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Abstract

Electroencephalography (EEG) offers a non-invasive lens into human brain activity,
but building large-scale models is hampered by topological heterogeneity: each
public EEG data defines its own electrode layout, limiting generalization. We intro-
duce LUNA (Latent Unified Network Architecture), a self-supervised foundation
model that reconciles disparate electrode geometries while scaling linearly—not
quadratically—with channel count. LUNA compresses multi-channel EEG into a
fixed-size, topology-agnostic latent space via learned queries and cross-attention.
Downstream transformer blocks then operate exclusively on this latent represen-
tation using patch-wise temporal self-attention, decoupling computation from
electrode count. Pre-trained on TUEG and Siena (> 21,000 hours of raw EEG
across diverse montages) using a masked-patch reconstruction objective, LUNA
transfers effectively to four downstream tasks: abnormality detection, artifact re-
jection, slowing classification, and emotion recognition. It demonstrates highly
competitive performance across several benchmarks, achieving state-of-the-art
results on TUAR and TUSL, e.g., 0.921 AUROC on TUAR, while reducing FLOPs
by 300 and trimming GPU memory use by up to 10x. Critically, these gains
are consistent across all evaluated electrode configurations. Code is available at
https://github.com/pulp-bio/biofoundation

1 Introduction

Electroencephalography (EEG) provides deep insight into brain activity without requiring invasive
procedures, and plays a crucial role in clinical diagnostics, cognitive neuroscience, and human-
computer interaction. In recent years, deep neural networks have significantly advanced EEG
analysis, shifting from handcrafted pipelines to end-to-end learning systems [1]]. Transformer-based
models now rival traditional signal processing techniques by jointly modelling long-range temporal
dynamics and cross-channel correlations [2} 3]].

Despite this progress, a fundamental bottleneck remains: EEG corpora exhibit significant topological
heterogeneity. Electrode count and placement vary widely across public and private datasets, making
it difficult to transfer models across montages. This limitation manifests in pronounced performance
degradation during cross-dataset evaluation. For example, motor-imagery decoders lose up to 14
percentage points (pp) in accuracy when transferring from PhysioNet to KU datasets [4], while state-
of-the-art emotion-recognition models such as BIOT and MMM exhibit 13—15 pp drops between
SEED and DEAP montages [} 6]]. Similarly, patient-to-patient transfer in stereotactic EEG (sEEG)
remains an unsolved challenge, with naive models performing near chance without explicit spatial
encoding [[7].

Existing approaches offer limited solutions to this problem. Some train bespoke models for each
montage, while others retain only shared electrodes—discarding up to 80% of available data []].
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More general approaches that flatten channels and time into long sequences incur quadratic self-
attention complexity, O((S -C )2) where S is the number of time segments and C' is the number of
electrodes (channels), rapidly exhausting memory on dense caps [5]. These challenges underscore
the need for a single, montage-agnostic architecture that scales efficiently with electrode count.

LUNA (Latent Unified Network Architecture) directly addresses this gap. Our key innovation is a
topology-invariant encoder that maps arbitrary electrode layouts into a fixed latent space via learned
queries and cross-attention. Temporal self-attention layers then operate exclusively on this latent
space, decoupling computational cost from the number of electrodes. We pre-train LUNA using a
masked-patch reconstruction objective on TUEG [9]] and STENA [10] (over 21,000 hours of raw EEG
data), and fine-tune on four downstream benchmarks spanning abnormality and artifact detection,
slowing classification, and emotion recognition.

The key contributions of this work are the following:

* Topology-invariant encoder. A learnt query / cross-attention module that projects arbitrary-sized
channel sets into a fixed latent space.

* Linear-in-channels complexity. Patch-wise temporal attention that decouples FLOPs and memory
from electrode count.

 State-of-the-art accuracy-efficiency trade-off. LUNA achieves strong results across a range of
EEG benchmarks, demonstrating significant capabilities with balanced accuracies of 81.57% on
TUAB and 39.18% on SEED-V [11]], and AUROC scores of 0.921 on TUAR and 0.802 on TUSL,
while reducing FLOPs by 300x and GPU memory footprint by up to 10x on high-density EEG
recordings. Crucially, these gains hold across diverse electrode configurations, confirming LUNA’s
generalization capability.

2 Related Work

To contextualize our contributions, this section discusses relevant state-of-the-art methodologies that
we will compare against. We focus on advancements in self-supervised learning for time series, the
emergence of foundation models for physiological signals, and existing approaches to managing
variable input structures, especially concerning topological heterogeneity in the EEG domain and
computational efficiency.

2.1 Self-Supervised Learning Strategies in EEG

Foundation models for EEG primarily rely on self-supervised learning (SSL) to leverage large
unlabeled datasets. Masked signal modeling is a dominant paradigm. BENDR [[12]] pioneered this for
EEG by adapting masked prediction concepts from speech, applying a contrastive objective to predict
masked convolutional features. Subsequent models refined this: BrainBERT [[13]] performs masked
prediction on channel-independent spectrograms for intracranial electroencephalography GEEG);
EEGFormer [[14] and LaBraM [[15]] predict vector-quantized (VQ) representations of masked patches,
learning discrete codebooks; CBraMod [[16]] directly reconstructs masked raw signal patches. LUNA
employs a similar masked reconstruction objective but applies it after projecting channel information
into a unified latent space, requiring the decoder to reconstruct channel-specific details from this
compressed representation.

2.2 Modeling Spatial Structure and Topology Variation in EEG

Capturing the spatial relationships between EEG channels is vital but complicated by varying elec-
trode counts and layouts across datasets. Several strategies have been explored in the literature:
Channel Independence: Early approaches and models like BrainBERT [13]] and EEGFormer [14]
process each channel’s data independently before potentially combining them later. While inherently
handling varying channel numbers, this neglects early modeling of cross-channel interactions.
Fixed-Topology Spatial Modeling: Models like Brant [17] use dedicated spatial encoders alongside
temporal ones but assume a consistent channel configuration, limiting cross-dataset generalization.
Graph Neural Networks (GNNs) [18] explicitly model spatial relationships using a predefined ad-
jacency graph, but require mechanisms to handle dynamically changing graph structures when
topologies vary. LUNA avoids pre-defined graphs or fixed structures.



Joint Spatio-Temporal Attention: LaBraM [[15] flattens channel and patch dimensions into one long
sequence, allowing a standard Transformer to learn spatio-temporal dependencies simultaneously.
However, this incurs O((S - C')?) complexity, scaling quadratically with both sequence length/patches
(S) and channels (C). CBraMod [[16] and CEReBrO [[19] use alternating or parallel spatial and tempo-
ral attention mechanisms, reducing complexity to O(maz(S?, C?)) but still scaling quadratically
with the dominant dimension. BIOT [5]] uses linear attention after flattening, improving efficiency but
potentially limiting modeling capacity. LUNA differs significantly by performing channel unification
first before applying temporal attention with quadratic complexity only on the patch dimension and
the much smaller latent dimension Q.

Explicit Topology Mapping: Some methods explicitly map varying topologies to a canonical repre-
sentation. MMM [6] maps channels to predefined anatomical regions but relies on hand-engineered
features (Differential Entropy) rather than raw signals. PopT [20] aggregates pre-computed channel-
independent temporal features using 3D electrode coordinates. While achieving topology invariance,
these methods are not fully end-to-end or rely on external information (regions). LUNA learns an
end-to-end mapping from raw signals using learned queries without requiring pre-defined structures.
Differentiable Channel Reordering. Saeed et al. [21] also use learned attention to reorder/project
heterogeneous channels into a fixed space, but under supervised training and without explicit 3D
channel encodings. In contrast, LUNA is a self-supervised foundation model trained at scale, inte-
grates explicit spatial (3D) information, and targets topology-agnostic and compute-efficient transfer
across datasets and tasks.

2.3 Learned Queries and Efficient Attention for Set Abstraction

LUNA’s core mechanism for topology unification draws inspiration from architectures designed for
permutation-invariant processing of set-structured data. Set Transformer [22] introduced the concept
of using a small set of learnable inducing points (queries) and an Induced Set Attention Block to
summarize information from a larger input set via cross-attention, reducing the complexity from
O(N?) to O(M - N). PerceiverlO [23] further developed this mechanism, demonstrating its power
in creating a fixed-size latent bottleneck capable of handling diverse, variable-sized inputs across
different modalities (images, text) and enabling flexible decoding via task-specific output queries.

LUNA adapts this principle specifically for EEG topology invariance. We treat the set of EEG channel
features at a given time interval (patch) as the input set. By applying cross-attention between the
channel features (as keys/values) and a small number (Q) of learned queries, LUNA projects the
variable-channel input onto a fixed-size latent space (R?*¥). This projection is permutation-invariant
with respect to the input channels, thus achieving topology agnosticism. Furthermore, it improves
computational efficiency, as the complexity of this step scales linearly with the number of channels.
Where MMM relies on predefined regions (and hand-crafted features) and LaBraM/CBraMod rely
on quadratic spatial attention after flattening space—time, LUNA first unifies variable channel sets
with learned queries (with explicit 3D encodings) and then applies temporal attention on a fixed-size
latent, yielding linear-in-C unification and reduced temporal sequence length. This design specifically
targets topology-agnostic scaling and inference efficiency within a self-supervised foundation-model
framework, rather than combining prior components unchanged.

3 Methodology

Developing generalizable foundation models for EEG is hindered by two primary obstacles: the topo-
logical heterogeneity of EEG montages (varying channel counts and layouts) and the computational
complexity of attention mechanisms. Standard models struggle with diverse input channel configu-
rations, limiting data aggregation and generalizability. Furthermore, transformer-based approaches
often face prohibitive O((C - 5)?) or O(max(C?, %)), as discussed in the section 2.2} complexity
when processing C channels and S temporal patches. This limits their applicability to high-density
EEG or long recordings.

LUNA addresses these challenges using a smaller latent space. Firstly, Channel-Unification Module
(Sec .[3.1) employs learned queries and cross-attention to project variable-channel features into a fixed-
dimension latent space, achieving topology invariance. Secondly, by unifying channel information
into a compact set of () queries (¢ < C) before temporal processing, LUNA significantly reduces
computational demands. This design enables efficient and scalable processing of heterogeneous EEG



data, paving the way for more robust foundation models. LUNA adopts an encoder-decoder architec-
ture that transforms EEG signals from heterogeneous montages into a unified latent representation,
enabling topology-agnostic modeling and efficient downstream decoding (Figure|T).
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Figure 1: Overview of LUNA. EEG signals (B x C x T') are segmented into patches and embedded.
Channel-Unification Module maps channel-wise features into a fixed-size latent space using learned
queries (). Patch-wise Temporal Attention processes this latent sequence. The decoder generates
task-specific outputs.

3.1 Encoder

The encoder comprises three key modules that transform the input EEG into a topology-agnostic
latent representation: patch feature extraction, channel unification, and patch-wise temporal modeling.

Patch Feature Extraction Given raw EEG z € REXCXT (Batch B, Channels C, Time T), we
segment each channel into S = T'/ P non-overlapping temporal patches of size P. These patches are
embedded via two parallel pathways:

Temporal Embedding: A 1D convolutional network (with GroupNorm [24], GELU [25]]) encodes
local temporal features similar to state-of-the-art methods such as LaBraM[15]] and CBraMod [16],
Frequency Embedding: The magnitude and phase from each patch’s Fourier transform are projected
through an MLP. These representations are summed to obtain patch features Zfeauures-

Channel Positional Encoding To encode electrode locations, we apply NeRF-inspired sinusoidal
encoding [26] to normalized 3D electrode coordinates, followed by an MLP projection. This yields
Epos € REXCXE 'which is added t0 Zfeares-

During pre-training, a random subset of tokens is masked using a learnable embedding.

Channel-Unification Module To handle varying channel counts (C) across recordings, we intro-
duce a cross-attention module that maps patch-wise features into a fixed latent space. Specifically,
Q learned queries Qiean € R®*E  (learnable parameters without a batch dimension, initialized
orthogonally) cross-attend to patch features. For attention, these queries are repeated across the B - .S

patch instances as Q € R(B-S)xX@xE

Let the input to this module be the tensor Xgen € RE*(CS)XE representing the spatially-aware
features for B samples, S patches per channel, and feature dimension E. We first reshape this tensor
to X/ € R(B-$)XCxE 10 treat each patch instance across the batch independently while isolating the
channel dimension for attention.

The cross-attention mechanism then computes the output representation Ay, € R(B-S)xQxE:

A, = MultiHeadAttention(Q, X', X) 1)



A feed-forward network (FFN) with residual connection refines the outputs, followed by L Trans-
former encoder layers operating on the query dimension Q.

Xunifiea = TransformerEncoder(A oy + FEN(Ay)) 2)

The result Xnified € R(B-S)xQxE decouples further processing from the original electrode layout.
For clarity: learnable tensors (e.g., Quearm) omit the batch dimension; repetition occurs only at
attention time (e.g., Q).

Patch-wise Temporal Encoder The unified representations are reshaped into temporal sequences
X! ooq € REXSX(QE) Thege are processed by a stack of Transformer encoder blocks with Rotary
Positional Embeddings (RoPE) [27] to capture temporal dependencies efficiently. A key advantage
of this encoding approach is that each of the .S temporal tokens in X ..., now encapsulates richer,
aggregated information from multiple input channels, rather than representing a single channel’s
segment. Furthermore, by not tokenizing each channel independently for temporal processing, the
effective sequence length for the temporal Transformers is reduced from S - C' to just S, leading to
significant reductions in computational complexity and memory requirements.

Eou = TemporalEncoder (X iseq)

3.2 Decoder

LUNA supports two decoding strategies depending on the task: reconstruction (pre-training) and
classification (fine-tuning).

Reconstruction Head (Pre-training) For masked patch reconstruction, C' learned decoder queries
Eleam ¢ RE*E (learnable parameters without a batch dimension) are repeated across the batch
and patches as Edee € RBS)XCXE gnd attend to reshaped E,, via cross-attention, producing
channel-specific representations Zge, € R(ESIXCXE [ e REXSX(QF) jg reshaped to be used as
keys/values K, V € R(B-9)x@*E for attention. A linear projection ¢ : R” — R” applied on Zge.
recovers the patch values. Decoder queries are indexed by channel labels and can be reused across
datasets when electrodes overlap; this reconstruction head is used only during pre-training.

Classification Head (Fine-tuning) For downstream tasks, a single aggregation query E!gg" €

R (@E) (no batch) is repeated across the batch as E,ge € RF*1X(QF) and attends to Eoy to
produce a pooled representation, which is passed to an MLP for classification.

3.3 Training Objectives
LUNA is pre-trained with a masked reconstruction loss and an auxiliary query specialization loss.

Reconstruction Loss A Smooth L1 loss is applied to both masked and visible patches:

1
Z SmoothL1(Zorg, , Trecons; ) + ¢ - Z SmoothL1(Zorig, ; Trecons; )

Lrec =
N, "
masked ieM visible igM

and SmoothL1(z, #) = 0.5(z — 2)? if |z — 2| < B3, else Bl — &| — 0.53%, with 8 = 1.

Affinity matrix. Let A, € R? "XHxQxC denote the cross-attention weights (queries — channels)
from the channel-unification module, for B’ instances and H heads. We define

H
1 /
Aafﬁnity = E E Aattn[th’:a:} S RB XQXC?
h=1

i.e., attention weights averaged over heads, so that (Aafﬁnhy)bxq’c measures the affinity between query
g and channel ¢ for instance b’.



Query Specialization Loss To promote diversity among queries, we penalize similarity in query-
channel affinity matrices by minimizing the mean value of off-diagonal elements:

)\s ec CH < 2
Espec == W@_l) Z Z Z ((AafﬁﬂityAg;‘ﬁnity)b'%j)

b'=14=1 j=1,j#i

4 Results
4.1 Experimental Setup

Datasets We pre-train LUNA on a combined corpus of Temple University Hospital EEG Corpus
(TUEG) [9] and the Siena Scalp EEG Database [10], spanning recordings with 20, 22, and 29
channels amounting to over 21,900 hours of EEG data (see Table @ Downstream evaluations
cover four diverse benchmarks: TUAB [9]: Abnormal EEG detection (binary classification), TUAR
[O: We follow prior work [28]] and treat artifact detection as a multiclass (single-label) problem
with five classes (one label per segment). Artifact detection (multi-class classification) TUSL [9]]:
Slowing event classification (4-class classification). SEED-V [11]: Emotion recognition (5-class
classification), with unseen 62-channel topology. All subjects and recordings from the downstream
evaluation datasets (TUAB, TUAR, TUSL, SEED-V) were strictly excluded from this pre-training
set to ensure fair evaluation of generalization. For LUNA, the input EEG is segmented into patches,
consisting of 40 timestamps. For most datasets, EEG recordings are sliced into non-overlapping
5-second segments to form individual training/evaluation samples. SEED-V dataset uses its default
1-second sample duration.

Fine-tuning and Data Splits For the TUAB dataset, we use the official train-test split. As TUSL
and TUAR lack official subject-wise test splits, we follow recent leading work (e.g., EEGFormer [14]])
and adopt an 80%/10%/10% randomized sample-level split for train/val/test to allow direct, like-for-
like comparison. We acknowledge that subject-independent splits are the gold standard for assessing
clinical generalization and recommend them for future benchmark comparisons. For SEED-V, fifteen
trials are divided equally into train, validation, and test sets for each session. For the TUAR dataset,
we adopt a multiclass classification approach, restricting to 5 distinct artifact types in a single-label
setting, similar to EEGFormer [14]]. We optimize binary cross-entropy loss for TUAB and cross-
entropy loss for other datasets. We report the mean and standard deviation of results obtained across
three different random seeds.

Preprocessing We apply a minimal, standardized preprocessing pipeline to all EEG data. Signals
are first bandpass filtered between 0.1 Hz and 75 Hz. A notch filter (SOHz or 60Hz) is applied to
remove power-line interference. All signals are then resampled to 256 Hz. For TUEG, TUAB, TUAR,
and TUSL datasets we construct a bipolar (“double-banana”) montage by differencing predefined
longitudinal electrode pairs provided in the dataset documentation; the full list of channel pairs used
is given in Appendix[A.7] Siena and SEED-V are processed in unipolar format. Finally, each channel
within each sample is normalized using z-score normalization.

Computational Environment All experiments were conducted on a cluster of eight NVIDIA A100
GPUs, using Python 3.11.6 and PyTorch 2.4.1 with CUDA 12.1. Training utilizes ‘bf16°‘ mixed-
precision. Detailed hyperparameters for pre-training and fine-tuning are provided in Appendix[A.3]

Baselines and Variants We compare against state-of-the-art supervised and self-supervised meth-
ods, including transformer-based architectures such as LaBraM [[15]], CBraMod [[16], EEGFormer [14]],
and BIOT [5]. LUNA is evaluated in three configurations: Base (7M), Large (43M), and Huge (311M
parameters). Model size is increased by expanding the depth of the Patch-wise Temporal Encoder,
the hidden embedding dimension F, and the number/size of queries () in the Channel-Unification
Module. Key architectural settings are detailed in Appendix[A.1]

4.2 Downstream Task Performance

Abnormal EEG Detection (TUAB) LUNA delivers competitive performance on TUAB (Table
[I). LUNA-Huge achieves AUROC of 0.8957 and AUPR of 0.9029, surpassing most self-supervised



baselines and approaching large-scale models like LaBraM and CBraMod. Notably, LUNA maintains
strong performance while offering substantial efficiency and topology-agnostic benefits relative to

strong self-supervised and large-scale baselines.

Table 1: Performance comparison on TUAB abnormal EEG detection.

Model Size Bal. Acc. (%) T AUC-PR 1 AUROC 1
Supervised Models
SPaRCNet [29] 0.8M 78.96 + 0.18 0.8414 £ 0.0018 0.8676 + 0.0012
ContraWR [30] 1.6M 77.46 + 0.41 0.8421 £ 0.0140  0.8456 + 0.0074
CNN-Transformer [31] 3.2M 77.77 +0.22 0.8433 £ 0.0039  0.8461 + 0.0013
FFCL [32] 2.4M 78.48 + 0.38 0.8448 £ 0.0065 0.8569 + 0.0051
ST-Transformer [33] 3.2M 79.66 + 0.23 0.8521 £ 0.0026  0.8707 &+ 0.0019
Self-supervised Models

BENDR [12] 0.39M 76.96 + 3.98 - 0.8397 + 0.0344
BrainBERT [13]] 43.2M - 0.8460 £ 0.0030  0.8530 % 0.0020
EEGFormer-Base [[14] 2.3M - 0.8670 £ 0.0020  0.8670 % 0.0030
BIOT [5] 32M 79.59 + 0.57 0.8692 £ 0.0023  0.8815 +£ 0.0043
EEG2Rep [34] - 80.52 £2.22 - 0.8843 + 0.0309
FEMBA-Huge [35]] 386M 81.82 +£0.16 0.9005 £ 0.0017  0.8921 + 0.0042
CEReBrO [19] 85.15M 81.67 £0.23 0.9049 £ 0.0026  0.8916 %+ 0.0038
LaBraM-Base [15] 5.9M 81.40 £0.19 0.8965 £ 0.0016  0.9022 + 0.0009
LaBraM-Huge [13] 369.8M 82.58 + 0.11 0.9204 £ 0.0011  0.9162 + 0.0016
CBraMod [16] 69.3M 82.49 +£0.25 0.9221 £ 0.0015 0.9156 + 0.0017
LUNA-Base ™ 80.63 +0.08 0.8953 £ 0.0016  0.8868 £ 0.0015
LUNA-Large 43M 80.96 £ 0.10 0.8986 + 0.0005 0.8924 4+ 0.0010
LUNA-Huge 311.4M 81.57 £ 0.11 0.9029 £ 0.0014  0.8957 + 0.0011

Artifact and Slowing Detection (TUAR and TUSL) LUNA delivers state-of-the-art results on
TUAR and TUSL (Table[2). LUNA-Huge achieves AUROC 0.921 on TUAR, outperforming FEMBA-
Large and other methods. On TUSL, LUNA-Huge reaches AUROC 0.802, the highest among all
compared models.

Table 2: Performance comparison on TUAR (artifact detection) and TUSL (slowing event classifica-
tion).

. TUAR TUSL
Model Size
AUROC 1 AUC-PR 1 AUROC 1 AUC-PR 1

Supervised Models
EEGNet [36] - 0.752 + 0.006  0.433 +0.025 0.635 £ 0.015 0.351 £ 0.006
EEG-GNN [18] - 0.837 £ 0.022 0.488 £0.015 0.721 £ 0.009 0.381 £ 0.004
GraphS4mer [37] - 0.833 £ 0.006 0.461 +£0.024 0.632 £0.017 0.359 £ 0.001

Self-supervised Models
BrainBERT [13] 432M  0.753 £0.012 0.350 +0.014 0.588 +0.013 0.352 4+ 0.003
EEGFormer-Base [[14] 23M  0.847 £0.014 0.483+£0.026 0.713 £0.010 0.393 £ 0.003
EEGFormer-Large [14] 3.2M  0.852 £0.004 0.483 £0.014 0.679 £0.013 0.389 4 0.003
FEMBA-Base [35] 47.7M  0.900 = 0.010 0.559 +0.002 0.731 +0.012 0.289 % 0.009
FEMBA-Large [35] 77.8M 0915 +0.003 0.521 £0.001 0.714 +£0.007 0.282 +0.010
LUNA-Base ™ 0.902 +0.011 0.495 £0.010 0.767 £0.023 0.301 &£ 0.003
LUNA-Large 43M 0918 £ 0.003 0.505 £ 0.010 0.771 £ 0.006 0.293 £0.021
LUNA-Huge 311.4M  0.921 +0.011 0.528 +0.012 0.802 £ 0.005 0.289 40.008

Emotion Recognition on Unseen Montage (SEED-V) The SEED-V benchmark tests generaliza-
tion to a novel 62-channel montage, distinct from pre-training data. Results in Table[3|show that while
LUNA effectively operates on this unseen topology, its performance (e.g., Bal. Acc.) lags behind
leading methods like CBraMod by 2-3 pp. This suggests a trade-off inherent in LUNA’s design: while
its query-based unification enables efficient, topology-agnostic processing across common montage



variations (as demonstrated on TUAB/TUAR/TUSL), generalizing zero-shot to vastly different,
high-density layouts remains challenging, possibly due to positional encoding constraints. Despite
this gap, LUNA shows positive scaling from Base to Large models, underscoring its potential.

Table 3: Performance comparison on SEED-V emotion recognition (5-classes).
Model Size Bal. Acc. (%) T Weighted F1 1

Cohen’s Kappa 1

Supervised Models

SPaRCNet [29] 0.79M  0.2949 £+ 0.0078  0.1121 £ 0.0139  0.2979 +£ 0.0083
ContraWR [30] 1.6M 0.3546 £0.0105  0.1905 £ 0.0188  0.3544 £+ 0.0121
CNN-Transformer [31] 3.2M 0.3678 £0.0078  0.2072 £ 0.0183  0.3642 + 0.0088
FFCL [32] 2.4M 0.3641 £0.0092  0.2078 £ 0.0201 0.3645 £ 0.0132
ST-Transformer [33] 3.5M 0.3052 £0.0072  0.1083 £ 0.0121 0.2833 + 0.0105
Self-supervised Models
BIOT [5] 3.2M 0.3837 £0.0187  0.2261 £0.0262  0.3856 £ 0.0203
LaBraM-Base [15] 5.8M 0.3976 £0.0138  0.2386 £ 0.0209  0.3974 £ 0.0111
CBraMod [16] 14M 0.4091 £ 0.0097  0.2569 + 0.0151  0.4101 + 0.0108
LUNA-Base ™ 0.3730 £ 0.0098  0.1831 £0.0103  0.3389 £ 0.0091
LUNA-Large 43M 0.3918 £ 0.0066  0.2073 £ 0.0045  0.3586 £ 0.0013
LUNA-Huge 311.4M  0.3900 4+ 0.0096  0.2037 + 0.0103  0.3506 + 0.0047

Unless noted, we report mean =+ s.d. over matched seeds and focus on effect sizes and confidence
intervals. Formal significance tests are summarized in Appendix [A.9]

4.3 Computational Efficiency

LUNA achieves substantially better calling efficiency compared to full and alternating attention
models. As shown in Figure 2a] LUNA’s patch-wise attention enables thousands of temporal patches
without the quadratic cost faced by LaBraM. Likewise, Figure [2b]shows that LUNA maintains near-
constant compute cost when channel count increases, outperforming CBraMod’s O(C?) scaling for
dense EEG recordings. These results confirm that LUNA decouples inference cost from input mon-
tage, making it well-suited for long recordings or high-density EEG scenarios. We also consider BIOT
(linear attention) as an efficiency-oriented baseline; detailed FLOPs/memory scaling versus LUNA is
provided in Appendix[A.1.3] Although many public datasets use ~20-30 channels, research/clinical
systems often employ 64-256 channels and longer windows; LUNA’s O(C') unification and reduced
temporal sequence length enable such regimes where quadratic spatial attention becomes impractical.

4.4 Ablation Studies

Choice of ). We explore the trade-off between the number of queries () and embedding size F under
a fixed Q- E budget; see Appendix[A.6] We validate the impact of LUNA’s key design choices on
TUAB and TUAR (Table[d).

Learned Queries vs. Fixed Regions Replacing learned queries with predefined spatial regions
(similar to MMM [6])) yields small AUROC changes (—0.004 to —0.006), within seed variation. We
therefore emphasize the practical advantages of learned queries—data-driven flexibility without
anatomy-specific priors—rather than a statistically significant metric gain (Appendix [A.9).

Query Specialization Loss Removing the specialization loss results in modest AUROC changes
(-0.003 to -0.006), again on the order of the reported variation, with small mixed effects on AUC-PR.
We retain this loss for its regularizing role: it encourages a diverse, non-redundant set of spatial filters
(see Fig.[), which is desirable for robustness in challenging artifact conditions.

Frequency Features Ablating frequency embeddings leads to the largest drop (up to -0.012
AUROC), indicating a more consistent contribution complementary to temporal features.

4.5 Latent Space Analysis

Pre-trained Representations t-SNE visualizations (Figure [3) reveal that even before fine-tuning,
LUNA’s encoder captures task-relevant structure. Normal and abnormal EEGs form separate clusters
in TUAB, while artifact classes are partially separated in TUAR, demonstrating effective pre-training.
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Figure 2: Computational cost scaling of LUNA and baseline models. (a) FLOPs and Memory usage
vs. number of patches. (b) FLOPs and Memory usage vs. number of channels. LUNA demonstrates
significantly better efficiency and scalability, especially compared to full attention (LaBraM), and
favorable scaling compared to alternating attention (CBraMod) due to the fixed latent query space.
CBraMod has a variable sized decoder based on the number of patches and channels; therefore,
its model size as well as its resource usage grows rapidly. FLOPs are measured with fucore’s
FlopCountdnalysis over 50 random inputs, including encoder+decoder, with window length T,
patch size P, and reported as GFLOPs per forward pass.
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Figure 3: t-SNE of LUNA-Base embeddings on downstream datasets before fine-tuning.



4.6 Learned Query Specialization Visualization

Query Specialization Visual analysis of the learned queries (Figure @) highlights their role in
topology-agnostic representation. Queries exhibit distinct spatial profiles: some are localized (e.g.,
frontal regions), while others aggregate broader signals. This emergent specialization confirms that
cross-attention learns flexible, data-driven basis functions for spatial unification.

Query 1 Query 2 Query 3 Query 4

Figure 4: Visualization of the attention patterns of queries in LUNA-Base on Siena [[10] topology.
Table 4: Ablation study results (LUNA-Base) on TUAB and TUAR datasets.

Model Configuration TUAB AUROC TUAB AUC-PR TUAR AUROC TUAR AUC-PR
LUNA-Base (Full Model) 0.887 4 0.002 0.895 4 0.002 0.902 £ 0.011 0.495 £ 0.010
Unification Module:

- Region-based Attention 0.883 4 0.001 (] 0.004) 0.892 + 0.002 ({ 0.003) 0.896 =£ 0.001 (/. 0.006) 0.509 4 0.006 (1 0.014)

Other Components:
- w/o Query Specialization Loss 0.884 + 0.003 (| 0.003) 0.892 = 0.002 (/. 0.003) 0.895 4 0.005 (] 0.007) 0.498 &+ 0.010 (1 0.003)
- w/o Frequency Features 0.876 4 0.012 (/. 0.011) 0.883 & 0.005 ({ 0.012) 0.893 £ 0.011 (] 0.009) 0.490 4 0.011 (] 0.005)

5 Conclusion

We introduced LUNA, a self-supervised foundation model designed to address the challenge of
topological heterogeneity in EEG analysis. By leveraging learned queries and cross-attention, LUNA
unifies recordings with diverse electrode layouts into a fixed latent space, enabling montage-agnostic
modeling. Through extensive experiments across abnormality detection, artifact recognition, slowing
classification, and emotion recognition, we demonstrate that LUNA matches or surpasses state-of-the-
art performance while offering substantial efficiency gains in FLOPs and memory usage. Critically,
these benefits hold across all evaluated electrode configurations.

While LUNA achieves strong results, especially on heterogeneous montages, our analysis also
reveals limitations. Performance on SEED-V suggests sensitivity to unseen channel topologies,
likely stemming from reliance on positional encodings learned during pre-training. Addressing this
limitation, through enhanced spatial generalization strategies or hybrid learned/geometric embeddings,
is an important direction for future work.

More broadly, this work highlights the promise of topology-agnostic latent representations for
scalable EEG modeling. Future extensions include exploring unified models across EEG and
invasive modalities (e.g., SEEG, ECoG), integrating domain-specific priors (e.g., neurophysiological
constraints), and adapting LUNA for real-time inference scenarios. Beyond technical advancements,
the development of efficient, topology-invariant EEG models like LUNA could enhance neurological
diagnostics and research accessibility. However, careful attention must be paid to mitigating risks such
as algorithmic bias and ensuring patient data privacy for deployment. Future work should integrate
ethical concerns alongside technical improvements. Pre-training montage diversity is limited (three
dominant layouts); future work will incorporate multi-dataset pre-training and randomized channel
dropout to improve generalization to unseen, dense and sparse montages.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We propose a topology-agnostic foundation model with a focus on computa-
tional efficiency. We tediously compare our model based on downstream task performance,
including datasets with different electrode topologies, and computational efficiency with
respect to prior art in Section[d]

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations in Section[£.2]and[3l These limitations include
a lower performance on the SEED-V dataset, which is an unseen and denser topology
compared to pre-training datasets, and the reliance on positional encodings learned during
pre-training.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper doesn’t include theoretical results. We discuss the computational
complexity of different methods theoretically, but report the empirical computational cost in

Figure 2]
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We thoroughly explain our model architecture and experimental details in
Section [3]and .1} We also use public datasets and describe the preprocessing details. We
will also release the code and the pre-trained model weights upon publication.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We will publish the code and the pre-trained model weights upon publication.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The details are discussed in detail in Section .1l as well as in [A.1lin the
Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the mean and the standard deviation of results obtained from
initializing the models with different seeds, as described in Section @1}

Guidelines:
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8.

10.

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We report the GPU types and the training duration in Section4.T|and[A.3]
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We use public EEG datasets that conform to ethical guidelines and are com-
monly used in literature.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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11.

12.

Justification: The societal impacts are discussed in Section [5}
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper does not introduce any such risk.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We correctly cite and conform to the licenses of the papers that produced the
public datasets we used.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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14.

15.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release any new assets yet. The code and the released model will be
released open source with the appropriate license and documentation.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not include research with human subjects. We use existing
public datasets in the area.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not include research with human subjects. We use existing
public datasets in the area.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs were only used for writing, editing, amd formatting the content.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20


https://neurips.cc/Conferences/2025/LLM

A Appendix
This appendix provides supplementary details that complement the main paper: additional effi-

ciency analyses, reporting notes for statistical testing, small implementation clarifications, and extra
qualitative comparisons.

A.1 Model Architecture Details

The following tables show the hyperparameter setup for the pre-training and the downstream fine-
tuning for LUNA.

A.1.1 Hyperparameters for pre-training

Table 5: Hyperparameters for EEG pre-training.

Hyperparameters LUNA-Base LUNA-Large LUNA-Huge
Input channels {1,8,8} {1,16,16} {1,32,32}
Output channels  {16,16,16} {24,24,24} {32,32,32}
Temporal Encoder Kernel size {20,3,3}
Stride {10,1,1}
Padding {9,1,1}
Patch size 40
Transformer encoder layers 8 10 24
Number of queries 4 6 8
Query size 64 96 128
Hidden size 256 576 1024
MLP size 1024 2304 4096
Attention head number 8 12 16
Batch size per GPU 2040 2040 720
Total batch size 8160 8160 11520
Peak learning rate 1.25e-4
Minimal learning rate 2.5e-7
Learning rate scheduler Cosine
Optimizer AdamW
Adam (0.9,0.98)
Weight decay 0.05
Total epochs 60
Warmup epochs 10
Loss type Smooth-L1
Non-masked region loss coefficient 0.05
Query specialization loss coefficient 0.8
Gradient clipping 1
Mask ratio 0.5
Precision bf16-mixed
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A.1.2 Hyperparameters for downstream fine-tuning

Table 6: Hyperparameters for downstream fine-tuning.

Hyperparameters Values
Batch size per GPU 512
Peak learning rate le-4
Minimal learning rate Se-6
Learning rate scheduler Cosine
Optimizer AdamW
Adam (0.9,0.999)
Weight decay 0.05
Total epochs 50
Early stopping patience 10
Warmup epochs 5
Drop path 0.1 (B/L) 0.2 (H)
Layer-wise learning rate decay 0.5 (B) 0.8 (L/H)
Label smoothing (multi-class classification) 0.1

A.1.3 Complexity Analysis

The computational complexity of key attention stages and a comparison with alternatives are shown

in[Zland 8

Table 7: Complexity Breakdown of LUNA Encoder Stages.

Stage Input Shape Complexity
Channel-Unification Module (Cross-Attn) (B-S)xCxE O(B-5-Q-C-E)
Query Self-Attention (B-S)x@Q@xE OB-S-Q* E)

Patch-wise Attention Encoder (Self-Attn) B x Sx (Q-E) O(B-5%-Q-F)

Table 8: Attention Complexity Comparison.

Method Bottleneck Complexity

LUNA (Latent Space Attention) OB-5%-Q-E)orO(B-S-Q-C-E)
Full-Attention (e.g., LaBraM) O(B-S5%.C?-E)
Alternating Attention (Patches, e.g., CBraMod) O(B-S?.C-E)
Alternating Attention (Channels, e.g., CBraMod) O(B-S-C?-E)

BIOT vs. LUNA scaling. Tables [9H10|report GFLOPs and peak activation memory across varying
patch and channel counts.

A.2 Dataset and Preprocessing Details
Datasets Used We use publicly available EEG datasets, provided in

A.3 Experimental Settings

Pre-training LUNA is pre-trained using a masked patch reconstruction task. Key hyperparameters
are listed in[3

Computational Resources Experiments were conducted using NVIDIA A100 GPUs. Pre-training
took approximately 1 day on 8 GPUs for the base and large models and 16 GPUs for the huge model.
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Table 9: Scaling with patch count (GFLOPs and MiB per forward).

Model #Patches FLOPs (G) Memory (MiB)
BIOT 2000 1143 3534
LUNA-Base 2000 253 1835
LUNA-Large 2000 1073 2969
LUNA-Huge 2000 6570 5549
BIOT 3000 1714 5231
LUNA-Base 3000 478 3873
LUNA-Large 3000 1886 6041
LUNA-Huge 3000 11035 9685
BIOT 4000 2286 6931
LUNA-Base 4000 768 6678
LUNA-Large 4000 2884 10265
LUNA-Huge 4000 16286 15344

Table 10: Scaling with channel count (GFLOPs and MiB per forward).

Model #Channels FLOPs (G) Memory (MiB)
BIOT 6000 3117 9270
LUNA-Base 6000 18 1571
LUNA-Large 6000 43 2410
LUNA-Huge 6000 112 4198
BIOT 7000 3637 10791
LUNA-Base 7000 20 1826
LUNA-Large 7000 49 2777
LUNA-Huge 7000 122 4680
BIOT 8000 4156 12307
LUNA-Base 8000 23 2069
LUNA-Large 8000 55 3139
LUNA-Huge 8000 133 5163

Table 11: Summary of Datasets Used.

Dataset # Subjects # Samples (Train/Val/Test or Total) Hours of Recordings # Channels Montage Used
TUEG (Pre-train) 14,987 15,686,874 (Total) 21,787.32 20 or 22 Bipolar
Siena (Pre-train) 14 101,520 (Total) 141.0 29 Unipolar
TUAB 2,329 591,357 / 154,938 / 74,010 1,139.31 22 Bipolar
TUAR 213 49,241/5,870/5,179 83.74 22 Bipolar
TUSL 38 16,088 / 1,203 / 2,540 27.54 22 Bipolar
SEED-V 15 43,328 /43,360 / 31,056 32.70 62 Unipolar

A.4 Additional Quantitative Results

Training Curves The pre-training loss curves for LUNA-Base are shown in[5] The reconstruction
loss drops shows and initial plateau then drops slowly over the epochs, while the query specialization
shows a jump and then a slow decrease, indicating more orthogonal query usage over time. The
initial drop of the query specialization might be due to a trivial case where a query attends to only
one channel. The queries learn to attend to their own specialized areas afterwards while covering all
the channels in the input.

A.5 Additional Visualizations

Reconstruction Examples Figures [0] show examples of the model reconstructing masked
patches (gray regions) for inputs with 20, 22, and 29 channels, respectively. The reconstructions
capture the underlying signal trend and demonstrate robustness across different topologies seen
during pre-training.
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Figure 5: Loss curves during pre-training for LUNA-Base (Reconstruction and Query Specialization
Loss).

Reconstruction for random batch with 20 channels
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Figure 6: Example reconstruction on input with 20 channels (masked regions in gray).
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Reconstruction for random batch with 22 channels
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Figure 7: Example reconstruction on input with 22 channels (masked regions in gray).

Reconstruction for random batch with 29 channels
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Figure 8: Example reconstruction on input with 29 channels (masked regions in gray).

A.6 Trade-off between (Q and F

Observation. Increasing () at the expense of F degrades performance; too few queries can also
bottleneck capacity. A balanced Qx E (e.g., 4x64) works well under the same latent budget.

A.7 Bipolar montage electrode pairs

We use the following longitudinal pairs to construct the bipolar montage for TUEG, TUAR, TUSL,
and TUAB (left/right symmetric sets):

e Fpl-F7, F7-T3, T3-T5, T5-0O1, Fp2-F8, F8-T4, T4-T6, T6-02 T3-C3, C3-CZ
e Fpl1-F3, F3-C3, C3-P3, P3-0O1, Fp2-F4, F4-C4, C4-P4, P4-02 CZ-C4, C4-T4
A.8 Edge deployment reference

Typical low-power edge SoCs used in wearables/IoT offer single-digit to few dozen MB of RAM
and on-chip/SiP compute in the 10-100 GOPS range. Under these constraints, LUNA-Base (~7M
params; ~14 MB at 16-bit) and its measured GFLOPs per window (Fig[2b) fit comfortably within
real-time budgets, whereas quadratic-in-C' spatial attention and larger activation footprints in some
baselines make deployment more challenging at higher channel counts.

A.9 Significance Testing
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Table 12: LUNA-Base variants with fixed ) - E=256.
Variant (Q X E) @ E TUAB AUROC TUAB AUPRC TUAR AUROC TUAR AUPRC TUSL AUROC

4 x 64 4 64 0.887 0.895 0.902 0.495 0.767
2 x 128 2 128 0.885 0.890 0.885 0.501 0.759
8 x 32 8§ 32 0.884 0.892 0.899 0.505 0.766
16 x 16 16 16 0.874 0.881 0.866 0.487 0.757

Unless noted, we report mean = s.d. over matched seeds. For ablations we ran two-sided paired ¢-tests
across seeds for specific comparisons requested by reviewers. For the TUAR AUROC comparison of
the model with vs. without the query specialization loss, the paired ¢-test yielded p=0.2136, i.e., not
statistically significant at «=0.05. Observed AUROC deltas across ablations were small (absolute
< 0.01).

Table 13: Paired ¢-test on TUAR AUROC for the specialization-loss ablation.
Comparison Mean A (w/o — full) p
w/o specialization vs. full —0.007 0.2136

Practical tolerance. We adopt a pragmatic tolerance of +0.01 AUROC for considering two variants
practically equivalent on these datasets; all reported ablations fall within this band.

A.10 Effect of Specialization Loss on Query Maps

Figure 0] depicts spatial attention maps of the ) queries when the specialization loss is removed. In
this setting, two queries converge to coarse lateralized patterns (left and right longitudinal chains),
while the remaining queries display broad, overlapping support over fronto—central and midline sites
with weaker focal peaks, indicating partial redundancy and gaps in complementary coverage. Overall,
the maps exhibit higher overlap and reduced distinctiveness across queries compared to the model
trained with the loss, where query maps are more complementary and less overlapping Fig. ).

Query 1

Figure 9: Query attention visualization without specialization loss.

A.11 t-SNE of Raw Frequency Features vs. LUNA Features

We compute per-segment frequency features (magnitude/phase statistics per band, averaged across
channels) and compare 2D t-SNE embeddings to those of LUNA’s latent features. Raw features
exhibit less separation beyond clear artifacts on TUAR; LUNA features show tighter clustering
aligned with labels.
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(a) TUAB dataset (Normal vs. Abnormal Signal).

+-SNE Component 2

20

® Chewing
e Shivering

® Electrode Artifacts

No Artifact

=20 =10 10 20 30

0
t-SNE Component 1

(b) TUAR dataset (Artifact Types).

Figure 10: t-SNE of raw features on downstream datasets before fine-tuning.
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