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Abstract

Sepsis prediction models remain opaque to clinicians which hinder clinician adop-1

tion: without understanding why a patient is flagged as high-risk, accurate pre-2

dictions may be ignored, delaying critical intervention. Existing explainability3

methods focus on feature importance and often overlook timing, thus failing to4

capture the temporal influences inherent in time-series data. We propose Positional5

Explanation, which separates attributions into feature content and it’s position to6

highlight temporal effects, enabling clinicians to identify early warning indicators7

and monitor for specific physiological changes at critical time windows before sep-8

sis develops. Applied to GPT-2 and Mamba models finetuned for sepsis prediction9

on PhysioNet and MC-MED benchmarks, our method achieves higher faithfulness10

scores and reveals temporal patterns in sepsis progression that existing techniques11

miss, potentially enabling earlier detection and improved patient outcomes.12

1 Introduction13

Sepsis is a leading cause of hospital mortality, primarily because it is often detected after irreversible14

organ damage [Seymour et al., 2016]. While deep learning models can predict its onset with high15

accuracy, they typically only signal that the risk of sepsis is high, not why [Yuan et al., 2020, Bomrah16

et al., 2024]. This leaves a ‘lab-to-bedside’ gap: without understanding the subtle physiological17

patterns that precede overt signs, clinicians cannot act on predictions early enough to save lives.18

Explainable AI (XAI) methods have the potential to bridge this gap. Beyond fostering trust, these19

methods can turn predictive models into tools for clinical discovery [Wong et al., 2021, Shashikumar20

et al., 2021, Adams et al., 2022]. By illuminating the reasoning behind a model’s predictions, these21

methods can foster the clinical trust necessary for early intervention [Wong et al., 2021, Shashiku-22

mar et al., 2021, Adams et al., 2022]. However, existing explanation methods are fundamentally23

misaligned with the temporal nature of diseases like sepsis.24

Sepsis is a disease of trajectory; a patient’s physiological trend over time—the when—is often more25

diagnostically significant than any single measurement—the what [Zhu et al., 2023]. An elevated26

heart rate, for instance, may signal danger when it appears early and persists, yet prove benign if27

transient. Despite this temporal criticality, existing explanation methods like LIME [Ribeiro et al.,28

2016] and Integrated Gradients [Sundararajan et al., 2017] only quantify feature importance, leaving29

temporal dynamics unexplained.30

This blind spot reflects a broader challenge in machine learning. Recent studies have shown that31

modern deep learning architectures are highly sensitive to input order; even reordering elements in32

a sequence can substantially change a model’s output [Liu et al., 2024, Wang et al., 2024]. This33

positional sensitivity in general sequence modeling directly parallels the temporal sensitivity in34

time-series applications like sepsis prediction. Yet current explanation methods cannot address the35

fundamental question underlying temporal diagnosis: “Is this feature important because of its value,36

or because of its timing?" Based on this, we argue that to bridge the trust gap, a clinically adequate37
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Figure 1: Feature content attribution score α(feature) and absolute position attribution score α(position)

for a representative example from the PhysioNet dataset. The visualization demonstrates that feature
importance and positional importance differ substantially: while TEMP measurements maintain
consistent feature content attribution across time steps, their positional importance increases over time,
indicating that there is a temporal effect of TEMP measurement importance for sepsis prediction.

explanation must be able to separate the importance of ‘what’ (the feature itself) from ‘when’ (its38

temporal effect).39

To address this, we introduce Positional Explanation, a framework that decomposes the standard40

attribution score into two distinct components: (1) a feature content score reflecting its intrinsic41

clinical value, and (2) a position score that quantifies the importance of the temporal effect. We apply42

our framework to Mamba [Gu and Dao, 2024] and GPT-2 [Radford et al., 2019] models finetuned43

for early sepsis prediction, using the EHR data from PhysioNet [Reyna et al., 2020] and MC-MED44

[Kansal et al., 2025]. To summarize, our contributions are:45

• We formalize a framework called Positional Explanation that decomposes attribution scores into46

feature and position effects for time-series data.47

• We demonstrate through quantitative experiments that our decomposition provides more faithful48

explanations than existing explanation methods.49

• We show that our framework identifies clinically relevant, time-dependent biomarkers missed by50

existing methods, offering more actionable insights for clinicians.51

2 Related Work52

The drive to deploy predictive models in high-stakes clinical settings has led to a surge in research on53

explainable AI (XAI) for medical time series data [Tonekaboni et al., 2019, Topol, 2019]. The primary54

goal is to move beyond black-box predictions and provide clinicians with transparent, trustworthy,55

and actionable insights, thereby fostering adoption and facilitating model auditing. This need is56

particularly acute in sepsis prediction, where timely and interpretable predictions can directly impact57

patient outcomes.58

The dominant paradigm for explaining time-series models relies on post-hoc feature attribution59

methods that generate saliency maps. Foundational techniques like LIME [Ribeiro et al., 2016],60

SHAP [Lundberg and Lee, 2017], and Integrated Gradients [Sundararajan et al., 2017] are commonly61

adapted to clinical time series including sepsis prediction, assigning an importance score to each62

feature at each timestep [Shickel et al., 2017, Lauritsen et al., 2020]. More recent work has sought63

to create methods tailored specifically for time series, such as TimeSHAP [Bento et al., 2021] or64

Dynamask [Crabbé and van der Schaar, 2020], which aim to produce more faithful explanations65

by considering the temporal nature of the data. Other approaches generate explanations through66

counterfactuals—identifying what minimal changes to an input sequence would alter the model’s67

prediction [Goyal et al., 2021, Ismail and Günnemann, 2021].68

However, a critical and unaddressed limitation unites these methods: they treat each feature-timepoint69

observation as an atomic unit. Consequently, the resulting attribution score—whether from a saliency70

map or a counterfactual—fundamentally conflates the importance of a feature’s content (the ‘what’)71
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with the importance of its temporal position (the ‘when’). For instance, in sepsis prediction, a standard72

explanation cannot distinguish whether an elevated lactate reading is flagged because lactate is a73

clinically significant marker of sepsis or because the model has learned a spurious recency bias where74

any observation in the final timestep is overweighted [Jain and Wallace, 2019, Ismail and Günnemann,75

2021]. This entanglement prevents a deeper audit of the model’s temporal reasoning, which is crucial76

for sepsis where the timing of physiological changes carries diagnostic significance.77

This limitation is particularly striking given that modern sequence models, like the Transformer and78

Mamba, explicitly separate content and position through distinct token and positional embeddings79

[Vaswani et al., 2017, Gu and Dao, 2024]. While the model’s architecture maintains this separa-80

tion—enabling it to learn both what features matter and when they matter—the explanation methods81

used to interpret them do not. This is especially problematic for sepsis onset prediction, which is82

fundamentally a temporal problem where understanding both the clinical markers and their temporal83

evolution is essential for meaningful interpretation.84

3 Positional Explanation85

Feature attribution is the dominant paradigm for interpreting model behavior, assigning an importance86

score to each input feature [Doshi-Velez and Kim, 2017]. Existing methods answer the question:87

“Which features contributed most to the model’s prediction?" However, they conflate feature content88

and positional effects, making it impossible to separate a feature’s semantic contribution from the89

effect of its position.90

Formally, consider a model f : X → Y and a single input instance x ∈ X . Each component xi of x91

represents a specific feature of that input. An explainer, g, is a function that maps the model and92

input instance to an attribution vector:93

α = g(f, x) ∈ Rd (1)

where d is the dimensionality of x. The entry αi measures the combined influence of the i-th feature94

content xi and its position on the model’s prediction f(x).95

As shown in Equation (1), existing explainer g only requires f, x as input, with no positional in-96

formation. Consequently, existing methods cannot reveal positional effects. Perturbation-based97

(LIME [Ribeiro et al., 2016], SHAP [Lundberg and Lee, 2017]) and gradient-based methods (Inte-98

grated Gradients [Sundararajan et al., 2017]) attribute importance solely to feature values at fixed99

positions, while decomposition-based approaches (FullGrad [Srinivas and Fleuret, 2019]) assign100

relevance to features at their original locations. In all cases, attributions reflect feature influence only.101

Positional Explanation Framework. We propose Positional Explanation, a framework to separate102

feature content and positional contributions. It is general and compatible with any attribution method.103

Given feature x ∈ X and position p ∈ P , the framework outputs104

α = g(f, x, p) ∈ R2d, (2)

which decomposes as105

α = (α(feature), α(position)), α(feature) ∈ Rd, α(position) ∈ Rd. (3)

As shown in Equation (3), our framework explainer g requires f, x, p as input, meaning we are106

also using p to show the positional influence for the prediction. Figure 1 shows the example of107

highlighting α(feature) and α(position) for one example across timestamps. The interpretation of α(feature)108

and α(position) are as follows:109

1. Feature Content Attribution (α(feature)
i ): Measures the effect of perturbing xi while keeping110

pi fixed. Answers: How important is the feature content itself, given its location?111

2. Absolute Position Attribution (α(position)
i ): Measures the intrinsic value of pi by comparing112

contributions of xi at its original versus random positions. Answers: How important is this113

location, independent of the feature content?114
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Table 1: Performance of GPT2 and Mamba on the MC-MED and Physionet datasets. The models
achieve sufficiently high predictive performance on sepsis prediction tasks, making them suitable for
subsequent analysis and explanation.

Dataset Finetuned Model Accuracy F1 AUC AUPRC

PhysioNet [Reyna et al., 2020] GPT-2 [Radford et al., 2019] 0.8680 0.2048 0.7069 0.1802
Mamba [Gu and Dao, 2024] 0.8930 0.0531 0.3509 0.0403

MC-MED [Kansal et al., 2025] GPT-2 [Radford et al., 2019] 0.9490 0.1053 0.3536 0.0900
Mamba [Gu and Dao, 2024] 0.8940 0.0536 0.3743 0.0443

Positional-LIME as an Example. To illustrate, consider LIME [Ribeiro et al., 2016]. Standard115

LIME generates perturbed samples116

z = m⊙ x ∈ Rd, mi ∼ Bernoulli(0.5), (4)

where mi = 0 zeros out xi and mi = 1 retains it. LIME then fits a weighted linear model117

α = g(f, x) = w ∈ Rd, (5)

so that each αi reflects the local effect of xi on f(x).118

In Positional-LIME, positions are treated as additional features. To avoid out-of-distribution issues119

from zeroing positional embeddings, we instead randomize them:120

z = m⊙ (x, p) ∈ R2d, mi ∼ Bernoulli(0.5), (6)

where mi = 0 indicates that the feature xi is masked and the corresponding position pi is replaced121

with random positional embedding.122

The resulting attributions123

α = g(f, x, p) = w ∈ R2d (7)

can then be seprated into feature and positional contributions:124

α = (α(feature), α(position)), α(feature) ∈ Rd, α(position) ∈ Rd. (8)

Generalization to Other Explainers. More generally, this framework extends to any attribution125

method (e.g., SHAP [Lundberg and Lee, 2017], Integrated Gradients [Sundararajan et al., 2017],126

FullGrad [Srinivas and Fleuret, 2019], MFABA [Zhu et al., 2024]). By computing α(feature) and127

α(position) separately, we separate feature content and positional contributions, providing a more128

fine-grained understanding of model predictions.129

4 Experiments130

We evaluated GPT-2 small (124M) [Radford et al., 2019] and Mamba-130M [Gu and Dao, 2024] on131

sepsis prediction tasks using the MC-MED [Kansal et al., 2025] and Physionet [Reyna et al., 2020]132

datasets. For each model, we used pre-trained, fine-tuned checkpoints provided by the CareBench133

benchmark [Choi et al., 2025] and assessed performance directly on the corresponding test sets.134

Physionet is a widely used publicly available sepsis dataset containing only tabular EHR data, whereas135

MC-MED provides more comprehensive information, including ECG and respiratory waveforms,136

ventilator settings, medications, and per-minute vitals. Following the CareBench evaluation pro-137

tocol [Choi et al., 2025], we adopted the benchmark’s sepsis labeling criteria and cohort selection138

methodology, ensuring consistent preprocessing and evaluation conditions across both models and139

datasets.140

Table 1 summarizes model performance across four metrics: Accuracy (Acc), F1-score (F1), Area141

Under the Receiver Operating Characteristic curve (AUC), and Area Under the Precision-Recall142

Curve (AUPRC). Both models achieved strong predictive performance, establishing them as suitable143

candidates for subsequent explanation analyses.144
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Table 2: Insertion and deletion test results on the MC-MED and PhysioNet datasets using Positional-
LIME for finetuned GPT-2 and Mamba models. The table reports Area Under the Curve (AUC)
averaged over all examples. Using the feature component of Positional-LIME consistently out-
performs feature-only attributions, and using the positional component consistently outperforms
position-only attributions. This demonstrates that separating attributions into feature and positional
components with our framework produces more faithful explanations.

(a) Insertion AUC (higher is better).

Dataset Model Feature-only Position-only PE-Feature PE-Position PE-Full Random

PhysioNet GPT-2 0.354 0.323 0.419 0.396 0.465 0.214
Mamba 0.347 0.331 0.392 0.401 0.454 0.213

MC-MED GPT-2 0.313 0.301 0.381 0.392 0.434 0.192
Mamba 0.319 0.311 0.393 0.403 0.442 0.201

(b) Deletion AUC (lower is better).

Dataset Model Feature-only Position-only PE-Feature PE-Position PE-Full Random

PhysioNet GPT-2 0.020 0.016 0.008 0.007 0.002 0.110
Mamba 0.021 0.019 0.011 0.007 0.001 0.102

MC-MED GPT-2 0.007 0.032 0.006 0.011 0.005 0.226
Mamba 0.072 0.113 0.066 0.053 0.045 0.199

4.1 Faithfulness Test145

We examine whether decomposing attributions into feature and positional components using our146

Positional Explanation framework improves explanation faithfulness in clinical settings. This decom-147

position enables differentiation between patients whose high risk stems from chronically abnormal148

lab values and those whose risk arises from sudden, recent changes, supporting more targeted clinical149

review.150

To evaluate faithfulness, we conduct insertion and deletion tests and report average AUC scores. We151

compare six conditions: feature-only baseline, position-only baseline, PE-Feature (feature component152

from Positional Explanation), PE-Position (positional component from Positional Explanation),153

PE-Combined (both components from Positional Explanation), and a random baseline. Detailed154

descriptions of each approach are provided in Appendix B.155

Across Datasets and Models Across datasets and models (further details on datasets and model156

setups are provided in Appendix A), PE-Feature consistently achieves higher insertion scores and157

lower deletion scores than Feature-only, while PE-Position achieves higher insertion and lower158

deletion scores than Position-only. Full insertion results are reported in Table 4a, and full deletion159

scores are reported in Table 4b. This demonstrates that separating feature and positional components160

results in more faithful attributions.161

Across Explainability Methods We evaluate faithfulness across several explainability methods162

on the MC-MED dataset with GPT-2, comparing Feature-only (traditional perturbation), Position-163

only (position perturbation), PE-Feature (feature component of our Positional Explanation), and164

PE-Position (positional component of our Positional Explanation). The methods considered include165

LIME [Ribeiro et al., 2016], SHAP [Lundberg and Lee, 2017], Integrated Gradients [Sundararajan166

et al., 2017], FullGrad [Srinivas and Fleuret, 2019], and MFABA [Zhu et al., 2024] (see Appendix A.3167

for details).168

Although we show results here only for PhysioNet with GPT-2, the trend is consistent across all169

methods: PE-Feature achieves higher insertion and lower deletion scores than Feature-only, and PE-170

Position achieves higher insertion and lower deletion scores than Position-only. These results indicate171

that separating feature and positional components consistently produces more faithful explanations,172

independent of the underlying attribution method.173
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Table 3: Faithfulness comparison across explainability methods on PhysioNet using GPT-2. We report
AUC for both insertion and deletion tests. Across methods, PE-Feature consistently outperforms
Feature-only and PE-Position outperforms Position-only, showing that separating attributions into
feature and positional components using our framework leads to more faithful explanations.

(a) Insertion AUC (higher is better).

Explanation Method Feature-only Position-only PE-Feature PE-Position

LIME [Ribeiro et al., 2016] 0.354 0.323 0.419 0.396
SHAP [Lundberg and Lee, 2017] 0.342 0.337 0.403 0.401
Integrated Gradients [Sundararajan et al., 2017] 0.361 0.346 0.427 0.412
FullGrad [Srinivas and Fleuret, 2019] 0.336 0.314 0.384 0.393
MFABA [Zhu et al., 2024] 0.351 0.325 0.417 0.402

(b) Deletion AUC (lower is better).

Explanation Method Feature-only Position-only PE-Feature PE-Position

LIME [Ribeiro et al., 2016] 0.020 0.016 0.008 0.007
SHAP [Lundberg and Lee, 2017] 0.019 0.018 0.007 0.008
Integrated Gradients [Sundararajan et al., 2017] 0.019 0.021 0.009 0.011
FullGrad [Srinivas and Fleuret, 2019] 0.017 0.019 0.010 0.010
MFABA [Zhu et al., 2024] 0.018 0.015 0.007 0.006

4.2 Independence Test174

We assessed whether feature (α(feature)) and positional (α(position)) attributions are linearly related per175

measurement using the Pearson correlation coefficient. A high correlation magnitude indicates a176

strong linear relationship, whereas a low magnitude suggests independence. Statistical significance177

was evaluated using p-values, representing the likelihood that an observed correlation occurred by178

chance (see Appendix C.1.1 for computation details).179

Figure 2 shows the distribution of absolute correlation values across measurements. The results180

indicate variability in temporal dependence: some measurements strongly depend on time, while181

others are largely independent.182

Examples of temporal correlation analysis of measurements in the MC-MED dataset using GPT-2183

with Position-LIME:184

High temporal correlation: LABPTT, GLOBULIN, WAM DIFTYP, TEMP185

Low temporal correlation: AGE, RACE, AST (SGOT), PLATELET COUNT (PLT)186

These findings suggest that static variables (e.g., demographics, baseline labs) are generally position-187

independent, whereas dynamic variables (e.g., coagulation tests, temperature) exhibit strong temporal188

dependence. Full correlation values and p-values are reported in Appendix C.1.2.189

To validate our hypothesis that separating attribution into feature and positional components is helps190

identifying true temporal dependencies, we conduct an evaluation using a Large Language Model191

(LLM) as a proxy for ground-truth verification. We compare two methods for measuring temporal192

correlations, with results presented in Figure 3.193

The baseline uses correlation between feature-only and position-only attribution. We compare it194

to correlation between PE-Feature and PE-Position using our Positional Explanation framework.195

For evaluation, we group feature-position pairs into three bins based on their computed correlation196

scores: high correlation (correlation > 0.7), moderate correlation (0.3 < correlation ≤ 0.7), and low197

correlation (correlation ≤ 0.3). Within each bin, we measure the LLM verification accuracy to assess198

how well our correlation scores align with LLM-verified temporal dependencies. The results show199

that our PE-based attribution consistently achieves higher verification rates across all correlation bins,200

demonstrating that separating the score improves the identification of features with genuine temporal201

effects and confirming the effectiveness of our method in detecting temporal correlations.202

We also show qualitative result of what the LLM output for such correlation in Appendix C203
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(a) Histogram of Correlations for measurements ap-
preading more than 5 times using LIME

(b) Histogram of Correlations for measurements ap-
preading more than 5 times using Integrated Gradients

Figure 2: Histogram of absolute correlation between feature (f ) and positional (p) attribution per
measurement. From these two histograms of LIME and Integrated Gradients, we observe that some
measurements are inherently time-correlated while others are not, and these patterns differ across
explanation methods.

Figure 3: LLM verification accuracy for temporal correlation detection across different correlation
bins. Our Positional Explanation (PE) framework, which correlates PE-Feature and PE-Position
scores after separation, consistently outperforms the baseline method that directly correlates feature-
only and position-only attributions. Higher verification accuracy across all bins demonstrates that
decomposing attribution signals better identifies measurements with genuine temporal dependencies,
helping clinicians distinguish between time-correlated and time-independent measurements.

4.3 Relevance Test204

To evaluate the quality of feature attributions, we conducted a systematic comparison between tradi-205

tional feature-only explanations and our Positional Explanation framework using LLM verification.206

We analyzed feature importance scores across clinical measurements to assess which method more207

accurately identifies clinically relevant features independent of temporal context.208

For quantitative evaluation, we computed average feature importance scores across the entire dataset209

and organized features into three bins based on their attribution scores: high influence, moderate in-210

fluence, and low influence. The top 10 most influential measurements identified using our framework211

include: INFLUENZA B, NUR1373, ALBUMIN, POC16, KETONE: URINE (UA), SARS-COV-2212

RNA, MYCOPLASMA PNEUMONIAE, POC:POTASSIUM, POC:GLUCOSE BY METER, MAGNESIUM.213

Figure 4 presents the LLM verification results comparing feature-only attributions (original explana-214

tion method that perturbs only features) against PE-Feature scores from our Positional Explanation215

framework (which perturbs both features and positions before extracting the feature component). The216

results demonstrate that our PE-Feature approach consistently achieves higher LLM verification accu-217

racy across all influence bins. This superior performance confirms that disentangling positional and218

feature effects produces more clinically meaningful feature attributions, enabling better identification219

of truly relevant measurements for clinical decision-making.220
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Figure 4: LLM verification accuracy for feature attribution methods. Our PE-Feature scores from the
Positional Explanation framework achieve higher LLM verification accuracy compared to feature-
only attributions, demonstrating improved feature attribution quality through separation.

We also show qualitative result of what the LLM output for such feature was in Appendix D221

5 Conclusion222

We introduced the Positional Explanation framework, which separates standard feature attributions223

into feature content and position effects, enabling explanations that distinguish what drives a model’s224

prediction from when it is clinically significant. Applied to Mamba and GPT-2 models finetuned225

for sepsis prediction on PhysioNet and MC-MED datasets, our approach provides more faithful,226

temporally aware explanations than existing explanation methods, and identifies clinically relevant,227

time-dependent biomarkers that are otherwise overlooked. Importantly, Positional Explanation is228

model- and method-agnostic and can be applied to any feature attribution framework for any types of229

data including image, text, and time-series.230

While these results are promising, broader clinical validation is necessary. Current evaluation231

relies primarily on LLM-based models. We will engage multiple clinicians specialized in sepsis to232

evaluate real-world interpretability, trust, and utility. To demonstrate generality, we plan to extend the233

framework to new models, develop scalable metrics for temporal effects, and integrate it into clinical234

decision support systems for timely, actionable alerts.235

Overall, Positional Explanation provides a general, flexible framework for temporally aware explain-236

ability in clinical predictive modeling, bridging the gap between accurate prediction and actionable,237

time-sensitive insight.238
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A Experimental Setup335

A.1 Dataset Description336

A.1.1 Datasets337

We utilize sepsis prediction datasets curated by CAREBench [Choi et al., 2025], which processes two338

publicly available datasets: PhysioNet 2019 [Reyna et al., 2020] and MC-MED [Kansal et al., 2025].339

PhysioNet 2019 comprises over 40,000 ICU patients with up to 40 clinical variables recorded hourly,340

totaling 2.5 million hourly time windows. The dataset includes vital signs, laboratory values, and341

demographics in tabular format without physiological waveforms.342

MC-MED contains 118,385 emergency department visits from 70,545 unique patients (2020–2022).343

This dataset uniquely combines minute-level vital signs and continuous physiological waveforms344

(ECG, photoplethysmogram, respiration) with comprehensive clinical data including demographics,345

medical histories, medications, and laboratory results.346
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A.1.2 Sepsis Prediction Task Curation347

CAREBench adapted the curation methodology to each dataset’s clinical setting and available data.348

PhysioNet 2019: Sepsis labels were pre-defined using Sepsis-3 criteria, requiring both clinical349

suspicion of infection (blood culture or IV antibiotic orders) and a two-point SOFA score change.350

MC-MED: CAREBench implemented a two-stage process:351

1. At-Risk Cohort Selection – Patients meeting all criteria:352

• Admission source of ED353

• Temperature < 36◦C or > 38.5◦C within 24 hours of admission (Temp_time)354

• At least one of the following within 24 hours of admission:355

◦ WBC Count > 12K or < 4K/µL (WBC_time)356

◦ HR > 90 bpm (HR_time)357

◦ RR > 20 (RR_time)358

• At least 1 of the WBC_time, HR_time, RR_time within 12 hours of Temp_time359

• No intravenous antibiotic at or before the time of the first criteria met360

2. Sepsis Labeling – Adapted Sepsis-3 definition for ED settings with h = 1.5 hour prediction361

horizon. Positive labels assigned when emergency SOFA (eSOFA) criteria met:362

• Presumed serious infection:363

◦ Blood culture obtained (regardless of the results)364

◦ ≥ 4 QADs starting within ± 2 days of blood_culture_day365

• Any 1 of below within ± 2 days of blood_culture_day (acute organ dysfunction):366

◦ Vasopressor initiation367

◦ Initiation of mechanical ventilation368

◦ Doubling in serum creatinine level or decrease by ≥ 50% of eGFR (excluding patients369

with end-stage kidney disease [585.6])370

◦ Total bilirubin level ≥ 2.0mg/dL and doubling371

◦ Platelet count < 100 cells/µL and ≥ 50% decline from baseline (excluding baseline <372

100 cells/µL)373

◦ Serum lactate ≥ 2.0 mmol/L374

A.2 Model Description375

We employed GPT-2 (124M parameters) [Radford et al., 2019] and Mamba-130M [Gu and Dao,376

2024], pre-trained language models fine-tuned for sepsis prediction using the CAREBench-curated377

datasets.378

A.2.1 Model Architectures379

GPT-2 Small: A 124M parameter decoder-only transformer with 12 layers, 768 hidden dimensions,380

and 12 attention heads. Its autoregressive architecture with causal self-attention naturally captures381

temporal dependencies in patient trajectories, leveraging pre-trained sequential representations for382

modeling physiological progression patterns.383

Mamba-130M: A 130M parameter state-space model addressing transformer limitations in long-384

sequence processing. Its selective state-space mechanism achieves linear complexity with sequence385

length, enabling efficient processing of extended patient histories. The architecture’s continuous-time386

formulation aligns naturally with physiological processes, offering advantageous inductive biases for387

modeling sepsis dynamics.388

A.2.2 Training Configuration389

Following CAREBench methodology:390

• Custom Tokenization: Dataset-specific tokenizers handle hospital-specific medical codes and391

limited vocabulary392

• Training Duration: 100 epochs ensuring convergence on limited medical data393
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• Hyperparameter Selection: Learning rate ∈ {1× 10−5, 5× 10−5, 1× 10−4} via validation394

performance395

This configuration enables effective adaptation from general language understanding to domain-396

specific temporal patterns and medical terminology in sepsis prediction.397

A.3 Explanation Methods398

This section briefly describes the explanation methods employed in conjunction with our Positional399

Explanation approach.400

• LIME (Local Interpretable Model-agnostic Explanations) [Ribeiro et al., 2016] generates401

local explanations for individual predictions by fitting an interpretable surrogate model (typically402

linear) within the neighborhood of the target instance. The method creates perturbations around403

the input sample and trains the surrogate model on these variations, with samples weighted by404

their proximity to the original instance.405

• SHAP (SHapley Additive exPlanations) [Lundberg and Lee, 2017] computes feature impor-406

tance scores based on cooperative game theory principles. Each feature receives an attribution407

value representing its marginal contribution to the prediction relative to a baseline, with the408

property that all attribution values sum to the difference between the model’s output and the409

baseline prediction.410

• Integrated Gradients (IntGrad) [Sundararajan et al., 2017] computes feature attributions by411

integrating gradients along a linear path from a baseline input to the target input. This path412

integral approach ensures satisfaction of fundamental attribution axioms, including sensitivity413

and implementation invariance.414

• FullGrad [Srinivas and Fleuret, 2019] extends standard gradient-based attribution by incorpo-415

rating gradient information from all network layers. The method aggregates input gradients with416

bias gradients across all intermediate representations, providing more comprehensive attribution417

maps that capture multi-layer feature interactions.418

• MFABA (More Faithful and Accelerated Boundary-based Attribution) [Zhu et al., 2024]419

computes attributions by constructing paths from input samples to adversarial examples that420

cross the model’s decision boundary. The method employs second-order Taylor approximations421

to better model loss function changes during gradient ascent optimization.422

B Additional Faithfulness Test Results423

This section presents comprehensive results from our insertion and deletion experiments across all424

experimental configurations. We systematically evaluate faithfulness across two datasets (PhysioNet425

and MC-MED), two transformer architectures (GPT-2 and Mamba), and five explanation methods426

(LIME, SHAP, Integrated Gradients, FullGrad, MFABA).427

B.1 Faithfulness Test Experimental Setup428

For each explanation method, we compare five attribution approaches:429

• Feature-only: Traditional perturbation-based explanations430

• Position-only: Positional explanation perturbing only position431

• PE-Feature: Feature component of our Positional Explanation framework432

• PE-Position: Position component of our Positional Explanation framework433

• PE-Full: Both feature and position components of our Positional Explanation framework434

• Random: Baseline for comparison435

We employ two complementary faithfulness metrics: insertion tests (where higher AUC indicates436

better faithfulness) and deletion tests (where lower AUC indicates better faithfulness).437
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B.2 Key Findings438

The results demonstrate consistent improvements in explanation faithfulness when separating posi-439

tional and feature components:440

Insertion Test Performance. Our positional explanation components (PE-Feature and PE-Position)441

consistently outperform their traditional counterparts (Feature-only and Position-only) across all442

experimental configurations. PE-Feature achieves higher AUC scores than Feature-only, while443

PE-Position surpasses Position-only, indicating more faithful identification of important features.444

Deletion Test Performance. The superiority of our approach is further confirmed in deletion445

tests, where PE-Feature consistently achieves lower AUC scores than Feature-only, and PE-Position446

outperforms Position-only. Lower scores in deletion tests indicate that removing highly-attributed447

features causes greater performance degradation, confirming these features are indeed more important448

for model predictions.449

Cross-Architecture and Cross-Method Consistency. The improvements hold across both GPT-450

2 and Mamba architectures, as well as different explanation methods including gradient-based451

attribution, attention-based explanations, and perturbation-based approaches, demonstrating the broad452

generalizability of our positional explanation approach.453

B.3 Detailed Results454

Tables 4a and 4b present the complete faithfulness evaluation results across all experimental configu-455

rations. The insertion test results demonstrate the ability of each method to identify truly important456

features, while the deletion test results show how effectively each method identifies features whose457

removal significantly impacts model performance. These comprehensive results validate our theoreti-458

cal framework and demonstrate the practical benefits of separating positional and feature attributions459

in transformer explanations.460

C Additional Independence Test Results461

C.1 Independence Test Analysis462

This section presents the complete results from our independence test analysis, expanding on the463

verification scores reported in Section 4.2.464

C.1.1 Measurements465

The correlation was measured using the Pearson correlation coefficient:466

r =

∑n
i=1(α

(feature)
i − α(feature))(α

(position)
i − α(position))√∑n

i=1(α
(feature)
i − α(feature))2

√∑n
i=1(α

(position)
i − α(position))2

, (9)

where r ∈ [−1, 1], α(feature) is the mean feature attribution, and α(position) is the mean positional467

attribution. Values of r close to 1 or −1 indicate strong positive or negative correlation, while values468

near 0 suggest little to no linear relationship.469

To assess statistical significance, we tested the null hypothesis:470

H0 : r = 0 (feature and positional attributions are uncorrelated).

The corresponding p-value quantifies the probability of observing a correlation at least as extreme as471

the measured r under H0. At the α = 0.05 significance level,472

• If p < 0.05: we reject H0, concluding significant correlation.473

• If p ≥ 0.05: we fail to reject H0, finding no clear evidence of correlation.474

C.1.2 Temporal Correlation Patterns475

Our analysis identified distinct patterns in temporal correlation across different medical measurements:476

Examples of independent features (low correlation, high p-value) using Positional-LIME on the477

MC-MED dataset with GPT-2 included:478
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Table 4: Our Positional Explanation (PE) framework consistently outperforms traditional attribution
methods. PE-Feature and PE-Position achieve higher insertion AUC and lower deletion AUC
than their Feature-only and Position-only counterparts, confirming more faithful identification of
important features. The improvements hold across both GPT-2 and Mamba architectures and multiple
explanation methods. PE = Positional Explanation, Feat = Feature, Pos = Position.

(a) Insertion test results (AUC). Higher values indicate more faithful performance.

Dataset Model Explanation Feat-only Pos-only PE-Feat PE-Pos PE-Full Random

PhysioNet

GPT-2

LIME 0.354 0.323 0.419 0.396 0.465 0.214
SHAP 0.342 0.337 0.403 0.401 0.452 0.209

IntGrad 0.361 0.346 0.427 0.412 0.478 0.221
FullGrad 0.336 0.314 0.384 0.393 0.443 0.215
MFABA 0.351 0.325 0.417 0.402 0.461 0.208

Mamba

LIME 0.347 0.331 0.392 0.401 0.454 0.213
SHAP 0.352 0.323 0.415 0.395 0.463 0.207

IntGrad 0.364 0.348 0.431 0.416 0.472 0.226
FullGrad 0.338 0.312 0.393 0.382 0.445 0.218
MFABA 0.353 0.334 0.422 0.404 0.460 0.202

MC-MED

GPT-2

LIME 0.313 0.301 0.381 0.392 0.434 0.192
SHAP 0.321 0.314 0.392 0.403 0.446 0.207

IntGrad 0.332 0.322 0.413 0.421 0.461 0.215
FullGrad 0.303 0.296 0.375 0.384 0.421 0.194
MFABA 0.324 0.312 0.401 0.395 0.452 0.203

Mamba

LIME 0.319 0.311 0.393 0.403 0.442 0.201
SHAP 0.331 0.322 0.414 0.411 0.451 0.214

IntGrad 0.339 0.336 0.421 0.432 0.463 0.223
FullGrad 0.312 0.303 0.382 0.391 0.433 0.208
MFABA 0.330 0.321 0.412 0.410 0.450 0.212

(b) Deletion test results (AUC). Lower values indicate more faithful performance.

Dataset Model Explanation Feat-only Pos-only PE-Feat PE-Pos PE-Full Random

PhysioNet

GPT-2

LIME 0.020 0.016 0.008 0.007 0.002 0.110
SHAP 0.019 0.018 0.007 0.008 0.003 0.102

IntGrad 0.019 0.021 0.009 0.011 0.005 0.112
FullGrad 0.017 0.019 0.010 0.010 0.004 0.111
MFABA 0.018 0.015 0.007 0.006 0.002 0.109

Mamba

LIME 0.021 0.019 0.011 0.007 0.001 0.102
SHAP 0.021 0.018 0.012 0.007 0.002 0.103

IntGrad 0.011 0.011 0.008 0.009 0.003 0.111
FullGrad 0.010 0.012 0.007 0.008 0.001 0.113
MFABA 0.020 0.017 0.010 0.006 0.001 0.100

MC-MED

GPT-2

LIME 0.007 0.032 0.006 0.011 0.005 0.226
SHAP 0.011 0.024 0.010 0.013 0.006 0.228

IntGrad 0.053 0.103 0.037 0.077 0.035 0.218
FullGrad 0.049 0.098 0.036 0.064 0.032 0.220
MFABA 0.022 0.030 0.014 0.012 0.015 0.225

Mamba

LIME 0.072 0.113 0.066 0.053 0.045 0.199
SHAP 0.085 0.116 0.058 0.056 0.046 0.201

IntGrad 0.089 0.102 0.047 0.057 0.033 0.204
FullGrad 0.086 0.098 0.046 0.055 0.031 0.206
MFABA 0.071 0.111 0.065 0.052 0.044 0.200

• AGE: correlation = 0.0244, p = 0.9020479

• RACE: correlation = -0.0330, p = 0.8675480

• AST (SGOT): correlation = -0.0082, p = 0.9668481

• PLATELET COUNT (PLT): correlation = 0.0301, p = 0.8888482
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Gemini 2.5 pro

High Time-Correlated Features (Progression Markers): These features track continuous underlying
sepsis pathophysiology.
• LABPTT (Partial Thromboplastin Time): PTT prolongs progressively in sepsis due to coagulation

abnormalities (DIC), reflecting worsening condition over time.
• GLOBULIN: Reflects immune activity; levels gradually rise with ongoing infection, indicating systemic

immune response.
• WAM DIFTYP: Likely tracks shifts in immune cell populations, reflecting the bone marrow’s response

to infection.
Low Time-Correlated Features (Condition Markers): These features reflect snapshots of patient state or
specific events rather than continuous trends.
• EKG5: Captures heart electrical activity at an instant; changes are rapid, non-linear.
• AST (SGOT) & PLT: Organ damage markers; can remain stable and drop suddenly.
• LYMPHOCYTE %: Fluctuates relative to other WBCs; no consistent linear trend.

Figure 5: Feature temporal correlation analysis for sepsis prediction using Gemini 2.5 Pro. Features
are categorized into High, Moderate, and Low time-correlated groups, reflecting progression markers,
intermediate trends, and condition markers, respectively, as verified using the prompt shown in fig. 9.

Examples of independent features (low correlation, high p-value) using Positional-LIME on the483

MC-MED dataset with GPT-2 included:484

• LABPTT: correlation = 0.9080, p = 1.11e-04485

• GLOBULIN: correlation = 0.9061, p = 3.90e-05486

• WAM DIFTYP: correlation = 0.8447, p = 2.15e-03487

• TEMP: correlation = 0.6659, p = 3.55e-02488

These findings suggest that certain static variables (e.g., demographics, baseline labs) remain position-489

independent, while dynamic variables (e.g., coagulation tests, temperature) exhibit strong temporal490

dependence.491

C.2 LLM Verification Results492

To validate our independence test findings, we employed large language models for additional493

verification. The detailed outputs from both Gemini and GPT models are presented below.494

LLM Analysis. Figures 5 and 6 show the comprehensive LLM evaluation results for feature495

independence assessment.496

D Additional Relevance Test Results497

We analyzed which clinical measurements contribute most to model predictions, independent of498

temporal context. For each measurement, we computed the average feature importance across the499

entire dataset and identified the top 10 most influential features:500

INFLUENZA B, NUR1373, ALBUMIN, POC16, KETONE: URINE (UA), SARS-COV-2 RNA,501

MYCOPLASMA PNEUMONIAE, POC:POTASSIUM, POC:GLUCOSE BY METER, MAGNESIUM.502

LLM Analysis. We show the llm outputs for feature relevance test in Figure 7 and 8.503

E Prompt504

We provide the prompts used to verify our model analyses using large language models (LLMs),505

specifically Gemini 2.5 Pro and GPT-5 Mini.506

Independence Test Prompt. This prompt is designed to verify the results of the independence test,507

assessing whether features are statistically independent. The full prompt is shown in fig. 9.508
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GPT-5 mini

Measurements with High Temporal Correlation
• LABPTT (3856): Specific studies documenting its temporal correlation with sepsis are limited, but

coagulation-related markers like PTT are generally relevant in sepsis monitoring.
• GLOBULIN (728): Direct evidence of temporal correlation in sepsis is sparse, though globulin levels

reflect immune response changes.
• WAM DIFTYP (6859): No widely cited studies link this specific measurement to temporal sepsis

prediction.

Measurements with Low Temporal Correlation
• EKG5 (46): Limited documentation of temporal correlation to sepsis; specific cardiac waveform features

may vary in predictive value.
• AST (SGOT) (166): While AST can indicate organ dysfunction, temporal patterns in sepsis prediction

are not well-established.
• PLATELET COUNT (PLT) (2153): Platelet count is relevant to sepsis prognosis, but temporal

correlation in published literature is limited.
• LYMPHOCYTE % (AUTO DIFF) (2281): Lymphocyte percentage is a marker of immune status, but

temporal effects for sepsis prediction are not clearly documented.

Figure 6: Feature temporal correlation analysis for sepsis prediction using ChatGPT-5 Mini. Features
are categorized into High, Moderate, and Low time-correlated groups, reflecting progression markers,
intermediate trends, and condition markers, respectively, as verified using the prompt shown in fig. 9.

Gemini 2.5 pro

Pathogens and Infectious Triggers Sepsis is fundamentally a dysregulated host response to an infection.
Therefore, identifying the causative pathogen is a powerful predictor.
• SARS-COV-2 RNA, INFLUENZA B, and MYCOPLASMA PNEUMONIAE: These directly identify

the infectious agent. Severe viral infections (like COVID-19 and Influenza) can lead to viral sepsis or
predispose a patient to a secondary bacterial infection. Atypical bacteria like Mycoplasma pneumoniae
are common causes of pneumonia, which is a leading trigger for sepsis.

Core Biomarkers of Systemic Illness These lab values reflect the widespread physiological chaos caused
by the septic response, such as inflammation, metabolic derangement, and organ dysfunction.
• ALBUMIN: Low albumin (hypoalbuminemia) is a classic and very strong predictor of poor outcomes

in sepsis. It reflects the severity of the systemic inflammatory response and a state of negative protein
balance.

• POC:GLUCOSE BY METER: High glucose (stress hyperglycemia) is extremely common in critically
ill patients. It’s a result of the body’s stress response and is associated with worse outcomes in sepsis.

• POC:POTASSIUM and MAGNESIUM: Electrolyte abnormalities are hallmarks of organ dysfunction
in sepsis, particularly Acute Kidney Injury (AKI).

• KETONE: URINE (UA): The presence of ketones can indicate metabolic acidosis, a sign of severe
metabolic stress and shock.

Figure 7: Feature influence analysis on sepsis prediction using Gemini 2.5 Pro. Features are
categorized into High, Moderate, and Low influence based on their impact on model predictions, as
verified using the prompt shown in fig. 10.

Relevance Test Prompt. This prompt is used to verify the results regarding the influence of each509

feature, evaluating their impact on the model’s predictions. The full prompt is shown in fig. 10.510
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GPT-5 mini

Features with Established Importance
• Influenza B: While specific studies on Influenza B’s role in sepsis prediction are limited, respiratory

viral infections, including influenza, have been associated with sepsis. Differentiating between influenza
and Mycoplasma pneumoniae infections using peripheral blood routine parameters has shown diagnostic
value, with an AUC of 0.845.

• Albumin: Hypoalbuminemia is a recognized marker of systemic inflammation and poor nutritional
status, both relevant in sepsis. Low albumin levels have been linked to increased mortality in sepsis
patients.

• SARS-CoV-2 RNA: COVID-19 has been associated with sepsis in some patients. Laboratory abnormal-
ities in COVID-19 patients, particularly in coagulation function, have been related to the occurrence of
sepsis.

• Mycoplasma pneumoniae: This pathogen can cause respiratory infections that may progress to sepsis.
Studies differentiating influenza and Mycoplasma pneumoniae infections show its diagnostic relevance.

• POC: Potassium: Electrolyte imbalances, including abnormal potassium levels, are common in sepsis
and can impact cardiac and muscular function.

• POC: Glucose by Meter: Hyperglycemia is frequently observed in sepsis and is associated with worse
outcomes. Elevated blood glucose levels are primary risk factors for poor outcomes in various conditions.

• Magnesium: Hypomagnesemia has been linked to increased mortality in sepsis patients, suggesting its
potential role as a prognostic marker.

Features with Limited or Unclear Importance
• Ketone: Urine (UA): While ketonuria can indicate metabolic disturbances such as diabetic ketoacidosis,

its role in sepsis prediction is not well-established in the literature.

Figure 8: Feature influence analysis on sepsis prediction using ChatGPT-5 Mini. Features are
categorized into High, Moderate, and Low influence based on their impact on model predictions, as
verified using the prompt shown in fig. 10.

Prompt

You will be provided with results from our explainability method, which categorizes features based on
their temporal correlation into three groups: High Time-Correlated Features, Moderate Time-Correlated
Features, and Low Time-Correlated Features.
For each feature:
• Indicate whether you agree that the feature belongs in its assigned temporal correlation group.
• Briefly justify your agreement or disagreement based on reasoning about temporal patterns.
Here are the feature groups:

Figure 9: Prompt template for verifying feature temporal correlation group assignment.

Prompt

You are an expert in sepsis prediction. We have categorized features based on their impact on sepsis
prediction into High, Moderate, and Low influence.
For each feature:
• Indicate whether you agree with the feature’s assigned impact group.
• Briefly justify your agreement or disagreement based on reasoning about its role in sepsis prediction.
Here are the features:

Figure 10: Prompt template for verifying feature influence on sepsis prediction.
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