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ABSTRACT

Modern conversational agents condition on an ever-growing dialogue history at
each turn, incurring redundant re-encoding and attention costs that grow with con-
versation length. To enhance the efficiency, naive truncation or summarization de-
grades fidelity, and existing context compressors lack mechanisms for cross-turn
memory sharing or revision, causing information loss and compounding errors
over long dialogues. We revisit the context compression under conversational dy-
namics and empirically present its fragility. To address both the efficiency and
robustness problems, we introduce Context-Driven Incremental Compression (C-
DIC), which treats a conversation as interleaved contextual threads and stores re-
visable per-thread compression states in a single, compact dialogue memory. At
each turn, a lightweight retrieve → revise → write-back loop shares information
across turns and corrects stale memories, stabilizing behavior over long term di-
alogue. A lightweight, gradient-free policy is proposed to dynamically manage
this memory, adapting on-the-fly as conversational contexts evolve without test-
time optimization. In addition, we adapt truncated backpropagation-through-time
(TBPTT) to our multi-turn setting, learning cross-turn contextual dependencies
without full-history backpropagation. Extensive experiments on long-form dia-
logue benchmarks demonstrate superior performance and efficiency of C-DIC,
supporting a scalable path to high-quality dialogue modeling.

1 INTRODUCTION

Conversational agents powered by large language models (LLMs), such as CHATGPT (Microsoft,
2025) and Gemini (Google, 2023), have emerged as ubiquitous interfaces for a wide range of tasks
such as brainstorming, code debugging, and data analysis (Yi et al., 2024; Nijkamp et al., 2023).
These interactions are characteristically multi-turn, where even casual sessions often span dozens of
exchanges with topic drifts, cross-turn references, and iterative refinements (Xu et al., 2022). Such
interactive adaptability of LLM-based assistants constitutes a pivotal cornerstone of their efficacy
and enables capabilities beyond static search or form-based interfaces.

Despite strong single-turn performance, current LLM struggle to manage the dependencies and drift
that arise in multi-turn discourse (Laban et al., 2025). The prevalent naive approach, concatenating
the entire conversation history to the prompt at every step, introduces two core challenges. First,
it induces significant computational inefficiency: repeatedly re-encoding and re-attending to the
full dialogue history at each turn incurs high inference-time costs, as self-attention scales quadrat-
ically with input length (Vaswani et al., 2023; Tay et al., 2022). Second, it triggers semantic drift
and contextual erosion: as dialogues evolve, models often lose the thread, producing irrelevant re-
sponses (Laban et al., 2025). These challenges stem from the model’s insufficient focus on dialogue
turns that align with the user’s evolving intents, especially when such turns lie beyond the model’s
recency-driven attention scope.

Existing methods address efficiency by truncating history to recent turns (Xu et al., 2022; Laban
et al., 2025) or by using a static summaries (Wang et al., 2025; Packer et al., 2024). Truncation dis-
cards long-range dependencies, while static summaries tend to be query-agnostic, lossy, and inflex-
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Figure 1: Static compression collapses under multi-turn conversation; C-DIC remains stable.
Perplexity (↓) for ICAE (zero-shot), ICAE (MSC-tuned), and our method. (a) Static baselines rise
sharply after 3–4 consecutive compressions; C-DIC stays flat. (b) Moving from single-turn (one-
shot) to multi-turn evaluation, perplexity for static models explodes by at least ∼ 1900% while
C-DIC decreases by 70%.

ible for mid-conversation revision (Laban et al., 2025; Ravaut et al., 2024). As a result, truncation-
based methods frequently degrade coherence and adaptability in dynamic multi-turn settings.

On the other hand, a line of work compresses long static documents into a small set of latent vectors
(Chevalier et al., 2023; Ge et al., 2024) for efficiency. However, static, single-shot compressors are
brittle under multi-turn rollout: performance significantly degrades from accumulative compression
across consecutive dialogue turns. This clearly presents the core limitation of the static compressors
lacking mechanisms for memory revision and sharing across consecutive turns.

To address these limitations, we take a principled approach: progressive, topic-aware inference-time
compression of the dialogue history, thereby preserving both efficiency and coherence in multi-turn
dialogues. In particular, agents should retrieve and reason over context that is semantically aligned
with the topic of current, regardless of its position in the history. In absence of such topic sensi-
tivity, even compressed inputs risk overlooking essential context, yielding incoherent or irrelevant
responses.

We implement the above principled approach by introducing Context-Driven Incremental Com-
pression (C-DIC), a framework that treats dialogue as interleaved contextual threads and maintains
a single, compact dialogue memory that stores revisable per-thread compression states. Rather than
brute-force full-context prompting, C-DIC runs a lightweight retrieve→ revise→ write-back loop
at each turn, enabling cross-turn sharing and correction as the conversation evolves; training mirrors
this loop via turn-level, retrieval-aware truncated backpropagation through time over consecutive
same-thread turns, avoiding full-history backpropagation. Unlike prior compression methods built
for static inputs (Chevalier et al., 2023; Ge et al., 2024), C-DIC enables incremental compression so
that we can continually update the contextual threads with incoming interactions.

C-DIC is grounded in three design principles: (i) Thread-aware memory retrieval. At each turn,
the model dynamically retrieves the subset of compressed history relevant to the active thread, ir-
respective of position in the history. (ii) Incremental compression. It compresses the current turn
with its thread states, allowing future turns to reuse it without re-encoding the full history. (iii)
Gradient-free memory update. To accommodate evolving and revisited topics, C-DIC performs
memory updates online without inference-time gradients. By integrating these components into a
single, topic-sensitive framework, C-DIC yields dialogue agents that are both efficient and contex-
tually fluent: they retain what matters, discard what does not, and stay aligned with evolving user
intent. Our contributions are as follows:

• We demonstrate that static latent compressors are brittle under conversational dynamics, degrading
across consecutive compressions and collapsing under turn-by-turn rollout.

• We introduce Context-Driven Incremental Compression (C-DIC), the first framework for turn-
level incremental compression within a single compact dialogue memory; a retrieve→ revise→
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write-back scheme with retrieval-aware TBPTT enables cross-turn sharing and correction, yield-
ing long-range behavior without full-history re-encoding or backpropagation.

• C-DIC improves long-range coherence and reference fidelity while greatly reducing inference cost
and input size, outperforming truncation, summarization, and static compression baselines.

2 PRELIMINARIES & RELATED WORK

2.1 MULTI-TURN DIALOGUE GENERATION

Multi-turn interaction equips conversational agents with the ability to sustain coherent, goal-oriented
discourse. By exploiting the entire conversational record, the model can resolve coreference, fol-
low user preferences, and revise assumptions—capabilities that single–turn systems cannot provide.
Such continuity is indispensable in real-world scenarios, where users expect the system to remember
and adapt to prior turns.

Formally, let a dialogue with T turn be a sequence D1:T = {(q1, r1), . . . , (qT , rT )}, where qt is
the user query and rt the system response at turn t. At each turn, the large language model (LLM)
receives the current input pair (D<t, qt, rt), where D<t is the entire history up to turn t − 1. The
training maximises the conditional log-likelihood:

log pθ(rt | qt,D<t). (1)

Crucially, the full historyD<t must be supplied at every subsequent turn since each future prediction
depends on it. If each exchange contributes on average L tokens, the prompt length at turn t is tL.
Under typical module such as vanilla self–attention, the cumulative cost over an T -turn dialogue
is O

(
T 3L2

)
(Tay et al., 2022). This cubic growth rapidly dominates latency and energy budgets,

and empirical studies confirm marked accuracy drops once single-turn benchmarks are converted to
multi-turn chat (Laban et al., 2025). We further discuss on key-value caching in the Appendix A.

2.2 TEXT-BASED CONTEXT MANAGEMENT

Text-based approximations of the dialogue history are common strategies for mitigating the inef-
ficiencies of full-context encoding in multi-turn dialogues. The simplest approach is truncation,
where only the most recent k utterances from the history are retained (Xu et al., 2022; Laban et al.,
2025). While effective in limiting input size, truncation often eliminates earlier turns that may con-
tain crucial information. To retain more of the dialogue semantics, summarization-based methods
compress the dialogue history into a shorter textual form (Wang et al., 2025; Packer et al., 2024).
However, these methods are static summaries, which become outdated as the conversation evolves,
leading to inconsistencies or omissions. Static summaries can become outdated as the conversation
evolves, leading to inconsistencies or omissions.

2.3 CONTEXT COMPRESSION

To move beyond text proxies, recent work proposes context compression, which maps a variable-
length context to a fixed set of latent vectors (Wingate et al., 2022; Mu et al., 2024; Chevalier et al.,
2023; Ge et al., 2024). AutoCompressor (Chevalier et al., 2023) recursively accumulates compres-
sion embeddings over dialogue segments; the fine-tuned generator consumes these fixed embeddings
without per-turn rewrite. ICAE (Ge et al., 2024) uses a modular autoencoder: a pretrained compres-
sor encodes the full context into a fixed latent matrix Z consumed by a frozen generator—also
one-shot and static unless the entire input is recompressed. As a common setting, each method ap-
pends k trainable compression tokens C ∈ Rk×d to the input sequence and runs the language model
once. The hidden states at those positions are kept as a dense matrix Z ∈ Rk×d that replaces the
raw text in subsequent computation. In this setting, inference cost grows with the constant k rather
than with context length, while the latent vectors preserve far more information than truncation or
summarization.

Most existing compressors, however, were designed for static documents or single-shot prompts;
they cannot incrementally insert or refine compressed context as a conversation evolves, and a fixed
k forces an ever-longer dialogue into the same capacity, increasing the risk of forgetting.
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Figure 2: Overview of retrieval-conditioned incremental compression and ra-TBPTT. Left: We
maintain memories M that store a set of compressed thread states that evolve turn by turn. The
memories are initialized by compressing the instruction into a thread state. Each turn then follows
three steps. (1) Query: given qt, we score the existing thread states and retrieve the relevant states;
if the best matching thread is topically irrelevant, we still fetch it for continuity but detach it. (2)
Compress: the trainable compressor fcomp summarizes the retrieved states and the current turn into
a new thread state, detailed on right. (3) Memory update: we apply a gradient-free memory update
rule using the peak similarity δt (red dashed = insert (topic shift), blue dashed = revise the best-
matching state (on-topic)); see 3.2 for details. Right: For the training of fcomp, a per-turn response
loss ℓt is minimized, enhanced with a retrieval-aware TBPTT: gradients flow one hop along the arg-
max usage edge and are truncated (→×) thereafter. At turn t, the compressor fcomp summarizes
(Rt, qt, rt, C) into a new state and writes it back; the frozen response generator fgen conditions on
Rt to produce r̂t.

Even though Rae et al. (2019); Bulatov et al. (2022); Chevalier et al. (2023) address long-context
modeling by augmenting the Transformer with additional memory (compressed past segments, re-
current memory slots, or accumulated embeddings), they still operate primarily at the token or seg-
ment level. In contrast, C-DIC introduces an external, dialogue-level memory that is updated turn
by turn via a retrieval–revise–write-back loop. This design allows compressed states to be incremen-
tally refined and re-used across hundreds of turns, without repeatedly re-encoding the full history or
modifying the internal architecture of the base language model.

3 METHODOLOGY: CONTEXT-DRIVEN INCREMENTAL COMPRESSION

Recall that conventional prompting strategies suffer from inefficiency issue and fail to provide con-
textually grounded responses. To handle these issues, we propose Context-Driven Incremental
Compression (C-DIC), a framework for scalable multi-turn dialogue modeling that enables effi-
cient, context-sensitive reuse of prior interactions, as illustrated in Figure 2. We model a dialogue
as interleaved contextual threads and maintain a compact memory whose slots store revisable, per-
thread compressed states. At each turn, the system execute a light retrieve→ compress→write-back
loop that circumvents the repeated encoding of entire history while allowing cross-turn sharing and
correction. While we freeze the response generator, we optimize only the compressor (initialized
from ICAE (Ge et al., 2024)) and learnable compression tokens during training. We further discuss
this training setup and the rationale for this design in Appendix B.

3.1 COMPRESSOR INITIALIZATION

Instead of training a compressor from scratch, we initialize the compressor with a pretrained check-
point of ICAE (Ge et al., 2024), which was trained on large-scale corpora for one-shot document
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compression. We adapt this initialized compressor to our incremental, retrieval-conditioned setting
with a frozen response generator. This approach leverages a massive pretrained knowledge of ICAE,
endowing our compressor with high-capacity, context-faithful representations without incurring ad-
ditional pretraining cost.

3.2 INCREMENTAL COMPRESSION & CONTEXT-AWARE RETRIEVAL

Our design targets three needs: efficiency over long histories, coherence within an active thread, and
learning that concentrates supervision on the memory states the model actually retrieves. Instead of
re-encoding the full, ever-growing history at every turn, we maintain a compact memoryM<t =
{Zi} of compressed thread states that evolve with ongoing dialogue. At turn t, we (i) retrieve a
small, query-related subset Rt ⊂ M<t for conditioning, (ii) generate the response with a frozen
decoder, and (iii) compress the new turn into an updated memory slot via a gradient-free write-back
policy.

Turn-wise compression (base case). We first describe compression without retrieval to fix no-
tation and the learning signal. Given the input pair (qt, rt), the compressor produces a compact
summary

Zt = fcomp([Emb(qt);Emb(rt);C]; θ), (2)

where qt and rt are the turn-t query and response sequences, C ∈ Rn×d is embedding of learnable
compression tokens, θ are the compressor parameters, and Zt ∈ Rn×d is the resulting compressed
state. The frozen response generator generates r̂t+1 = fgen([Zt;Emb(qt+1)];ϕ) during training
only to calculate the per-turn loss; the generator’s parameters remain fixed, so learning concentrates
on producing compressed contexts that are useful when consulted. This base case already yields a
bounded per-turn cost and a well-defined supervision signal, but it treats all prior context symmetri-
cally and cannot adapt granularity to what the model actually reuses.

From turn-wise to retrieval-based thread compression To make compression conditional on
the context that actually matters at turn t, we introduce a retrieved support set Rt ⊂ M<t. Each
slot Zi is scored by a semantic match with mild recency decay:

S(qt,Zi) =
⟨ψ(fcomp(qt, C)), ψ(Zi)⟩
∥ψ(fcomp(qt, C))∥ ∥ψ(Zi)∥

e−α∆ti , Rt = {Zi : S(qt,Zi) > τ}. (3)

Here ψ(·) is a pooling function (e.g. mean or CLS token) over token-level representations, ∆ti is the
number of turns since Zi was last retrieved, and α is decay rate, and τ is a fixed retrieval threshold on
the similarity score S. If no slot exceeds τ , we fall back to the single best match {Zargmaxi S(qt,Zi)}.
The response generator conditions on the retrieved supports rather than the entire history:

r̂t = fgen([Rt;Emb(qt)];ϕ). (4)

Crucially, compression becomes incremental with respect to these supports:

Zt = fcomp([Rt;Emb(qt);Emb(rt);C]; θ). (5)

This retrieval conditioning focuses Zt on the active thread, improving long-horizon coherence
while keeping per-turn computation proportional to |Rt| rather than the dialogue length.

Write-back and thread continuity To keep the memory both compact and faithful to the evolving
topic, we define a deterministic, gradient-free update rule. At turn t, score the current query against
existing slots

δt = max
i
S(qt,Zi), jt = argmax

i
S(qt,Zi),

and update the memory by either inserting a new state (topic shift) or revising the most similar state
(thread continuation):

M<t+1 =

{
M<t ∪ {Zt}, if δt < τ,(
M<t \ {Zj}

)
∪ {Zt}, otherwise.

(6)

Here τ is the retrieval threshold used in Section 3.2. This policy preserves thread continuity by
updating the best-matching slot when relevant, and by opening a new slot when relevance is low.
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Algorithm 1: Inference: Retrieve→ Generate→ Compress→WriteBack
Input: compressor fcomp; frozen generator fgen; tokens C; threshold τ ; decay α
Output: {r̂t}Tt=1

1 M← ∅
2 for t = 1 to T do
3 if maxi si ≥ τ then
4 Rt ← {Zi : si > τ} // (1) Similarity-based Retrieval
5 else ifM ̸= ∅ then
6 j ← argmaxi si;Rt ← {Zj}
7 else
8 Rt ← ∅
9 r̂t ← fgen([Rt; qt]); Zt ← fcomp(Rt, qt, r̂t, C) // (2) Generate & Compress

10

11 ifM = ∅ then
12 M← {Zt}
13 else if maxi si < τ then
14 M←M∪ {Zt}
15 else
16 M← (M\ {Zj}) ∪ {Zt} // (3) Memory Update

17 update recency counters ∆ti for Zi ∈M

Because no gradients flow through selection or write-back, the per-turn cost is small and independent
of dialogue length; yet the memory remains semantically coherent, avoiding redundancy and drift
without expensive gradient-based editing at inference. We provide a more detailed discussion of
alternative memory update variants in Appendix C.

Retrieval-aware truncated BPTT In multi-turn dialogue with compressed memory, the model
does not attend to the full history; it consults a tiny set of states selected by retrieval. Standard
BPTT (Werbos, 1990) backpropagates through all past turns (costly and misaligned with usage),
while conventional TBPTT (Schmidt, 2019) truncates by a fixed window (agnostic to which turns
were actually consulted). We therefore align credit assignment with retrieval-defined dependencies.

Specifically, we minimize the per-turn negative log-likelihood

L =
1

T

T∑
t=1

ℓt, ℓt = − logPϕ

(
rt
∣∣ qt,Rt

)
, (7)

and perform a reverse-time backward pass with a one-hop truncation along the memory updated
chain:

∂ℓt
∂Zjt

̸= 0 iff δt ≥ τ,
∂ℓt
∂Zs

= 0 for all s ̸= jt. (8)

Equivalently, with a mask Ms,t = ⊮[s = jt] · ⊮[δt ≥ τ ],

∂L
∂Zs

=

T∑
t=1

Ms,t
∂ℓt
∂Zs

.

For off-topic turns (δt < τ ) we keep the arg-max slot for forward continuity but detach it in training,

Z̃jt = stopgrad(Zjt), ⊮[δt ≥ τ ] = 0⇒ ∂ℓt
∂Zjt

= 0,

so credit never flows into mismatched memory. Compared to full BPTT (credit through the entire
history) and windowed TBPTT (credit through a fixed span), (8) aligns supervision with the actual
causal path used at turn t (the single retrieved/updated thread), prevents spurious long-range gradi-
ents, and scales with the number of consulted states rather than dialogue length, exactly matching the
retrieval-based, thread-centric structure of multi-turn conversations. We further discuss limitations
of full BPTT and fixed window TBPTT in Appendix D.
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Inference Algorithm 1 outlines the inference procedure. Each turn we retrieve the most relevant
thread states and, together with the user query, feed them to the frozen generator to produce a
response. We then compress the turn into a new thread state and update memory (insert on topic
shift, otherwise revise the active state); inference is fully gradient-free, keeping latency low.

4 EXPERIMENTS

4.1 DATASETS

To measure long-horizon coherence, we follow the setting of existing works (Xu et al., 2022) and
evaluate on Multi-Session Chat (MSC) (Xu et al., 2022) and REALTALK (Lee et al., 2025), two
recent multi-session corpora structured around re-engagements occurring after hours or days. All
datasets used are publicly available for research purposes.

MSC contains human-human conversations spanning up to five sessions. We use the official training
split with 1 001 episodes (averaging 53.3 utterances). For evaluation, we leverage sessions 2–5,
yielding an average of 66 utterances per conversation.

REALTALK is a real-world WhatsApp-style corpus featuring 10 conversations collected across 21
days, averaging 21.9 sessions and 894.4 utterances per conversation. To effectively validate the
robustness and transferability to longer context, we evaluate on REALTALK in a zero-shot setting.
Also, we use two evaluation settings for REALTALK: all-sessions, which includes cross-session
history to test long-term context, and per-session, which restricts inputs to the current session only.

To assess whether MSC and REALTALK genuinely require long-range context and whether target
responses are generic, we provide an LLM-based dataset characterization with human verification
in Appendix E.

4.2 BASELINES

We compare against strong, widely used baselines under the same evaluation protocol and backbone;
implementation specifics are described in Appendix B.

• Full-prompting feeds the entire dialogue history at every turn.
• Truncation uses only the last k=5 turns.
• Summarization generates recursive textual summaries of the history using a frozen LLM,

and use the summaries as history.
• In-Session RAG retrieves top-5 prior turns from the same dialogue by semantic similarity

and concatenates them for the response generation.
• AutoCompressor (Chevalier et al., 2023) splits the history into chunks and recursively

compresses each chunk into learnable compression tokens, accumulating a summary.
• ICAE (Ge et al., 2024) employs an autoencoder compressor with a frozen generator. We

evaluate three update rules to cover common usages:
– ICAE (incremental): reuse previous latents and re-encode the new turn with them

(relay update).
– ICAE (one-shot): re-encode the full available context each turn (original setting).
– ICAE (append): compress the new turn and concatenate latents without revision

(growing latent length).

All baselines share the same frozen Llama-2-Chat-7B (Touvron et al., 2023) generator unless
the cited method requires fine-tuning (e.g., Chevalier et al., 2023); this keeps comparisons focused
on context management rather than decoder capacity.

4.3 EVALUATION

We adopt a set of widely used, complementary metrics aligned with common practices in dialogue
and summarization research. Following prior works (Chevalier et al., 2023; Ge et al., 2024), we

7
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Table 1: Main Results on MSC and REALTALK. We report perplexity (PPL), BLEU, and
ROUGE (R-L, R-1, R-2), where REALTALK results are zero-shot. On REALTALK, we use the
per-session setting due to GPU memory limits of several compression baselines (AutoCompressor
and ICAE variants). For text-only baselines (Full prompting, Truncation, Summarization and In-
Session RAG), each input context is truncated to the model’s maximum context length. Our model
clearly outperforms all baseline models in all metrics on both benchmarks.

MSC REALTALK

Models PPL ↓ BLEU ↑ R-L ↑ R-1 ↑ R-2 ↑ PPL ↓ BLEU ↑ R-L ↑ R-1 ↑ R-2 ↑

Full prompting 41.245 0.008 0.110 0.157 0.015 25.546 0.022 0.110 0.160 0.020
Truncation 30.890 0.012 0.128 0.184 0.024 23.830 0.023 0.114 0.165 0.022
Summarization 41.849 0.013 0.128 0.172 0.024 26.087 0.023 0.114 0.168 0.023
In-Session RAG 35.530 0.008 0.110 0.148 0.014 26.789 0.020 0.103 0.151 0.015
AutoCompressor 9.285 0.012 0.121 0.145 0.019 12.625 0.019 0.055 0.134 0.019
ICAE (incremental) 513.774 0.006 0.057 0.069 0.005 124.024 0.020 0.068 0.086 0.013
ICAE (one-shot) 27.656 0.017 0.133 0.190 0.027 21.390 0.025 0.118 0.166 0.026
ICAE (append) Out of memory Out of memory
Ours 8.431 0.023 0.160 0.205 0.037 9.789 0.035 0.134 0.176 0.030

Table 2: Closed-loop vs. teacher-forcing on the REALTALK (all-sessions). Results for our
method under teacher forcing (ground-truth history) and closed-loop generation (conditioning on
the model’s own past responses) over the full multi-session history.

Setting PPL ↓ BLEU ↑ R-L ↑ R-1 ↑ R-2 ↑
Teacher-forcing 9.556 0.036 0.140 0.184 0.035
Closed-loop 9.576 0.036 0.137 0.182 0.032

employ perplexity (PPL) to measure the generative fluency. For measuring content alignment with
human responses, we report BLEU (Papineni et al., 2002) (up to 4-gram precision) and ROUGE
(Lin, 2004) as standard reference-based metrics. BLEU computes n-gram precision against refer-
ence responses. R-1 (ROUGE-1) and R-2 (ROUGE-2) measure unigram and bigram recall, indi-
cating lexical coverage, while R-L (ROUGE-L) utilizes the longest common subsequence to reflect
structural similarity and fluency.

4.4 RESULTS

Table 1 presents a comprehensive evaluation of our framework on the MSC and REALTALK
datasets. Our method consistently outperforms all baselines across perplexity (PPL), BLEU, and
ROUGE metrics, while operating on significantly fewer tokens.

Unlike full-prompting, truncation, or summarization baselines that process raw text linearly, our
approach incrementally compresses dialogue turns into fixed-size latent representations and retrieves
only the memories relevant to the current query. This retrieval-aware, token-efficient design allows
our model to maintain high response quality even as dialogue length increases — achieving superior
fluency and coherence while processing less than 0.009% of the raw context on REALTALK (e.g.,
8.5k vs. 412k tokens).

Compared to prior latent compression approaches such as AutoCompressor and ICAE, which are
designed for static, one-shot settings, our model achieves superior performance with similar or lower
memory usage. This demonstrates the effectiveness of our incremental compression strategy and
retrieval-based memory refinement in the evolving dialogue. In particular, the naive incremental
ICAE baseline catastrophically fails (PPL ≈ 513). This is due to a structural mismatch between
ICAE’s one-shot training objective and repeated compression, which we further discuss in Appendix
F.

Finally, Table 2 reports our REALTALK all-sessions results under both teacher forcing and closed-
loop generation; most baselines cannot be evaluated in this setting without truncation due to GPU
memory limits. Notably, our model generalizes robustly to REALTALK, a much longer, more open-
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Figure 3: Latency vs. dialogue length. To-
tal wall-clock time (s) to process a single dia-
logue when the maximum number of turns is
capped at {10, 20, 30, 40, 428}. Bars com-
pare Ours, Full prompting, ICAE (append), and
ICAE (one-shot). The hatched segment denotes
compression time and the solid segment denotes
generation time; “OOM” marks methods that
run out of memory at that turn. Evaluations use
REALTALK in the all-sessions setting by trun-
cating to the most recent turns.
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Figure 4: Latency vs. performance across
turn caps. Dual–axis plot with PPL
(left, lower is better) and total time per
dialog in seconds (right, lower is bet-
ter) versus the maximum number of turns
{50, 100, 150, 200, 250, 300, 350, 400}. Evalu-
ations use the all-sessions REALTALK setting
by truncating to the most recent turns.

domain dataset, despite being trained only on MSC. As a zero-shot evaluation, this result under-
scores our method’s adaptability on both domain and length shifts. Moreover, the small difference
between teacher forcing and closed-loop suggests stable long-horizon behavior over hundreds of
turns. We further report mean±std over three random seeds with seed-level significance tests in
Appendix G, and additional closed-loop comparisons on REALTALK in Appendix H.

4.5 LATENCY COMPARISON

Figure 3 and 4 report total wall-clock time per dialogue as we cap the maximum number of retained
turns at {10, 20, 30, 40, 428}. We decompose runtime into compression (hatched) and generation
(solid). Our method remains nearly constant at ∼ 3–3.5s across turn caps, with negligible com-
pression overhead (hatched segment is a thin sliver). In contrast, Full prompting grows rapidly
(≈ 3.6s@10, ≈ 4.7s@20, ≈ 7.7s@30) and becomes OOM beyond 30 turns. ICAE (append) is
slower than ours at 10–20 turns and becomes OOM from 30 onward; ICAE (one-shot) is slower at
10 and becomes OOM already at 20. At 30 turns, ours is roughly 2.4× faster than Full prompting.
Most noticeably, ours is the only approach that handles 428 turns, reflecting the effectiveness of
our novel retrieval-conditioned incremental compression. These results demonstrate our proposed
C-DIC successfully scales to ever-growing, open-ended dialogue with strong memory and computa-
tional efficiencies. For the detailed latency components, see Table 11 in Appendix I. Note that OOM
is setting-dependent: ICAE(append) scales primarily with the number of turns, whereas ICAE(one-
shot) is constrained mainly by total context length. Consequently, their OOM thresholds can differ
between the all-sessions latency evaluation here and the per-session results in Table 1.

4.6 ABLATIONS

We ablate three components of our system: incremental compression (IC), retrieval-aware trun-
cated BPTT (R-TBPTT), and the memory module (retrieval + write-back) for context threading. As
shown in Table 3, removing IC causes the greatest degradation. PPL rises from 9.356 to 25.527
and ROUGE-2 drops from 0.056 to 0.018, indicating that turn-wise compression and revision are
critical for preserving salient content. Disabling R-TBPTT also degrades supervision quality, con-
firming the benefit of backpropagating one hop along the actual retrieval path. Despite removing
the memory-based context threading gives slightly better PPL, it yields markedly worse BLEU
and recall (ROUGE scores), implying our proposed context threading greatly improves the long-
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Table 3: Ablation study on the REALTALK dataset. We evaluate the contribution of incremental
compression (IC), retrieval-aware truncated backpropagate through time (R-TBPTT) and memory
by removing each component from the full model. All variants are evaluated at the final turn of each
conversation under the all-sessions setting to assess long-term generation quality.

Models PPL ↓ BLEU ↑ R-L ↑ R-1 ↑ R-2 ↑
C-DIC 9.356 0.069 0.173 0.213 0.056
(–) Incremental Compression 25.527 0.040 0.075 0.103 0.018
(–) Retrieval-aware Truncated BPTT 12.295 0.025 0.119 0.172 0.018
(–) Memory-based Context Threading 9.197 0.046 0.128 0.188 0.025

horizon coherence. In general, the full model (C-DIC) achieves state-of-the-art performance and
demonstrates the necessity and complementary gains of all IC, R-TBPTT, and memory-based con-
text threading.

5 CONCLUSION

In this paper, we present Context-Driven Incremental Compression (C-DIC), a thread-aware dia-
logue memory for long conversations. It replaces full-context prompting with a lightweight retrieve
→ revise→ write-back loop trained via retrieval-aware truncated BPTT, enabling cross-turn context
sharing and revision without re-encoding the entire history. By modeling conversations as inter-
leaved threads and retrieving only the compressed history relevant to the active context, C-DIC
retains what matters and discards what does not, maintaining contextual fluency at low cost. Empir-
ically, it remains stable where static compressors collapse under multi-turn rollout, outperforming
truncation, summarization, and static latent baselines while reducing inference costs. It sustains
nearly flat end-to-end latency (approximately 3∼3.5s) despite growing dialogue history, and is the
only method demonstrated to handle up to 428 turns, underscoring the scalability of our incremental,
retrieval-conditioned design. Ablations confirm that each component—incremental compression,
retrieval-aware TBPTT, and memory-based context threading—contributes materially to the overall
gains in coherence and faithfulness.

C-DIC has several limitations that we leave for future work. In this paper, we focus on long-term
dialogue generation in open-domain chit-chat settings, and we do not evaluate on long-horizon,
domain-specific tasks (e.g., medical advice, factual QA, coding assistants). Extending C-DIC to
such domains remains an important direction. In addition, our datasets contain conversations of up
to roughly 400 turns, which makes it challenging to conduct reliable human preference studies, since
annotators would need to read and reason over very long histories. Designing scalable human (or
LLM-as-judge) evaluation protocols tailored to such ultra-long dialogues is another key avenue for
future work.
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A KEY-VALUE CACHING

A standard engineering mitigation for inference is key–value (KV) caching, which stores the hidden
states of past tokens layer-by-layer so that only the newest tokens are processed afresh (Tay et al.,
2022). Caching indeed reduces compute for unchanged prefixes, but it introduces several limitations
that are critical in an interactive setting. First, any user edit invalidates the cache from the edit point
onward, which forces a full recomputation of attention. Second, KV caching trades FLOPs for
memory: the cache footprint grows linearly with both dialogue length and layer count, quickly
exhausting GPU memory when thousands of sessions run concurrently. Third, caching leaves the
attention distribution unchanged, so the model still under-attends to mid-history tokens, a known
positional-bias issue that harms long-range coherence.

B IMPLEMENTATION DETAILS

We implement our models with the Llama2-Chat-7B backbone by adapting the ICAE (Ge et al.,
2024) checkpoint to the multi-turn dialogue setting. This provides a strong initialization for com-
pression and allows us to focus on the effect of incremental, thread-aware memory. For practicality
and to isolate the contribution of the memory mechanism, we freeze all weights of the base model
and update only the LoRA-adapted compressor and the learnable compression tokens during train-
ing. All training and inference were conducted using an NVIDIA A100 80GB GPU. Fine-tuning
required around 17 GPU hours on a single A100 GPU. Across all experiments employing the ICAE
checkpoint, we use a compression token length of 128, a retrieval threshold τ = 0.8, and cosine
similarity with exponential decay (decay rate α = 0.05. For training, we use a batch size of 1
while inference is performed with batch sizes of 8 and 1 for the MSC and REALTALK datasets,
respectively. We finetune our model for 2 epochs, using AdamW with a learning rate of 2× 10−4.

C ALTERNATIVE MEMORY UPDATE STRATEGIES

We implemented two alternatives to the simple replacement-based write-back: (i) Exponential Mov-
ing Average (EMA) updates with decay factors β ∈ {0.3, 0.5, 0.7}, using β · old memory + (1 −
β) · new memory ,and (ii) a 2-layer gating network that learns to interpolate between the old and
new memory states. As shown in Table 4, EMA brings at best marginal gains only on the R-1 metric
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and often yields noticeably worse performance on other metrics, while the gated variant provides
only small improvements on some ROUGE scores at the cost of additional complexity. Given this
trade-off, we adopt the replacement policy as the simpler and more robust choice.

Table 4: Comparison of memory update strategies on MSC-session 5. Performance as a function
of the selection threshold τ . We report PPL↓, BLEU↑, ROUGE-L↑, ROUGE-1↑, and ROUGE-2↑.

Strategy PPL ↓ BLEU ↑ R-L ↑ R-1 ↑ R-2 ↑
Replacement 8.427 0.030 0.160 0.206 0.040
EMA (β = 0.3) 8.442 0.027 0.157 0.208 0.035
EMA (β = 0.5) 8.836 0.027 0.155 0.203 0.036
EMA (β = 0.7) 9.929 0.021 0.145 0.186 0.030
Gate 8.503 0.026 0.162 0.209 0.037

D LIMITATIONS OF FULL BPTT AND FIXED-WINDOW TBPTT FOR
DIALOGUE MEMORY

Under full BPTT, the gradient with respect to a memory slot Zs aggregates contributions from all
future turns where that slot is actually consulted (Zs ∈ Rt):

∂L

∂Zs
=

T∑
t=1

1[Zs ∈ Rt]
∂ℓt
∂Zs

. (9)

However, implementing full BPTT requires keeping the computation graph for all T turns in mem-
ory, so the activation cost grows linearly with dialogue length. For long conversations this becomes
prohibitive in practice and quickly leads to out-of-memory (OOM) errors.

In standard fixed-window TBPTT with horizon K, at each turn t all slots older than K steps are
detached from the computation graph before retrieval. Concretely, retrieval reads

Z̃s =

{
stopgrad(Zs), s ≤ t−K,
Zs, s > t−K, Rt ⊂ {Z̃s}s<t. (10)

By the chain rule, for any s ≤ t−K,

∂ℓt
∂Zs

=
∂ℓt

∂Z̃s

∂Z̃s

∂Zs
=

∂ℓt

∂Z̃s

· 0 = 0, (11)

even if Zs ∈ Rt (i.e., the slot is selected and used at turn t). The truncated gradient therefore
becomes

∂L

∂Zs

∣∣∣
TBPTT

=

T∑
t=1

1[Zs ∈ Rt]1[t− s < K]
∂ℓt
∂Zs

, (12)

so any selected memory state Zs that is retrieved only after it falls outside the K-step window
receives no gradient signal from those distant uses.

E DATASET CHARACTERIZATION AND ANNOTATION RELIABILITY

We perform additional analysis to quantify (i) how often reference responses depend on distant
context in MSC/REALTALK and (ii) how frequently target responses are generic, along with human
verification of the LLM judge.

E.1 DO MSC / REALTALK REQUIRE DISTANT CONTEXT?

LLM-based annotation. We use GPT-4o to label whether a candidate past utterance contains
necessary or materially helpful information for producing the reference assistant response to a
target query. To avoid degraded judge reliability on very long prompts, we adopt a pairwise protocol:
each instance consists of (i) one historical utterance and (ii) the final-turn context (latest user query
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+ reference response), and the model outputs a binary label (helpful / not helpful).1 We
then aggregate utterance-level labels into conversation-level statistics (e.g., whether any supporting
utterance occurs ≥10 turns back).

LLM-based annotation (genericity). Separately, we label each reference response as generic vs.
not-generic.2. A response is generic if it can be plausibly reused across many different queries with
minimal editing; otherwise it is not-generic.

Sampling. We sample 500 and 320 conversations from MSC and REALTALK, respectively, re-
stricting to dialogues with ≥11 turns so that “≥10 turns back” is well-defined. These sample sizes
provide stable estimation of conversation-level rates at reasonable cost (worst-case 95% margin
≈ ±4–6 percentage points), consistent with cost-aware yet reliable LLM annotation practice (Pan-
gakis et al., 2023).

Results. As shown in Table 5, long-range dependencies are common in both datasets un-
der these measures, while generic targets are rare. This suggests that strong performance on
MSC/REALTALK is unlikely to be explained solely by short-range cues or templated responses.

Table 5: Dataset characterization via GPT-4o annotation. n = sampled dialogues. Evid. ≥10: frac-
tion of supporting utterances occurring ≥10 turns before the final response. Farthest ≥10: fraction
of dialogues whose most distant supporting utterance is ≥10 turns back. Generic: fraction of target
responses labeled generic.

Dataset n Evid. ≥10 (%) Farthest ≥10 (%) Generic (%)

REALTALK 320 66.94 40.31 6.25
MSC 500 44.92 70.80 2.00

E.2 HUMAN VERIFICATION OF JUDGE RELIABILITY

To validate the GPT-4o labels, we run a human verification study with three annotators on 50 ran-
domly sampled items per task and dataset, following the recommended LLM-as-a-judge verification
setting in (Calderon et al., 2025). We provide the human verification guidelines and summarize the
verification results below.

E.2.1 HUMAN VERIFICATION GUIDELINES

A. Helpful-turn verification (utterance-level). You are shown: (1) the latest user query, (2) the
final assistant reference response, (3) one past utterance from the same dialogue, and (4) the LLM
label: helpful / not helpful.

• helpful: the past utterance contains information that is necessary or clearly useful to produce
the final assistant response to the latest query (e.g., key facts, entities, constraints, preferences, or
clarifications that the response depends on).

• not helpful: removing the past utterance would not materially change a reasonable final
response (e.g., irrelevant details, small talk).

Mark Correct = 1 if the LLM’s helpful/not helpful label matches your judgment under the
above definition; else Correct = 0.

1Instruction 1 (utterance relevance). You are given the latest user query and the assistant’s response of a
conversation along with an utterance from the past conversation. Your task is to determine if the utterance is
helpful to generating the assistant’s response to the latest user query. If it is helpful, respond with helpful;
otherwise, respond with not helpful.

2Instruction 2 (generic response). You are given the latest user query and the assistant’s final response of
a conversation. Decide whether the assistant’s final response is generic. A response is generic if it could be
pasted into many different conversations/questions with minimal editing (e.g., greetings/farewells/small talk).
Otherwise not generic. Output only generic or not generic.
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B. Generic-response verification (final-response-level). You are shown: (1) the latest user query,
(2) the final assistant reference response, and (3) the LLM label: generic / not generic.

• generic: the response could be pasted into many different conversations/queries with minimal
edits (e.g., greetings/small talk, vague encouragement, “it depends” without specifics, generic
steps not tailored to the query).

• not generic: the response provides concrete details, constraints, specific recommenda-
tions/decisions.

Mark Correct = 1 if the LLM’s generic/not generic label matches your judgment under the
above definition; else Correct = 0.

E.2.2 HUMAN VERIFICATION RESULTS

Table 6 shows the human verification results. GPT-4o labels match human judgments with high
accuracy (about 90–96% accuracy) and strong inter-annotator consistency, supporting the reliability
of our LLM-based labels for dataset-level characterization.

Table 6: Human verification of GPT-4o annotations (three annotators; 50 items per task and dataset).
ACC is accuracy against the human majority vote. Agree is observed inter-annotator agreement.
Fleiss’ κ measures agreement beyond chance.

MSC REALTALK

Task ACC (%) Agree Fleiss’ κ ACC (%) Agree Fleiss’ κ

Helpful-turn label 92.000 0.920 0.527 90.000 0.987 0.921
Generic-response label 95.918 0.973 0.652 96.000 0.973 0.653

F ANALYSIS OF INCREMENTAL ICAE FAILURE MODES

The incremental ICAE variant fails for structural reasons (latent drift arising from repeatedly ap-
plying a one-shot objective) whereas ICAE (append) that simply accumulates compressed context
and ICAE (one-shot) that re-encodes the full available context each turn work at short and medium
lengths but run out of memory on very long conversations.

ICAE is trained with a one-shot compression objective: it learns to encode a contiguous context
span into a latent in a single step. In the incremental variant, however, we repeatedly apply this
compressor to its own compressed outputs as the dialogue progresses. This leads to latent drift
and error compounding, because the model is never trained to use or update already-compressed
contexts. Empirically, the response quality degrades rapidly across turns, as shown in Figure 1a.

By contrast, ICAE (append) and ICAE (one-shot) perform reasonably well at short and medium
lengths, but eventually run out of memory on very long conversations as shown in Table 11 and
Figure 3. In other words, ICAE (append) and ICAE (one-shot) are effective but not scalable, whereas
the naive incremental application is scalable but unstable. This mismatch is exactly what motivates
our design: C-DIC modifies the architecture and training scheme to support incremental use of
compression while mitigating the catastrophic degradation observed in incremental ICAE.

G MULTI-SEED ROBUSTNESS AND SIGNIFICANCE TESTS

To assess robustness to random initialization and stochastic training effects, we repeat all MSC and
REALTALK experiments with three random seeds (42/43/44). We report mean±std across seeds
for PPL, BLEU, and ROUGE-1/2/L. For REALTALK, results are reported in the per-session setting
due to GPU memory limits of certain compression baselines under the full long-context setup (see
Figure 3 and Table 11).
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G.1 MEAN±STD ACROSS SEEDS

Tables 7 and 8 summarize mean±std over three runs on MSC and REALTALK, respectively. Across
three independent runs, our method exhibits low run-to-run variance (e.g., PPL std ≈ 0.04 on both
datasets) while consistently outperforming the strongest baseline ICAE(one-shot) across all reported
metrics.

Table 7: MSC results (mean±std over seeds 42/43/44).

Models PPL ↓ BLEU ↑ R-L ↑ R-1 ↑ R-2 ↑
AutoCompressor 9.109±0.273 0.014±0.002 0.121±0.002 0.145±0.003 0.021±0.001
ICAE (incremental) 561.702±347.397 0.007±0.001 0.063±0.006 0.075±0.008 0.005±0.001
ICAE (one-shot) 29.188±1.371 0.017±0.000 0.132±0.001 0.188±0.002 0.027±0.001
Ours 8.385±0.042 0.025±0.002 0.159±0.001 0.202±0.003 0.037±0.000

Table 8: REALTALK results (mean±std over seeds 42/43/44). Results are in the per-session setting.

Models PPL ↓ BLEU ↑ R-L ↑ R-1 ↑ R-2 ↑
AutoCompressor 12.283±0.352 0.020±0.001 0.090±0.030 0.138±0.003 0.020±0.001
ICAE (incremental) 135.827±39.254 0.019±0.001 0.071±0.003 0.089±0.003 0.013±0.001
ICAE (one-shot) 25.115±3.388 0.025±0.001 0.113±0.005 0.159±0.006 0.024±0.002
Ours 9.764±0.043 0.034±0.001 0.136±0.002 0.177±0.002 0.032±0.001

G.2 SEED-LEVEL SIGNIFICANCE TESTS

As additional evidence that gains are not driven by a favorable seed, we compute p-values using
a paired t-test on the seed-wise differences between our method and ICAE(one-shot) (three paired
observations).Table 9 reports the resulting p-values. For PPL, we apply the test on log(PPL) to
reflect the likelihood (average NLL) scale. Against ICAE(one-shot), improvements are statistically
significant on both datasets (all p < 0.05).

Table 9: Paired t-test p-values for Ours vs. ICAE(one-shot) across three seeds (42/43/44).

Dataset log(PPL) BLEU R-L R-1 R-2

MSC 2.8×10−4 0.010 9.6×10−5 0.003 5.6×10−4

REALTALK 0.004 0.002 0.013 0.027 0.024

H CLOSED-LOOP EVALUATION

This section reports additional results under closed-loop generation, where the assistant’s past turns
in the context are replaced by the model’s own previously generated responses (user turns are
kept fixed from the dataset). This evaluation explicitly stress-tests error accumulation under self-
conditioned history.

Table 10 evaluates all methods on REALTALK in the per-session setting. We use per-session to keep
methods comparable and largely runnable: several compression baselines exceed GPU memory
under the full long-context (all-sessions) configuration, and ICAE(append) is OOM even in per-
session (reported explicitly).

As shown in Table 10, our method achieves the best overall performance among runnable baselines
across all reported metrics. Compared with the teacher-forcing results in Table 1, scores decrease
slightly, which is expected under closed-loop generation due to compounding errors and occasional
user–assistant misalignment on offline corpora. Nevertheless, the degradation for our method is
modest, providing evidence that C-DIC remains stable when conditioning on its own generations.
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Table 10: Closed-loop results on REALTALK (per-session).

Models PPL ↓ BLEU ↑ R-L ↑ R-1 ↑ R-2 ↑
Full prompting 29.666 0.020 0.106 0.150 0.017
Truncation 28.174 0.021 0.109 0.156 0.019
Summarization 27.977 0.022 0.110 0.162 0.021
In-Session RAG 26.789 0.020 0.103 0.149 0.015
AutoCompressor 13.111 0.020 0.111 0.144 0.021
ICAE (incremental) 124.024 0.020 0.068 0.088 0.012
ICAE (one-shot) 17.364 0.024 0.109 0.152 0.023
ICAE (append) Out of memory
Ours 9.754 0.034 0.133 0.173 0.031

I DETAILED LATENCY COMPONENTS

Table 11 decomposes end-to-end latency on REALTALK-all sessions as the maximum number of
preserved turns increases ({10, 20, 30, 40, 428}). We report Comp. Time (time spent on context
preparation such as compression/selection) and Gen. Time (model runtime to produce the response);
Total Time is their sum. All values are in seconds. Out of memory indicates a method failed at that
context length.

Table 11: Latency components depending on the max number of turns. Compression (Comp.
Time) and generation (Gen. Time) times for ICAE (one-shot), ICAE (append), and C -DIC
(Ours) on REALTALK at maximum turns {10, 20, 30, 40, 428}. The total latency equals Comp.
Time + Gen. Time All values are in seconds. Out of memory indicates the baseline failed to run at
that maximum turn due to the context length.

Models Max # of Turns Comp. Time Gen. Time Total Time
Full prompting

10

0.00 3.53 3.53
ICAE (one-shot) 0.26 3.97 4.24
ICAE (append) 0.11 3.53 3.64
Ours 0.05 3.16 3.21
Full prompting

20

0.00 4.81 4.81
ICAE (one-shot) Out of memory
ICAE (append) 0.27 3.97 4.24
Ours 0.05 3.28 3.33
Full prompting

30

0.00 7.66 7.66
ICAE (one-shot) Out of memory
ICAE (append) Out of memory
Ours 0.05 3.21 3.26
Full prompting

40

Out of memory
ICAE (one-shot) Out of memory
ICAE (append) Out of memory
Ours 0.05 3.34 3.40
Full prompting

428

Out of memory
ICAE (one-shot) Out of memory
ICAE (append) Out of memory
Ours 0.06 3.30 3.36

J ABLATION ON RETRIEVAL THRESHOLD

In C-DIC, the retrieval threshold τ is not directly optimized but interacts with learned representa-
tions: during training, the encoder and memory updater adapt such that cosine similarities between
the query and relevant memory states evolve in a way that is compatible with a fixed decision bound-
ary τ . As shown in Table 12, we empirically find that performance is stable for a broad range of
values (roughly 0.2–0.8); only very low thresholds (which make almost all states “similar”) or very
high thresholds (which make almost no states “similar”) lead to noticeable degradation, because the
model either over-updates or under-utilizes memory.
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Table 12: Performance as a function of the selection threshold τ . Performance as a function of
the selection threshold τ . We report PPL, BLEU, ROUGE-L, ROUGE-1, and ROUGE-2, evaluated
on MSC-session 5 at the final dialogue turn to assess long-term generation quality.

Threshold PPL ↓ BLEU ↑ R-L ↑ R-1 ↑ R-2 ↑
0.1 9.593 0.022 0.150 0.193 0.033
0.2 8.351 0.025 0.155 0.203 0.034
0.3 8.334 0.027 0.162 0.212 0.041
0.4 8.346 0.028 0.159 0.204 0.039
0.5 8.362 0.026 0.156 0.203 0.036
0.6 8.325 0.028 0.157 0.208 0.037
0.7 8.383 0.027 0.156 0.207 0.036
0.8 8.427 0.030 0.160 0.206 0.040
0.9 12.202 0.022 0.139 0.190 0.027

K EFFECT OF COMPRESSION TOKEN LENGTH

This work studies incremental compression for multi-turn dialogue by extending ICAE (Ge et al.,
2024), rather than re-optimizing the underlying compressor for static-document compression. Ac-
cordingly, unless otherwise stated, our main experiments use the publicly released ICAE checkpoint,
which provides a single compression length (128 tokens).

To examine the impact of compression length in the multi-turn setting, we train ICAE-style com-
pressors with 64, 128, and 256 tokens on MSC (Xu et al., 2022) using the same ICAE training
objectives (one-shot continuation and auto-encoding). We then fine-tune the dialogue model with
our proposed method while varying only the compression token budget. Table 13 reports results on
MSC under the 5-session evaluation setting.

Table 13: Comparison of compression token lengths on MSC-session 5. Performance as a func-
tion of the selection threshold τ . We report PPL↓, BLEU↑, ROUGE-L↑, ROUGE-1↑, and ROUGE-
2↑.

Comp. Token Length PPL ↓ BLEU ↑ R-L ↑ R-1 ↑ R-2 ↑
64 8.604 0.023 0.157 0.201 0.036
128 8.582 0.023 0.155 0.200 0.034
256 8.646 0.022 0.160 0.205 0.037

These results indicate that performance is relatively stable across 64–256 tokens, with differences in
PPL and generation metrics being modest and without a clear monotonic trend. This suggests that
C-DIC is not overly sensitive to the exact compression capacity within this range.

L LONGMEMEVAL: LONG-CONTEXT QA EVALUATION

This appendix reports an additional evaluation on LONGMEMEVALS , a benchmark designed to
assess long-term memory and question answering in chat assistants. We evaluate in a zero-shot
setting using the same LLM backbone across all methods (Llama-2-Chat-7B). We compare (i)
full prompting and (ii) latent-compression baselines (ICAE variants), against (iii) our CDIC-based
approach. Following the LONGMEMEVAL protocol, we use GPT-4o as the automatic judge to
determine answer correctness and report Accuracy.

Table 14 shows that CDIC yields the best accuracy among the compared methods, improving
over full prompting while using substantially fewer input tokens. These results provide evidence
that CDIC improves QA performance under long-context settings, complementing our dialogue-
generation results on MSC and REALTALK.

M REALTALK: TWO-SESSION EVALUATION

The REALTALK (Lee et al., 2025) dataset contains substantially longer multi-session dialogues
than MSC (Xu et al., 2022). In Table 1, we therefore report results per session to avoid out of
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Table 14: LongMemEval results (zero-shot). All methods use the same backbone (LLaMA2-7B).
Accuracy is computed by a GPT-4o judge following the LONGMEMEVAL evaluation protocol.

Models Accuracy↑
Full prompting 0.086
ICAE (incremental) 0.010
ICAE (one-shot) 0.004
Ours 0.116

memory issue. For completeness, Table 15 reports performance on the subset of REALTALK
conversations with two sessions. We follow the same evaluation protocol and hyperparameters as
in the main results. Note that our model shows consistent performance without the session limit in
Figure 4.

Table 15: REALTALK two-session results. Test performance on conversations with up to two
sessions. Lower is better for PPL; higher is better for BLEU/ROUGE.

Models PPL↓ BLEU↑ R-L↑ R-1↑ R-2↑

Full prompting 27.225 0.022 0.109 0.159 0.020
Truncation 21.865 0.026 0.109 0.174 0.028
Summarization 26.120 0.023 0.118 0.172 0.025
In-Session RAG 27.435 0.019 0.100 0.145 0.014
AutoCompressor 11.150 0.020 0.112 0.146 0.022
ICAE (incremental) 218.103 0.017 0.059 0.073 0.007
ICAE (one-shot) Out of memory
ICAE (append) Out of memory
Ours 9.870 0.034 0.132 0.175 0.029

N ADDITIONAL RESULTS ON MULTI-SESSION CHAT (MSC)

Table 16 reports a detailed breakdown of model quality setting across different session lengths (2–5)
as well as the aggregate over all sessions. We evaluate generation with perplexity (PPL; lower is
better) and text-overlap metrics (BLEU, ROUGE-L/1/2; higher is better).

O QUALITATIVE EXAMPLES

We present one of the qualitative examples demonstrating C-DIC’s effectiveness in context coher-
ence in a long dialogue setting in Figure 7 and 8.
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Table 16: Comparison across MSC sessions. Lower is better for PPL; higher is better for others.

Models Session PPL↓ BLEU↑ R-L↑ R-1↑ R-2↑

Full prompting AVG 41.245 0.008 0.110 0.157 0.015
Truncation 30.890 0.012 0.128 0.184 0.024
Summarization 41.849 0.013 0.128 0.172 0.024
In-Session RAG 35.530 0.008 0.110 0.148 0.014
AutoCompressor 9.285 0.012 0.121 0.174 0.021
ICAE (incremental) 513.774 0.006 0.057 0.069 0.005
ICAE (one-shot) 27.656 0.017 0.133 0.190 0.027
Ours 8.431 0.023 0.160 0.205 0.037

Full prompting 5 40.801 0.012 0.113 0.165 0.016
Truncation 26.252 0.014 0.136 0.198 0.028
Summarization 38.9759 0.0148 0.129 0.1881 0.024
In-Session RAG 33.931 0.009 0.112 0.163 0.014
AutoCompressor 9.364 0.012 0.123 0.151 0.020
ICAE (incremental) 442.062 0.006 0.061 0.074 0.004
ICAE (one-shot) 30.312 0.016 0.134 0.196 0.027
Ours 8.553 0.024 0.160 0.211 0.038

Full prompting 4 40.621 0.009 0.109 0.157 0.014
Truncation 26.427 0.013 0.133 0.188 0.024
Summarization 40.162 0.012 0.130 0.190 0.024
In-Session RAG 33.318 0.008 0.110 0.161 0.014
AutoCompressor 9.222 0.012 0.129 0.150 0.020
ICAE (incremental) 454.005 0.006 0.061 0.074 0.004
ICAE (one-shot) 29.261 0.016 0.133 0.194 0.028
Ours 8.418 0.022 0.158 0.205 0.037

Full prompting 3 40.221 0.009 0.110 0.157 0.014
Trunc.-5 27.678 0.014 0.127 0.192 0.020
Summarization 42.804 0.012 0.127 0.184 0.024
In-Session RAG 35.751 0.008 0.110 0.158 0.018
AutoCompressor 9.222 0.012 0.123 0.150 0.020
ICAE (incremental) 505.368 0.006 0.058 0.070 0.004
ICAE (one-shot) 26.971 0.018 0.137 0.195 0.029
Ours 8.350 0.023 0.162 0.206 0.037

Full prompting 2 43.323 0.003 0.109 0.153 0.013
Truncation 29.414 0.013 0.133 0.188 0.023
Summarization 45.456 0.012 0.126 0.183 0.024
In-Session RAG 39.120 0.008 0.108 0.148 0.017
AutoCompressor 9.333 0.011 0.110 0.149 0.017
ICAE (incremental) 653.668 0.006 0.058 0.070 0.004
ICAE (one-shot) 24.081 0.018 0.130 0.174 0.025
Ours 8.404 0.022 0.159 0.198 0.037
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Figure 5: Qualitative example #1 (LongMemEval). Multi-session dialogue in chronological order
(previous sessions→ current session).

Dialogue Snippet

Session 1∼11

. . . (56 turns) . . .

Session 12
. . . (1 turn) . . .

Turn #58
S1: I’m also thinking of exploring other platforms like Instagram and Twitter to promote my writing ser-
vices. Do you have any tips on how to get started with those platforms, especially since I don’t have much
experience with them? By the way, speaking of first purchases, I remember getting a 10% discount on my
first purchase from that new clothing brand last month, which was nice.

S2: Great mention about the discount! Who doesn’t love a good deal, right? Now, let’s dive into getting
started with Instagram and Twitter to promote your writing services. Both platforms have unique features
and audiences, so I’ll provide you with some tips to help you get started: **Instagram:** 1. **Visual content
is key**: Instagram is all about visuals, so focus on creating high-quality images, graphics, or videos that
showcase your writing skills, books, or writing process. 2. **Use hashtags strategically**: Research and use
relevant hashtags in your captions to increase visibility. You can use a mix of niche-specific hashtags (e.g.,
#writingcommunity, #freelancewriting) and broader hashtags (e.g., #writerslife, #booklovers). 3. **Create
an Instagram Stories strategy**: Share behind-the-scenes content, sneak peeks, or Q&A sessions to engage
with your audience. You can also use the ”swipe-up” feature to drive traffic to your website or other social
media profiles. 4. **Leverage Instagram’s features**: Use IGTV for longer-form content, Reels for short
videos, and IG Live for real-time engagement. 5. **Collaborate with other writers or influencers**: Partner
with fellow writers or influencers in your niche to reach new audiences and create content that appeals to
a broader range of people. 6. **Post consistently**: Aim for at least 3-5 posts per week, but make sure
you don’t sacrifice quality for quantity. 7. **Engage with your audience**: Respond to comments, answer
questions, and use Instagram’s features like polls and quizzes to encourage interaction. **Twitter:** 1.
**Keep it concise**: Twitter is all about short, bite-sized content. Keep your tweets concise, informative, and
engaging. 2. **Use hashtags**: Research and use relevant hashtags in your tweets to increase visibility. You
can use a mix of niche-specific hashtags (e.g., #writingtips, #freelancewriting) and broader hashtags (e.g.,
#writerslife, #books). 3. **Tweet regularly**: Aim for at least 5-10 tweets per week, but make sure you don’t
overwhelm your audience. 4. **Engage with others**: Respond to tweets, answer questions, and participate
in Twitter Chats to build relationships with other writers, influencers, and potential clients. 5. **Share a mix
of content**: Share your own content, retweet relevant articles or tweets, and participate in Twitter polls
to keep your audience engaged. 6. **Use Twitter Ads**: Consider running targeted ads to increase your
reach and engagement, especially if you’re just starting out. 7. **Optimize your profile**: Make sure your
Twitter profile is complete, including a profile picture, header image, and bio that clearly states your writing
services and expertise. **Additional Tips:** 1. **Cross-promote**: Share your Instagram and Twitter
content on your other social media platforms, like Facebook and LinkedIn, to reach a broader audience. 2.
**Be authentic**: Be yourself, and let your personality shine through on both platforms. This will help you
build a loyal following and attract potential clients who resonate with your voice and style. 3. **Monitor
and adjust**: Keep an eye on your analytics and adjust your strategy based on what’s working and what’s
not. Remember, building a presence on Instagram and Twitter takes time and effort. Focus on creating high-
quality content, engaging with your audience, and promoting your writing services consistently. Good luck!
. . . (4 turn) . . .

Session 13∼48
. . . (187 turns) . . .

Question: What was the discount I got on my first purchase from the new clothing brand?
Full prompting: “I’m just an AI, I don’t have access to personal information or purchase history, . . . ”
ICAE (incremental): “I am really excited to see what kind of discount you got given on your first purchase
from the new clothing brand!”
ICAE (one-shot): “southeast asian cultures: southeast asian cultures have a rich history of textile and print
design, . . . ”
Ours: “You got 10 % off your first purchase!”
Ground-truth: “10 %”
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Figure 6: Qualitative example #2 (LongMemEval). Multi-session dialogue in chronological order
(previous sessions→ current session).

Dialogue Snippet

Session 1∼4
. . . (14 turns) . . .

Session 5
. . . (1 turn) . . .

Turn #16
S1: I love these ideas! I’m definitely going to consider the Global Street Food theme. By the way, I’ve also
had a great experience with a BBQ theme, like the one we had at Mike’s place two weeks ago, where we
watched a football game together. Do you have any BBQ recipe ideas that would fit well with the Global
Street Food theme?

S2: A BBQ theme can be a fantastic way to incorporate grilled and smoky flavors into your Global Street
Food potluck. Here are some BBQ-inspired recipes . . . (continued)

S1: That’s great! I think I’ll have a mix of grilled and non-grilled dishes to cater to different tastes. By
the way, I’ve also had experience with dinner parties that are more low-key, like the ones we had at Alex’s
place yesterday, where we had a potluck and tried out different cuisines from around the world, and also at
Mike’s place, where we had a BBQ and watched a football game together. Do you have any tips on how to
make the party more interactive and engaging for guests?

S2: You’re referring to creating a more immersive and engaging experience for your guests. . . . (continued)

. . . (2 turns) . . .

Session 6∼8
. . . (8 turns) . . .

Session 9

Turn #28
S1: I’m looking for some Italian recipe ideas for a dinner party I’m hosting soon. I attended a lovely
Italian feast at Sarah’s place last week, and it inspired me to try out some new dishes. Do you have any
recommendations for a beginner like me?

S2: Buon appetito! I’m thrilled to hear that Sarah’s Italian feast inspired you to host your own dinner party.
Italian cuisine is incredibly diverse and rich, so I’d be happy to help you with some recipe ideas perfect for a
beginner. Here are some classic and delicious Italian dishes . . . (continued)

S1: That’s a great list of recipes! I think I’ll start with the Spaghetti Aglio e Olio and Chicken Parmesan.
I’ve always loved the combination of garlic and olive oil. By the way, speaking of dinner parties, I’ve had a
lovely experience at Sarah’s place recently, where we played board games until late into the night after the
Italian feast. Do you have any recommendations for board games that would be a good fit for a dinner party?

S2: Spaghetti Aglio e Olio and Chicken Parmesan are both delicious and crowd-pleasing options. Now,
about board games for a dinner party . . . (continued)
. . . (4 turns) . . .

Session 10∼44
. . . (190 turns) . . .

Question: How many dinner parties have I attended in the past month?
Full prompting: “I’m just an AI, I don’t have access to your personal information or calendar, so I’m unable
to accurately answer your question. However, I can suggest that you check your calendar or contact the hosts
of any dinner parties you may have attended in the past month . . . ”
ICAE (incremental): “The number of the month? Is that 30! And if you’re a math teacher you’ll have 30
students!”
ICAE (one-shot): “ Reduce, Reuse, Recycle: Implement the 3Rs in your daily life by reducing your consump-
tion, . . . ”
Ours: “You’ve attended 3 dinner parties in the past month.”
Ground-truth: “Three”
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Figure 7: Qualitative example (MSC - session 5). Multi-session dialogue in chronological order
(previous sessions→ current session).

Dialogue (prev. sessions → current session)

Session 1
S1: Hi, do you like movies? I really do.
S2: Omgosh, I love movies!
S1: Nice, we have something in common. How do you feel about pizza?
S2: I love pizza. But I love cooking healthy mostly.
S1: Oh, I try, but can’t resist pizza and good burgers sometimes...
S2: Lol just because I cook healthy doesnt mean I do not splurge haha.
S1: Good to hear. What do you do? I only work part time now.
S2: I am a mom so I mainly watch my kiddos all day at the moment lol.
S1: That’s a busy job. Mine is at a warehouse, that’s a busy place, too.
S2: Oh I am sure that is alot of work!
S1: Yeah, that’s why I can only handle part time. I need time for cruising...lol.
S2: I love cruising. I am living in california right now, great place to cruise.
Session 2
S1: My kids really wanted pizza so I got to have a bit of a cheat day.
S2: Oh I love pizza too! What’s your favourite toppings?
S1: Anything with meat! . . . And extra onions . . . How about you?
S2: I love meat pizzas . . . chicken, ham, sweetcorn, pineapple.
S1: I LOVE stuffed crust, but I order without to watch my weight.
S2: Same here . . . guilty pleasure is takeaway with a movie.
S1: What kinds of movies do you watch together?
S2: Disney; the kids’ favorite is Moana.
S1: I prefer comedy, can’t wait to stop seeing Frozen!
S2: We switched to Moana. I’d love to watch horror.
S1: I had nightmares from Gremlins and Ghoulies as a kid.
S2: Jaws did that to me!
Session 3
S1: Great trailer for a horror movie—want to watch it with me?
S2: Yes! And let’s sneak in a pepperoni, sausage, meatball pizza.
S1: No kids, grown-up movie and pizza—perfect!
S2: Add cold beer; need me to bring anything?
S1: Chocolate bars. Any movie prefs?
S2: Avoid slasher if possible.
S1: How about “A Quiet Place 2”?
S2: Sounds good. Then a comedy like Horrible Bosses.
S1: Maybe some healthy snacks too.
S2: Thumbs down—let’s do cotton candy and bourbon!
S1: I’ll bring Woodford Reserve.
S2: I have Blantons from a Buffalo Trace visit!
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Figure 8: Qualitative example (continued). Continuation of the dialogue and model outputs to the
final question.

Dialogue (continued)

Session 4
S2: Was the movie scary enough? Recovered from bourbon?
S1: Still having nightmares; could’ve had more bourbon.
S2: There’s never enough. I’m recovering from injuring myself with pizza!
S1: Oh no—did you cut yourself slicing it?
S2: Kids distracted me; missed a bone in the chicken and sliced my throat when I swallowed.
S1: You’re joking?! Will that put you off chicken?
S2: No, I’ll still put chicken on pizza, but my voice sounds like Freddy Kruger.
S1: LOL. Entertaining bedtime stories for the kids—NOT!
S2: They’re scared but well behaved—it was almost worth it.
S1: Now that you know scary voices help, you could use it.
S2: I recommend it—without the injury. Still pineapple on your pizza?
S1: I’ll be fine with chicken; not a pineapple-on-pizza person—extra cheese!
Current session
S1: Are your kids on any new movie kick recently?
S2: They’ve been really into Frozen lately.
S1: Same here—know every song by heart!
S2: Maybe we can all watch it together.
S1: Disney musical marathon—my fav is Sound of Music. Yours?
S2: I like La La Land.
S1: Haven’t seen it. Is it a kid movie?
S2: It isn’t—romantic musical with Leonardo DiCaprio and Emma Stone.
S1: Sounds good! I love Leonardo.
S2: Perfect movie for you; he’s a surprisingly good singer.

User (S1): By the way, which food caused my injury during cooking?

Full prompting: “I’m just an AI, I don’t have access to personal information . . . ”
Truncation: “Oh, my goodness! . . . I’m afraid I can’t reveal the identity of the food . . . ”
Summarization: “I’m afraid I can’t reveal the identity of the culinary criminal . . . ”
In-Session RAG: “I apologize, but I’m just an AI and do not have access . . . ”
AutoCompressor: “I think it was a pineapple.”
ICAE (incremental): degenerates into repetition (“It . . . It . . . ”).
ICAE (one-shot): “I’m just an AI . . . be mindful and cautious when cooking . . . ”
ICAE (append): OOM.
Ours: “Oh, sorry. It was the pizza. You slipped on cheeze.”
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