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ABSTRACT

Data-driven discovery of governing equations has kindled significant interests in
many science and engineering areas. Existing studies primarily focus on uncov-
ering equations that govern nonlinear dynamics based on direct measurement of
the system states (e.g., trajectories). Limited efforts have been placed on distill-
ing governing laws of dynamics directly from videos for moving targets in a 3D
space. To this end, we propose a vision-based approach to automatically uncover
governing equations of nonlinear dynamics for 3D moving targets via raw videos
recorded by a set of cameras. The approach is composed of three key blocks: (1)
a target tracking module that extracts plane pixel motions of the moving target
in each video, (2) a Rodrigues’ rotation formula-based coordinate transformation
learning module that reconstructs the 3D coordinates with respect to a predefined
reference point, and (3) a spline-enhanced library-based sparse regressor that un-
covers the underlying governing law of dynamics. This framework is capable of
effectively handling the challenges associated with measurement data, e.g., noise
in the video, imprecise tracking of the target that causes data missing, etc. The
efficacy of the proposed method has been demonstrated through multiple sets of
synthetic videos considering different nonlinear dynamics.

1 INTRODUCTION

Nonlinear dynamics is ubiquitous in nature. Data-driven discovery of underlying laws or equations
that govern complex dynamics has drawn great attention in many science and engineering areas such
as astrophysics, aerospace science, biomedicine, etc. Existing studies primarily focus on uncovering
governing equations based on direct measurement of the system states, e.g., trajectory time series,
(Bongard & Lipson, 2007; Schmidt & Lipson, 2009; Brunton et al., 2016; Rudy et al., 2017; Chen
et al., 2021b; Sun et al., 2021). Limited efforts have been placed on distilling governing laws of
dynamics directly from videos for moving targets in a 3D space, which represents a novel and
interdisciplinary research domain. This challenge calls for a solution of fusing various techniques,
including computer stereo vision, visual object tracking, and symbolic discovery of equations.

Let us consider a moving object in a 3D space. The scene of this object is recorded by a set of hori-
zontally positioned, calibrated cameras at different locations. Discovery of the governing equations
for the moving target first requires accurate estimation of its 3D trajectory directly from the videos,
which can be realized based on computer stereo vision and object tracking techniques. Computer
stereo vision, which aims to reconstruct 3D coordinates for depth estimation of a given target, has
shown immense potential in the fields of robotics (Nalpantidis & Gasteratos, 2011; Li et al., 2021),
autonomous driving (Ma et al., 2019; Peng et al., 2020), among others. Disparity estimation is a cru-
cial step in stereo vision, as it computes the distance information of objects in a 3D space, thereby
enabling accurate perception and understanding of the environment. Recent advances of deep learn-
ing has kindled successful techniques for visual object tracking e.g., DeepSORT (Wojke et al., 2017)
and YOLO (Redmon et al., 2016). The aforementioned techniques lay a critical foundation to accu-
rately estimate the 3D trajectory of a moving target for distilling governing equations, simply based
on videos recorded by multiple cameras in a complex scene.

We assume that the nonlinear dynamics of a moving target can be described by a set of ordinary
differential equations, e.g., dy/dt = F(y), where F is a nonlinear function of the d-dimensional
system state y = {y1(t), y2(t), . . . , yd(t)} ∈ Rd. The objective of equation discovery is to identify
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the closed-form of F given observations of y. This could be achieved via symbolic regression (Bon-
gard & Lipson, 2007; Schmidt & Lipson, 2009; Sahoo et al., 2018; Petersen et al., 2021; Mundhenk
et al., 2021; Sun et al., 2023) or sparse regression (Brunton et al., 2016; Rudy et al., 2017; Rao et al.,
2023). When the measurement data is noisy and sparse, differentiable models (e.g., neural networks
(Chen et al., 2021b), cubic splines (Sun et al., 2021; 2022)) are employed to reconstruct the system
states, thereby forming the physics-informed learning scheme for more robust equation discovery.

Recently, attempts have been made toward scene understanding and prediction grounding physical
concepts (Jaques et al., 2020; Chen et al., 2021a). Although a number of efforts have been placed on
distilling the unknown governing laws of dynamics from videos for moving targets (Champion et al.,
2019; Udrescu & Tegmark, 2021; Luan et al., 2022), the system dynamics was assumed in plane
(e.g., in a 2D space). To our knowledge, distilling governing equations for a moving object in a 3D
space (e.g., d = 3) directly from raw videos remains scant in literature. To this end, we introduce a
unified vision-based approach to automatically uncover governing equations of nonlinear dynamics
for a moving target in a predefined reference coordinate system, based on raw video data recorded
by a set of horizontally positioned, calibrated cameras at different locations.

Contributions. The proposed approach is composed of three key blocks: (1) a target tracking
module based on YOLO-v8 that extracts plane pixel motions of the moving target in each video
data; (2) a coordinate transformation model based on Rodrigues’ rotation formula, which allows the
conversion of pixel coordinates obtained through target tracking to 3D spatial/physical coordinates
in a predefined reference coordinate system given the calibrated parameters of only one camera;
and (3) a spline-enhanced library-based sparse regressor that uncovers a parsimonious form of the
underlying governing equations for the nonlinear dynamics. Through the integration of these com-
ponents, it becomes possible to extract spatiotemporal information of a moving target from 2D video
data and subsequently uncover the underlying governing law of dynamics. This integrated frame-
work excels in effectively addressing challenges associated with measurement noise and data gaps
induced by imprecise target tracking. Results from extensive experiments demonstrate the efficacy
of the proposed method. This endeavor offers a novel perspective for understanding the complex
dynamics of moving targets in a 3D space.

2 RELATED WORK

Computer stereo vision. Multi-view stereo aims to reconstruct a 3D model of the observed scene
from images with different viewpoints (Schönberger et al., 2016; Galliani et al., 2016), assuming
the intrinsic and extrinsic camera parameters are known.Recently, many endeavors have been based
on deep learning to tackle this challenge, such as convolutional neural networks (Flynn et al., 2016;
Huang et al., 2018) and adaptive modulation network with co-teaching strategy (Wang et al., 2021).

Target tracking. Methods for vision-based target tracking can be broadly categorized into two
main classes: correlation filtering and deep learning. Compared to traditional algorithms, correlation
filtering-based approaches offer faster target tracking (Mueller et al., 2017), while deep learning-
based methods (Ciaparrone et al., 2020; Marvasti-Zadeh et al., 2021) provide higher precision.

Governing equation discovery. Data-driven discovery of governing equations can be realized
through a number of symbolic/sparse regression techniques. The most popular symbolic regression
methods include genetic programming (Koza, 1994; Bongard & Lipson, 2007; Schmidt & Lipson,
2009), symbolic neural networks (Sahoo et al., 2018), deep symbolic regression (Petersen et al.,
2021; Mundhenk et al., 2021), and Monte Carlo tree search (Lu et al., 2021; Sun et al., 2023).
Sparse regression techniques such as SINDy (Brunton et al., 2016; Rudy et al., 2017; Rao et al.,
2023) leverage a predefined library that includes a limited number of candidate terms, which search
for the underlying equations in a compact solution space.

Physics-informed learning. Physics-informed learning has been developed to deal with noisy and
sparse data in the context of equation discovery. Specifically, differentiable models (e.g., neural net-
works (Raissi et al., 2019; Chen et al., 2021b), cubic splines (Sun et al., 2021; 2022)) are employed
to reconstruct the system states and approximate the required derivative terms required to form the
underlying eauqtions.

Vision-based discovery of dynamics. Very recently, attempts have been made to discover the
governing of equations for moving objects directly from videos. These methods are generally based
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Figure 1: Schematic of vision-based discovery of nonlinear dynamics for 3D moving target. Firstly, we record
the motion trajectory of the object in a 3D space using multiple cameras in a predefined reference coordinate
system (see a). Pixel trajectory coordinates are obtained through target identification and tracking. Note that
camera parameters include the camera’s position, the normal vector of the camera’s view plane, and the cal-
ibrated camera parameters, which comprise the scaling factor and tilt angle. In particular, we use coordinate
learning and transformation to obtain the spatial motion trajectory in the reference coordinate system. Sec-
ondly, for each dimension of the trajectory, we introduce a spline-enhanced library-based sparse regressor to
uncover the underlying governing law of dynamics (see b).

on autoencoders that extract the latent dynamics for equation discovery (Champion et al., 2019;
Udrescu & Tegmark, 2021; Luan et al., 2022). Other related works include the discovery of intrinsic
dynamics Floryan & Graham (2022) or fundamental variables (Chen et al., 2022) based on high-
dimensional data such as videos.

3 METHODOLOGY

We here elucidate the concept and approach of vision-based discovery of nonlinear dynamics for 3D
moving target. Figure 1 shows the schematic architecture of our method. The target tracking mod-
ule serves as the foundational stage, which extracts pixel-level motion information from the target’s
movements across consecutive frames in a video sequence. The coordinate transformation module
utilizes Rodrigues’ rotation formula with respect to a predefined reference coordinate origin, which
lays the groundwork for the subsequent analysis of the object’s dynamics. The final crucial compo-
nent is the spline-enhanced library-based sparse regressor, essential for revealing the fundamental
dynamics governing object motion. We then introduce each module in detail as follows.

3.1 COORDINATES TRANSFORMATION

In this paper, we employ three fixed-position cameras oriented in different directions to indepen-
dently capture the motion of an object (see Figure 1a). With the constraint of calibrating only one
camera, our coordinate learning module becomes essential (e.g., the 3D trajectory of the target and
other camera parameters can be simultaneously learned). In particular, it is tasked with learning the
unknown parameters of the other two cameras, including scaling factors and the rotation angle on
each camera plane. These parameters enable to reconstruct the motion trajectory of the object in the
reference coordinate system. We leverage Rodrigues’ rotation formula to compute vector rotations
in three-dimensional space, which enables the derivation of the rotation matrix, describing the ro-
tation operation from a given initial vector to a desired target vector. This formula finds extensive
utility in computer graphics, computer vision, robotics, and 3D rigid body motion problems.
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In a 3D space, a rotation matrix is used to represent the transformation of a rigid body around an axis.
Let v0 represent the initial vector and v1 denote the target vector. We denote the rotation matrix as
R. The relationship between the pre- and post-rotation vectors can be expressed as v1 = Rv0. The
rotation angle, denoted as θ, can be calculated via cos θ = v0·v1

∥v0∥∥v1∥ . The rotation axis is represented
by the unit vector u = [ux, uy, uz], namely, u = v0×v1

∥v0×v1∥ . Having defined the rotation angle θ and
the unit vector k, we construct the rotation matrix R using Rodrigues’ rotation formula, given by

R = I+ sin θU+ (1− cos θ)U2. (1)

where I is a 3 × 3 identity matrix, and U is a 3 × 3 skew-symmetric matrix representing the cross
product of the rotation axis vector u expressed as

U =

[
0 −uz uy

uz 0 −ux

−uy ux 0

]
. (2)

The resulting expansion of the rotation matrix R is then given as follows:

R =

 cos θ + u2
x(1− cos θ) uxuy(1− cos θ)− uz sin θ uxuz(1− cos θ) + uy sin θ

uxuy(1− cos θ) + uz sin θ cos θ + u2
y(1− cos θ) uyuz(1− cos θ)− ux sin θ

uxuz(1− cos θ)− uy sin θ uyuz(1− cos θ) + ux sin θ cos θ + u2
z(1− cos θ)

. (3)

In a predefined reference coordinate system, we use multiple cameras to track the target motion in
a 3D space. Let v0 = (0, 0, 1)T be the initial vector, and a camera’s plane equation be Ax+ By +
Cz+D = 0, where v1 = (A,B,C) is the target vector. The rotation axis vector is u = (ux, uy, 0),
and the rotation matrix R is computed as:

R =

 cos θ + u2
x(1− cos θ) uxuy(1− cos θ) uy sin θ

uxuy(1− cos θ) cos θ + u2
y(1− cos θ) −ux sin θ

−uy sin θ ux sin θ cos θ

 . (4)

Let x(t) = (x, y, z)T represent the initial coordinates of a moving object at time t, and xr =
(xr, yr, zr)

T denotes its coordinates after rotation. This relationship is defined as R ·x = xr, where
the rotation matrix R transforms the initial coordinates x into the rotated coordinates xr. Hence, we
can obtain [xr, yr, zr]

T = R · [x, y, z]T.

The camera plane equation is Ax+By+Cz+D = 0. When projecting a three-dimensional object
onto this plane, denoting the coordinates of the projection as xp = (xp, yp, zp)

T , we have:

xp =
1

A2 +B2 + C2
·

x(B2 + C2)−A(By + Cz +D)
y(A2 + C2)−B(Ax+ Cz +D)
z(A2 +B2)− C(Ax+By +D)

 . (5)

If the camera plane’s normal vector remains constant and scaling is neglected, the captured trajectory
is determined by the camera plane’s normal vector, irrespective of its position. After rotating the
camera’s normal vector v1 to v0 = (0, 0, 1)T (initial vector), denoted as xrp = (xrp, yrp, zrp)

T , we
have xrp = R ·xp. Here, xrp and yrp depending solely on the camera plane’s normal vector v1 and
independent of the parameter D shown in the camera’s plane equation. For more details, please refer
to Appendix A. In the reference coordinate system, an object’s trajectory is projected onto a camera
plane. Considering a camera position as the origin of the 2D camera plane, the positional offset of an
object’s projection on the 2D camera plane with respect to this origin is denoted as ∆c = (δx, δy)

T .
This offset distance ∆c can be computed following the details shown in Appendix B.

3.2 CUBIC B-SPLINES

B-splines are differentiable, and constructed using piecewise polynomial functions called basis func-
tions. Sun et al. (2021) demonstrated that, when the measurement data is noisy and sparse, cubic
B-splines could serve as a differentiable surrogate model to form robust physics-informed learning
for equation discovery. We herein adopt this approach to tackle challenges associated with data
noise and gaps induced by the imprecise target tracking for discovering laws of 3D dynamics. The
i-th cubic B-spline basis function of degree k, written as Gi,k(u), can be defined recursively as:

Gi,0(u) =

{
1 if ui ≤ u < ui+1

0 otherwise ,

Gi,k(u) =
u−ui

ui+k−ui
Gi,k−1(u) +

ui+k+1−u
ui+k+1−ui+1

Gi+1,k−1(u),
(6)
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where ui represents a knot that partitions the computational domain. By selecting appropriate con-
trol points and combinations of basis functions, cubic B-splines with C2 continuity can be cus-
tomized to meet specific requirements. In general, a cubic B-spline curve of degree p defined by
n + 1 control points P = {p0,p1, ...,pn} and a knot vector U = {u0, u1, ..., um} is given by:
C(u) =

∑n
i=0 Gi,3(u) · pi. To ensure the curve possesses continuous and smooth tangent direc-

tions at the starting and ending nodes, meeting the first derivative interpolation requirement, we use
Clamped cubic B-spline curves for fitting.

3.3 NETWORK ARCHITECTURE

We utilized the YOLO-v8 for object tracking in the recorded videos (see Figure 1a). Regardless of
whether the captured object has an irregular shape or is in a rotated state, we only need to capture
their centroid positions and track them to obtain pixel data. Subsequently, leveraging Rodrigues’
rotation formula and based on the calibrated camera, we derive the scaling and rotation factors of the
other two cameras. These factors enable the conversion of the object trajectory’s pixel coordinates
into the world coordinates deducing the physical trajectory. For the trajectory varying with time in
each dimension, we use the cubic B-splines to fit the trajectory and a library-based sparse regressor
to uncover the underlying governing law of dynamics in the reference coordinate system. This
approach is capable of dealing with data noise, multiple instances of data missing and gaps.

Learning 3D trajectory. In this work, we use a three-camera setup to capture and represent the
object’s 2D motion trajectory in each video scene, yielding the 2D coordinates denoted as (xrp, yrp).
The rotation matrix R is decomposed to retain only the first two rows, denoted as R−, to suitably
handle the projection onto the image planes. Under the condition of calibrating only one camera, we
can reconstruct the coordinates of a moving object in the reference 3D coordinate system using three
fixed cameras capturing an object’s motion in a 3D space. The assumed given information includes
normal vectors v1,v2,v3 of camera planes for all three cameras, the positions of the cameras, as
well as a scaling factor s1 and rotation angles ϑ1 for one of the cameras. We define the scaling factor
vector as s = {s1, s2, s3} and the rotation angle vector as ϑ = {ϑ1, ϑ2, ϑ3}. The loss function for
reconstructing the 3D coordinates of the object in the reference coordinate system is given by

Lr (s
∗;ϑ∗) =

1

Nm

∥∥∥∥∥R−
1

[
R−

2

R−
3

]−1 [
s2T (ϑ2)xc2 +∆c2
s3T (ϑ3)xc3 +∆c3

]
− (s1T (ϑ1)xc1 +∆c1)

∥∥∥∥∥
2

2

, (7)

where s∗ = {s2, s3} and ϑ∗ = {ϑ2, ϑ3}. Here, xci = (xci , yci)
T represents the pixel coordinates,

Nm the number of effectively recognized object coordinate points, T (ϑ) the transformation matrix
induced by rotation angle ϑ expressed as T (ϑ) = [cosϑ sinϑ; − sinϑ cosϑ].

In the case of using three cameras, the transformation between the object’s coordinates xref in the
reference coordinate system and the pixel coordinates xc in the camera setups is as follows

x =

 R−
1

R−
2

R−
3

−1 [
s1T (ϑ1)xc1 +∆c1
s2T (ϑ2)xc2 +∆c2
s3T (ϑ3)xc3 +∆c3

]
. (8)

By solving for parameter values (s∗, ϑ∗) via optimization of Eq. (7), we can subsequently compute
the reconstructed 3D physical coordinates through the calculation provided in Eq. (8).

Equation discovery. Given the potential challenges in target tracking, e.g., momentary target loss,
noise, or occlusions, we leverage physics-informed spline learning to address these issues (see Fig-
ure 1b). In particular, cubic B-splines are employed to approximate the 3D trajectory. Given three
sets of control points denoted as P = {p1,p2,p3} ∈ Rr×3. Given that the coordinate system is
arbitrarily defined, and to enhance the fitting of data Dr, we introduce the learnable adaptive offset
parameter ∆ = {∆1,∆2,∆3}. The 3D parametric curves where x(t;P,∆) are defined by the con-
trol point vectors P, the cubic B-spline basis functions G(t) and the offset parameter ∆, namely,
x(t;P,∆) = G(t)P+∆. Since the basis functions consist of differentiable polynomials, the ex-
pression of its differential equation is given by ẋ(P) = ĠP. Generally, the dynamics is governed by
a limited number of significant terms, which can be selected from a library of l candidate functions,
v.i.z., ϕ(x) ∈ R1×l (Brunton et al., 2016). The governing equations can be written as:

ẋ(P) = ϕ(P,∆)Λ, (9)
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where ϕ(P,∆) = ϕ(x(t;P,∆)), and Λ = {λ1,λ2,λ3} ∈ S ⊂ Rl×3 is the sparse coefficient
matrix belonging to a constraint subset S (only the terms active in ϕ exhibit non-zero values).

Accordingly, the task of equation discovery can be formulated as follows: when provided with
reconstructed 3D trajectory data Dr = {xm

1 ,xm
2 ,xm

3 } ∈ RNm×3. In other words, Dr is presented as
effectively tracking the object movements in a video and subsequently transforming them into a 3D
trajectory, where Nm is the number of data points. Our goal is to identify the suitable set of P and a
sparse Λ that fits the trajectory data meanwhile satisfying Eq. (9). Considering that the reconstructed
trajectory Dr might exhibit noise or temporal discontinuity, we use collocation points denoted as
Dc = {t0, t1, . . . , tnc−1} to compensate data imperfection, where Dc denotes the randomly sampled
set of Nc number of collocation points (Nc ≫ Nm). These points are strategically employed to
reinforce the fulfillment of physics constraints at all time instances (see Figure 1b).

3.4 NETWORK TRAINING

The loss function for this network comprises three main components, namely, the data component
Ld, the physics component Lp, and the sparsity regularizer, given by:

L(P∗,Λ∗,∆∗) = arg min
{P,Λ,∆}

[Ld (P,∆;Dr) + αLp (P,∆,Λ;Dc)] + β∥Λ∥0, (10)

Ld =
1

Nm

3∑
i=1

∥Gmpi +∆i − xm
i ∥22 , Lp =

1

Nc

3∑
i=1

∥∥∥Φ(P,∆)λi − Ġcpi

∥∥∥2
2
. (11)

where Gm denotes the spline basis matrix evaluated at the measured time instances, xm
i the coordi-

nates in each dimension after 3D reconstruction in the reference coordinate system (may be sparse
or exhibit data gaps whereas Ġc the derivative of the spline basis matrix evaluated at the colloca-
tion instances. The term Gmpi is employed to fit the measured trajectory in each dimension, while
Ġcpi is used to reconstruct the potential equations evaluated at the collocation instances. Addition-
ally, Φ ∈ RNc×l represents the collocation library matrix encompassing the collection of candidate
terms, ∥Λ∥0 the sparsity regularizer, α and β the relative weighting parameters.

Since the regularizer ∥Λ∥0 leads to an NP-hard optimization issue, we apply an Alternate Direction
Optimization (ADO) strategy (see Appendix C) to optimize the loss function (Chen et al., 2021b;
Sun et al., 2021). The interplay of spline interpolation and sparse equations yields subsequent ef-
fects: the spline interpolation ensures accurate modeling of the system’s response, its derivatives,
and the candidate function terms, thereby laying the foundation for constructing the governing equa-
tions. Simultaneously, the equations represented in a sparse manner synergistically constrain spline
interpolation and facilitate the projection of accurate candidate functions. Ultimately, this transforms
the extraction of a 3D trajectory of an object from video into a closed-form differential equation.

ẋ = ϕ(x−∆∗)Λ∗. (12)

After applying ADO to execute our model, resulting in the optimal control point matrix P∗, sparse
matrix Λ∗, and adaptive parameter ∆∗, an affine transformation is necessary to eliminate ∆∗ in the
identified equations. We replace x with x − ∆∗, as shown in Eq. (12), to obtain the final form
of equations. We then assign a small value to prune equation coefficients, yielding the discovered
governing equations in a predefined 3D coordinate system.

4 EXPERIMENTS

In this section, we evaluate our method for uncovering 3D governing equations of a moving tar-
get automatically from videos using nine datasets1. The nonlinear dynamical equations for these
chaotic systems and their respective trajectories can be found in Appendix D (see Figure S1). We
generate 3D trajectories based on the governing equations of the dataset and subsequently produce
corresponding video data captured from various positions. Our analysis encompasses the method’s
robustness across distinct video backgrounds, varying shapes of moving objects, object rotations,
levels of data noise, and occlusion scenarios. We further validate the identified equations demon-
strating their interpretability and generalizability. The proposed computational framework is imple-
mented in PyTorch. All simulations in this study are conducted on an Intel Core i9-13900 CPU
workstation with an NVIDIA GeForce RTX 4090 GPU.

1The datasets are derived from instances introduced in Gilpin (2021), where we utilize the following exam-
ples: Lorenz, SprottE, RayleighBenard, SprottF, NoseHoover, Tsucs2 and WangSun.
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Data generation. The videos in this study are synthetically generated using MATLAB to simulate
real dynamic systems captured by cameras. To commence, the dynamic system is pre-defined, and
its trajectory is simulated utilizing the 4th-order Runge-Kutta method in MATLAB. Leveraging the
generated 3D trajectory, a camera’s orientation is established within a manually defined 3D coordi-
nate system to simulate the 2D projection of the object onto the camera plane. The original colored
images featuring the moving object are confined to dimensions of 512× 512 pixels at 25 frames per
second (fps). Various shapes are employed as target markers in the video along with local dynamics
(e.g., with self-rotation) to emulate the motion of the object (see Appendix E). Subsequently, a set
of background images are randomly selected to mimic the real-world video scenarios. The resultant
videos generated within the background imagery comprise color content, with each frame containing
RGB channels (e.g., see Appendix Figure S2). After obtaining the video data, it becomes imperative
to perform object recognition and tracking on the observed entities based on the YOLO-v8 method.

4.1 RESULTS Table 1: The performance of our method compared to the PySINDy
in reconstructing three-dimensional coordinates from videos.

Cases Methods Terms False ℓ2 Error
P (%) R (%)Found? Positives (×10−2)

Lorenz Ours Yes 1 1.50 92.31 100
PySINDy Yes 1 4.17 92.31 100

SprottE Ours Yes 0 0.15 100 100
PySINDy Yes 3 3.48 72.73 100

RayleighBenard Ours Yes 1 2.00 91.67 100
PySINDy Yes 2 2.74 84.62 100

SprottF Ours Yes 0 0.16 100 100
PySINDy No 1 7.51 90 90

NoseHoover Ours Yes 0 6.22 100 100
PySINDy Yes 3 824.44 75 100

Tsucs2 Ours Yes 1 5.39 93.75 100
PySINDy Yes 1 12.29 93.75 100

WangSun Ours Yes 1 0.16 93.33 100
PySINDy No 3 856.47 86.67 92.86

Evaluation metrics. We employ
both qualitative and quantitative
metrics to assess the performance
of our method. Our goal is to
identify all equation terms as ac-
curately as possible while elimi-
nating irrelevant terms (False Pos-
itives) to the greatest extent. The
error ℓ2, represented as ||Λid −
Λtrue||2/||Λtrue||2, quantifies the
relative difference between the
identified coefficients Λid and the
ground truth Λtrue. To avoid the
overshadowing of smaller coeffi-
cients when there is a significant
disparity in their magnitudes, we
introduce a non-dimensional measure to obtain a more comprehensive evaluation.

Lorenz SprottE RayleighBenard

True

• D iscovered 

SprottF NoseHoover Tsucs2 WangSun

Figure 2: Comparison between the discovered 3D
trajectories and the ground truth.

The discovery of governing equations can be framed
as a binary classification task (Rao et al., 2022),
determining whether a particular term exists or
not, given a candidate library. Hence, we intro-
duce precision and recall as metrics for evaluation,
which quantify the proportion of correctly identi-
fied coefficients among the actual coefficients, ex-
pressed as: P = ∥Λid ⊙Λtrue ∥0 / ∥Λid ∥0 and
R = ∥Λid ⊙Λtrue ∥0 / ∥Λtrue ∥0, where ⊙ denotes
element-wise product. Successful identification is
achieved when both the entries in the identified and true vectors are non-zero.

Discovery results. Based on our evaluation metrics (e.g., the ℓ2 error, the number of correct and
incorrect equations terms found, precision, and recall), a detailed analysis of the experimental re-
sults obtained by our method is found in Table 1 (without data noise). After reconstructing the 3D
trajectories in the world coordinate system, we also compare our approach with PySINDy (Brunton
et al., 2016) as the baseline model. The library of candidate functions includes combinations of
system states with polynomials up to the third order. The listed results are averaged over five trials.
It demonstrates that our method outperforms PySINDy on each dataset in the pre-defined coordinate
system. The explicit forms of the discovered governing equations for 3D moving objects obtained
using our approach can be further found in Appendix F (e.g., Table S2). It is evident from Appendix
Table S2 that the discovered equations by our method align better with the ground truth. We also re-
constructed the motion trajectories in a 3D space using our discovered equations compared with the
actual trajectories under the same coordinate system, as shown in Figure 2. These two trajectories
nearly coincide, demonstrating the feasibility of our method.

It is noted that we also tested the variations and rotations of the moving object shapes in the recorded
videos (e.g., see Appendix Figure S2) and found that they have little impact on the performance of
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Figure 3: The influence of noisy and missing data (e.g., random block missing and fiber missing) on the
experimental results, using the sprootF-based video data as an example. The evaluation metrics include the l2
relative error and the number of incorrectly identified equation coefficients. We analyzed the effect of (a) noise
levels, (b) random block missing rates, and (c) fiber missing rates, respectively, to test the model’s robustness.

our algorithm, primarily affecting the tracking efficiency. In fact, encountering noise and situations
where moving objects are occluded during the measurement process can significantly impact our
experimental results. To assess the robustness of our algorithm, we selected the SprottF instance for
in-depth analysis and conducted experiments under various noise levels and different data occlusion
scenarios. The experimental results are detailed in Figure 3. It is seen that our approach is robust
against data noise and missing, discussed in detail as follows.

Noise effect. The Gaussian noise with zero mean and unit variance at a given level (e.g., 0%, 5%,
..., 30%) is added to the generated video data. To address the issue of small coefficients being over-
shadowed due to significant magnitude differences, we use two evaluation metrics in a standardized
coordinate system: the ℓ2 error and the count of incorrectly identified equation coefficients. Fig-
ure 3a showcases our method’s performance across various noise levels. We observe that up to a
20% noise interference, our method almost accurately identifies all correct coefficients of the gov-
erning equation. However, beyond a 30% noise level, our method’s performance begins to decline.

Random block missing data effect. To evaluate our algorithm’s robustness in the presence of
missing data, we consider two missing scenarios (e.g., the target is blocked in the video scene),
namely, random block missing and fiber missing (see Appendix Figure S3 for example). Firstly,
we randomly introduce non-overlapping occlusion blocking on the target in the video during the
observation period. Each block covers 1% of the total time periods. We validate our method’s
performance as the number of occlusion blocks increases. The “random block rate” represents the
overall occlusion time as a percentage of the total observation time. We showcase our algorithm’s
robustness by introducing occlusion blocks that temporarily obscure the moving object, rendering
it unidentifiable (see Figure 3b). These non-overlapping occlusion blocks progressively increase in
number, simulating higher occlusion rates. Remarkably, our algorithm remains highly robust even
with up to 50% data loss due to occlusion.

Fiber missing data effect. Additionally, we conducted tests for scenarios involving continuous
missing data (defined as fiber missing). By introducing 5 non-overlapping occlusion blocks ran-
domly throughout the observation period, we varied the occlusion duration of each block, quantified
by the “fiber missing rate” — the ratio of continuous missing data to the overall data volume. In
Figure 3c, we explore the impact of increasing occlusion duration per block while maintaining a
constant number of randomly selected occlusion blocks. All results are averaged over five trials.
Our algorithm demonstrates strong stability even when the fiber missing rate is around 20%.

Simulating real-world scenario. Furthermore, we generated a synthetic video dataset simulating
real-world scenarios. Here, we modeled the observed object as an irregular shape undergoing ran-
dom self-rotational motion and size variations, as shown in Appendix Figure S4a. Note that the size
variations simulate changes in the camera’s focal length when capturing the moving object in depth.
The video frames were perturbed with a zero mean Gaussian noise (variance = 0.01). Moreover, a
tree-like obstruction was introduced to further simulate the real-world complexity (e.g., the object
might be obscured during motion) as depicted in Appendix Figure S4b. Despite these challenges,
our method can discover the governing equations of the moving object in the reference coordinate
system, showing its potential in practical applications. Please refer to Appendix G for more details.
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Overall, our algorithm proves robust in scenarios with unexpected data noise, multiple instances
of data loss, and continuous data gaps, effectively uncovering the underlying governing laws of
dynamics for the moving object in a 3D space based on raw videos.

4.2 ABLATION STUDY
Table 2: Test results for the ablated model named Model-A (i.e., spline
+ SINDy) under varying noise levels, random block rates, and fiber
missing rates on discovering the SprottF equations.

Conditions Rate (%) Methods Terms False ℓ2 Error
P (%) R (%)Found? Positives (×10−2)

Noise
10 Ours Yes 0 0.77 100 100

Model-A No 1 8.78 90 90

20 Ours Yes 1 2.85 100 100
Model-A No 1 17.79 80 80

10 Ours Yes 0 0.77 100 100
Random Model-A No 3 9.49 75 90

Block 20 Ours Yes 0 2.19 100 100
Model-A No 1 7.67 90 90

10 Ours Yes 0 0.87 100 100
Fiber Model-A No 3 7.88 75 90

Missing 20 Ours Yes 0 1.71 100 100
Model-A No 4 10.79 66.67 80

We performed an ablation study
to validate whether the physics
component in the spline-enhanced
library-based sparse regressor
module is effective. Hence, we in-
troduced an ablated model named
Model-A (e.g., fully decoupled
“spline + SINDy” approach). We
first employed the cubic splines
to interpolate the 3D trajectory
in each dimension and then com-
puted the time derivatives of the
fitted trajectory points based on
spline differentiation. These trajectories and the estimated derivatives are then fed into the SINDy
model for equation discovery. Taking the instance of SprootF as an example, we show in Table 2
the performance of the ablated model under varying noise levels, random block rates, and fiber
missing rates. It is observed that the performance of the ablated model deteriorates in all considered
cases. Hence, we can ascertain that the physics-informed spline learning in the library-based sparse
regressor module plays a crucial role in equation discovery under imperfect data conditions.

4.3 DISCUSSION AND LIMITATIONS

The above results show that our approach can effectively uncover the governing equations of a mov-
ing target in a 3D space directly from a set of recorded videos. The false positives of identification,
when in the presence (e.g., see Appendix Table S2), are all small constants. We consider these errors
to be within a reasonable range. This is because the camera pixels can only take approximate integer
values, and factors such as the size of pixels captured by the camera and the number of cameras
capturing the moving object can affect the reconstruction of the 3D coordinates in the reference
coordinate system. The experimental results can be further improved when high-resolution videos
are recorded and more cameras are used. There is an affine transformation relationship between
the artificially set reference coordinate system and the actual coordinate system. Potential errors in
learning such a relationship also lead to false positives in governing equation discovery.

Despite efficacy, our approach has limitations in certain scenarios. For instance, the library-based
sparse regression technique encounters a bottleneck when identifying very complex equations when
the a priori knowledge of the candidate terms is deficient. We plan to integrate symbolic regression
techniques to tackle this challenge. Furthermore, the present study only focuses on discovering the
3D dynamics of a single moving target in a video scene. In the future, we will test the discovery of
dynamics for multiple moving objects (inter-coupled or independent).

5 CONCLUSION

We proposed a vision-based method to distill the governing equations for nonlinear dynamics of
a moving object in a 3D space, solely from video data captured by a set of three cameras. By
leveraging geometric transformations in a 3D space, combined with Rodrigues’ rotation formula
and computer vision techniques to track the object’s motion, we can learn and reconstruct the 3D
coordinates of the moving object in a user-defined coordinate system with the calibration of only one
camera. Building upon this, we introduced an adaptive spline learning framework integrated with
a library-based sparse regressor to identify the underlying law of dynamics. This framework can
effectively handle challenges posed by partially missing and noisy data, successfully uncovering the
governing equations of the moving target in a predefined reference coordinate system. The efficacy
of this method has been validated on synthetic videos that record the behavior of different nonlinear
dynamic systems. This approach offers a novel perspective for understanding the complex dynamics
of moving objects in a 3D space. We will test it on real-world recorded videos in our future study.
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APPENDIX

This appendix provides extrat explanations for several critical aspects, including method validation
and computation, data generation, and object recognition and tracking.

A PLANE PROJECTION PROOF

In a 3D space, let us assume a camera plane equation is represented as Ax + By + Cz + D = 0.
We then expand the equation xrp = R · xp and obtain[

xrp

yrp
zrp

]
=

cos θ + u2
x(1− cos θ) uxuy(1− cos θ) uy sin θ

uxuy(1− cos θ) cos θ + u2
y(1− cos θ) ux sin θ

−uy sin θ ux sin θ cos θ


·

x(B2 + C2)−A(By + Cz +D)
y(A2 + C2)−B(Ax+ Cz +D)
z(A2 +B2)− C(Ax+By +D)

 · 1

A2 +B2 + C2

(S1)

The expansion of xrp in the above equation reads:

xrp = [cos θ + u2
x(1− cos θ)] · x(B

2 + C2)−A(By + Cz +D)

A2 +B2 + C2

+ uxuy(1− cos θ) · y(A
2 + C2)−B(Ax+ Cz +D)

A2 +B2 + C2

+ (uy sin θ) ·
z(A2 +B2)− C(Ax+By +D)

A2 +B2 + C2

(S2)

Collecting the coefficients of D from Eq. (S2) yields zero, namely,

−A[cos θ + u2
x(1− cos θ)]− Cuy sin θ −Buyux(1− cos θ)

=
AC√

A2 +B2 + C2
− AC√

A2 +B2 + C2
+

AB2( C√
A2+B2+C2

− 1)

A2 +B2
−

AB2( C√
A2+B2+C2

− 1)

A2 +B2

= 0

(S3)

Similarly, it can be proven that the coordinate in yrp is also independent of the parameter D.

B COMPUTE THE OFFSET DISTANCE OF A CAMERA PLANE

As shown in Appendix A, when the camera plane’s normal vector remains unchanged, the shape of
the recorded motion trajectory remains constant. However, due to the camera’s position not align-
ing with the origin of the reference coordinate system, there will be positional offsets relative to
trajectories recorded by camera planes with the same normal vector but positioned at the coordinate
origin. To calculate these offset distances, the approach involves determining the post-rotation co-
ordinate plane and subsequently computing the point-to-plane distance. In this regard, we employ
a method based on three-point plane determination: given three points p1(x1, y1, z1), p2(x2, y2, z2)
and p3(x3, y3, z3), the primary task is to ascertain the plane’s equation, with a key focus on deriving
one of the plane’s normal vector n⃗ given by

n⃗ = p1p2 × p1p3 =

∣∣∣∣∣ i j k
x2 − x1 y2 − y1 z2 − z1
x3 − x1 y3 − y1 z3 − z1

∣∣∣∣∣ = ai+ bj + ck = (a, b, c)T . (S4)

A visual representation of this process is shown in Figure S1. The offset relative to the origin on the
2D plane can be obtained by computing the distance of the position of the camera in the 3D space
to the X

′
OZ

′
plane and its distance to the X

′
OY

′
plane.
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Figure S1: Schematic of trajectory projection from the 3D space to a 2D plane. The blue trajectory represents
the 3D motion trajectory, while the red trajectory represents its projection on the 2D camera plane. Here, C1

denotes the position of the camera. The normal vector of the camera plane X
′
OY

′
is denoted as Z

′
.

Lorenz

NoseHoover

RayleighBenard

SprootE
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Tsucs2

WangSun

Note: The object's shape (                , etc.) 
and rotation vary, and the background 
images are modifiable to simulate a 
realistic environment.

Figure S2: Example of generated video data. In the simulated videos capturing the 3D object motion, we use
three cameras, C1, C2, and C3, at different positions and orientations to record the object’s trajectory.

C ALTERNATE DIRECTION OPTIMIZATION

Addressing the optimization problem given in Eq. (10) directly via gradient descent is highly chal-
lenging, given the NP-hard problem induced by the ℓ0 regularizer. Alternatively, relaxing ℓ0 to ℓ1
eases the optimization process but only provides a loose promotion of sparsity. We employ an al-
ternating direction optimization (ADO) strategy that hybridizes gradient descent optimization and
sparse regression. The approach involves decomposing the overall optimization problem into a set
of tractable sub-optimization problems, formulated as follows:

λ
(k+1)
i := argmin

λi

∥∥∥Φ(
P(k),∆(k)

)
λi − Ġcp

(k)
i

∥∥∥2
2
+ β∥λi∥0, (S5){

P(k+1), Λ̃(k+1),∆(k+1)
}
:= arg min

{P,Λ̃,∆}

[
Ld(P,∆) + αLp(P,∆, Λ̃)

]
, (S6)

where k denotes the index of the alternating iteration, Λ̃ consists of only the non-zero coefficients in
Λ̃(k+1) =

{
λ
(k+1)
1 ,λ

(k+1)
2 ,λ

(k+1)
3

}
. In each iteration, Λ(k+1) (shown in Eq. (S5)) is determined

14



Under review as a conference paper at ICLR 2024

x
y

z

Figure S3: Example of the 3D trajectory reconstruction of the observed object under conditions of occlusion-
induced data missing (e.g., fiber missing). The shading areas in the left figure represent regions affected by
occlusion.

using the STRidge algorithm (Rudy et al., 2017) with adaptive hard thresholding, pruning small
values by assigning zero. The optimization problem in Eq. (S6) can be solved via gradient descent
to obtain the updated P(k+1), Λ̃(k+1) and ∆(k+1) with the remaining terms in Φ (e.g., redundant
terms are pruned). This iterative process continues for multiple iterations until achieving a final
balance between the spline interpolation and the pruned equations.

D CHAOTIC SYSTEMS

In Table S1, we present the original equations for all instances and depict their respective trajectories
under given initial conditions and corresponding parameter settings.

E EXAMPLES OF MEASURED VIDEOS

To simulate real-world scenarios, we considered various scenarios while generating simulated video
data. These include different environmental background images, varied shapes of the moving ob-
jects, and local self-rotation of the objects. We carefully crafted video data that adheres to these
conditions. Figure S2 illustrates the trajectories of the moving objects recorded by the cameras in
pixel coordinates. To illustrate scenarios involving the occlusion of moving objects, we employ oc-
clusion blocks to generate missing data. The 3D trajectory data, depicted in Figure S3 for example,
corresponds to the reconstruction of an observed object motion in the presence of occlusion-induced
data gaps.

F DISCOVERED EQUATIONS

In Table S2, we compare the discovered equations with the ground truth in the predefined reference
coordinate system. The coefficient values are quoted in two decimal places.

G SIMULATING REALISTIC SCENARIOS

Taking the instance of SprottF as an example, where the initial condition for this experiment is set
to be (−1.17,−1.1, 1). As a result, our method effectively reconstructed the 3D trajectory of the
moving object, where we see data gaps occur in the time series due to the obstruction. nevertheless,
our approach still manages to discover the underlying governing equations even under complex
environmental conditions (see Figure S4b).
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Table S1: Configuration conditions for various 3D chaotic systems.

Cases Original equation Parameters Initial condition True trajectory

Lorenz
ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = xy − βz

σ = 10

ρ = 28

β = 8/3

(−8, 7, 27)

SprottE
ẋ = yz

ẏ = x2 − y

ż = 1− 4x

n (−1, 1, 1)

RayleighBenard
ẋ = a(y − x)

ẏ = ry − xz

ż = xy − bz

a = 30

b = 5

r = 18

(−16,−13, 27)

SprottF
ẋ = y + z

ẏ = −x+ ay

ż = x2 − z

a = 0.5 (−1,−1.4, 1)

NoseHoover
ẋ = y

ẏ = −x+ yz

ż = a− y2
a = 1.5 (−2, 0.5, 1)

Tsucs2
ẋ = a(y − x) + dxz

ẏ = kx+ fy − xz

ż = cz + xy − eps× x2

a = 40

c = 0.8

d = 0.5

eps = 0.65

f = 20

k = 1

(1, 1, 5)

WangSun
ẋ = ax+ qyz

ẏ = bx+ dy − xz

ż = ez + fxy

a = 0.5

b = −1

d = −0.5

e = −1

f = −1

q = 1

(1, 1, 0)
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Table S2: Discovered governing equations in the predefined reference coordinate system.

Cases Groud truth Ours PySINDy

Lorenz

ẋ =− 10x+ 10y

ẏ =− xz + 28x− y

+ 10z − 270

ż = xy − 10x− 10y

− 2.667z + 100

ẋ =− 10.00x+ 10.01y − 0.94

ẏ =− 0.99xz + 27.72x− 0.97y

+ 9.84z − 265.96

ż = 0.99xy − 9.93x− 9.88y

− 2.70z + 98.72

ẋ =− 10.98x+ 10.62y + 3.59

ẏ =− 1.05xz + 28.14x− 0.40y

+ 10.69z − 281.43

ż = 0.98xy − 9.24x− 10.26y

− 2.87z + 99.68

SprottE

ẋ = yz − 10z

ẏ = x2 − 20x− y

+ 110

ż = 41− 4x

ẋ = 1.00yz − 9.95z

ẏ = 1.00x2 − 20.13x− 0.93y

+ 110.09

ż = 41.00− 4.00x

ẋ = 0.98yz − 9.76z

ẏ = 0.97x2 − 19.38x− 0.89y

− 0.004y2 + 106.17

ż = 42.45− 3.98x− 0.31y

0.014y2

RayleighBenard

ẋ =− 30x+ 30y

ẏ =− xz + 18y + 10z

− 180

ż = xy − 10x− 10y

− 5z + 100

ẋ =− 30.07x+ 29.45y + 2.22

ẏ =− 1.04xz + 18.14y + 10.28z

− 181.00

ż = 0.99xy − 10.13x− 9.25y

− 5.04z + 96.69

ẋ =− 29.82x+ 29.22y + 2.15

ẏ =− 1.02xz + 18.14y + 10.09z

− 0.39x− 176.69

ż = 0.99xy − 10.36x− 8.82y

− 5.04z + 96.04

SprootF

ẋ = y + z − 10

ẏ =− x+ 0.5y + 5.0

ż = x2 − 20x− z

+ 100

ẋ = 1.00y + 1.00z − 9.99

ẏ =− 1.00x+ 0.50y + 5.01

ż = 1.00x2 − 20.01x− 1.00z

+ 100.12

ẋ = 0.78y + 0.50x− 2.38

ẏ =− 1.00x+ 0.50y + 5.00

ż = 0.99x2 − 19.89x− 0.99z

+ 99.49

NoseHoover

ẋ = y − 10

ẏ =− x+ yz − 10z + 10

ż =− y2 + 20y − 98.5

ẋ = 1.10y − 9.99

ẏ =− 0.91x+ 1.07yz − 9.66z

+ 9.11

ż =− 1.14y2 + 20.66y − 92.27

ẋ = 10.97y − 99.45

ẏ =− 9.10x+ 10.38yz − 93.92z

+ 91.85

ż =− 11.18y2 + 202.89y − 0.09x

+ 0.016x2 − 0.014xy − 905.85

Tsucs2

ẋ = 0.5xz − 40x+ 40y

− 5z

ẏ =− 1.00xz + 1.00x+ 20y

+ 10z − 210

ż =− 0.65x2 + xy + 3x

− 10y + 0.8z + 35

ẋ = 0.49xz − 39.58x+ 39.92y

− 4.94z + 8.45

ẏ =− 0.99xz + 0.63x+ 19.95y

+ 10.01z − 201.61

ż =− 0.65x2 + 0.99xy + 3.48x

− 10.258y + 0.76z + 35.19

ẋ = 0.46xz − 37.76x+ 38.64y

− 4.66z + 3.14

ẏ =− 0.92xz − 0.75x+ 19.40y

+ 9.35z − 183.22

ż =− 0.59x2 + 0.90xy + 3.11x

− 9.12y + 0.72z − 0.59x2

+ 30.91

WangSun

ẋ = 0.5x+ yz − 10 ∗ z
− 5.0

ẏ =− xz − x− 0.5y

+ 10 ∗ z + 15.0

ż =− xy + 10x+ 10y

− z − 100

ẋ = 0.50x+ 1.00yz − 9.97z

− 4.89

ẏ =− 1.00xz − 0.99x− 0.50y

+ 9.99z + 14.90

ż =− 1.00xy + 9.98x+ 9.99y

− 1.00z − 99.94

ẋ = 4.89x+ 9.77yz − 97.84z

− 48.95

ẏ =− 8.19xz − 9.37x+ 82.27y

95.25

ż =− 9.75xy + 97.65x+ 94.74y

− 10.02z + 0.15y2

− 0.18z2 − 963.18
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Note:

Ground truth: Discovered:

At time t, the object exhibits shape and size: , and at time t + m, it shows:

a

x y

z

b

trajectory

Figure S4: Example of a synthetic dataset simulating real-world scenarios. a. An example of the generated
video for an object with an irregular shape undergoing random self-rotational motion and size variations. The
video frames were perturbed with a zero mean Gaussian noise (variance = 0.01), and a tree-like obstruction was
introduced to further simulate real-world complexity. b. We reconstructed the 3D trajectory of the observed
target under conditions of occlusion-induced data missing. The shading areas indicate the regions impacted
by the obstruction. Our approach can reconstruct the 3D point trajectories from sparse observation points,
revealing accurate discovery of the underlying governing equations. Note that the video file can be found in the
supplementary material.
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