of message propagation is O((Klp+Khp)|E|C), the time complexity of the combination
of Hgf with respectively ω and ω′ (Equations 9 and 10) is O((Klp + Khp)nC), and the time
complexity of the coefficient calculation is not greater than O(Klp +Khp). We report the training
time overhead of the different spectral GNNs in Appendix B.6.

We scale TFE-GNN by exchanging the order of message propagation and feature dimensionality
reduction: Z̃ = EM3{ϑ1Zlp, ϑ2Zhp} = EM3{ϑ1TFE1fmlp(X), ϑ2TFE2fmlp(X)}. We use a
sparse form of the adjacency matrix of large graphs, which greatly reduces the space required for
TFE-GNN. Therefore, TFE-GNN scales well to large graphs and high-dimensional feature spaces.

3.5 Theoretical Analysis

ChebNet has been shown to learn arbitrary filters in theory (Balcilar et al., 2021; He et al., 2022). We
find a connection between TFE-GNN and ChebNet and then analyze the conditions under which they
transform into each other. We prove that TFE-GNN is equal to ChebNet under certain conditions, i.e.,
they have the same approximation ability, so TFE-GNN can also learn arbitrary filters.

Theorem 1. TFE-GNN and ChebNet can be transformed into each other under the following
conditions, (1) learning the proper coefficients ω, ω′, ϑ and ChebNet’ coefficient θ, (2) the ensemble
methods EM1, EM2 and EM3 take summation, the base high-pass filter Hhp takes the symmetric
normalized Laplacian Lsym and the base low-pass filter Hlp takes the affinity (transition) matrix of
Lsym, and (3) Khp = Klp = K − 1. Thus, TFE-GNN can also learn arbitrary filters.

Theorem 1 (proof in Appendix A.1) shows that TFE-GNN matches various graph structures adaptively
while learning arbitrary filters under certain conditions. The proof of Theorem 1 shows that ChebNet
can be unfolded into a combination of high-pass or low-pass filters, or a combination of high-pass
and low-pass. TFE-GNN, on the other hand, is a combination of two different unfoldings of ChebNet.
Condition (1) of Theorem 1 is shown in its proof, the EM1 and EM2 in condition (2) are taken to
summation to correspond to the expansion of the Chebyshev polynomials, while EM3 is an ensemble
method capable of preserving the properties of the model, such as summation and concatenation,
and condition (3) motivates the agreement between the orders of TFE-GNN and ChebNet.

6

Polynomial-based spectral graph GNNs can all be unfolded into combinations of filters, which is
similar to the idea of filter ensemble in TFE-GNN. TFE-GNN is a combination of two polynomial-
based GNNs under certain conditions by displacing its base filters and setting Klp and Khp.

Theorem 2. TFE-GNN can be rewritten in the following form, with certain conditions to be
satisfied, which is a combination of two polynomial-based learnable spectral GNNs: Z∗ =

softmax(fmlp(ϑ1

∑K′

k=0 θ̄
1
kP

1
k (H̄

1
gf)

kX
⊕

ϑ2

∑K′′

k=0 θ̄
2
kP

2
k (H̄

2
gf)

kX)), where Pk denote polyno-
mials used for approximation, θ̄ are the learnable coefficients, H̄gf denote graph filters, and

⊕
denotes EM3. Conditions are (1) learning the proper coefficients ω, ω′, ϑ, θ̄1, and θ̄2, (2) the ensem-
ble methods EM1, EM2 take summation and EM3 takes ensemble method capable of preserving
the properties of the model, such as summation and concatenation, the base high-pass filter Hhp

takes H̄2
gf and the base low-pass filter Hlp takes H̄1

gf , and (3) Klp = K ′ and Khp = K ′′. Thus,
TFE-GNN can match various graph structures adaptively.

The proof of Theorem 2 is reported in Appendix A.1. Theorems 1 and 2 show that polynomial-based
learnable spectral GNNs are able to learn different filters, and thus perform well on both homophilic
and heterophilic graphs. In contrast, fixed-filter GNNs can only filter graph signals based on their
filter forms. TFE-GNN combines different filters directly, preserving the ability of the different filters
while reducing overfitting problem. Theorem 2 also shows that TFE-GNN will perform well on
real-world datasets: it is a reasonable combination of two excellent polynomial-based spectral GNNs.
We discuss the limitations of TFE-GNN in Appendix A.2.

4 Experiments

In this section, we conduct experiments to evaluate the proposed TFE-GNN against the state-of-the-
art (SOTA) GNNs on real-world datasets and conduct ablation study, generalization, visualization
(Appendix B.3), hyper-parameters (Appendix B.5), and time efficiency (Appendix B.6) analysis to
verify TFE-GNN’s excellent.

Datasets and experimental setup. We evaluate TFE-GNN on several real-world datasets for
supervised node classification and chose 11 graphs with various levels of homophily, including
4 citation graphs (Kipf & Welling, 2016) Cora, Citeseer, Pubmed, and Cora-Full (Bojchevski &
Günnemann, 2017), 2 Co-authorship graphs (Shchur et al., 2018) Coauthor CS and Coauthor Physics,
2 Wikipedia graphs (Rozemberczki et al., 2021) Chameleon and Squirrel, and 3 WebKB graphs (Pei
et al., 2020) Texas, Cornell, and Wisconsin. The dataset statistics are summarized in Table 1. In
addition, we choose four additional datasets, i.e. roman-empire (Platonov et al., 2023), amazon-rating
(Platonov et al., 2023), fb100-Penn94 (Lim et al., 2021a) and genius (Lim et al., 2021a), to further
validate the classification performance, generalization and scalability of TFEGNN. Detailed dataset
statistics and experimental results are reported in the Appendix B.1. All experiments are carried out
on the machine with Linux system, two NVIDIA Tesla V100 and twelve Intel(R) Xeon(R) Gold 5220
CPU @2.20GHz.

Table 1: Dataset statistics.

DATASETS CORA CITESEER PUBMED CORA-FULL CS PHYSICS CHAMELEON SQUIRREL WISCONSIN TEXAS CORNELL

NODES 2708 3327 19717 19793 18333 34493 2277 5201 251 183 183
EDGES 10556 9104 88648 62421 81894 247962 36051 216933 466 309 295
FEATURES 1433 3703 500 8710 6805 8415 1703 2089 931 1703 1703
CLASSES 7 6 3 70 15 5 5 5 5 5 5
ehr 0.81 0.74 0.80 0.57 0.81 0.93 0.23 0.22 0.21 0.06 0.30

TFE-GNN Settings. There are many options available for Hlp, Hhp, EM1, EM2, and EM3 in
TFE-GNN, and we choose common and frequently used options for them to make a broad and
fair comparison between TFE-GNN and other SOTA GNNs. Hhp and Hlp take the symmetric
normalized Laplacian Lsym and La

sym respectively. We add self-loops to the graph in practice, so
Lsym = I − D̃−1/2ÃD̃−1/2 and La

sym = D̃−1/2ÃD̃−1/2, where Ã = A+ I , and D̃ii =
∑n

j=0 Ãij .
We use generalized normalization about Lsym to alleviate the overcorrelation issue in spectral GNNs
(Yang et al., 2022; Li et al., 2023) and keep La

sym unchanged, namely Lsym = I − D̃−ηÃD̃−η.
EM1 and EM2 take summation, and EM3 takes summation or concatenation. Thus, TFE-Conv

7

Table 2: Mean accuracy of different models on datasets for full-supervised node classification.

DATASETS CORA CITESEER PUBMED CS PHYSICS

ehr 0.81 0.74 0.80 0.81 0.93
MLP 76.89±0.97 76.52±0.89 86.14±0.25 94.76±0.51 96.52±0.66
GCNS 87.18±1.12 79.85±0.78 86.79±0.31 93.11±0.19 96.66±0.74
ARMA 87.13±0.80 80.04±0.55 86.93±0.24 92.14±0.35 95.11±0.19
APPNP 88.16±0.74 80.47±0.73 88.13±0.33 92.61±0.28 95.81±0.11
CHEBNET 87.32±0.92 79.33±0.57 87.82±0.24 91.63±0.39 94.21±0.26
GPR-GNN 88.54±0.67 80.13±0.84 88.46±0.31 95.67±0.16 96.80±0.08
BERNNET 88.51±0.92 80.08±0.75 88.51±0.39 95.81±0.13 96.81±0.07
CHEBNETII 88.71±0.93 80.53±0.79 88.93±0.29 96.03±0.11 97.23±0.07
SPECFORMER 88.57±1.01 81.49±0.94 89.13±0.35 95.92±0.19 97.44±0.08
EVENNET 87.25±1.42 78.65±0.96 89.52±0.31 94.66±0.23 95.59±0.11
FAVARD 89.35±1.09 81.89±0.63 90.90±0.27 95.77±0.15 97.58±0.08
PCNET 90.02±0.62 81.76±0.78 91.30±0.38 96.33±0.15 97.62±0.08
HALF-HOP 88.73±1.22 80.33±0.66 89.86±0.36 95.13±0.21 95.75±0.13
GCNII 88.46±0.82 79.97±0.65 89.94±0.31 96.58±0.07 97.27±0.12
TWIRLS 88.57±0.91 80.07±0.94 88.87±0.43 95.43±0.04 97.17±0.07
PDE-GCN 88.62±1.03 79.98±0.97 89.92±0.38 95.35±0.19 96.89±0.08
EGNN 87.47±1.33 80.51±0.93 88.74±0.46 95.22±0.20 96.61±0.08
TFE-GNNcon 90.11±1.27 82.39±0.96 90.94±0.29 93.55±1.56 97.62±0.23
TFE-GNNsum 90.73±1.11 82.83±1.24 91.66±0.51 96.96±0.17 98.85±0.13
TFE-GNN\TFE1 89.49±1.30 61.00±1.19 90.80±0.37 96.96±0.17 97.24±0.10
TFE-GNN\TFE2 90.15±1.75 82.83±1.24 91.66±0.51 96.57±0.16 97.19±0.19
TFE-GNNrw+sum 89.57±1.26 81.92±1.14 90.96±0.49 95.70±0.53 97.73±0.16

filters the graph signal X in the following way:

Z =

ϑ1Zlp + ϑ2Zhp = (ϑ1TFE1 + ϑ2TFE2) ·X = (ϑ1

Klp∑
i=0

ωi(Hlp)
i + ϑ2

Khp∑
j=0

ω′
j(Hhp)

j) ·X

ϑ1Zlp∥ϑ2Zhp = (ϑ1TFE1∥ϑ2TFE2) ·X = (ϑ1

Klp∑
i=0

ωi(Hlp)
i∥ϑ2

Khp∑
j=0

ω′
j(Hhp)

j) ·X,

(15)
where ∥ denotes concatenation and has lower arithmetic priority than addition, subtraction, multipli-
cation and division.

4.1 Supervised Node Classification

Setting and baselines. We compare TFE-GNN to a series of SOTA models for full-supervised
node classification on datasets with random splits, including 11 polynomial approximation filter
methods GCNs (Kipf & Welling, 2016), ARMA (Bianchi et al., 2021a), APPNP (Klicpera et al.,
2018), ChebNet (Defferrard et al., 2016), GPR-GNN (Chien et al., 2021), BernNet (He et al.,
2021a), ChebNetII (He et al., 2022), SPECFORMER (Bo et al., 2023a), EvenNet (Lei et al., 2022),
FavardGNN/OptBasisGNN (Guo & Wei, 2023), and PCNet (Li et al., 2023). We also add 5 competi-
tive SOTA models Half-Hop (Azabou et al., 2023), GCNII (Chen et al., 2020), TWIRLS (Yang et al.,
2021), PDE-GCN (Eliasof et al., 2021), and EGNN (Zhou et al., 2021). We randomly split each class
of nodes into 60%, 20%, and 20% as training, validation, and testing sets for full-supervised node
classification and all models share the same ten random splits for a fair comparison.

For TFE-GNN, we set the hidden units to be 64 or 512 (Squirrel, Chaneleon, roman-empire, and
amazon-rating), the number of early stoppings is 200 and the number of epochs is 1000 for all
datasets. We employ the ReLu as an activation function for fmlp. We use the officially released code
for GCNII, GPR-GNN, BernNet, etc and use the Deep Graph Library implementations for other
models, such as GCNs, APPNP, ChebNet, etc. More experimental details of hyper-parameters and
code URLs are listed in Appendix C.

Results. Tables 2 and 3 report the results of the different models on all datasets and gives mean
classification accuracy and standard deviation over ten random splits, where the bolded numbers
indicate the best results, “Favard” denotes FavardGNN/OptBasisGNN, TFE-GNNsum denote that

8

Table 3: Mean accuracy of different models on datasets for full-supervised node classification.

DATASETS CORA-FULL CHAMELEON SQUIRREL WISCONSIN TEXAS CORNELL

ehr 0.57 0.23 0.22 0.21 0.06 0.30
MLP 52.45±0.64 46.59±1.84 31.01±1.18 86.55±2.36 86.81±2.24 84.15±3.05
GCNS 66.04±0.38 60.81±2.95 45.87±0.88 74.19±3.15 76.97±3.97 65.78±4.16
ARMA 63.53±0.66 60.21±1.00 36.27±0.62 87.25±1.63 83.97±3.77 85.62±2.13
APPNP 59.85±0.54 52.15±1.79 35.71±0.78 91.08±1.79 90.64±1.70 91.52±1.81
CHEBNET 58.65±0.74 59.51±1.25 40.81±0.42 84.19±2.58 86.28±2.62 83.91±2.17
GPR-GNN 71.86±0.29 67.49±1.38 50.43±1.89 91.71±1.62 92.91±1.32 91.57±1.96
BERNNET 72.01±0.26 68.53±1.68 51.39±0.92 92.45±1.22 92.62±1.37 92.13±1.64
CHEBNETII 72.11±0.24 71.37±1.01 57.72±0.59 93.72±1.27 93.28±1.47 92.30±1.48
SPECFORMER 71.84±0.26 74.72±0.19 64.64±0.81 92.98±1.84 92.77±2.37 91.86±2.69
EVENNET 70.04±0.47 67.57±1.52 50.36±0.93 93.55±1.68 93.77±1.73 92.13±1.71
FAVARD 72.39±0.34 74.26±0.74 63.62±0.76 93.33±1.95 91.87±3.11 92.06±2.96
PCNET 72.35±0.26 73.55±1.26 63.53±0.26 94.26±1.85 92.78±1.80 93.83±1.91
HALF-HOP 72.55±0.31 62.98±3.35 45.25±1.52 87.59±1.77 85.95±6.42 74.60±6.06
GCNII 66.70±0.85 63.44±0.85 41.96±1.02 85.66±1.95 80.46±5.91 84.26±2.13
TWIRLS 68.88±0.22 50.21±2.97 39.63±1.02 91.53±2.81 91.31±3.36 89.83±2.29
PDE-GCN 71.37±0.35 66.01±1.56 48.73±1.06 92.85±1.67 93.24±2.03 89.73±1.35
EGNN 71.51±0.27 51.55±1.73 35.81±0.91 83.76±1.64 81.34±1.56 82.09±1.16
TFE-GNNcon 74.12±0.40 77.03±1.47 71.47±1.15 96.00±1.73 93.11±4.26 94.26±2.77
TFE-GNNsum 73.60±0.21 77.16±1.41 72.27±1.32 97.38±1.42 94.87±2.66 93.11±2.96
TFE-GNN\TFE1 64.09±0.41 76.63±2.20 57.06±1.03 92.97±1.38 93.44±1.80 93.11±2.96
TFE-GNN\TFE2 73.60±0.21 61.05±2.45 41.91±0.69 81.62±8.40 68.36±7.10 93.11±2.96
TFE-GNNrw+sum 72.81±0.51 69.26±4.84 56.93±1.04 96.00±1.34 93.28±2.69 90.98±3.38

EM3 of TFE-GNN is summation, and TFE-GNNcon denote that EM3 of TFE-GNN is concatenation.
The experimental results are taken from ChebNetII, Half-Hop, SPECFORMER, EvenNet, and
avardGNN/OptBasisGNN, when they report relevant results, and the remaining results are reproduced
by us. Tables 2 and 3 illustrate that ChebNet starts to outperform GCNs when there is more training
data available, which suggests the validity of the Chebyshev approximation. TFE-GNN achieves
new state-of-the-art results on all datasets. TFE-GNN outperforms some SOTA models with similar
results on Cora and Citeseer, including GPR-GNN (Chien et al., 2021), BernNet (He et al., 2021a),
ChebNetII (He et al., 2022) and Half-Hop (Azabou et al., 2023). Notably, TFE-GNN outperforms
ChebNetII on Chameleon and Squirrel by 5.79% and 14.85%, respectively, which amounts to
performance improvements of 8% and 26%. TFE-GNN achieves exciting results on Physics (strong
homophily) and Wisconsin (strong heterophily) for full-supervised node classification, already close
to 100% accuracy. We put the relevant settings and results of TFE-GNN for semi-supervised node
classification in Appendix B.2, due to space limitations.

4.2 Ablation Study

We conduct experiments to investigate the (joint) contributions of TFE-GNN’s components. The
last three rows of Tables 2 and 3 report the results of the ablation experiments. The symbol “TFE-
GNN\TFE1” means ϑ1 = 0 or Klp = 0, “TFE-GNN\TFE2” means ϑ2 = 0 or Khp = 0,
and “TFE-GNNrw+sum” indicates that TFE-GNNsum uses the random walk normalized Laplacian
Lrw = D−1L = I−D−1A as the high-pass graph filter Hhp. Partial ablation experiments yielded the
same results due to the choice of hyperparameters Klp and Khp. We observe that TFE-GNN\TFE1

performs worse under strong homophily, while TFE-GNN\TFE2 performs worse under strong
heterophily. TFE-GNN with all graph filters achieves the best results, which suggests that it can
match various graph structure.

4.3 Generalization Analysis

We verify the generalization of TFE-GNN by analyzing its cross-entropy loss in the training and
validation sets on Cora, and a smaller gap between the two losses indicates a better generalization of
the model (Feng et al., 2020). Figure 2 shows the significant gap between the training and validation
losses for ChebNet, ChebNetII, and PCNet, which indicates a possible overfitting and diminishes
their generalization. The validation loss of TFE-GNN is much closer to its training loss and the early
stopping mechanism allows the model to carry less stable losses. More generalization analyses are
reported in Appendix B.4.

9

0 200 400 600 800 1000
Epochs

0

1

2

Lo
ss

ChebNet

Training Loss
Validation Loss

0 200 400 600 800 1000
Epochs

0

1

2

Lo
ss

GCN

Training Loss
Validation Loss

0 200 400 600 800 1000
Epochs

0

1

2

Lo
ss

BernNet

Training Loss
Validation Loss

0 200 400 600 800 1000
Epochs

0

1

2

Lo
ss

ChebNetII

Training Loss
Validation Loss

0 200 400 600 800 1000
Epochs

0

1

2

Lo
ss

PCNet

Training Loss
Validation Loss

0 200 400 600 800 1000
Epochs

0

1

2

3

4

5

Lo
ss

TFE-GNN

Training Loss
Validation Loss

Figure 2: Generalization on Cora.

4.4 Loss Oscillation Analysis

We try to explain the reason for the oscillation in TFE-GNN’s losses in Figure 2. The learning rate
controls the step size which in turn affects the loss optimization. The large learning rate (= 0.1) is
responsible for the oscillations of the validation loss in Figure 2. Figure 3 shows that the loss is stable
when the learning rate is 0.001. The early stopping mechanism allows TFE-GNN to carry less stable
losses and losses do not fall into unacceptable local minimum.

0 200 400
Epochs

0

1

2

Lo
ss

TFE-GNN

Validation Loss1
Validation Loss2

(a) learning rate 0.1

0 200 400
Epochs

0

1

2

Lo
ss

TFE-GNN

Validation Loss1
Validation Loss2

(b) learning rate 0.001
Figure 3: Verification loss at different learning rates, keeping the rest of the parameters constant. There
are two validation loss curves on each subfigure, and each loss is the average of five experiments.

5 Conclusions

We propose TFE-GNN with triple filter ensembles (TFE) to solve three progressive problems. TFE-
GNN extracts homophily and heterophily from graphs with different homophily levels adaptively
while utilizing the initial features, which motivates it to match various graph structure. We theoreti-
cally prove that TFE-GNN can learn arbitrary filters and is a combination of two polynomial-based
spectral GNNs. Experiments show that TFE-GNN achieves new state-of-the-art performance on
various real-world datasets. In the future, we will dig deeper into ensemble methods of triple filter
ensembles and expect to further improve the performance of TFE-GNN.

10

Acknowledgments and Disclosure of Funding

We would like to thank the School of Computer Science of Guangzhou University and the School
of Telecommunication of Tongji University for their help, including the experimental environment,
office location, and writing guidance. This work was supported in part by the Education Bureau
of Guangzhou Municipality under Grant 2024312243 and in part by the National Natural Science
Foundation of China under Grant 62202507.

References
Azabou, M., Ganesh, V., Thakoor, S., Lin, C.-H., Sathidevi, L., Liu, R., Valko, M., Veličković, P.,

and Dyer, E. L. Half-hop: A graph upsampling approach for slowing down message passing.
International Conference on Machine Learning, pp. 1341–1360, 2023.

Balcilar, M., Guillaume, R., Héroux, P., Gaüzère, B., Adam, S., and Honeine, P. Analyzing
the expressive power of graph neural networks in a spectral perspective. Proceedings of the
International Conference on Learning Representations, 2021.

Bianchi, F. M., Grattarola, D., Livi, L., and Alippi, C. Graph neural networks with convolutional
arma filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(7):3496–3507,
2021a.

Bianchi, F. M., Grattarola, D., Livi, L., and Alippi, C. Graph neural networks with convolutional
arma filters. IEEE transactions on pattern analysis and machine intelligence, 44(7):3496–3507,
2021b.

Bo, D., Wang, X., Shi, C., and Shen, H. Beyond low-frequency information in graph convolutional
networks. Proceedings of the AAAI Conference on Artificial Intelligence, 35(5):3950–3957, 2021.

Bo, D., Shi, C., Wang, L., and Liao, R. Specformer: Spectral graph neural networks meet transformers.
In International Conference on Learning Representations, 2023a.

Bo, D., Wang, X., Liu, Y., Fang, Y., Li, Y., and Shi, C. A survey on spectral graph neural networks.
arXiv preprint arXiv:2302.05631, 2023b.

Bojchevski, A. and Günnemann, S. Deep gaussian embedding of graphs: Unsupervised inductive
learning via ranking. International Conference on Learning Representations, 2017.

Chen, M., Wei, Z., Huang, Z., Ding, B., and Li, Y. Simple and deep graph convolutional networks.
International Conference on Machine Learning, pp. 1725–1735, 2020.

Cheng, D., Yang, F., Xiang, S., and Liu, J. Financial time series forecasting with multi-modality
graph neural network. Pattern Recognition, 121:108218, 2022.

Chien, E., Peng, J., Li, P., and Milenkovic, O. Adaptive universal generalized pagerank graph neural
network. arXiv preprint arXiv:2006.07988, 2020.

Chien, E., Peng, J., Li, P., and Milenkovic, O. Adaptive universal generalized pagerank graph neural
network. International Conference on Learning Representations, 2021.

Defferrard, M., Bresson, X., and Vandergheynst, P. Convolutional neural networks on graphs with
fast localized spectral filtering. Advances in Neural Information Processing Systems, 29, 2016.

Duan, R., Yan, C., Wang, J., and Jiang, C. Path-aware multi-hop graph towards improving graph
learning. Neurocomputing, 494:13–22, 2022.

Duan, R., Yan, C., Wang, J., and Jiang, C. Class-homophilic-based data augmentation for improving
graph neural networks. Knowledge-Based Systems, 269:110518, 2023.

Duan, R., Yan, C., Wang, J., and Jiang, C. Graph ensemble neural network. Information Fusion, 110:
102461, 2024. ISSN 1566-2535.

11

Eliasof, M., Haber, E., and Treister, E. Pde-gcn: Novel architectures for graph neural networks
motivated by partial differential equations. Advances in Neural Information Processing Systems,
34:3836–3849, 2021.

Feng, W., Zhang, J., Dong, Y., Han, Y., Luan, H., Xu, Q., Yang, Q., Kharlamov, E., and Tang, J.
Graph random neural network for semi-supervised learning on graphs. NeurIPS, 2020.

Guang, M., Yan, C., Xu, Y., Wang, J., and Jiang, C. A multichannel convolutional decoding network
for graph classification. IEEE Transactions on Neural Networks and Learning Systems, pp. 1–11,
2023. doi: 10.1109/TNNLS.2023.3266243.

Guang, M., Yan, C., Xu, Y., Wang, J., and Jiang, C. Graph convolutional networks with adaptive
neighborhood awareness. IEEE Transactions on Pattern Analysis and Machine Intelligence, pp.
1–13, 2024. doi: 10.1109/TPAMI.2024.3391356.

Guo, J., Huang, K., Yi, X., and Zhang, R. Graph neural networks with diverse spectral filtering. pp.
306–316, 2023.

Guo, Y. T. and Wei, Z. Graph neural networks with learnable and optimal polynomial bases.
International Conference on Machine Learning, 2023.

Hansen, L. K. and Salamon, P. Neural network ensembles. IEEE transactions on pattern analysis
and machine intelligence, 12(10):993–1001, 1990.

He, M., Wei, Z., Xu, H., et al. Bernnet: Learning arbitrary graph spectral filters via bernstein
approximation. Advances in Neural Information Processing Systems, 34:14239–14251, 2021a.

He, M., Wei, Z., Xu, H., et al. Bernnet: Learning arbitrary graph spectral filters via bernstein
approximation. Advances in Neural Information Processing Systems, 34:14239–14251, 2021b.

He, M., Wei, Z., and Wen, J.-R. Convolutional neural networks on graphs with chebyshev ap-
proximation, revisited. Advances in Neural Information Processing Systems, 35:7264–7276,
2022.

Huang, C., Wang, Y., Jiang, Y., Li, M., Huang, X., Wang, S., Pan, S., and Zhou, C. Flow2gnn:
Flexible two-way flow message passing for enhancing gnns beyond homophily. IEEE Transactions
on Cybernetics, 2024a.

Huang, K., Wang, Y. G., Li, M., et al. How universal polynomial bases enhance spectral graph neural
networks: Heterophily, over-smoothing, and over-squashing. ICML, 2024b.

Kipf, T. N. and Welling, M. Semi-supervised classification with graph convolutional networks.
International Conference on Learning Representations, 2016.

Klicpera, J., Bojchevski, A., and Günnemann, S. Predict then propagate: Graph neural networks
meet personalized pagerank. International Conference on Machine Learning, 2018.

Lei, R., Wang, Z., Li, Y., Ding, B., and Wei, Z. Evennet: Ignoring odd-hop neighbors improves
robustness of graph neural networks. In Advances in Neural Information Processing Systems,
volume 35, pp. 4694–4706, 2022.

Levie, R., Monti, F., Bresson, X., and Bronstein, M. M. Cayleynets: Graph convolutional neural
networks with complex rational spectral filters. IEEE Transactions on Signal Processing, 67(1):
97–109, 2018.

Li, B., Pan, E., and Kang, Z. Pc-conv: Unifying homophily and heterophily with two-fold filtering.
arXiv preprint arXiv:2312.14438, 2023.

Li, J., Zheng, R., Feng, H., Li, M., and Zhuang, X. Permutation equivariant graph framelets for
heterophilous graph learning. IEEE Transactions on Neural Networks and Learning Systems, 2024.

Lim, D., Hohne, F., Li, X., Huang, S. L., Gupta, V., Bhalerao, O., and Lim, S. N. Large scale learning
on non-homophilous graphs: New benchmarks and strong simple methods. Advances in Neural
Information Processing Systems, 34:20887–20902, 2021a.

12

Lim, D., Li, X., Hohne, F., and Lim, S.-N. New benchmarks for learning on non-homophilous graphs.
arXiv preprint arXiv:2104.01404, 2021b.

Luan, S., Zhao, M., Hua, C., Chang, X.-W., and Precup, D. Complete the missing half: Augmenting
aggregation filtering with diversification for graph convolutional neural networks. arXiv preprint
arXiv:2212.10822, 2022.

Narang, S. K., Gadde, A., and Ortega, A. Signal processing techniques for interpolation in graph
structured data. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing,
pp. 5445–5449, 2013.

Pei, H., Wei, B., Chang, K. C.-C., Lei, Y., and Yang, B. Geom-gcn: Geometric graph convolutional
networks. International Conference on Machine Learning, 2020.

Platonov, O., Kuznedelev, D., Diskin, M., Babenko, A., and Prokhorenkova, L. A critical look at the
evaluation of gnns under heterophily: Are we really making progress? ICLR, 2023.

Rong, Y., Huang, W., Xu, T., and Huang, J. Dropedge: Towards deep graph convolutional networks
on node classification. International Conference on Learning Representations, 2020.

Rozemberczki, B., Allen, C., and Sarkar, R. Multi-scale attributed node embedding. Journal of
Complex Networks, 9(2):cnab014, 2021.

Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., and Tarantola, S. Variance based
sensitivity analysis of model output. design and estimator for the total sensitivity index. Computer
Physics Communications, 181(2):259–270, 2010.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. The graph neural network
model. IEEE Transactions on Neural Networks and Learning Systems, 20(1):61–80, 2008.

Schapire, R. E. The strength of weak learnability. Machine learning, 5(2):197–227, 1990.

Shchur, O., Mumme, M., Bojchevski, A., and Günnemann, S. Pitfalls of graph neural network
evaluation. arXiv preprint arXiv:1811.05868, 2018.

Shirzad, H., Velingker, A., Venkatachalam, B., Sutherland, D. J., and Sinop, A. K. Exphormer:
Sparse transformers for graphs. International Conference on Machine Learning, 2023.

Tang, J., Sun, J., Wang, C., and Yang, Z. Social influence analysis in large-scale networks. Proceed-
ings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 807–816, 2009.

Tao, Q., Wang, Z., Yu, W., Li, Y., and Wei, Z. Lon-gnn: Spectral gnns with learnable orthonormal
basis. ArXiv, 2023.

Traud, A. L., Mucha, P. J., and Porter, M. A. Social structure of facebook networks. Physica A:
Statistical Mechanics and its Applications, 391(16):4165–4180, 2012.

Wang, M. Y. Deep graph library: Towards efficient and scalable deep learning on graphs. International
Conference on Learning Representations Workshop on representation learning on graphs and
manifolds, 2019.

Weston, J., Ratle, F., Mobahi, H., and Collobert, R. Deep learning via semi-supervised embedding.
pp. 639–655. Springer, 2012.

Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., and Weinberger, K. Simplifying graph convolutional
networks. International Conference on Machine Learning, pp. 6861–6871, 2019.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful are graph neural networks? International
Conference on Learning Representations, 2019.

Xu, Y., Wang, J., Guang, M., Yan, C., and Jiang, C. Multistructure graph classification method with
attention-based pooling. IEEE Transactions on Computational Social Systems, 10(2):602–613,
2022.

13

Xu, Y., Wang, J., Guang, M., Yan, C., and Jiang, C. Graph contrastive learning with min-max mutual
information. Information Sciences, pp. 120378, 2024.

Yang, M., Shen, Y., Li, R., Qi, H., Zhang, Q., and Yin, B. A new perspective on the effects of spectrum
in graph neural networks. In International Conference on Machine Learning, pp. 25261–25279.
PMLR, 2022.

Yang, M., Feng, W., Shen, Y., and Hooi, B. Towards better graph representation learning with
parameterized decomposition & filtering. International Conference on Machine Learning, 202:
39234–39251, 23–29 Jul 2023.

Yang, Y., Liu, T., Wang, Y., Zhou, J., Gan, Q., Wei, Z., Zhang, Z., Huang, Z., and Wipf, D. Graph
neural networks inspired by classical iterative algorithms. International Conference on Learning
Representations, 139:11773–11783, 18–24 Jul 2021.

Zeng, Z., Peng, Q., Mou, X., Wang, Y., and Li, R. Graph neural networks with high-order polynomial
spectral filters. IEEE Transactions on Neural Networks and Learning Systems, 2023.

Zhou, K., Huang, X., Zha, D., Chen, R., Li, L., Choi, S.-H., and Hu, X. Dirichlet energy constrained
learning for deep graph neural networks. Advances in Neural Information Processing Systems, 34:
21834–21846, 2021.

Zhou, Z.-H. Ensemble methods: foundations and algorithms. 2012.

Zhu, H. and Koniusz, P. Simple spectral graph convolution. International Conference on Learning
Representations, 2020.

Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., and Koutra, D. Beyond homophily in graph
neural networks: Current limitations and effective designs. Advances in Neural Information
Processing Systems, 2020.

14

A Proofs and Limitations

A.1 Proofs of Theorems 1 and 2

Theorem 1. TFE-GNN and ChebNet can be transformed into each other under the following
conditions, (1) learning the proper coefficients ω, ω′, ϑ and ChebNet’ coefficient θ, (2) the ensemble
methods EM1, EM2 and EM3 take summation, the base high-pass filter Hhp takes the symmetric
normalized Laplacian Lsym and the base low-pass filter Hlp takes the affinity (transition) matrix of
Lsym, and (3) Khp = Klp = K − 1. Thus, TFE-GNN can also learn arbitrary filters.

proof: We first prove that ChebNet can be transformed into TFE-GNN under conditions (1), (2),
and (3). Instead of ChebNet, we use its excellent version Chebyshev basis (Equation 7). We change
Equation 7 to the following form that does not affect approximation ability:

Ŷ = softmax(fmlp(

K∑
k=0

θkTk(L̃)X)). (16)

Equation 16 can be rewritten in the form of equal approximation ability using the learnable parameters
(constants) ϑ1 and ϑ2:

Ŷ = softmax(fmlp(ϑ1

K∑
k=0

θkTk(L̃)X + ϑ2

K∑
k=0

θkTk(L̃)X)) = softmax(fmlp(ϑ1Ỹ + ϑ2Ỹ)).

(17)
We parse and reconstruct the key parts of Equation 17 by unfolding and integrating technologies,
i.e., analyzing

∑K
k=0 θkTk(L̃)X = Ỹ . We get the follow equation by unfolding the summation and

Chebyshev polynomial T (k)(L̃):

Ỹ = (θ0T0(L̃) + θ1T1(L̃) + · · ·+ θK−1TK−1(L̃))X

= (θ0I + θ1L̃+ θ2(2L̃− I) + · · ·+ θK−1(2L̃(TK−2(L̃))− TK−3(L̃)))X,
(18)

where T0(L̃) = I , T1(L̃) = L̃, T2(L̃) = 2L̃2 − I , and so on. Equation 18 can be viewed as a
(K − 1)-th order polynomial of Ỹ with respect to L̃. We then integrate the coefficients of different
orders L̃ in Equation 18:

Ỹ = ((θ0 − θ2 + θ4 − θ6 + · · ·)I + · · ·+ θK−12
K−2L̃K−1)X

= (θ′0I + θ′1L̃+ · · ·+ θ′K−1L̃
K−1)X,

(19)

where the first coefficient of the polynomial θ′0 = (θ0 − θ2 + θ4 − θ6 + · · ·) in Equation 19, the
coefficient of the highest order θ′K−1 = θK−12

K−2, and so on. We can calculate the relationship
between coefficients θ′k and θk(0 < k < K − 1) based on the generalized form of the Chebyshev
polynomials.

TK(x) =

⌊n/2⌋∑
k=0

[(−1)k
⌊n/2⌋∑
j=k

(
n
2j

)(
j
k

)
]xK−2k, (20)

where ⌊n/2⌋ denotes downward rounding, and
(
n
2j

)
denotes combinatorial numbers. We get the

connection between Ŷ1 and Zhp according to the given conditions (1), (2), and (3):

Ỹ = (ω′
0I + ω′

1(Hhp)
1 + · · ·+ ω′

Khp
(Hhp)

Khp)X = TFE2 ·X = Zhp, (21)

where the conversion of the coefficients θ′ to ω′ are realized through equation L̃ = 2Lsym/λmax − I .
We continue to unfold Equation 19:

Ỹ = (θ′0I + θ′1(
2L

λmax
− I) + · · ·+ θ′K−1(

2L

λmax
− I)K−1)X

= (θ′0I + θ′1(
2− λmax

λmax
I − 2

λmax
(D− 1

2AD− 1
2)) + · · ·+

θ′K−1(
2− λmax

λmax
I − 2

λmax
(D− 1

2AD− 1
2))K−1)X

= (θ′′0 I + θ′′1 (D
− 1

2AD− 1
2) + · · ·+ θ′′K−1(D

− 1
2AD− 1

2)K−1)X,

(22)

15

where θ′′0 = θ′0 +
2−λmax

λmax
θ′1 + · · · + (2−λmax

λmax
)K−1θ′K−1, and θ′′K−1 = (2

λmax
)K−1θ′K−1. We get

the connection between Ỹ and Zlp according to the given conditions (1), (2), and (3):

Ỹ = (θ′′0 I + θ′′1 (Hlp) + · · ·+ θ′′K−1(Hlp)X

= (ω0I + ω1(Hlp)
1 + · · ·+ ωKlp

(Hhp)
Khp)X = TFE1 ·X = Zlp,

(23)

where ω = θ′′. We get a new conclusion about Ŷ :

Ŷ = softmax(fmlp(ϑ1Zlp + ϑ2Zhp)) = softmax(fmlp(Z)) = softmax(Z̃) = Z∗. (24)

ChebNet and its excellent version Chebyshev basis are essentially the same (Defferrard et al., 2016),
except that Chebyshev basis implements the decoupling (He et al., 2022). Therefore, we proved that
ChebNet can be transformed into TFE-GNN under conditions (1), (2), and (3), and vice versa.

Theorem 2. TFE-GNN can be rewritten in the following form, with certain conditions to be
satisfied, which is a combination of two polynomial-based learnable spectral GNNs: Z∗ =

softmax(fmlp(ϑ1

∑K′

k=0 θ̄
1
kP

1
k (H̄

1
gf)

kX
⊕

ϑ2

∑K′′

k=0 θ̄
2
kP

2
k (H̄

2
gf)

kX)), where Pk denote polyno-
mials used for approximation, θ̄ are the learnable coefficients, H̄gf denote graph filters, and

⊕
denotes EM3. Conditions are (1) learning the proper coefficients ω, ω′, ϑ, θ̄1, and θ̄2, (2) the ensem-
ble methods EM1, EM2 take summation and EM3 takes ensemble method capable of preserving
the properties of the model, such as summation and concatenation, the base high-pass filter Hhp

takes H̄2
gf and the base low-pass filter Hlp takes H̄1

gf , and (3) Klp = K ′ and Khp = K ′′. Thus,
TFE-GNN can match various graph structures adaptively.

proof : The proof of Theorem 2 is similar to that of Theorem 1. First, we unfold the polynomials
P 1
k and P 2

k in Z∗ to get a combination of K ′-th order polynomial with respect to H̄1
gf and K ′′-th

order polynomial with respect to H̄2
gf , which is similar to Equation 18. Pk can be the Chebyshev,

Bernstein, even, Possion-Charlier polynomials in ChebNet (Defferrard et al., 2016), BernNet (He
et al., 2021a), EvenNet (Lei et al., 2022), PCNet (Li et al., 2023), and so on. We then sum their
coefficients using (H̄1

gf)
k(k ∈ [0,K ′]) and (H̄2

gf)
k(k ∈ [0,K ′′]) as variables respectively, which

is similar to Equations 19 and 22. Finally, we replace θ̄1 and θ̄2 with ω and ω′, which is similar to
Equations 21 and 23. Therefore, TFE-GNN is a combination of two polynomial-based learnable
spectral GNNs. Theorems 1 and 2 state that TFE-GNN can learn any filter and matches various graph
structure and extracts homophily and heterophily from graphs adaptively.

Table 4: Mean classification accuracy of models at different Hlp and Hhp.

DATASETS (Hlp , Hhp)

(5, 0) (0, 5) (5, 5) (10, 10)
CITESEER 82.36±1.35 77.89±1.03 82.32±1.00 81.68±1.41

WISCONSIN 96.38±2.20 94.88±2.05 95.75±2.81 96.00±2.49

A.2 Limitations

We design triple filter ensembles to generate a TFE-Conv, which can match various graph structures
and extract the initial information, homophily and heterophily adaptively. The learnable coefficients
ϑ1 and ϑ2 and customized hyperparameters Klp and Khp enhance the performance of TFE-GNN
while creating some limitations. In particular, Klp and Khp rely on one’s experience, and it is solved
by selecting the appropriate Klp and Khp according to the homophily level of datasets. For example,
we choose a larger Klp for datasets with strong homophily while choosing a larger Khp for datasets
with strong heterophily. However, the real-world dataset cannot determine its homophily level due to
the presence of unlabeled nodes. We are able to determine its approximate homophily level based on
training set labels or dataset knowledge, which may be in error.

It is conceivable that there are other limitations of the TFE-GNN, such as the choice of the base
filter, which affect the performance of the model. In fact, none of Klp, Khp, Hlp and Hhp is
fatally weakening the performance of TFE-GNN, as long as we make a suitable choice based on the
general phenomenon of polynomial-based spectral GNNs. For example, Hhp taking the symmetric
normalized Laplacian Lsym or the random walk normalized Laplacian Lrw, Hhp taking their affinity

16

(transition) matrix La
sym or La

rw, Klp and Khp taking the interval [1,10]. Table 4 show mean
classification accuracy of TFE-GNN (Hhp taking Lsym) at different Hlp and Hhp, where n1 and n2

in (n1, n2) are the values of Hlp and Hhp, respectively.

Table 5: Mean classification accuracy of different models for semi-supervised node classification.
DATASETS CORA CITESEER PUBMED WISCONSIN TEXAS CORNELL

MLP 58.88±0.62 56.97±0.54 73.15±0.28 47.09±4.25 45.03±2.45 46.18±5.10
GCNS 81.32±0.18 71.77±0.21 79.15±0.18 35.34±3.72 32.42±2.23 35.57±3.55
ARMA 83.15±0.54 71.31±0.36 78.75±0.14 45.81±3.46 47.84±3.35 30.89±4.23
APPNP 83.52±0.24 72.09±0.25 80.23±0.15 47.31±3.05 46.31±3.01 45.73±4.85
CHEBNET 80.54±0.38 70.35±0.33 75.52±0.75 28.62±4.28 28.55±3.28 25.54±3.42
GPR-GNN 83.95±0.22 70.92±0.57 78.97±0.27 45.91±4.12 45.76±3.78 43.42±4.95
BERNNET 82.15±0.32 72.24±0.25 79.65±0.25 49.93±3.15 48.31±3.17 46.64±5.62
CHEBNETII 83.67±0.33 72.75±0.16 80.48±0.23 53.16±3.17 54.68±3.87 50.92±5.49
EVENNET 82.85±0.32 72.57±0.42 79.36±0.31 54.55±2.68 53.77±3.73 50.64±5.71
FAVARD 83.61±0.30 73.16±0.24 80.52±0.26 54.13±2.95 55.23±3.41 51.43±4.96
TFE-GNNcon 83.62±0.39 72.77±0.64 80.41±0.49 63.12±4.91 64.34±3.03 57.92±2.32
TFE-GNNsum 84.11±0.20 74.53±0.25 80.78±0.21 58.71±2.97 67.24±1.19 58.21±4.27
TFE-GNNrw+sum 83.13±0.62 74.91±0.22 79.73±0.48 43.33±3.25 61.27±2.57 55.66±4.22

B More Experimental Results

B.1 Additional experiments

Datasets and Setting. We illustrate the generalization and scalability of TFE-GNN with more
intuitive experiments. We select four new datasets (Platonov et al., 2023; Lim et al., 2021a) and
conduct relevant experiments to further explain why TFE-GNN has better generalization, including
roman-empire, amazon-rating, and two large graphs (Lim et al., 2021a) fb100-Penn94 and genius,
whose edge homophily are 0.05, 0.38, 0.47, and 0.62, respectively. Experimental results show that
TFE-GNN achieves competitive performance on these datasets with results of 75.87%, 52.21%,
84.76% and 89.32%, respectively. TFE-GNN achieves competitive rankings on all datasets, with the
best performance on fb100-Penn94, outperforming most spectral GNNs on roman-empire, and topping
the rest of the datasets. These additional experimental results further validate the generalization
ability of TFE-GNN on both homophilic and heterophilic datasets: TFE-GNN can generalize well
on graphs with different edge homophily levels. Dataset statistics are reported in Table 6 and the
hyperparameters are reported in Table 7. Note that we use the same dataset splits as in the article
(Platonov et al., 2023; Lim et al., 2021a).

B.2 Semi-supervised node classification

Setting and baselines. We compare TFE-GNN to a series of SOTA models for semi-supervised
node classification on real-world datasets, including GCNs (Kipf & Welling, 2016), ARMA (Bianchi
et al., 2021a), APPNP (Klicpera et al., 2018), ChebNet (Defferrard et al., 2016), GPR-GNN (Chien
et al., 2021), BernNet (He et al., 2021a), ChebNetII (He et al., 2022), EvenNet (Lei et al., 2022),
and FavardGNN/OptBasisGNN (Guo & Wei, 2023). We employ the standard and popular train-
ing/validation/testing split method (Kipf & Welling, 2016; Klicpera et al., 2018) on three citation
networks for semi-supervised node classification, i.e., Cora, Citeseer, and Pubemd, with 20 nodes
per class for training, 500 and 1,000 nodes for validation and testing. We split each class of nodes
into 2.5%, 2.5%, and 95% as training, validation, and testing sets for other datasets and all models
share the same ten random splits for a fair comparison. The seed used for dataset splitting is 42 or
1941488137 (He et al., 2022).

Results. Table 5 reports the results of the different models on all datasets for semi-supervised node
classification and gives mean classification accuracy and standard deviation over ten foxed splits. Ta-
ble 5 shows that TFE-GNN achieves state-of-the-art performance on 6 datasets, where TFE-GNNcon

and TFE-GNNrw+sum also show strong competitiveness, which is similar to the experimental results
of full-supervised node classification. TFE-GNN outperforms FavardGNN/OptBasisGNN (Guo &
Wei, 2023) on Wisconsin, Texas, and Corenell (strong heterophily) by 8.99%, 12.01%, and 6.78%,
respectively, which amounts to performance improvements of 17%, 22%, and 13%.

17

Table 6: Additional dataset statistics.

DATASETS ROMAN-EMPIRE AMAZON-RATING FB100-PENN94 GENIUS

NODES 22662 24492 41554 421961
EDGES 32927 93050 1362229 984979
FEATURES 300 300 5 12
CLASSES 18 5 2 2
ehr 0.05 0.38 0.47 0.62

Table 7: The hyper-parameters of TFE-GNN for additional datasets.

DATASETS ROMAN-EMPIRE AMAZON-RATING FB100-PENN94 GENIUS

optim ADAM RMSPROP ADAMW ADAMW
Klp 4 0 7 8
Khp 1 9 0 6
droppro 0.0 0.4 0.9 0.0
droplin 0.3 0.8 0.5 0.9
η 0.4 0.5 0.5 0.4
lrada 0.5 0.5 0.01 0.05
wdada 0.05 0.0005 0.0005 0.0
lradae 0.05 0.05 0.01 0.005
wdadae 0.1 0.05 0.0 0.0
lrlin 0.05 0.005 0.01 0.005
wdlin 0.0005 0.005 0.1 0.05

B.3 Visualization Analysis

The t-SNE visualization in Figure 4 demonstrates that the graph convolution TFE1(b) can extract
meaningful patterns on Citeseer (strong homophily), which the graph convolution TFE2(c) is not
able to capture. The t-SNE visualization in Figure 5 demonstrates that TFE2 is better than TFE1 at
extracting the information used for categorization on Squirrel (strong heterophily). The output of
TFE-GNN(d) shows clearer boundaries among classes (colors) than that of TFE1 and TFE2. These
visualization findings validate the competitiveness of TFE-GNN and echo its leading performance on
node classification.

(a) Input Features (b) TFE1 Outputs (c) TFE2 Outputs (d) TFE-GNN Outputs

Figure 4: Visualization of different models on Citeseer, which uses a dimensionality reduction method
t-SNE with 1000 iterations.

B.4 Complementary Generalization Analysis

We add some experiments to analyze TFE-GNN’s generalization. These newly designed generaliza-
tion experiments use the early stopping mechanism, i.e., no longer train for 1000 epochs as fixed as in
Figure 2. Figure 6 reports the results for ChebNet(a), GCN(b), BernNet(c), ChebNetII(d), PCNet(e)
and TFE-GNN(f), and a smaller gap between the two losses indicates a better generalization of the
model. As in Figure 2, the gap between the training and validation losses for GCN(b) is less than
ChebNet(a) and ChebNetII(c) and larger than TFE-GNN(f). We can observe that the validation loss

18

(a) Input Features (b) TFE1 Outputs (c) TFE2 Outputs (d) TFE-GNN Outputs

Figure 5: Visualization of different models on Squirrel, which uses a dimensionality reduction method
t-SNE with 1000 iterations.

of TFE-GNN(f) is much closer to its training loss in the six subplots of Figure 6, although its losses
are more volatile. This observation demonstrates that TFE-GNN’s generalization is best when it
achieves state-of-the-art classification performance because the early stopping mechanism allows
TFE-GNN to carry less stable losses.

0 200
Epochs

0

1

2

Lo
ss

ChebNet

Training Loss
Validation Loss

0 200 400 600 800 1000
Epochs

0

1

2

Lo
ss

GCN

Training Loss
Validation Loss

0 200 400
Epochs

0

1

2

Lo
ss

BernNet

Training Loss
Validation Loss

0 200 400
Epochs

0

1

2

Lo
ss

ChebNetII

Training Loss
Validation Loss

0 200 400
Epochs

0

1

2

Lo
ss

PCNet

Training Loss
Validation Loss

0 200 400
Epochs

0

1

2

3

4

5

Lo
ss

TFE-GNN

Training Loss
Validation Loss

Figure 6: Generalization of models on Cora.

B.5 Hyper-parameters Analysis

TFE-GNN yields two hyper-parameters Klp and Khp in addition to those associated with the neural
network, since we parameterize ω, ω′, and ϑ as learnable coefficients. We conduct 200 experiments
to obtain the interactions between Klp and Khp and the objective values corresponding to model
accuracy. We draw their contour plots on Cora and Chameleon. Figure 7 shows parametric contour,
where the horizontal coordinate “hop1” denotes the hyper-parameter Klp and the vertical coordinate
“hop2” denotes the hyper-parameter Khp. The parametric contour in Figure 7 demonstrates that
there is a difference in the distributions of the objective values (model accuracy) on Cora(a) and
Chameleon(b), i.e., there is a large difference in the influence of “hop1” and “hop2” on homophily
and heterophily graphs.

B.6 Time Efficiency Analysis

We conduct time efficiency experiments to count training times for ChebNet (Defferrard et al., 2016),
BernNet (He et al., 2021a), ChebNetII (He et al., 2022) and TFE-GNN. All experiments are carried
out on the machine with Linux system, two NVIDIA Tesla V100 and twelve Intel(R) Xeon(R) Gold

19

2 3 4 5 6 7 8 9 10
hop1

2

3

4

5

6

7

8

9

10

ho
p2

Contour Plot

10

20

30

40

50

60

70

80

90

Ob
je

ct
iv

e
Va

lu
e

(a) Cora

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
hop1

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

ho
p2

Contour Plot

20

28

36

44

52

60

68

76

Ob
je

ct
iv

e
Va

lu
e

(b) Chameleon

Figure 7: Parametric contours of Cora and Chameleon.

5220 CPU @2.20GHz. Table 8 shows the results of time efficient experiments on Cora, where
TFE-GNN_zero indicates that Klp or Khp has and only a value of 0, TFE-GNN_ten indicates that
hyper-parameter Klp or Khp has and only a value of 10, the other hyper-parameter has the value K
and TFE-GNN_all indicates that Klp and Khp have the same value K. We take the average of the
times of ten training (100 epochs each) as time overheads (unit: second).

The columns in Table 8 imply the change in model-invariant training time as K increases, and the
rows imply the change in K-invariant training time as the model varies. Table 8 shows the variation
in training time and the comparison between the different models. We observe that the training time
of TFE-GNN is significantly smaller than that of ChebNetII when the value of K is relatively large.
Although BernNet and ChebNetII start with a low training time, they quickly catch up and surpass
the other models as K increases. Therefore, TFE-GNN has a clear advantage when a larger receptive
field (K) is required.

Table 8: Time overheads (s) on Cora.

CHEBNET BERNNET CHEBNETII TFE-GNN_ZERO TFE-GNN_TEN TFE-GNN_ALL

K=10 10.88 1.89 3.27 3.03 5.60 5.60
K=20 13.34 5.16 9.75 5.67 8.12 10.98
K=40 22.30 17.19 35.77 10.85 13.44 21.82
K=60 35.94 36.48 79.52 16.02 18.57 31.62
K=80 56.38 64.28 137.60 21.07 23.89 42.00
K=100 80.74 98.76 211.36 26.32 29.16 52.27

B.7 TFE-GNN Versus Other GNNs with Similar Paradigms

TFE-GNN is more suitable for full-supervised node classification than semi-supervised node classifi-
cation. The key technical differences: TFE-GNN is free from polynomial computation, coefficient
constraints, and specific scenarios, compared to polynomial-based spectral GNNs and heterophily-
specific Models (Platonov et al., 2023), such as ChebNetII (He et al., 2022) and PCNet (Li et al.,
2023). We also describe the differences between TFE-GNN and several other methods (Li et al.,
2024; Huang et al., 2024b,a).

PEGFAN (Li et al., 2024) sets up three optional feature matrices for the homophilic and heterophilic
graphs, respectively, and performs a concatenation operation for the selected feature matrices. PEG-
FAN performs row normalization on the feature matrices that message passing and dimensionality-
reducing outputs, and adds a new linear layer before softmax after the activation function ReLU .
These components increase network complexity of PEGFAN, whereas TFE-GNN is more concise
and requires less space.

UniFilter (Huang et al., 2024b) establishes a link between the estimated graph homophily rate ĥ

and the propagation matrix P by θ = π/2(1− ĥ), and forms heterophily bases u0, u1, . . . , uK and

20

the rotation matrix Pθ, in which learn coefficient w discloses the significance of each frequency
component in graph. The performance of UniFilter is affected by the ĥ estimated from the training
data labels, which seems to require that the training data label distribution is similar to the graph true
global label distribution. The difference between TFE-GNN and UniFilter is that TFE-GNN rarely
relies on such priori knowledge and conditions, which ensures its better adaptability and classification
performance.

Flow2GNN (Huang et al., 2024a) is an interesting and novel attempt, which decomposes the original
adjacency matrix into two matrices via a random binary matrix G(l) with elements that follow the
Bernoulli distribution. Information flows within the nodes in two respective disentangled graphs with
reduced heterophily, and then adaptively aggregates them with the strength estimation vector p(l)i
of information flow. TFE-GNN combines the well-performing and well-tested graph filters, while
Flow2GNN is highly dependent on G(l) and p

(l)
i .

C More Experimental Details

Hyper-parameters. We provide more experimental details for reproducing the experiments. Table 9
shows the hyper-parameters of TFE-GNN on datasets for full-supervised node classification. Table
10 shows the hyper-parameters of TFE-GNN on datasets for semi-supervised node classification. The
symbol optim denotes the optimizer, Klp denotes the order of the low-pass graph filter, Khp denotes
the order of the high-pass graph filter, droppro denotes the dropout rate of input features, droplin
denotes the dropout rate of intermediate features, lrada denotes the learning rate of the learnable
coefficients ω and ω′, wdada denotes the weight decay of ω and ω′, lradae denotes the learning rate
of ϑ, wdadae denotes the weight decay of ϑ, lrlin denotes the learning rate of MLP fmlp, and wdlin
denotes the weight decay of fmlp.

Note that different DGL and PyTorch versions can affect model performance, and that fine-tuning
of parameters, including but not limited to hyperparameters and seeds, may be required in order to
reproduce the effect in this paper. For datasets roman-empire, amazon-rating, fb100-Penn94 and
genius, this paper uses DGL 0.5.2 and PyTorch 1.5.1, and for other datasets, this paper uses DGL
0.9.0 and PyTorch 1.12.1.

Baseline implementations. We use the officially released code for GCNII, TWIRLS, GPR-GNN,
BernNet, ChebNetII, H2GCN, Haf-Hop, ARMA, EGNN, PDE-GCN, SPECFORMER, EvenNet,
FavardGNN/OptBasisGNN,and PCNet. And we use the Deep Graph Library implementations for
other models, such as GCNs, APPNP, ChebNet, etc. We did not spend a lot of time tuning parameters
for these models. The code URLs are as follows.

Table 9: The hyper-parameters of TFE-GNN for full-supervised node classification.

DATASETS CORA CITESEER PUBMED CS CORA-FULL PHYSICS CHAMELEON SQUIRREL WISCONSIN TEXAS CORNELL

optim RMSPROP RMSPROP ADAM RMSPROP RMSPROP RMSPROP ADAM ADAM RMSPROP RMSPROP RMSPROP
Klp 10 6 6 0 6 6 6 6 9 1 0
Khp 2 0 0 3 0 1 8 5 7 1 0
droppro 0.5 0.4 0.2 0.4 0.2 0.2 0.4 0.6 0 0.1 0.3
droplin 0.3 0.5 0.0 0.5 0.5 0.5 0.3 0.0 0.7 0.4 0.3
η 0.5 0.5 0.5 0.5 0.5 0.5 0.3 0.3 0.4 0.3 0.3
lrada 0.001 0.01 0.01 0.01 0.01 0.01 0.01 0.1 0.05 0.005 0.005
wdada 0.5 0.5 0.05 0.1 0.0 0.0 0.1 0.05 0.0005 0.01 0.05
lradae 0.1 0.005 0.01 0.05 0.0 0.0 0.0 0.0 0.001 0.01 0.0
wdadae 0.05 0.1 0 0.05 0.0 0.0 0.0 0.0 0.5 0.0005 0.0
lrlin 0.1 0.05 0.1 0.01 0.001 0.001 0.001 0.005 0.05 0.01 0.01
wdlin 0.0005 0.0005 0.0005 0.0005 0.01 0.01 0.0005 0.0 0.0005 0.0005 0.005

Deep Graph Library: https://docs.dgl.ai/en/0.6.x/guide/index.html

GCNII: https://github.com/chennnM/GCNII

GPR-GNN: https://github.com/jianhao2016/GPRGNN

BernNet: https://github.com/ivam-he/BernNet

ChebNetII: https://github.com/ivam-he/ChebNetII

H2GCN: https://github.com/GemsLab/H2GCN

21

https://docs.dgl.ai/en/0.6.x/guide/index.html
https://github.com/chennnM/GCNII
https://github.com/jianhao2016/GPRGNN
https://github.com/ivam-he/BernNet
https://github.com/ivam-he/ChebNetII
https://github.com/GemsLab/H2GCN

Table 10: The hyper-parameters of TFE-GNN for semi-supervised node classifications.

DATASETS CORA CITESEER PUBMED WISCONSIN TEXAS CORNELL

optim ADAM ADAM RMSPROP ADAM RMSPROP RMSPROP
Klp 9 9 10 9 0 1
Khp 2 1 9 0 1 1
droppro 0.8 0.1 0.9 0.3 0.4 0.6
droplin 0.5 0.4 0.9 0.7 0.1 0.5
η 0.5 0.4 0.4 0.4 0.3 0.5
lrada 0.01 0.01 0.05 0.05 0.005 0.001
wdada 0.1 0.0005 0 0.05 0.1 0.0005
wdadae 0.01 0.0 0.1 0.01 0.005 0.001
lradae 0.005 0.01 0.1 0.01 0 0.0005
lrlin 0.005 0.001 0.005 0.05 0.01 0.05
wdlin 0.01 0.1 0.01 0.01 0 0.005

TWIRLS: https://github.com/FFTYYY/TWIRLS

Haf-Hop: https://github.com/nerdslab/halfhop

ARMA: https://github.com/xnuohz/ARMA-dgl

EGNN: https://github.com/Kaixiong-Zhou/EGNN

PDE-GCN: https://openreview.net/forum?id=wWtk6GxJB2x

EvenNet: https://github.com/Leirunlin/EvenNet

SPECFORMER: https://github.com/bdy9527/Specformer

PCNet: https://github.com/uestclbh/PC-Conv

FavardGNN/OptBasisGNN: https://github.com/yuziGuo/FarOptBasis

22

https://github.com/FFTYYY/TWIRLS
https://github.com/nerdslab/halfhop
https://github.com/xnuohz/ARMA-dgl
https://github.com/Kaixiong-Zhou/EGNN
https://openreview.net/forum?id=wWtk6GxJB2x
https://github.com/Leirunlin/EvenNet
https://github.com/bdy9527/Specformer
https://github.com/uestclbh/PC-Conv
https://github.com/yuziGuo/FarOptBasis

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: we discuss the limitations of TFE-GNN in Appendix A.2.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

23

Justification: the proofs of Theorem 1 and 2 are reported in Appendix A.1.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: all information is in section 4 and Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

24

Answer: [Yes]

Justification: we provide detailed code in the supplemental material, which can be run
directly after installing the required packages.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: all details are in section 4 and Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: all information is in section 4 and Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: all information is in section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: full paper.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: our articles are fundamental research.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

26

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: we cite the papers covered in the public datasets in the experimental section 4.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

27

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: we provide our code in the supplementary material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: this paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: this paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

28

	Introduction
	Preliminaries
	Metrics of Homophily
	Graph Filter
	Learnable Spectral GNNs

	Methodology
	Motivations
	TFE-Conv
	TFE-GNN
	Time Complexity and Scalability
	Theoretical Analysis

	Experiments
	Supervised Node Classification
	Ablation Study
	Generalization Analysis
	Loss Oscillation Analysis

	Conclusions
	Proofs and Limitations
	Proofs of Theorems 1 and 2
	Limitations

	More Experimental Results
	Additional experiments
	Semi-supervised node classification
	Visualization Analysis
	Complementary Generalization Analysis
	Hyper-parameters Analysis
	Time Efficiency Analysis
	TFE-GNN Versus Other GNNs with Similar Paradigms

	More Experimental Details

