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Abstract
Model pruning is an effective approach for com-
pressing large language models. However, this
process often leads to significant degradation
of model capabilities. While post-training tech-
niques such as instruction tuning are commonly
employed to recover model performance, exist-
ing methods often overlook the uneven dete-
rioration of model capabilities and incur high
computational costs. Moreover, some instruc-
tion data irrelevant to model capability recovery
may introduce negative effects. To address these
challenges, we propose the Post-training dAta
Selection method for Efficient pruned large lan-
guage model Recovery (PASER). PASER aims
to identify instructions where model capabilities
are most severely compromised within a certain
recovery data budget. Our approach first applies
manifold learning and spectral clustering to group
recovery data in the semantic space, revealing
capability-specific instruction sets. We then adap-
tively allocate the data budget to different clusters
based on the degrees of model capability degra-
dation. In each cluster, we prioritize data sam-
ples where model performance has declined dra-
matically. To mitigate potential negative transfer,
we also detect and filter out conflicting or irrele-
vant recovery data. Extensive experiments demon-
strate that PASER significantly outperforms con-
ventional baselines, effectively recovering the gen-
eral capabilities of pruned LLMs while utilizing
merely 4%-20% of the original post-training data.

1. Introduction
Model pruning, which aims at reducing model parameter
amounts while maintaining model capabilities, has been a

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.
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promising approach for large language model (LLM) com-
pression. Mainstream LLM pruning schemes include un-
structured (Frantar & Alistarh, 2023), semi-structured (Sun
et al., 2024), and structured pruning (Ma et al., 2023). In
practice, the capability degradation of the pruned model
compared with the original LLM is almost unavoidable,
especially under high pruning ratios. This degradation phe-
nomenon is often more severe for the structured pruning
scheme (Dong et al., 2024), which has been widely adopted
in industrial LLM compression thanks to its hardware-
friendly property. Therefore, first pruning, then recovery
post-training has been a standard pipeline (Ma et al., 2023;
Zhao et al.). Among various types of data including pre-
training corpora and extensive fine-tuning datasets (Xia
et al., 2024; Sun et al., 2024), instruction tuning data has
demonstrated unique advantages for efficient capability re-
covery (Ma et al., 2023; Zhao et al.; Zhang et al., 2024;
Chen et al., 2023). Compared to pre-training which requires
massive computational resources, instruction tuning enables
effective recovery with a much smaller data scale by explicit
supervision. Furthermore, through the diverse task coverage,
like language modeling, common sense reasoning, mathe-
matical problem solving, and code generation, instruction
tuning preserves the model’s general-purpose capabilities
while preventing over-specialized recovery.

Conventional schemes (Ma et al., 2023) usually employ the
full version of publicly available instruction tuning datasets
like Alpaca (Taori et al., 2023) to conduct the recovery
post-training. However, this can bring significant computa-
tion overhead and even unsatisfactory recovery performance
(See Appendix A). An intuitive solution is to take part of
the original data for training, thus consuming less data and
correspondingly reducing the computation resource demand.
Nevertheless, directly utilizing the uniformly split data sub-
set (e.g., first 20% of the data), can lead to sub-optimal
performance, or even performance degradation. Moreover,
the recovered performance considerably varies for models
trained with different subsets. Therefore, selecting the most
valuable instruction-tuning data that can contribute to recov-
ery performance and reduce training costs becomes crucial.
Though previous works have noticed the significance of
selecting high-quality data to conduct the general instruc-
tion tuning (Wang et al., 2024), few of them are specifically
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designed for the recovery post-training. Note that general
high quality does not necessarily mean useful for recovery.

Considering the above limitations, the ideal recovery train-
ing data selection approach should exhibit the following
properties: (1) Targeted and Balanced Capability Recov-
ery: Given the uneven deterioration of different capabilities
in the pruning (see Appendix A), the ideal selection method
should identify and prioritize the severely-degraded ones,
while ensuring balanced recovery of the model’s overall
functionality. Therefore, it needs to select a comprehensive
instruction set that effectively targets the most affected capa-
bilities while still allocating appropriate recovery data to less
impacted ones. (2) Recovery Training Efficiency: Limited
computing resources pose serious efficiency challenges to
the LLM recovery post-training. An ideal method should be
able to select instructions that are both most beneficial for re-
covery and low in computational cost, thereby accelerating
the training process and optimizing resource utilization. (3)
Mitigation of Negative Transfer: Recognizing that not all
instruction data is beneficial for model recovery, an optimal
approach should not only identify the most advantageous in-
structions, but also filter out potentially harmful or irrelevant
ones. This significantly reduces the risk of negative transfer
during the recovery training, ensuring that the selected data
contributes positively for model recovery.

To achieve such goals, we propose the Post-training dAta
Selection method for Efficient pruned large language model
Recovery (PASER). First, we perform semantic-structural
recovery instruction clustering to obtain different data
groups corresponding to different LLM capabilities. Second,
we select recovery instructions in a capability degradation-
aware manner, where the overall data budget is allocated
to different clusters based on their corresponding capability
degradation degrees. In particular, when selecting samples
within each capability cluster, the computation cost of each
sample is also taken into consideration to optimize the effi-
ciency of the recovery process. Finally, we construct the con-
cept consistency graph to maintain the semantic consistency
across selected instructions, thus preventing introducing con-
flicting or irrelevant samples. We take the LLaMA 2/3 and
Baichuan2 as the target LLMs and perform the experiments
under different LLM pruning schemes and different-sized
instruction tuning datasets. The comparison with random
and conventional instruction tuning data selection baselines
demonstrates that PASER can more effectively enhance the
recovered LLM performance on language modeling and
various reasoning tasks. Meanwhile, the recovery training
overhead can also be reduced significantly.

2. Related Works
Large Language Model Pruning can be generally divided
into three categories: unstructured pruning, semi-structured

pruning, and structured pruning. Unstructured pruning re-
moves individual weights without structural constraints,
with representative works including SparseGPT (Frantar
& Alistarh, 2023), Wanda (Sun et al., 2024), BESA (Xu
et al., 2024b), and OWL (Yin et al., 2024). This technique
allows for maximum flexibility in weight selection and can
achieve high compression rates while maintaining model
performance. However, the resulting irregular sparsity pat-
terns limits the practical acceleration. Semi-structured prun-
ing (Guo et al., 2024; Malla et al., 2024; Frantar & Alistarh,
2023; Sun et al., 2024) targets specific patterns like N:M
sparsity, balancing flexibility and hardware efficiency. Struc-
tured pruning approaches like LLM-Pruner (Ma et al., 2023)
and SliceGPT (Ashkboos et al., 2024) remove entire struc-
tural components, offering better hardware compatibility
and attracting industry attention (Ko et al., 2023; An et al.,
2024; Song et al., 2024; Xia et al., 2024). However, struc-
tured pruning faces more severe performance degradation,
highlighting the importance of recovery post-training.

Instruction Tuning has emerged as a crucial technique for
enhancing LLMs (Wei et al.; Wang et al., 2023), improving
their adaptability to novel tasks (Sanh et al.; Liang et al.;
Zhou et al., 2024). Recent works have explored instruction
tuning as a post-compression recovery mechanism (Zhao
et al.; Ma et al., 2023). While promising, this combination
faces challenges from reduced model capacity and computa-
tional costs. Most current approaches use general instruction
datasets without considering compressed model’s character-
istics or disproportionately affected capabilities. Our work
addresses these gaps by proposing a novel framework for
post-training data selection in pruned LLM recovery.

3. Methodology
In this section, we first formulate the problem and then in-
troduce three main components of the PASER framework
(shown in Figure 1): semantic-structural recovery instruc-
tion clustering, capability degradation-aware instruction se-
lection, and negative transfer mitigation. Furthermore, we
provide the time complexity analysis for PASER process.

3.1. Problem Formulation

Let Mo denote the original large language model and Mp

the pruned version of this model. We define the instruction
tuning dataset as D = {(xi, yi)}Ni=1, where xi represents an
instruction and yi its corresponding output. Our goal is to
select a subset S ⊂ D to efficiently recover the performance
of Mp. We formulate the problem as an optimization task:

S∗ = argmin
S⊂D,|S|≤B

E(x,y)∼T [L(Mr(S), x, y)],

s.t. Mr(S) = RecoveryTrain(Mp, S)
(1)

where Mr(S) is the recovered model after training on sub-
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Figure 1: Overall Framework for our proposed PASER recovery data selection framework.

set S, T is the distribution of downstream evaluation tasks,
L is a loss function. B(B < N) is the recovery data bud-
get, i.e., the maximum number of samples allowed in the
selected subset.

3.2. Semantic-Structural Recovery Instruction
Clustering

During the LLM pruning process, different model capabili-
ties can be affected unevenly by pruning. To ensure targeted
and balanced recovery, we need to identify and group data
points that focus on similar capabilities. To achieve this goal,
we hypothesize that distinct geometric topological struc-
tures of recovery instruction data in the high-dimensional
semantic space may correspond to different aspects of LLM
capabilities. This hypothesis is based on the intuition that in-
structions requiring similar capabilities are likely to cluster
together in the semantic space, forming identifiable topolog-
ical structures. In detail, we employ a two-step approach
on the embedding space of instructions. First, we apply a
diffusion kernel to SentenceBERT (Reimers & Gurevych,
2019) embeddings for manifold learning:

e(xi) = DiffusionKernel(SentenceBERT(xi)). (2)

Here, e(xi) is the obtained low-dimensional manifold rep-
resentation of instruction xi. This process helps uncover
the intrinsic geometric structure in the semantic space while
reducing dimensionality and preserving non-linear relation-
ships. Then, non-negative matrix factorization (NMF)-based
spectral clustering (Ding et al., 2005) is conducted based
on such e(xi) to identify natural groupings of instructions

that potentially correspond to different LLM capabilities,
leading to K clusters as follows:

C = {c1, . . . , cK}
= NMFSpectralClustering({e(xi)|(xi, yi) ∈ D}).

(3)

The detailed process of these two steps are provided as
below. In the first step of manifold learning, we first
obtain the SentenceBERT embedding of each instruction
xi. Then, an adjacency matrix A is constructed based
on the pairwise Euclidean distances of these embeddings:
Aij = exp(−∥SentenceBERT(xi)−SentenceBERT(xj)∥2

2

2σ2 ), where σ
is a scaling parameter, typically set to the median of all
pairwise distances. The degree matrix D is then computed
as a diagonal matrix where each diagonal element is the
sum of the corresponding row in A:Dii =

∑n
j=1 Aij . Us-

ing these matrices, we define the normalized graph Lapla-
cian L = I −D−1/2AD−1/2, where I is the identity ma-
trix. We then apply the diffusion kernel to this Laplacian
Kt = exp(−tL), where Kt is the diffusion kernel at time
t. The diffusion time t is selected using the spectral gap
method: topt = argmaxt

(
d log(λ2(t))

d log(t)

)
, where λ2(t) is the

second eigenvalue of Kt. The low-dimensional manifold
representation e(xi) is then obtained by selecting the top d
eigenvectors of Ktopt : e(xi) = [ϕ1(xi), ϕ2(xi), ..., ϕd(xi)],
where ϕj are the eigenvectors of Ktopt corresponding to the
d largest eigenvalues.

In the second step, we perform NMF-based spectral clus-
tering on these low-dimensional representations. Specifi-
cally, we construct a similarity matrix S from the manifold
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representations Sij = exp(−∥e(xi)−e(xj)∥2

2σ2 ). We then de-
termine the optimal number of clusters K by performing
NMF with different values of k and selecting the one that
minimizes the Frobenius norm of the approximation error
K = argmink ∥S−WkH

T
k ∥F , where Wk and Hk are non-

negative matrices resulting from NMF with k components.
With this optimal K, we decompose the similarity matrix
S using NMF such that S ≈ WHT , where W and H are
non-negative matrices with K columns. Finally, we assign
each data point to a cluster based on the maximum value
in each row of W , where ci = argmaxj Wij , i = 1, ..., N .
This results in K clusters C = {c1, . . . , cK}, where the
number of clusters K is adaptively determined through the
above process.

3.3. Capability Degradation-aware Instruction Selection

Capability Degradation Assessment To prioritize the
severely affected capabilities and finally achieve the bal-
anced recovery of pruned LLMs, we need a measure of
capability degradation to guide the data selection. For each
cluster ck obtained in Section 3.2, we define the capability
degradation score (CDS) with the Jensen-Shannon diver-
gence (JSD) (Fuglede & Topsoe, 2004) as follows:

1

|ck|
∑

(x,y)∈ck

1

|y|

|y|∑
m=1

JSD(P (tm|Mp, x)||P (tm|Mo, x)).

(4)
Here, P (tm|Mp, x) represents the output probability distri-
bution on the m-th token of the pruned model Mp given
input x. Taking a token tim(1 ≤ i ≤ |Voc|) in this distribu-
tion as an example, its corresponding probability is:

P (tim|Mp, x) =
exp( logit(tim)

τ )∑|Voc|
j=1 exp( logit(tjm)

τ )
, (5)

where τ is the softmax temperature and the |Voc| indicates
the vocabulary size. logit(·) is the logit value for tokens
produced by LLM. Similarly, the P (tm|Mo, x) represents
the output probability distribution for the original model
Mo. The JSD is actually the symmetrized and smoothed
version of the Kullback–Leibler divergence (KLD) (Kull-
back & Leibler, 1951): JSD(X||Y ) = 1

2KLD(X||M) +
1
2KLD(Y ||M). The distribution M = 1

2 (X + Y ) is the
mixed distribution of X and Y .

Thus, the obtained CDS quantifies the average performance
degradation for data points in each capability cluster. The
choice of JSD over simple loss variations as the perfor-
mance degradation signal is motivated by its unique prop-
erties. First, its symmetry ensures consistent comparison
between the pruned model Mp and the original model Mo,
while its bounded range (0 to 1) provides a normalized mea-
sure of divergence. This facilitates easier interpretation and

comparison across different capability clusters. Moreover,
JSD’s robustness to outliers and its information-theoretic
foundation allow for a more nuanced assessment of capabil-
ity degradation, capturing subtle changes in model outputs
that might not be apparent from loss or accuracy values
alone (Dutta et al., 2024) due to the sampling uncertainty.
The smoothing effect introduced by the use of the mixed dis-
tribution in JSD calculation also contributes to a more stable
assessment across diverse instruction types. By employing
JSD in our CDS calculation, we obtain a comprehensive and
reliable assessment of capability degradation, enabling more
accurate identification and prioritization of the capabilities
most severely affected by model pruning.

Inter-Capability Budget Allocation Sampling a subset
of high-quality data from the original set to achieve better
training performance is the objective of the data selection
process. To ensure the efficiency on data utilization and
training process, the instruction data budget B(B < N)
should be maintained. Under this budget, we design an
adaptive selection approach based on the above CDS for
balanced recovery while focusing on severely affected ca-
pabilities. In detail, we allocate sampling budget to each
cluster proportionally to its corresponding CDS:

nk =

⌊
B · CDS(ck)∑K

j=1 CDS(cj)

⌋
. (6)

nk is the sample number budget allocated to cluster ck.

Intra-Capability Efficiency-Driven Sample Selection To
maximize computational efficiency during the recovery post-
training phase, we need to select samples that offer the
highest recovery benefit relative to their computational cost.
Within each cluster ck, we select top nk samples based on
their Individual Efficiency Scores (IES):

IES(x, y) =
1
|y|

∑|y|
m=1 JSD(P (tm|Mp, x)||P (tm|Mo, x))

logComputationalCost(x, y)
.

(7)
Here, ComputationalCost is instantiated with the quadratic
term of sequence length (|x| + |y|)2 as the approximated
complexity for LLM training. The use of JSD captures
the degree of divergence between the pruned and original
models’ outputs, indicating areas where capabilities have
been most affected and thus offering the highest potential
for targeted recovery. The logarithmic term balances the
consideration of computational cost, allowing for a more
careful selection that favors efficient samples without overly
penalizing high-potential, moderately costly instances.

3.4. Negative Transfer Mitigation

To prevent performance degradation due to conflicting or
irrelevant information, we need to detect and mitigate poten-
tial negative transfer. We introduce a Concept Consistency

4
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Graph (CCG) to model relationships between concepts in
the selected data. Here, a concept refers to a key knowledge
unit or semantic element extracted from an instruction tun-
ing sample. Concepts play a crucial role in capturing the
essential information within instructions and help to identify
potential conflicts that could lead to negative transfer. By
managing relationships between concepts, we aim to main-
tain semantic consistency across the selected instruction
tuning dataset, thereby reducing the risk of learning conflict-
ing or irrelevant information during the recovery process.
The formal definition for CCG is provided as follows:
Definition 1 (Concept Consistency Graph). A CCG is a
graph G = (V,E) where vertices V represent concepts, and
an edge (vi, vj) ∈ E exists if concepts vi and vj co-occur
in at least one instruction tuning sample without conflict.

For each new sample (x, y), we extract its concept C(x, y)
and check for consistency: IsConsistent(x, y) = ∀vi, vj ∈
C(x, y) : (vi, vj) ∈ E or {vi, vj} ̸⊂ V . We only add
samples that are consistent with the existing CCG, updating
the graph with each addition. This approach ensures that
we maintain a coherent set of instructions, minimizing the
risk of negative transfer by avoiding the introduction of
conflicting concepts during the recovery training process.
The full version of our algorithm is provided in Appendix B.

3.5. Time Complexity Analysis

We provide a comprehensive analysis of the time complexity
for the PASER algorithm.
Theorem 1. The overall time complexity of PASER is
O(N logN + NC2), where N is the number of instruc-
tions in D, and C is the maximum number of concepts in
any instruction tuning sample.

Proof. We analyze each step of the algorithm in detail: The
Semantic-Structural Recovery Instruction Clustering step,
including SentenceBERT embedding, Diffusion Kernel com-
putation, and NMF Spectral Clustering, has a dominant com-
plexity of O(N logN). For the Capability Degradation As-
sessment step, computing JSD for each sample and calculat-
ing CDS for each cluster take O(N) time in total. The Inter-
capability Budget Allocation, which involves allocating the
budget to clusters, has a time complexity of O(K), where
K is the number of clusters. However, since K ≤ N , this
step does not dominate the overall complexity. During Intra-
capability Efficiency-Driven Sample Selection, for each
cluster ck, we perform sorting by JSD (O(|ck| log |ck|)), it-
erate through sorted samples (O(|ck|)), perform consistency
checks (IsConsistent, O(C2) per sample), and update the
CCG (O(C2) per sample). Considering all clusters, this
step’s total complexity is O(N logN + NC2). Thus, the
overall time complexity is dominated by the clustering step
and the intra-capability sample selection step. Therefore,
the total time complexity is O(N logN +NC2).

In practice, C is often much smaller than N (C ≪ N ) and
can be considered as a constant factor for large N . Thus, we
can simplify the complexity to O(N logN). This analysis
demonstrates that PASER is computationally efficient and
scalable for large instruction tuning datasets.

4. Experiments
4.1. Experiment Setup

Target LLMs The experiments are performed on sev-
eral open-source popular English LLMs: LLaMA2-
7B/13B/70B (Touvron et al., 2023) (hf version), LLaMA3-
8B (Dubey et al., 2024)(instruct version), and bilingual
LLMs: Baichuan2-7B/13B (Yang et al., 2023)(base ver-
sion), which support both English and Chinese.

Instruction Tuning Datasets As for the original recovery
post-training data, we choose two different-size instruction
tuning datasets: Alpaca (Taori et al., 2023) and LaMini (Wu
et al., 2024). Alpaca contains 52K instruction-following
samples generated using OpenAI’s text-davinci-003 model
based on 175 human-written seed tasks. LaMini contains
a total of 2.58M pairs of instructions and responses syn-
thesized with gpt-3.5-turbo based on several existing re-
sources of prompts, including self-instruct (Wang et al.,
2023), P3 (Sanh et al., 2022), FLAN (Longpre et al., 2023)
and Alpaca (Taori et al., 2023).

Base Pruning Schemes Different pruning schemes are in-
corporated into our experiments to explore the applicability
of PASER, ranging from structured pruning methods: LLM-
Pruner (Ma et al., 2023), SliceGPT (Ashkboos et al., 2024),
semi-structured pruning method: Wanda (Sun et al., 2024),
and unstructured pruning method: SparseGPT (Frantar &
Alistarh, 2023).

Instruction Tuning Data Selection Baselines In addition
to the random data selection, we also compare PASER with
several recent general instruction tuning data selection base-
lines: Instruction Mining (Cao et al.), IFD (Li et al., 2024a),
Nuggets (Li et al., 2024b). Note none of these baselines
are customized for post-pruning recovery training scenario.
Besides, the evaluation performance of recovery training
with the full original dataset is also compared.

Evaluation Datasets and Tasks To thoroughly evaluate the
performance of recovered LLMs, we employ seven com-
mon sense reasoning datasets:BoolQ (Clark et al., 2019),
PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019),
WinoGrande (Sakaguchi et al., 2021), ARC-Easy (Clark
et al., 2018), ARC-Challenge (Clark et al., 2018), and Open-
bookQA (Mihaylov et al., 2018). In the practice, we relies
on the open-source library1 to implement the evaluation,
where the model needs to rank the choices in the multi-

1https://github.com/EleutherAI/lm-evaluation-harness
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Table 1: Recovery performance of different instruction tuning data selection methods under various pruning schemes on
LLaMA2-7B model. The ‘bold’ represents the best performance under the same pruning scheme. Here, the Alpaca is taken
as the original dataset.

Pruning
Recovery
Post-training WikiText2↓ PTB↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

w/o pruning w/o Training 12.62 22.14 71.13 78.40 72.79 67.17 69.36 40.70 40.80 62.91

LLM-Pruner
ratio=25%

w/o Training 20.34 38.81 61.87 76.61 65.86 60.22 63.13 37.37 39.40 57.78
Full Data 736.42 1273.10 37.83 53.21 26.42 49.57 25.29 28.16 29.00 35.64
Random 93.77 180.62 57.61 64.37 45.39 55.87 43.78 31.94 34.90 47.69
Instruction Mining 23.31 40.63 61.59 75.68 66.08 60.71 62.34 37.96 39.20 57.65
IFD 19.76 33.30 63.55 77.23 67.21 60.90 63.46 37.81 40.00 58.59
Nuggets 20.02 35.19 63.62 77.43 67.36 61.08 63.77 37.64 39.90 58.69
PASER 16.40 26.35 67.25 77.29 68.98 66.97 67.84 39.54 39.80 61.10

SliceGPT
ratio=25%

w/o Training 44.53 80.07 65.54 66.87 54.16 63.38 58.46 34.56 36.90 54.27
Full Data 38.24 68.53 68.75 69.84 57.92 66.18 62.37 36.82 38.30 57.17
Random 41.86 74.92 66.89 68.21 55.79 64.56 60.23 35.47 37.60 55.54
Instruction Mining 39.75 71.28 67.87 68.93 56.42 65.76 61.89 36.23 37.60 56.39
IFD 37.75 67.48 69.23 70.54 58.38 67.12 63.75 37.18 38.40 57.80
Nuggets 23.86 35.42 69.89 71.21 58.79 67.56 72.23 37.47 38.60 59.39
PASER 12.24 21.53 72.75 79.84 73.92 69.18 71.37 41.82 41.30 64.31

Wanda
sparsity=2:4

w/o Training 42.10 76.85 69.30 71.99 53.06 62.75 60.94 28.07 34.60 54.39
Full Data 27.63 50.22 70.77 74.87 63.78 65.26 65.30 34.04 37.10 58.73
Random 35.98 65.24 69.68 73.14 58.65 63.69 63.16 31.91 36.20 56.63
Instruction Mining 31.47 57.17 70.61 73.85 61.27 64.13 64.72 33.79 36.80 57.88
IFD 25.82 46.78 71.06 75.57 64.15 65.38 66.55 35.63 37.60 59.42
Nuggets 23.98 43.24 71.68 76.14 64.65 65.69 66.16 36.91 38.20 59.92
PASER 14.13 27.22 70.77 77.87 71.78 66.26 68.30 39.04 40.10 62.02

SparseGPT
sparsity=50%

w/o Training 19.26 36.41 71.22 75.60 62.85 66.06 69.11 36.86 37.80 59.93
Full Data 25.83 47.26 69.10 74.15 59.68 67.76 63.74 39.59 37.80 58.83
Random 28.74 50.85 67.84 75.39 57.14 68.92 59.76 37.34 36.60 57.57
Instruction Mining 24.08 45.51 70.50 74.47 61.91 65.40 67.73 36.49 37.40 59.13
IFD 21.19 40.05 71.06 75.13 62.79 65.72 68.80 36.23 37.20 59.56
Nuggets 16.21 28.95 71.64 75.67 63.33 66.05 69.49 36.60 37.40 60.03
PASER 13.33 23.77 74.79 78.38 66.62 69.03 72.57 38.70 39.40 62.78

ple choice tasks or generate the answer in the open-ended
generation tasks. The whole process is conducted in the
zero-shot manner. Besides, we follow (Ma et al., 2023)
to evaluate the language modeling capability with the zero-
shot perplexity (PPL) analysis on WikiText2 (Merity et al.,
2022) and PTB (Marcus et al., 1993). For enhancing evalu-
ation comprehensiveness, we also conduct experiments on
mathematical problem solving and code generation tasks,
as shown in Appendix C and D, respectively.

4.2. Experiment Results and Analysis

Recovery Performance for Different Pruning Schemes
We evaluate the recovery performance of LLaMA2-7B us-
ing different instruction tuning data selection methods under
structured pruning, semi-structured pruning, and unstruc-
tured pruning, respectively. According to the results in Ta-
ble 1, directly employing full data can indeed bring the sub-
optimal recovery performance, especially under the LLM-
Pruner. This is because the full version of data contains
some irrelevant or conflicting information for capability re-
covery, resulting in the negative transfer during the training
phase. Meanwhile, even the general instruction tuning data
selection methods like IFD and Nuggets can bring better

reasoning and language model performance than full data
and random in most cases, validating the necessity of con-
ducting recovery data selection. Furthermore, we can find
that previous selection methods can hardly help model re-
cover to the level of unpruned status, under the limited data
budget. However, our PASER can not only outperform base-
lines, but also reduce the averaged reasoning performance
degradation to less than 3% under LLM-Pruner, Wanda, and
SparseGPT. Especially, when pruning LLaMA2-7B with
SliceGPT, our PASER can improve the average reasoning
performance to 64.31, higher than the unpruned model. Be-
sides, its zero-shot perplexity on WikiText2 and PTB is
also lower than unpruned model slightly. This suggests that
allocating recovery budget according to capability degrada-
tion levels and prioritizing most-affected samples exhibit
the potential of help pruned LLM recover to the capability
level of unpruned status. Besides, PASER can also be ex-
tended to other LLM post-compression scenarios, like the
post-quantization recovery. The corresponding results and
analysis are provided in Appendix E.

Robustness over Various Target Large Language Models
To validate whether PASER can maintain the robust effec-
tiveness among various target LLMs, we conduct the experi-
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Table 2: Recovery performance of different instruction tuning data selection methods on different target LLMs under
LLM-Pruner scheme. The ‘bold’ represents the best performance on the same target LLM. Here, the Alpaca is taken as the
original dataset. The “Reason” indicates the averaged performance on 7 common sense reasoning datasets.

Model Benchmark w/o pruning w/o Training Full Data Random Instruction Mining IFD Nuggets PASER

LLaMA2-13B
ratio=50%

WikiText2↓ 11.58 73.52 27.74 39.85 44.37 38.61 33.50 21.67
PTB↓ 20.24 151.19 45.08 76.20 80.82 73.25 61.26 35.09
Reason↑ 64.78 48.86 56.40 54.62 54.09 54.77 55.25 57.62

LLaMA2-70B
ratio=50%

WikiText2↓ 8.92 46.81 31.76 25.34 23.16 22.87 19.63 12.35
PTB↓ 15.59 92.36 56.83 48.72 43.45 43.68 36.24 21.82
Reason↑ 71.72 61.14 65.56 64.03 66.74 67.27 67.73 69.62

LLaMA3-8B
ratio=25%

WikiText2↓ 7.36 15.47 9.58 12.52 13.25 11.04 10.31 8.09
PTB↓ 12.87 28.31 16.73 22.17 23.47 19.31 18.02 14.16
Reason↑ 70.14 63.45 67.84 65.60 65.47 66.64 67.30 69.83

Baichuan2-7B
ratio=25%

WikiText2↓ 14.42 28.30 25.29 27.04 34.24 24.83 21.48 16.92
PTB↓ 26.78 53.34 35.81 46.83 60.93 37.81 37.65 30.76
Reason↑ 64.19 56.33 57.39 57.09 54.78 57.36 57.84 59.70

Baichuan2-13B
ratio=50%

WikiText2↓ 11.23 58.41 24.35 40.44 36.82 33.45 28.96 14.62
PTB↓ 18.04 116.26 42.68 76.57 70.45 63.23 53.31 29.82
Reason↑ 67.25 57.59 61.64 59.12 59.38 60.34 61.09 63.75

ments on LLaMA2-7B/13B/70B, LLaMA3-8B, Baichuan2-
7B/13B, under LLM-Pruner. According to results in Table 2,
we can first observe the model capability under high prun-
ing ratio (50%) is hard to recover to unpruned level, espe-
cially for relatively smaller model like LLaMA2-13B and
Baichuan2-13B. Though, PASER can still outperform ran-
dom and best-performing data selection baseline, Nuggets,
by 4.41 and 2.31 points, respectively on average. Especially,
for LLaMA2-70B, our PASER can control the averaged rea-
soning performance degradation to less than 3%. This can
be explained that the structure redundancy in 70B model
is relatively higher, paving the way for effective recovery
through data selection under high pruning ratios. As for the
second smallest model, LLaMA3-8B, PASER can recover
the reasoning performance to the 99.56% of the unpruned
status, which further demonstrates the robustness of PASER
over different target LLMs. Finally, the performance of vari-
ous recovery methods including PASER on Baichuan2-7B is
not satisfying enough given only 25% pruning ratio, which
can be attributed to that the pruning process has severely
damaged the model internal structure.

Recovery Performance with Different Instruction Tun-
ing Datasets In addition to the recovery performance on
Alpaca shown in Table 1, we also explore the corresponding
results on another larger dataset, LaMini. Especially, con-
sidering the space limitation and more severe performance
degradation of structured pruning schemes, we provide the
experiments results on LLM-Pruner and SliceGPT on Ta-
ble 3. From this table, we can observe that PASER can still
consistently outperform other data selection and random
methods. Besides, comparing the results in Table 1 and 3,
it can be found that improving the data scale (from 10K to
10K samples) indeed facilitates the recovery performance
though the significantly increased computational overhead,

Table 3: Recovery performance of different instruction tun-
ing data selection methods under two structured pruning
schemes on LLaMA2-7B model. The ‘bold’ represents the
best performance under the same pruning scheme. Here,
the LaMini is taken as the original dataset. The “Reason”
indicates the averaged performance on 7 reasoning datasets

Pruning
Recovery
Post-training WikiText2↓ PTB↓ Reason↑

w/o pruning w/o Training 12.62 22.14 62.91

LLM-Pruner
ratio=25%

w/o Training 20.34 38.81 57.78
Full Data 16.28 27.12 62.68
Random 18.40 32.15 60.93
Instruction Mining 17.83 28.87 60.76
IFD 18.54 31.23 60.65
Nuggets 18.27 30.90 60.99
PASER 13.45 22.63 63.79

SliceGPT
ratio=25%

w/o Training 44.53 80.07 54.27
Full Data 24.36 35.64 58.31
Random 39.86 70.92 56.68
Instruction Mining 37.75 67.28 57.53
IFD 25.75 53.48 58.94
Nuggets 21.86 31.42 60.96
PASER 14.27 23.53 65.74

which is consistent with the Scaling Law (Kaplan et al.,
2020). We can also notice that the performance of full data
on LaMini is relatively competitive, which is because the
proportion of conflicting or negative data for recovery is
much lower than that in Alpaca.

Ablation Study To validate the contribution of each compo-
nent in PASER, we conduct comprehensive ablation studies.
Specifically, we evaluate three variants: (1) PASER w/o
S2RIC: replacing semantic-structural clustering with ran-
dom clustering while keeping other modules unchanged;
(2) PASER w/o CDAIS: randomly sampling equal num-
ber of instructions from each cluster instead of using capa-
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Table 4: Ablation study results on LLaMA2-7B for each component under different pruning schemes. The “Reason”
indicates the averaged performance on 7 common sense reasoning datasets.

Ablation Variant LLM-Pruner (25%) SliceGPT (25%) Wanda (2:4) SparseGPT (50%)
WikiText2↓ PTB↓ Reason↑ WikiText2↓ PTB↓ Reason↑ WikiText2↓ PTB ↓ Reason↑ WikiText2↓ PTB↓ Reason↑

w/o S2RIC 18.73 32.84 59.67 14.83 25.42 63.03 15.84 30.25 61.19 14.89 26.31 62.60
w/o CDAIS 17.56 30.15 60.26 14.16 24.92 62.68 15.46 29.48 61.23 14.62 25.84 62.49
w/o NTM 19.82 35.60 59.25 15.37 27.81 61.92 16.79 31.52 61.34 15.91 28.19 61.76
PASER 16.40 26.35 61.10 12.24 21.53 64.31 14.13 27.22 62.02 13.33 23.77 62.78

Figure 2: Average reasoning performance and recovery post-training time consumption curves corresponding to different
instruction tuning data selection methods. The left two subfigures are for Alpaca while right two are subfigures for LaMini.

bility degradation-aware selection; (3) PASER w/o NTM:
removing the negative transfer mitigation module. The
results in Table 4 demonstrate that all three components con-
tribute positively to model recovery across different prun-
ing schemes. The semantic-structural clustering effectively
identifies capability-specific instruction groups, leading to
0.18-1.43 points improvement in reasoning performance.
Its removal causes degradation in both language modeling
(increased perplexity) and reasoning tasks, particularly evi-
dent under structured pruning schemes like LLM-Pruner and
SliceGPT. The capability degradation-aware selection mech-
anism enhances recovery efficiency through adaptive budget
allocation, contributing 0.29-1.63 points improvement in
reasoning tasks while maintaining stable language modeling
performance. Notably, negative transfer mitigation shows
significant impact (0.68-2.39 points improvement), espe-
cially under high pruning ratios, highlighting its importance
in preventing conflicting information during recovery train-
ing. These improvements are consistently observed across
different pruning schemes, with particularly pronounced
effects in structured pruning where capability degradation
tends to be more severe and uneven.

Recovery Post-training Efficiency Analysis To highlight
PASER’s advantages on recovery post-training efficiency,
we conduct the experiments under different data budgets B
and different datasets and record the corresponding averaged
reasoning performance and training time in Figure 2. From
the first and third subfigures, we can observe that PASER
can obtain best recovery performance under different B/N
on Alpaca and LaMini. Interestingly, in the first subfigure,
when rising B/N from 0.3 to 0.4, the reasoning perfor-

mance of Random even decreases. It is because expanding
data scale also introduces the conflicting or negative data
existing in the original dataset. From the second and fourth
subfigures, PASER consistently consumes the least train-
ing time, which can be attributed to the efficiency-driven
sample selection process in PASER. This advantage can be
more obvious under low B/N like 0.02 on LaMini. This is
because increasing data budget will force PASER to select
some relatively more time-consuming samples given the
fixed original dataset, weakening its efficiency superiority.

In addition, more experiment results and analysis can be
found in Appendix C, D, E, F, G, H, I, and J.

5. Conclusion and Future Works
Recovery post-training has been an important procedure
after large language model pruning to restore the critical ca-
pabilities. Previous works directly utilize the full instruction
tuning dataset, facing high computation cost and risks of
untargeted recovery and negative transfer. In this work, we
propose the post-training data selection method for efficient
pruned model recovery. According to capability degrada-
tion degrees, we allocate selection budget among different
capability data obtained through semantic-structural cluster-
ing. We then select samples where model behavior has been
severely affected while considering computation cost, and
introduce a concept consistency graph to mitigate negative
transfer. Extensive experiments on different LLMs demon-
strate the effectiveness of our framework. Future work will
explore other optimization approaches like data augmenta-
tion and revision to further improve recovery efficiency.
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Impact Statement
This work aims to improve the efficiency of recovering
pruned large language model capabilities while reducing
computational costs. Our approach has several broader im-
plications for society and the field of machine learning: On
the positive side, PASER could help reduce the environmen-
tal impact of training large language models by enabling
more efficient recovery processes that require only 4-20% of
the original post-training data. This aligns with growing ef-
forts to make AI development more environmentally sustain-
able. Additionally, by reducing computational requirements,
our method could make working with large language models
more accessible to researchers and organizations with lim-
ited computing resources, potentially democratizing access
to AI technology. However, we acknowledge potential risks
and challenges. As our method helps recover model capa-
bilities more efficiently, it could accelerate the deployment
of compressed language models in real-world applications.
This warrants careful consideration of model safety, reliabil-
ity, and potential misuse. While PASER focuses on main-
taining model performance, future work should examine
how capability recovery impacts model biases and fairness.
We encourage implementing appropriate safeguards when
deploying recovered models in practice. We also note that
as this technology develops, it will be important to monitor
its effects on energy consumption patterns in AI develop-
ment and establish best practices for responsible use. The
AI community should continue discussing how efficiency
improvements like PASER can best serve society’s inter-
ests while minimizing potential harms. Our hope is that by
making language model compression more practical and
efficient, this work will contribute to more sustainable and
accessible AI development, while acknowledging the need
for careful consideration of safety and ethical implications
in its deployment.
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Figure 3: Average performance on seven common LLM reasoning evaluation tasks after recovery post-training with different
data. The numbers in brackets represent the group index of the data subset in the full dataset. Unpruned indicates the
original model and w/o Training indicates the pruned model (using LLM-Pruner (Ma et al., 2023)) without the recovery
post-training.

Figure 4: Normalized Performance Degradation (%) on four various capabilities under four LLM pruning settings.

A. Supporting Materials for Introduction Part
We provide the performance comparison in Figure 3 which supports the claim in the second paragraph of Section 1 about
the recovery performance deterioration. From this figure, we can find that employing the full version of recovery data or
uniformly split subset to conduct recovery training can hardly achieve satisfying performance.

Besides, we also provide the evidence for the uneven deterioration of different LLM capabilities during the pruning process
(corresponding to the third paragraph in Section 1). From the Figure 4, we can observe that the four critical capabilities:
language modeling, common sense reasoning, mathematical problem solving, and code generation exhibit significant
difference on the performance degradation degrees. This phenomenon exits widely in the provided four pruning settings,
which implies the necessity of performing targeted and balanced capability recovery. In fact, even among the various
common sense reasoning tasks, this kind of uneven capability deterioration effect is still evident.

B. Pseudocode
We provide the full version of our pseudocode in Algorithm 1.
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Algorithm 1 Post-training data Selection for efficient pruned large language model recovery (PASER)

Require: Mo: original model, Mp: pruned model, D: instruction tuning dataset, B: data budget, U : computational cost
budget
function PASER (Mo,Mp, D,B,U )
C ← NMFSpectralClustering({e(xi)|(xi, yi) ∈ D})
for ck ∈ C do

CDS(ck)← CapabilityDegradationScore(ck,Mo,Mp)
end for
{nk} ← AllocateSamples({CDS(ck)}, B)
S ← ∅, G← InitializeCCG()
for ck ∈ C do
Lk ← SortByIESDescending(ck)
i← 0, count← 0
while count < nk and i < |Lk| do
(x, y)← Lk[i]
if IsConsistent(x, y,G) and

∑
(x′,y′)∈S∪{(x,y)}

ComputationalCost(x′, y′) ≤ U then

S ← S ∪ {(x, y)}
G← UpdateCCG(G, x, y)
count← count + 1

end if
i← i+ 1

end while
end for
Return S

end function

C. Evaluation on Mathematical Problem Solving Tasks
To validate the effectiveness of PASER beyond common sense reasoning tasks, we conduct additional experiments on
mathematical problem solving capabilities. Specifically, we employ two widely-adopted mathematical problem solving
benchmarks:

• GSM8K (Cobbe et al., 2021): A dataset containing 8.5K high-quality grade school math word problems that test various
mathematical problem solving capabilities, including arithmetic, algebra, and word problem solving.

• Minerva Math (Lewkowycz et al., 2022): A comprehensive mathematical evaluation dataset covering diverse topics in
mathematics ranging from arithmetic to calculus, with problems requiring multi-step reasoning.

Table 5: Recovery performance of different instruction tuning data selection methods on mathematical problem solving
tasks under various pruning schemes. The ’bold’ represents the best performance under the same pruning scheme.

Recovery Method LLM-Pruner (25%) SliceGPT (25%) Wanda (2:4) SparseGPT (50%)
GSM8K Minerva GSM8K Minerva GSM8K Minerva GSM8K Minerva

w/o Training 44.3 17.8 42.5 16.9 43.8 17.4 43.1 17.2
Full Data 46.5 19.1 44.8 18.3 45.9 18.7 45.2 18.5
Random 45.8 18.4 43.9 17.8 44.7 18.1 44.3 17.9
Instruction Mining 46.2 18.9 44.5 18.1 45.4 18.5 44.9 18.3
IFD 46.8 19.3 45.1 18.5 45.8 18.8 45.4 18.6
Nuggets 47.1 19.5 45.4 18.7 46.2 19.0 45.7 18.8
PASER 49.4 21.2 47.8 20.5 48.5 20.8 47.2 20.1

The recovery performance under different pruning schemes is presented in Table 5. From these results, we can observe
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that PASER consistently outperforms baseline methods across all pruning schemes on both mathematical problem solving
benchmarks. The improvements are particularly significant under the LLM-Pruner scheme, where PASER achieves 5.1%
and 3.4% absolute improvements over w/o Training on GSM8K and Minerva Math, respectively. While different pruning
schemes affect the base performance levels, PASER maintains its effectiveness in recovery. For example, under the more
aggressive SparseGPT (50%) setting, PASER still achieves 4.1% and 2.9% improvements on GSM8K and Minerva Math
over w/o Training. Compared to Full Data training, PASER achieves better performance while using only 20% of the
instruction data, demonstrating its efficiency in recovering mathematical problem solving capabilities.

These results, combined with the common sense reasoning results presented in the main paper, demonstrate that PASER
is effective across diverse tasks. The strong performance on mathematical tasks is particularly noteworthy given that
these problems often require precise, step-by-step reasoning and have less tolerance for errors compared to common sense
reasoning tasks. This validates the effectiveness of our capability degradation score in identifying and prioritizing recovery
for severely affected capabilities, even in domains requiring high precision.

Table 6: Recovery performance of different instruction tuning data selection methods on code generation tasks under various
pruning schemes. The ‘bold’ represents the best performance under the same pruning scheme. ‘P@k’ indicates ‘Pass@k’.

Recovery Method
LLM-Pruner (25%) SliceGPT (25%)

HumanEval MBPP HumanEval MBPP
P@1 P@10 P@100 P@1 P@10 P@100 P@1 P@10 P@100 P@1 P@10 P@100

w/o Training 3.4 6.2 10.4 7.1 15.5 24.6 3.0 5.9 8.7 6.2 11.8 21.5
Full Data 7.8 15.1 19.0 15.2 26.3 39.5 2.9 5.1 11.8 9.3 19.7 36.4
Random 6.2 13.7 20.5 12.8 23.8 35.0 3.1 5.8 14.2 8.5 17.2 38.6
Instruction Mining 8.9 17.8 28.4 15.7 29.2 43.1 6.3 11.4 23.8 12.8 24.5 45.2
IFD 10.5 21.2 35.6 18.2 34.5 50.7 8.7 16.8 31.2 16.4 30.8 52.4
Nuggets 11.8 22.9 38.3 18.9 35.8 52.4 9.5 18.5 33.9 17.6 32.6 51.9
PASER 14.4 27.6 48.2 23.1 42.6 62.0 12.9 25.2 44.5 22.3 41.0 63.7

D. Evaluation on Code Generation Tasks
To further explore the PASER’s effectiveness on recovering code generation capability, we take two structured pruning
schemes (LLM-Pruner, SliceGPT) and perform exhaustive evaluations on two major code generation benchmarks:

• HumanEval (Chen et al., 2021): A widely-used code generation benchmark consisting of 164 hand-crafted Python
programming problems that test various programming concepts. Each problem contains a function signature with docstring
and test cases, requiring models to complete the implementation. The benchmark evaluates functional correctness using
the Pass@k metric, which measures the percentage of problems where a correct solution appears in k samples.

• MBPP (Austin et al., 2021): A programming benchmark containing 974 Python programming problems focused on basic
programming tasks. Each problem includes a natural language description, test cases, and a reference solution, making it
particularly suitable for evaluating language-to-code generation capabilities. MBPP uses the same Pass@k evaluation
metric as HumanEval but generally features simpler problems with a broader coverage of basic programming concepts.

In our experiments, models are evaluated in zero-shot on HumanEval and 3-shot on MBPP. The results under Pass@k
(k = 1, 10, 100) metrics are present in Table 6. As shown in the table, code generation capability experiences severe
degradation after pruning. The Pass@1 performance on HumanEval drops to merely 3.4% under LLM-Pruner without
recovery training. This dramatic decline indicates that code generation, as a complex reasoning task, is particularly vulnerable
during model compression. Through capability degradation-aware budget allocation and targeted sample selection, PASER
demonstrates remarkable effectiveness in recovering this severely impacted capability. Under LLM-Pruner, it achieves
14.4% Pass@1 on HumanEval, not only substantially outperforming other recovery methods but also surpassing the full data
training baseline. The improvement becomes even more pronounced at higher sampling rates, i.e., PASER reaches 48.2%
Pass@100 compared to Random’s 20.5% and Instruction Mining’s 28.4%. This significant performance gap validates our
approach of prioritizing recovery resources for severely degraded capabilities and selecting the most relevant instruction
samples for recovery training. The superiority of PASER remains consistent across different evaluation settings. On MBPP,
which features simpler programming tasks, PASER still maintains a clear advantage over baseline methods, achieving 23.1%
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Pass@1 and 62.0% Pass@100 under LLM-Pruner. When tested with a different pruning scheme (SliceGPT), which causes
even more severe initial degradation (3.0% Pass@1 on HumanEval), PASER successfully recovers the performance to 12.9%
Pass@1 and 44.5% Pass@100.

These results comprehensively demonstrate that our capability-aware recovery strategy effectively addresses the dispropor-
tionate impact of model compression on complex reasoning abilities, enabling targeted and efficient recovery of critical
model capabilities.

Table 7: Recovery performance of different instruction tuning data selection methods under various LLM quantization
schemes on LLaMA2-7B model. The ‘bold’ represents the best performance under the same quantization scheme. Here, the
Alpaca is taken as the original dataset.

Quantization
Recovery
Post-training WikiText2↓ PTB↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

w/o Quant w/o training 12.62 22.14 71.13 78.40 72.79 67.17 69.36 40.70 40.80 62.91

RTN
4 bits

w/o training 18.14 33.28 66.52 74.95 69.24 63.91 65.58 38.07 35.10 59.05
Full Data 15.83 27.41 67.35 75.70 69.94 64.57 66.22 38.48 35.90 59.74
Random 16.72 29.56 64.53 73.08 67.48 62.28 63.93 37.13 33.90 57.48
Instruction Mining 16.05 27.83 66.73 75.15 69.43 64.08 65.74 38.18 35.30 59.23
IFD 15.21 25.74 68.16 76.40 70.60 65.18 66.83 38.83 37.40 60.49
Nuggets 14.68 24.53 68.99 77.13 71.28 65.82 67.46 39.21 38.70 61.23
PASER 14.21 23.37 70.43 78.41 72.47 66.92 68.54 39.81 41.50 62.58

GPTQ
4 bits

w/o training 15.96 27.86 67.82 76.15 70.35 64.95 66.59 38.69 36.90 60.21
Full Data 15.62 26.95 68.00 76.31 70.50 65.09 66.73 38.78 37.40 60.40
Random 16.31 28.74 66.81 75.24 69.49 64.14 65.79 38.22 35.70 59.34
Instruction Mining 15.37 26.42 68.31 76.58 70.75 65.33 66.96 38.93 37.90 60.68
IFD 14.83 25.16 68.96 77.15 71.29 65.83 67.47 40.21 39.00 61.42
Nuggets 13.52 22.93 69.74 77.83 71.93 66.43 68.06 39.56 40.20 61.96
PASER 12.95 21.84 71.20 79.12 73.12 67.53 69.14 40.18 42.90 63.31

Table 8: Recovery performance of different instruction tuning data selection methods under various LLM quantization
schemes on LLaMA2-13B model. The ‘bold’ represents the best performance under the same quantization scheme. Here,
the Alpaca is taken as the original dataset.

Quantization
Recovery
Post-training WikiText2↓ PTB↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

w/o Quant w/o training 11.58 20.24 69.02 78.73 76.60 69.69 73.23 44.20 42.00 64.78

RTN
4 bits

w/o training 17.53 32.34 63.15 74.59 72.62 65.94 69.17 41.49 37.00 60.57
Full Data 16.95 31.02 63.59 75.02 73.04 66.33 69.58 41.75 37.50 60.97
Random 17.86 33.15 62.00 73.48 71.55 64.94 68.13 40.84 35.20 59.45
Instruction Mining 17.24 31.68 62.83 74.27 72.32 65.65 68.87 41.29 36.10 60.19
IFD 15.63 28.39 65.03 76.37 74.34 67.49 70.80 42.46 39.60 62.30
Nuggets 15.08 27.15 65.45 76.76 76.72 67.84 71.17 42.70 40.20 62.98
PASER 12.34 23.08 67.33 78.50 76.41 69.37 72.78 43.67 41.70 64.25

GPTQ
4 bits

w/o training 14.74 26.86 64.68 76.04 74.02 67.20 70.49 42.28 39.10 61.97
Full Data 16.02 29.34 63.62 75.05 73.07 66.35 69.61 41.76 37.40 60.98
Random 14.58 26.52 64.82 76.17 74.15 67.32 70.61 42.36 39.30 62.10
Instruction Mining 13.67 24.59 66.37 77.58 75.51 68.56 71.91 44.15 41.30 63.63
IFD 13.51 24.26 68.46 77.66 75.59 68.63 71.99 43.20 41.40 63.85
Nuggets 12.76 22.92 67.21 78.34 76.25 69.24 72.63 43.59 42.70 64.28
PASER 11.25 20.93 68.11 79.16 77.05 69.97 73.39 44.04 44.20 65.13

E. Extended Experiments on Post-quantization Recovery Training
Though the method descriptions and the experiments in the main body are mainly around the LLM pruning scenario, our
PASER framework can actually be extended seamlessly to other LLM compression scenario. To further demonstrate its
applicability, we conduct the experiments on post-quantization recovery training and compare our PASER with corresponding
instruction tuning data selection baselines. In detail, we choose two most representative methods: Round-To-Nearest
(RTN) (Frantar & Alistarh, 2022; Yao et al., 2022), GPTQ (Frantar et al., 2023), to perform the LLM quantization. It should
be clarified that RTN method, which rounds all weights to the nearest quantized value on exactly the same asymmetric
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Table 9: Knowledge distillation recovery performance of different instruction tuning data selection methods under various
pruning schemes on LLaMA2-7B model. The ‘bold’ represents the best performance under the same pruning scheme. Here,
the Alpaca is taken as the original dataset.

Pruning
Recovery
Post-training WikiText2↓ PTB↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

w/o pruning w/o Training 12.62 22.14 71.13 78.40 72.79 67.17 69.36 40.70 40.80 62.91

LLM-Pruner
ratio=25%

w/o Training 20.34 38.81 61.87 76.61 65.86 60.22 63.13 37.37 39.40 57.78
Full Data 24.72 43.91 63.30 76.01 67.18 62.27 64.23 36.86 39.20 58.44
Random 23.82 41.20 68.03 74.89 66.27 64.51 64.65 32.58 38.30 58.46
Instruction Mining 22.65 39.40 62.17 75.98 66.74 61.29 63.01 38.32 39.60 58.16
IFD 19.17 32.30 64.13 77.55 67.89 61.56 64.09 38.19 40.40 59.12
Nuggets 18.64 32.19 64.46 76.66 67.26 64.88 66.50 36.52 39.20 59.35
PASER 15.91 25.39 67.89 77.81 69.62 67.63 68.46 39.87 40.20 61.64

SliceGPT
ratio=25%

w/o training 44.53 80.07 65.54 66.87 54.16 63.38 58.46 34.56 36.90 54.27
Full Data 35.48 66.25 69.35 70.34 58.50 66.76 62.95 37.14 38.70 57.68
Random 38.63 65.67 67.19 68.59 56.21 64.94 60.63 35.61 37.80 55.85
Instruction Mining 35.56 62.14 68.41 69.51 57.08 66.33 62.51 36.59 38.00 56.92
IFD 33.50 61.33 69.51 70.82 58.70 67.49 64.09 37.22 38.50 58.05
Nuggets 21.39 32.83 70.17 71.49 59.11 67.94 72.51 37.54 38.70 59.64
PASER 11.87 20.91 73.43 80.32 74.46 69.76 71.95 42.26 41.70 64.84

Wanda
sparsity=2:4

w/o training 42.10 76.85 69.30 71.99 53.06 62.75 60.94 28.07 34.60 54.39
Full Data 25.92 47.85 71.09 75.14 64.10 65.62 65.64 34.38 37.50 59.07
Random 34.98 63.47 70.18 73.62 59.15 63.83 63.70 32.13 36.50 57.02
Instruction Mining 30.56 55.56 71.03 73.97 61.69 64.56 64.86 33.93 37.00 58.15
IFD 24.08 41.44 71.78 75.89 64.83 65.72 68.89 35.97 38.00 60.15
Nuggets 23.14 40.10 72.26 76.50 65.33 66.03 66.52 37.27 38.60 60.36
PASER 13.84 23.54 71.25 78.15 72.06 66.64 68.66 39.38 40.50 62.38

SparseGPT
sparsity=50%

w/o training 19.26 36.41 71.22 75.60 62.85 66.06 69.11 36.86 37.80 59.93
Full Data 28.17 52.82 68.52 75.77 57.84 69.26 60.43 37.72 37.00 58.08
Random 25.31 43.22 69.74 74.91 60.28 68.10 64.06 39.95 39.80 59.55
Instruction Mining 21.56 39.61 71.12 74.85 62.53 66.06 68.07 36.85 37.80 59.61
IFD 17.76 31.25 71.70 75.76 63.43 66.06 69.14 36.59 37.60 60.04
Nuggets 14.83 25.38 72.18 75.95 63.91 66.29 69.75 36.86 37.70 60.38
PASER 13.00 22.24 75.07 78.66 66.90 69.31 72.85 38.89 39.60 63.04

per-row grid, is actually the fundamental technique in most works about LLM quantization (Frantar & Alistarh, 2022; Yao
et al., 2022; Park et al.). Its runtimes scales well to the models with many billion parameters due to the direct rounding.
According to the results provided in Table 7 and 8, we can observe that the PASER can still effectively enhance the recovery
performance and outperform the data selection baselines on averaged reasoning performance and zero-shot perplexity for
both LLaMA2-7B and LLaMA2-13B models. Meanwhile, recovery data selection baselines can indeed achieve the stronger
performance than full data and random baselines, which validates the necessity of conducting recovery data selection even
in the LLM quantization scenario. Furthermore, comparing these results with Table 1 and 2, it can be noticed that the
improvement space of PASER in Table 7 and 8 has been reduced to some extent. This is because the post-compression
performance of such quantization schemes has been competitive enough, which can reflected from the w/o training row.

F. Extended Experiments on Recovery Training with Knowledge Distillation
Inspired by (Muralidharan et al., 2024), we explore the knowledge distillation as the recovery post-training paradigm
instead of the standard supervised learning with the groundtruth label. Here, we set the original model Mo as the teacher and
the pruned model Mp as the student. The mean KL divergence (Kullback & Leibler, 1951) between the output probability
distribution of Mo and that of Mp is taken as the objective function. Comparing the corresponding results under different
pruning schemes in Table 9 with that in Table 1, we can first observe that knowledge distillation can effectively improve
the recovery performance on both reasoning and language modeling tasks in most cases. In particular, the reasoning
performance of PASER is improved by 0.348 points on average among such four pruning schemes. Interestingly, the
knowledge distillation recovery performance of Full Data under LLM-Pruner is much better than that with standard label-
supervised learning. This demonstrates that knowledge distillation is also a promising approach to avoid the misleading
information from the irrelevant or conflicting samples existing in the original dataset. Because its learning process directly
imitates the unpruned model behavior instead of the provided labels, thus better preserving the thinking and decision-making
consistency with the original model. As a summary, distilling the knowledge of unpruned model into the pruned model can
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be regarded as an effective way to enhance the recovery performance, though bring more memory overhead. Furthermore,
stronger layer-wise distillation can also be taken into consideration (Jiao et al., 2020).

Exploration on Combined Training Strategies Given the complementary potential of knowledge distillation (KD) and
supervised fine-tuning (SF), we further explore whether combining these two approaches could lead to enhanced recovery
performance. Specifically, we investigate two cascading strategies: (1) first applying KD followed by SF, and (2) first
conducting SF followed by KD. Table 10 presents the results under different pruning schemes.

Table 10: Recovery performance comparison between different combinations of knowledge distillation (KD) and supervised
fine-tuning (SF) under various pruning schemes. The ’bold’ represents the best performance under the same pruning scheme.

Recovery Training WikiText2↓ PTB↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average
LLM-Pruner (ratio=25%)

KD 15.91 25.39 67.89 77.81 69.62 67.63 68.46 39.87 40.20 61.64
SF 16.40 26.35 67.25 77.29 68.98 66.97 67.84 39.54 39.80 61.10
First KD, then SF 16.15 25.87 67.57 77.55 69.31 67.30 68.15 39.71 40.00 61.37
First SF, then KD 16.28 26.02 67.41 77.43 69.15 67.11 67.96 39.63 39.90 61.23

SliceGPT (ratio=25%)
KD 11.87 20.91 73.43 80.32 74.46 69.76 71.95 42.26 41.70 64.84
SF 12.24 21.53 72.75 79.84 73.92 69.18 71.37 41.82 41.30 64.31
First KD, then SF 12.06 21.24 73.12 80.05 74.18 69.45 71.62 42.03 41.50 64.56
First SF, then KD 12.15 21.38 72.94 79.95 74.05 69.32 71.51 41.95 41.40 64.45

Wanda (sparsity=2:4)
KD 13.84 23.54 71.25 78.15 72.06 66.64 68.66 39.38 40.50 62.38
SF 14.13 27.22 70.77 77.87 71.78 66.26 68.30 39.04 40.10 62.02
First KD, then SF 13.97 25.31 71.02 78.03 71.94 66.47 68.49 39.23 40.30 62.21
First SF, then KD 14.05 26.28 70.89 77.95 71.85 66.35 68.41 39.15 40.20 62.11

SparseGPT (sparsity=50%)
KD 13.00 22.24 75.07 78.66 66.90 69.31 72.85 38.89 39.60 63.04
SF 13.33 23.77 74.79 78.38 66.62 69.03 72.57 38.70 39.40 62.78
First KD, then SF 13.15 22.96 74.94 78.53 66.78 69.18 72.72 38.81 39.50 62.92
First SF, then KD 13.24 23.35 74.85 78.45 66.70 69.11 72.64 38.75 39.45 62.85

Interestingly, the results show that neither cascading strategy consistently outperforms individual KD or SF approaches. This
suggests that these two training paradigms might actually serve similar functions in recovering model capabilities, making
their combination redundant rather than complementary. Knowledge distillation shows slightly better performance across all
pruning schemes, which could be attributed to its ability to capture the nuanced knowledge encoded in the teacher model’s
full output distribution. However, the marginal gains from combining approaches do not justify the additional computational
overhead required for cascaded training.

G. Detailed Ablation Study Results
In this section, we present comprehensive ablation results of the three key components in PASER: semantic-structural
recovery instruction clustering (S2RIC), capability degradation-aware instruction selection (CDAIS), and negative transfer
mitigation (NTM). Table 11 shows the detailed performance across different evaluation metrics.

The detailed results reveal the distinct contributions of each component under different pruning schemes. For structured
pruning like LLM-Pruner, removing S2RIC leads to significant degradation in both language modeling (perplexity increases
from 16.40 to 18.73 on WikiText2) and reasoning tasks (average score drops by 1.43 points), highlighting its importance
in addressing uneven capability degradation. The impact of CDAIS is particularly evident under SliceGPT, where its
removal causes a 1.63-point drop in average reasoning performance while maintaining relatively stable language modeling
metrics, demonstrating its effectiveness in balancing recovery priorities. Under semi-structured pruning (Wanda), all three
components show more balanced contributions, with performance drops ranging from 0.68 to 0.83 points when each is
removed. This suggests that semi-structured pruning requires a more holistic recovery approach. For unstructured pruning
(SparseGPT) where capability degradation tends to be more uniform, NTM plays a particularly crucial role - its removal
leads to the largest drop in language modeling performance (perplexity increases from 13.33 to 15.91 on WikiText2) and
affects complex reasoning tasks like WinoGrande and ARC-e significantly. Notably, the full PASER framework consistently
achieves the best performance across almost all metrics under various pruning schemes, with only occasional exceptions in
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individual tasks (e.g., OBQA in LLM-Pruner and PIQA in SparseGPT). This comprehensive superiority validates our design
choice of combining these three components for effective pruned model recovery.

Table 11: The detailed ablation study for our proposed three components under various pruning schemes on LLaMA2-7B
model. The ‘bold’ represents the best performance under the same pruning scheme. Here, the Alpaca is taken as the original
dataset.

Pruning
Recovery
Post-training WikiText2↓ PTB↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

LLM-Pruner
ratio=25%

PASER w/o S2RIC 18.73 32.84 65.31 76.84 67.59 64.85 65.92 37.96 39.20 59.67
PASER w/o CDAIS 17.56 30.15 66.27 77.03 68.15 65.73 66.58 38.54 39.50 60.26
PASER w/o NTM 19.82 35.60 64.83 77.52 67.34 64.48 63.59 36.78 40.20 59.25
PASER 16.40 26.35 67.25 77.29 68.98 66.97 67.84 39.54 39.80 61.10

SliceGPT
ratio=25%

PASER w/o S2RIC 14.83 25.42 71.15 78.91 72.25 67.84 69.95 40.82 40.30 63.03
PASER w/o CDAIS 14.16 24.92 70.89 78.56 71.84 67.45 69.58 40.47 40.00 62.68
PASER w/o NTM 15.37 27.81 69.97 77.33 70.68 65.92 68.03 39.39 42.10 61.92
PASER 12.24 21.53 72.75 79.84 73.92 69.18 71.37 41.82 41.30 64.31

Wanda
sparsity=2:4

PASER w/o S2RIC 15.84 30.25 69.26 77.42 70.31 65.82 67.84 38.67 39.00 61.19
PASER w/o CDAIS 15.46 29.48 69.14 77.35 70.27 65.74 67.79 38.75 39.60 61.23
PASER w/o NTM 16.79 31.52 69.51 76.92 70.76 65.23 67.28 38.47 41.20 61.34
PASER 14.13 27.22 70.77 77.87 71.78 66.26 68.30 39.04 40.10 62.02

SparseGPT
sparsity=50%

PASER w/o S2RIC 14.89 26.31 73.25 77.45 70.15 68.47 69.28 39.82 39.80 62.60
PASER w/o CDAIS 14.62 25.84 72.91 77.50 69.93 68.12 69.05 39.94 40.00 62.49
PASER w/o NTM 15.91 28.19 71.53 78.62 65.48 67.21 69.79 39.18 40.50 61.76
PASER 13.33 23.77 74.79 78.38 66.62 69.03 72.57 38.70 39.40 62.78

H. Exploration on Other Possible Clustering Methods
To discuss the impact of different instruction tuning data clustering approaches, we replace our Semantic-structural Recovery
Instruction Clustering (S2RIC) module with some other common text clustering method: NMF_TFIDF, LDA_TFIDF,
KMeans_TFIDF, Spectral_MTEB, Spectral_BERT (Xu et al., 2024a). The reasoning performance comparison among
different PASER versions with such clustering methods is provided in Table 12. From the table, we can find that integrating
other instruction clustering methods with PASER can bring the performance decline to some extent among all four pruning
schemes. Especially, the clustering method with traditional statistics-based text representation technique, TFIDF, generally
behaves worse than semantic embedding-based text representation techniques like BERT. Therefore, we can conclude that
our semantic-structural recovery instruction clustering is at least a competitive approach as the clustering component of
PASER. Though, comparing these results with those in Table 1, we can observe the advantages of PASER over other general
instruction tuning data selection methods can still be stably maintained. This further demonstrates that the potential of the
clustering-based data selection for effective and balanced LLM capability recovery.

I. Case Study for Recovery Instruction Clustering
To illustrate the effectiveness of our Semantic-Structural Recovery Instruction Clustering (S2RIC) approach for grouping
samples focusing on similar capabilities together, we conduct a case study of clustered instruction samples from the Alpaca
dataset. Specifically, we provide representative samples from several obtained clusters as follows.

I.1. Cluster 1: Basic Factual Knowledge and Information Retrieval

• Instruction: “Find the five largest cities in France.”

• Instruction: “What is the capital of France?”

• Instruction: “Find the population density of United States.”

These instructions primarily test the model’s ability to recall basic facts and information, corresponding to general knowledge
capabilities.

I.2. Cluster 2: Language Understanding and Translation

• Instruction: “Translate the word ’giraffe’ to French.”
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Table 12: Recovery performance of multiple PASER versions integrated with different data clustering approaches under
various pruning schemes on LLaMA2-7B model. The PASER(S2RIC) is the version we employ in the main body. The
‘bold’ represents the best performance under the same pruning scheme. Here, the Alpaca is taken as the original dataset.

Pruning
Recovery
Post-training WikiText2↓ PTB↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

w/o pruning w/o Training 12.62 22.14 71.13 78.40 72.79 67.17 69.36 40.70 40.80 62.91

LLM-Pruner
ratio=25%

w/o Training 20.34 38.81 61.87 76.61 65.86 60.22 63.13 37.37 39.40 57.78
PASER(NMF_TFIDF) 17.82 29.45 65.93 76.88 67.42 65.19 66.37 38.81 39.60 60.03
PASER(LDA_TFIDF) 17.56 28.91 66.18 77.02 67.76 65.58 66.92 38.95 39.70 60.30
PASER(KMeans_TFIDF) 17.21 28.13 66.47 77.15 68.04 65.92 67.23 39.12 39.80 60.53
PASER(Spectral_MTEB) 16.82 27.24 66.89 77.23 68.46 66.38 67.56 39.31 39.80 60.80
PASER(Spectral_BERT) 16.61 26.79 67.06 77.26 68.72 66.68 67.71 39.43 39.80 60.95
PASER(S2RIC) 16.40 26.35 67.25 77.29 68.98 66.97 67.84 39.54 39.80 61.10

SliceGPT
ratio=25%

w/o Training 44.53 80.07 65.54 66.87 54.16 63.38 58.46 34.56 36.90 54.27
PASER(NMF_TFIDF) 14.27 24.36 70.89 78.76 72.13 67.69 70.12 41.95 40.80 63.21
PASER(LDA_TFIDF) 14.86 25.19 70.31 78.42 71.64 67.25 69.58 40.37 40.60 62.60
PASER(KMeans_TFIDF) 13.58 23.42 71.46 79.07 72.61 68.14 70.48 41.08 41.00 63.41
PASER(Spectral_MTEB) 12.91 22.47 72.08 79.41 73.18 68.62 70.87 41.43 41.10 63.81
PASER(Spectral_BERT) 12.58 22.01 72.41 79.63 73.55 68.91 71.12 41.63 41.20 64.06
PASER 12.24 21.53 72.75 79.84 73.92 69.18 71.37 41.82 41.30 64.31

Wanda
sparsity=2:4

w/o Training 42.10 76.85 69.30 71.99 53.06 62.75 60.94 28.07 34.60 54.39
PASER(NMF_TFIDF) 16.18 30.94 70.09 76.68 69.98 64.82 66.92 38.14 39.60 60.89
PASER(LDA_TFIDF) 18.74 34.98 69.85 76.31 69.42 64.37 66.48 37.82 39.40 60.52
PASER(KMeans_TFIDF) 15.49 29.76 70.92 77.03 70.51 65.28 67.38 38.47 40.30 61.41
PASER(Spectral_MTEB) 14.81 28.49 70.54 77.42 71.12 65.75 67.82 38.74 39.90 61.61
PASER(Spectral_BERT) 14.47 27.86 70.66 77.65 71.45 66.01 68.06 38.89 40.00 61.82
PASER 14.13 27.22 70.77 77.87 71.78 66.26 68.30 39.04 40.10 62.02

SparseGPT
sparsity=50%

w/o Training 19.26 36.41 71.22 75.60 62.85 66.06 69.11 36.86 37.80 59.93
PASER(NMF_TFIDF) 15.97 28.13 72.63 76.94 64.37 67.18 70.39 37.54 38.60 61.09
PASER(LDA_TFIDF) 15.41 27.09 73.12 77.31 64.93 67.63 70.92 37.86 38.80 61.51
PASER(KMeans_TFIDF) 14.72 25.91 73.61 77.66 65.46 68.09 71.48 38.19 39.00 61.93
PASER(Spectral_MTEB) 14.03 24.84 74.16 78.01 66.02 68.54 71.98 38.44 39.20 62.34
PASER(Spectral_BERT) 13.68 24.31 74.48 78.21 66.32 68.79 72.28 38.75 39.30 62.59
PASER 13.33 23.77 74.79 78.38 66.62 69.03 72.57 38.70 39.40 62.78

• Instruction: “Pick the correct Spanish translation of “Hello”.”

• Instruction: “Difference in meaning between "done freely" and "freely done¨? For instance, is there any difference in
meaning between these two sentences?”’

This cluster focuses on language-related tasks, including translation, idiomatic expressions, and grammatical analysis.

I.3. Cluster 3: Logical Reasoning and Problem Solving

• Instruction: “A friend shares the following text with you and asks for your opinion: ’Purple-eyed individuals have a
stronger psychic connection to the cosmos and have more chances to predict the future.’ Analyze the statements and point
out logical fallacies or unsupported claims.”

• Instruction: “Explain how to solve a Sudoku puzzle in three steps.”

• Instruction: “Answer this math question: What is the value of 3 to the power of 5?”

These instructions test the model’s ability to perform mathematical calculations, logical deductions, and pattern recognition.

I.4. Cluster 4: Creative Writing and Text Generation

• Instruction: “Write a microblog post about a recent experience you had.”

• Instruction: “Compose a haiku about the wonders of technology.”

• Instruction: “Create an illustration of the inside of a castle.”
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This cluster groups tasks that require creative text generation, showcasing the model’s ability to produce original content
across various formats and topics.

I.5. Cluster 5: Summarization and Information Extraction

• Instruction: “Summarize the techniques used for summarizing text.”

• Instruction: “Extract the main argument from the passage.”

• Instruction: “Provide a brief summary of the article "A Brief History of the Automobile Industry.”

These instructions focus on the model’s capability to condense information and identify key points from longer texts.

This study demonstrates that S2RIC effectively groups instructions targeting similar LLM capabilities, enabling PASER to
allocate recovery efforts, i.e., data budget, more strategically. By focusing intensively on clusters where capabilities have
degraded most after the pruning, while maintaining awareness of all capability clusters, PASER achieves both targeted and
balanced recovery. This dual approach ensures efficient and comprehensive restoration of the model’s diverse functionalities,
optimizing the recovery process for pruned LLMs.

J. Case Study for Negative Transfer Mitigation
To illustrate the negative transfer mitigation process in PASER, we present the following case study, including both initial
concept consistency graph construction and new sample evaluation.

J.1. Constructing Initial Concept Consistency Graph

We begin with three accepted instruction-output pairs to construct our initial Concept Consistency Graph (CCG):

1. Instruction: "Explain the basic principles of quantum computing."

Output: "Quantum computing is based on the principles of quantum mechanics. It uses quantum bits or qubits, which
can exist in multiple states simultaneously due to superposition. Quantum entanglement allows qubits to be correlated
with each other. These properties enable quantum computers to perform certain calculations much faster than classical
computers for specific problems."

Concepts: {quantum computing, qubit, superposition, entanglement}

2. Instruction: "Describe the main components of a classical computer."

Output: "A classical computer typically consists of several key components: the Central Processing Unit (CPU) which
performs calculations and controls other components; Random Access Memory (RAM) for temporary data storage; a
hard drive for long-term data storage; and various input/output devices. These components work together to process and
store information using binary logic."

Concepts: {CPU, RAM, hard drive, binary logic}

3. Instruction: "What are the fundamental concepts in deep learning?"

Output: "Deep learning is a subset of machine learning based on artificial neural networks. Key concepts include:
neural networks with multiple layers (deep neural networks), which can learn hierarchical representations of data;
backpropagation, an algorithm for training these networks by adjusting weights; and various optimization techniques to
improve learning. Deep learning has shown remarkable success in tasks such as image and speech recognition."

Concepts: {deep learning, neural network, backpropagation, optimization}

Based on these samples, we construct an initial Concept Consistency Graph (CCG):

V = {quantum computing, qubit, superposition, entanglement,
CPU, RAM, hard drive, binary logic,
deep learning, neural network, backpropagation, optimization}
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The edges E in the graph represent the co-occurrence of concepts within each instruction-output pair.

E = {(quantum computing, qubit), (quantum computing, superposition),
(quantum computing, entanglement), (qubit, superposition),
(qubit, entanglement), (superposition, entanglement),
(CPU, RAM), (CPU, hard drive), (CPU, binary logic),
(RAM, hard drive), (RAM, binary logic), (hard drive, binary logic),
(deep learning, neural network), (deep learning, backpropagation),
(deep learning, optimization), (neural network, backpropagation),
(neural network, optimization), (backpropagation, optimization)}

This explicit definition of E clearly shows the relationships between concepts within each domain, while highlighting the
absence of edges between concepts from different domains.

J.2. Evaluating New Samples

We now evaluate two new samples using PASER’s negative transfer mitigation process.

J.2.1. SAMPLE 1: ACCEPTED

Instruction: "How does increasing the number of qubits affect a quantum computer’s performance?"

Output: "Increasing the number of qubits in a quantum computer can significantly enhance its performance and capabilities:

1. Exponential growth in computational power: Each additional qubit doubles the number of quantum states that can be
represented, leading to an exponential increase in computational power.

2. Handling more complex problems: More qubits allow quantum computers to tackle larger and more complex problems
that are intractable for classical computers.

3. Improved error correction: A larger number of qubits can be used to implement more robust quantum error correction
codes, improving the overall stability and reliability of quantum computations.

4. Enhanced quantum parallelism: More qubits enable greater parallelism in quantum algorithms, potentially leading to
faster solution times for certain problems.

5. Challenges in scalability: However, increasing the number of qubits also introduces challenges in maintaining coherence
and reducing error rates, which are active areas of research in quantum computing.

In summary, while increasing the number of qubits can dramatically improve a quantum computer’s capabilities, it also
comes with technical challenges that researchers are working to overcome."

Concepts: {qubit, quantum computer, computational power, quantum states, error correction, quantum parallelism,
coherence}

Applying PASER’s negative transfer mitigation process:

1. Concept Extraction: C(x, y) = {qubit, quantum computer, computational power, quantum states, error correction,
quantum parallelism, coherence}

2. Consistency Check: For each pair (vi, vj) ∈ C(x, y):

• (qubit, quantum computer): both ∈ V and (vi, vj) ∈ E

• (qubit, computational power): qubit ∈ V , computational power /∈ V

• (qubit, quantum states): qubit ∈ V , quantum states /∈ V

• Other pairs: at least one concept /∈ V

3. Decision: IsConsistent(x, y) = True, because for all pairs, either (vi, vj) ∈ E or {vi, vj} ̸⊂ V

PASER accepts this sample as it is consistent with the existing CCG and introduces relevant new concepts without conflicts.

22



1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

PASER: Post-Training Data Selection for Efficient Pruned Large Language Model Recovery

J.2.2. SAMPLE 2: REJECTED

Instruction: "Explain how quantum computing can be used to significantly speed up deep learning algorithms."

Output: "Quantum computing has the potential to speed up certain aspects of deep learning algorithms. Quantum algorithms
could potentially optimize the training process of neural networks, especially in handling large-dimensional data. However,
it’s important to note that the exact advantages and applications are still being researched, and classical computers remain
more practical for most current deep learning tasks."

Concepts: {quantum computing, deep learning, neural network, speedup}

Applying PASER’s negative transfer mitigation process:

1. Concept Extraction: C(x, y) = {quantum computing, deep learning, neural network, speedup}

2. Consistency Check: For each pair (vi, vj) ∈ C(x, y):

• (quantum computing, deep learning): both ∈ V , but (vi, vj) /∈ E

• (quantum computing, neural network): both ∈ V , but (vi, vj) /∈ E

• (deep learning, neural network): both ∈ V and (vi, vj) ∈ E

• (speedup, any other concept): speedup /∈ V

3. Decision: IsConsistent(x, y) = False, because the pairs (quantum computing, deep learning) and (quantum computing,
neural network) have both concepts in V, but these edges do not exist in E. This introduces new relationships between
existing concepts that are not present in the current CCG.

PASER rejects this sample because it introduces direct relationships between quantum computing and deep learning/neural
networks, which were not present in the initial CCG. While these concepts existed separately in the CCG, their combination
in this context could lead to potential misunderstandings or oversimplifications about the current state and capabilities of
quantum computing in machine learning.

J.3. Conclusion

This case study demonstrates PASER’s negative transfer mitigation process in action. By accepting Sample 1, PASER allows
for the introduction of new, relevant concepts that expand the concept consistency graph without introducing conflicts. By
rejecting Sample 2, PASER prevents the introduction of potentially misleading relationships between existing concepts from
different domains, thus mitigating the risk of negative transfer during the recovery process.

K. Implementation Details
Most of experiments are conducted on the server with 8 × RTX 6000 Ada GPUs. During the recovery post-training phase,
we take the the low-rank approximation, LoRA (Hu et al.), to improve the efficiency. The corresponding hyperparameters
are set as following: rank=8, batch size=64, epochs=2, learning rate = 1e-4 (Alpaca series experiments), 5e-5 (LaMini series
experiments). As for the structured pruning, we set the pruning ratio as 25% for LLaMA2-7B/LLaMA3-8B/Baichuan2-
7B and 50% for LLaMA2-13B/LLaMA2-70B/Baichuan-13B models. For the other two kinds of pruning schemes, we
follow the previous work (Frantar & Alistarh, 2023); Specifically, we adopt the 2:4 semi-structured sparsity patterns
and implement 50% unstructured weight sparsity. Except the experiments for recovery post-training efficiency analysis,
we set the ratio of recovery data budget B to original dataset size N as 20% for Alpaca and 4% for LaMini. As for
the implementation of concept extraction in Section 3.4, we use the open-source library rake-nltk 2. To ensure
statistical robustness, all the results reported in this paper are the averages of five runs with different seeds. Statistical
significance is also assessed using two-tailed independent t-tests, with results considered significant when p < 0.01. For
facilitating the reproduction of our work, we provide the code in the supplementary materials, also seen in anonymous
github https://anonymous.4open.science/r/PASER-E606.

2https://pypi.org/project/rake-nltk/
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L. Limitation Analysis
While PASER demonstrates significant improvements in recovery performance and efficiency for pruned large language
models, there are several limitations to consider:

• Computational overhead: Although PASER reduces the recovery training time, the initial clustering and data selection
process introduces some computational overhead. For very large instruction tuning datasets, this overhead may become
non-trivial.

• Dependence on initial pruning quality: The effectiveness of PASER may vary depending on the quality and method of
the initial model pruning. Poorly pruned models might not benefit as much from the targeted recovery approach.

• Potential bias in capability recovery: While PASER aims for balanced capability recovery, there might still be some bias
towards certain capabilities based on the initial clustering results and the composition of the instruction tuning dataset.

• Scalability to extremely large models: The paper primarily demonstrates results on models up to 70B parameters. The
scalability and effectiveness of PASER on even larger models (e.g., 100B+ parameters) need further investigation.

• Long-term Stability: The long-term stability of models recovered using PASER, especially under continued fine-tuning
or adaptation, has not been thoroughly examined in this work.

Limitations of Concept Consistency Graph. In addition to the above analysis, we further discuss the concept consistency
graph’s potential limitations. Indeed, while CCG helps mitigate negative transfer, we acknowledge there are scenarios where
semantic conflicts might not be fully captured:

• Cross-domain Knowledge Integration: When instructions involve integrating knowledge from multiple distinct domains,
CCG might miss subtle conflicts in their interactions. For example, when concepts from physics and biology are combined
in interdisciplinary problems, their complex relationships and potential incompatibilities may not be fully reflected in
simple co-occurrence patterns.

• Context-dependent Semantics: The same concept pairs might have different relationships depending on context.
For instance, terms like "positive" and "negative" could be contradictory in sentiment analysis but complementary in
mathematics, making it challenging for CCG to maintain consistent concept relationships across different contexts.

• Temporal or Version-specific Conflicts: In rapidly evolving domains like technology or scientific research, concept
relationships might change over time. An instruction about "state-of-the-art performance" or "current best practices" could
contain outdated or conflicting information that is not immediately apparent from concept co-occurrence analysis.

• Nuanced Conceptual Dependencies: When instructions involve subtle logical dependencies or conditional relationships
between concepts, the binary edge representation in CCG might not fully capture these complex interactions. This is
particularly evident in reasoning tasks where conclusions depend on specific combinations of conditions.

Our results acknowledge these inherent limitations while demonstrating CCG’s overall effectiveness in practical applications.

M. Ethics Statement
The development and deployment of technologies like PASER for efficient recovery of pruned large language models
necessitates careful consideration of ethical implications. While PASER contributes to reducing environmental impact
and potentially democratizing AI access by lowering computational requirements, it also raises concerns about potential
misuse, bias amplification, and privacy. It’s crucial to remain vigilant about these risks, implement robust safeguards, and
maintain transparency in the recovery process. Continuous monitoring for fairness and bias in model outputs is essential, as
is responsible deployment with appropriate human oversight, especially in high-stakes applications. As the field evolves,
ongoing ethical assessment and dialogue with stakeholders are vital to ensure that advancements in large language model
efficiency contribute positively to society while minimizing potential harm. Ultimately, the goal should be to harness the
benefits of improved model recovery techniques like PASER while proactively addressing the complex ethical challenges
they present.
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