

000 FINDING THE THREAD: CONTEXT-DRIVEN 001 INCREMENTAL COMPRESSION FOR MULTI-TURN DIA- 002 LOGUE GENERATION 003 004

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 Modern conversational agents condition on an ever-growing dialogue history at
014 each turn, incurring redundant re-encoding and attention costs that grow with con-
015 versation length. To enhance the efficiency, naive truncation or summarization de-
016 grades fidelity, and existing context compressors lack mechanisms for cross-turn
017 memory sharing or revision, causing information loss and compounding errors
018 over long dialogues. We revisit the context compression under conversational dy-
019 namics and empirically present its fragility. To address both the efficiency and
020 robustness problems, we introduce Context-Driven Incremental Compression (C-
021 DIC), which treats a conversation as interleaved contextual threads and stores re-
022 visable per-thread compression states in a single, compact dialogue memory. At
023 each turn, a lightweight retrieve → revise → write-back loop shares information
024 across turns and corrects stale memories, stabilizing behavior over long term di-
025 alogue. A lightweight, *gradient-free* policy is proposed to dynamically manage
026 this memory, adapting on-the-fly as conversational contexts evolve without test-
027 time optimization. In addition, we adapt truncated backpropagation-through-time
028 (TBPTT) to our multi-turn setting, learning cross-turn contextual dependencies
029 without full-history backpropagation. Extensive experiments on long-form dia-
030ogue benchmarks demonstrate superior performance and efficiency of C-DIC,
031 supporting a scalable path to high-quality dialogue modeling.

032 1 INTRODUCTION

035 Conversational agents powered by large language models (LLMs), such as CHATGPT (Microsoft,
036 2025) and Gemini (Google, 2023), have emerged as ubiquitous interfaces for a wide range of tasks
037 such as brainstorming, code debugging, and data analysis (Yi et al., 2024; Nijkamp et al., 2023).
038 These interactions are characteristically *multi-turn*, where even casual sessions often span dozens of
039 exchanges with topic drifts, cross-turn references, and iterative refinements (Xu et al., 2022). Such
040 interactive adaptability of LLM-based assistants constitutes a pivotal cornerstone of their efficacy
041 and enables capabilities beyond static search or form-based interfaces.

042 Despite strong single-turn performance, current LLM struggle to manage the dependencies and drift
043 that arise in multi-turn discourse (Laban et al., 2025). The prevalent naive approach, concatenating
044 the entire conversation history to the prompt at every step, introduces two core challenges. First,
045 it induces significant **computational inefficiency**: repeatedly *re-encoding* and *re-attending* to the
046 full dialogue history at each turn incurs high inference-time costs, as self-attention scales quadrat-
047 ically with input length (Vaswani et al., 2023; Tay et al., 2022). Second, it triggers **semantic drift**
048 and **contextual erosion**: as dialogues evolve, models often *lose the thread*, producing irrelevant re-
049 sponses (Laban et al., 2025). These challenges stem from the model’s insufficient focus on dialogue
050 turns that align with the user’s evolving intents, especially when such turns lie beyond the model’s
051 recency-driven attention scope.

052 Existing methods address efficiency by truncating history to recent turns (Xu et al., 2022; Laban
053 et al., 2025) or by using a static summaries (Wang et al., 2025; Packer et al., 2024). Truncation dis-
cards long-range dependencies, while static summaries tend to be query-agnostic, lossy, and inflex-

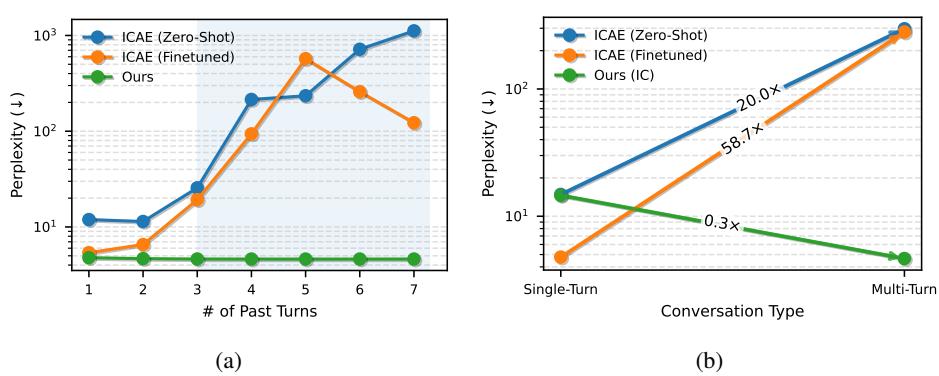


Figure 1: **Static compression collapses under multi-turn conversation; C-DIC remains stable.** Perplexity (↓) for ICAE (zero-shot), ICAE (MSC-tuned), and our method. **(a)** Static baselines rise sharply after 3–4 consecutive compressions; C-DIC stays flat. **(b)** Moving from single-turn (one-shot) to multi-turn evaluation, perplexity for static models explodes by *at least* $\sim 1900\%$ while C-DIC decreases by 70%.

ible for mid-conversation revision (Laban et al., 2025; Ravaut et al., 2024). As a result, truncation-based methods frequently degrade coherence and adaptability in dynamic multi-turn settings.

On the other hand, a line of work compresses long static documents into a small set of latent vectors (Chevalier et al., 2023; Ge et al., 2024) for efficiency. However, static, single-shot compressors are brittle under multi-turn rollout: performance significantly degrades from accumulative compression across consecutive dialogue turns. This clearly presents the core limitation of the static compressors lacking mechanisms for memory revision and sharing across consecutive turns.

To address these limitations, we take a principled approach: progressive, topic-aware inference-time compression of the dialogue history, thereby preserving both efficiency and coherence in multi-turn dialogues. In particular, agents should retrieve and reason over context that is semantically aligned with the topic of current, regardless of its position in the history. In absence of such topic sensitivity, even compressed inputs risk overlooking essential context, yielding incoherent or irrelevant responses.

We implement the above principled approach by introducing **Context-Driven Incremental Compression (C-DIC)**, a framework that treats dialogue as interleaved contextual threads and maintains a single, compact dialogue memory that stores *revisable per-thread compression states*. Rather than brute-force full-context prompting, C-DIC runs a lightweight *retrieve* \rightarrow *revise* \rightarrow *write-back* loop at each turn, enabling cross-turn sharing and correction as the conversation evolves; *training mirrors this loop via turn-level, retrieval-aware truncated backpropagation through time over consecutive same-thread turns*, avoiding full-history backpropagation. Unlike prior compression methods built for static inputs (Chevalier et al., 2023; Ge et al., 2024), C-DIC enables incremental compression so that we can continually update the contextual threads with incoming interactions.

C-DIC is grounded in three design principles: **(i) Thread-aware memory retrieval.** At each turn, the model dynamically retrieves the subset of compressed history relevant to the active thread, irrespective of position in the history. **(ii) Incremental compression.** It compresses the current turn with its thread states, allowing future turns to reuse it without re-encoding the full history. **(iii) Gradient-free memory update.** To accommodate evolving and revisited topics, C-DIC performs memory updates online without inference-time gradients. By integrating these components into a single, *topic-sensitive* framework, C-DIC yields dialogue agents that are both efficient and *contextually fluent*: they retain what matters, discard what does not, and stay aligned with evolving user intent. Our contributions are as follows:

- We demonstrate that static latent compressors are brittle under conversational dynamics, degrading across consecutive compressions and collapsing under turn-by-turn rollout.
- We introduce Context-Driven Incremental Compression (C-DIC), the first framework for turn-level incremental compression within a single compact dialogue memory; a *retrieve* \rightarrow *revise* \rightarrow

108 *write-back* scheme with retrieval-aware TBPTT enables cross-turn sharing and correction, yielding
 109 long-range behavior without full-history re-encoding or backpropagation.
 110

- 111 • C-DIC improves long-range coherence and reference fidelity while greatly reducing inference cost
 112 and input size, outperforming truncation, summarization, and static compression baselines.
 113

114 2 PRELIMINARIES & RELATED WORK

116 2.1 MULTI-TURN DIALOGUE GENERATION

118 Multi-turn interaction equips conversational agents with the ability to sustain coherent, goal-oriented
 119 discourse. By exploiting the entire conversational record, the model can resolve coreference, fol-
 120 low user preferences, and revise assumptions—capabilities that single-turn systems cannot provide.
 121 Such continuity is indispensable in real-world scenarios, where users expect the system to remember
 122 and adapt to prior turns.

123 Formally, let a dialogue with T turn be a sequence $\mathcal{D}_{1:T} = \{(q_1, r_1), \dots, (q_T, r_T)\}$, where q_t is
 124 the user query and r_t the system response at turn t . At each turn, the large language model (LLM)
 125 receives the current input pair $(\mathcal{D}_{<t}, q_t, r_t)$, where $\mathcal{D}_{<t}$ is the entire history up to turn $t-1$. The
 126 training maximises the conditional log-likelihood:

$$127 \log p_\theta(r_t \mid q_t, \mathcal{D}_{<t}). \quad (1)$$

129 Crucially, the full history $\mathcal{D}_{<t}$ must be supplied at *every* subsequent turn since each future prediction
 130 depends on it. If each exchange contributes on average L tokens, the prompt length at turn t is tL .
 131 Under typical module such as vanilla self-attention, the cumulative cost over an T -turn dialogue
 132 is $O(T^3 L^2)$ (Tay et al., 2022). This cubic growth rapidly dominates latency and energy budgets,
 133 and empirical studies confirm marked accuracy drops once single-turn benchmarks are converted to
 134 multi-turn chat (Laban et al., 2025). We further discuss on key-value caching in the Appendix A.
 135

136 2.2 TEXT-BASED CONTEXT MANAGEMENT

137 Text-based approximations of the dialogue history are common strategies for mitigating the ineffi-
 138 ciencies of full-context encoding in multi-turn dialogues. The simplest approach is truncation,
 139 where only the most recent k utterances from the history are retained (Xu et al., 2022; Laban et al.,
 140 2025). While effective in limiting input size, truncation often eliminates earlier turns that may con-
 141 tain crucial information. To retain more of the dialogue semantics, summarization-based methods
 142 compress the dialogue history into a shorter textual form (Wang et al., 2025; Packer et al., 2024).
 143 However, these methods are static summaries, which become outdated as the conversation evolves,
 144 leading to inconsistencies or omissions. Static summaries can become outdated as the conversation
 145 evolves, leading to inconsistencies or omissions.

146 2.3 CONTEXT COMPRESSION

148 To move beyond text proxies, recent work proposes context compression, which maps a variable-
 149 length context to a fixed set of latent vectors (Wingate et al., 2022; Mu et al., 2024; Chevalier et al.,
 150 2023; Ge et al., 2024). AutoCompressor (Chevalier et al., 2023) recursively *accumulates* compres-
 151 sion embeddings over dialogue segments; the fine-tuned generator consumes these fixed embeddings
 152 without per-turn rewrite. ICAE (Ge et al., 2024) uses a modular autoencoder: a pretrained compres-
 153 sor encodes the full context into a fixed latent matrix \mathbf{Z} consumed by a frozen generator—also
 154 *one-shot* and *static* unless the entire input is recompressed. As a common setting, each method appends
 155 k trainable compression tokens $C \in \mathbb{R}^{k \times d}$ to the input sequence and runs the language model
 156 once. The hidden states at those positions are kept as a dense matrix $\mathbf{Z} \in \mathbb{R}^{k \times d}$ that replaces the
 157 raw text in subsequent computation. In this setting, inference cost grows with the constant k rather
 158 than with context length, while the latent vectors preserve far more information than truncation or
 159 summarization.

160 Most existing compressors, however, were designed for static documents or single-shot prompts;
 161 they cannot incrementally insert or refine compressed context as a conversation evolves, and a fixed
 162 k forces an ever-longer dialogue into the same capacity, increasing the risk of forgetting.

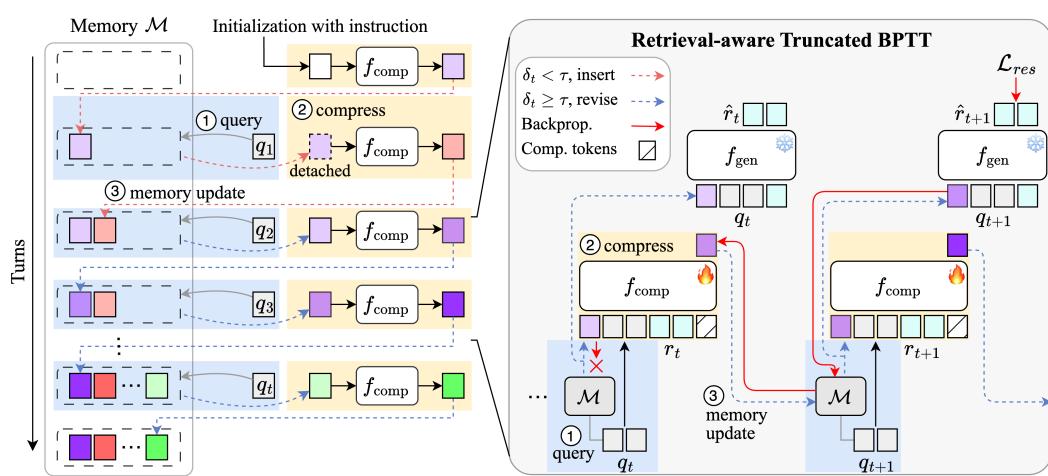


Figure 2: **Overview of retrieval-conditioned incremental compression and ra-TBPTT.** *Left:* We maintain memories \mathcal{M} that store a set of compressed thread states that evolve turn by turn. The memories are initialized by compressing the instruction into a thread state. Each turn then follows three steps. **(1) Query:** given q_t , we score the existing thread states and retrieve the relevant states; if the best matching thread is topically irrelevant, we still fetch it for continuity but *detach* it. **(2) Compress:** the trainable compressor f_{comp} summarizes the retrieved states and the current turn into a new *thread state*, detailed on right. **(3) Memory update:** we apply a gradient-free memory update rule using the peak similarity δ_t (red dashed = *insert* (topic shift), blue dashed = *revise* the best-matching state (on-topic)); see 3.2 for details. *Right:* For the training of f_{comp} , a per-turn response loss \mathcal{L}_{res} is minimized, enhanced with a retrieval-aware TBPTT: gradients flow *one hop* along the argmax usage edge and are truncated ($\rightarrow \times$) thereafter. At turn t , the compressor f_{comp} summarizes $(\mathcal{R}_t, q_t, r_t, C)$ into a new state and writes it back; the frozen response generator f_{gen} conditions on \mathcal{R}_t to produce \hat{r}_t .

Even though Rae et al. (2019); Bulatov et al. (2022); Chevalier et al. (2023) address long-context modeling by augmenting the Transformer with additional memory (compressed past segments, recurrent memory slots, or accumulated embeddings), they still operate primarily at the token or segment level. In contrast, C-DIC introduces an *external*, dialogue-level memory that is updated turn by turn via a retrieval–revise–write-back loop. This design allows compressed states to be incrementally refined and re-used across hundreds of turns, without repeatedly re-encoding the full history or modifying the internal architecture of the base language model.

3 METHODOLOGY: CONTEXT-DRIVEN INCREMENTAL COMPRESSION

Recall that conventional prompting strategies suffer from inefficiency issue and fail to provide contextually grounded responses. To handle these issues, we propose **Context-Driven Incremental Compression (C-DIC)**, a framework for scalable multi-turn dialogue modeling that enables efficient, context-sensitive reuse of prior interactions, as illustrated in Figure 2. We model a dialogue as interleaved contextual threads and maintain a compact memory whose slots store revisable, per-thread compressed states. At each turn, the system execute a light retrieve \rightarrow compress \rightarrow write-back loop that circumvents the repeated encoding of entire history while allowing cross-turn sharing and correction. While we freeze the response generator, we optimize only the compressor (initialized from ICAE (Ge et al., 2024)) and learnable compression tokens during training. We further discuss this training setup and the rationale for this design in Appendix B.

3.1 COMPRESSOR INITIALIZATION

Instead of training a compressor from scratch, we initialize the compressor with a pretrained checkpoint of ICAE (Ge et al., 2024), which was trained on large-scale corpora for one-shot document

216 compression. We adapt this initialized compressor to our incremental, retrieval-conditioned setting
 217 with a frozen response generator. This approach leverages a massive pretrained knowledge of ICAE,
 218 endowing our compressor with high-capacity, context-faithful representations without incurring ad-
 219 dditional pretraining cost.
 220

221 **3.2 INCREMENTAL COMPRESSION & CONTEXT-AWARE RETRIEVAL**
 222

223 Our design targets three needs: efficiency over long histories, coherence within an active thread, and
 224 learning that concentrates supervision on the memory states the model actually retrieves. Instead of
 225 re-encoding the full, ever-growing history at every turn, we maintain a compact memory $\mathcal{M}_{<t} = \{\mathbf{Z}_i\}$ of
 226 compressed thread states that evolve with ongoing dialogue. At turn t , we (i) **retrieve** a
 227 small, query-related subset $\mathcal{R}_t \subset \mathcal{M}_{<t}$ for conditioning, (ii) **generate** the response with a frozen
 228 decoder, and (iii) **compress** the new turn into an updated memory slot via a gradient-free write-back
 229 policy.
 230

231 **Turn-wise compression (base case).** We first describe compression without retrieval to fix no-
 232 tation and the learning signal. Given the input pair (q_t, r_t) , the compressor produces a compact
 233 summary

$$\mathbf{Z}_t = f_{\text{comp}}([\text{Emb}(q_t); \text{Emb}(r_t); \mathbf{C}]; \theta), \quad (2)$$

234 where q_t and r_t are the turn- t query and response sequences, $\mathbf{C} \in \mathbb{R}^{n \times d}$ is embedding of learnable
 235 compression tokens, θ are the compressor parameters, and $\mathbf{Z}_t \in \mathbb{R}^{n \times d}$ is the resulting compressed
 236 state. The frozen response generator generates $\hat{r}_{t+1} = f_{\text{gen}}([\mathbf{Z}_t; \text{Emb}(q_{t+1})]; \phi)$ during training
 237 only to calculate the per-turn loss; the generator's parameters remain fixed, so learning concentrates
 238 on producing compressed contexts that are useful when consulted. This base case already yields a
 239 bounded per-turn cost and a well-defined supervision signal, but it treats all prior context symmetri-
 240 cally and cannot adapt granularity to what the model actually reuses.
 241

242 **From turn-wise to retrieval-based thread compression** To make compression conditional on
 243 the context that actually matters at turn t , we introduce a retrieved support set $\mathcal{R}_t \subset \mathcal{M}_{<t}$. Each
 244 slot \mathbf{Z}_i is scored by a semantic match with mild recency decay:

$$S(q_t, \mathbf{Z}_i) = \frac{\langle \psi(f_{\text{comp}}(q_t, \mathbf{C})), \psi(\mathbf{Z}_i) \rangle}{\|\psi(f_{\text{comp}}(q_t, \mathbf{C}))\| \|\psi(\mathbf{Z}_i)\|} e^{-\alpha \Delta t_i}, \quad \mathcal{R}_t = \{\mathbf{Z}_i : S(q_t, \mathbf{Z}_i) > \tau\}. \quad (3)$$

245 Here $\psi(\cdot)$ is a pooling function (e.g. mean or CLS token) over token-level representations, Δt_i is the
 246 number of turns since \mathbf{Z}_i was last retrieved, and α is decay rate, and τ is a fixed retrieval threshold on
 247 the similarity score S . If no slot exceeds τ , we fall back to the single best match $\{\mathbf{Z}_{\arg \max_i S(q_t, \mathbf{Z}_i)}\}$.
 248 The response generator conditions on the retrieved supports rather than the entire history:
 249

$$\hat{r}_t = f_{\text{gen}}([\mathcal{R}_t; \text{Emb}(q_t)]; \phi). \quad (4)$$

250 Crucially, compression becomes *incremental* with respect to these supports:
 251

$$\mathbf{Z}_t = f_{\text{comp}}([\mathcal{R}_t; \text{Emb}(q_t); \text{Emb}(r_t); \mathbf{C}]; \theta). \quad (5)$$

252 This retrieval conditioning focuses \mathbf{Z}_t on the **active thread**, improving long-horizon coherence
 253 while keeping per-turn computation proportional to $|\mathcal{R}_t|$ rather than the dialogue length.
 254

255 **Write-back and thread continuity** To keep the memory both compact and faithful to the evolving
 256 topic, we define a *deterministic, gradient-free* update rule. At turn t , score the current query against
 257 existing slots

$$\delta_t = \max_i S(q_t, \mathbf{Z}_i), \quad j_t = \arg \max_i S(q_t, \mathbf{Z}_i),$$

258 and update the memory by either inserting a new state (topic shift) or revising the most similar state
 259 (thread continuation):
 260

$$\mathcal{M}_{<t+1} = \begin{cases} \mathcal{M}_{<t} \cup \{\mathbf{Z}_t\}, & \text{if } \delta_t < \tau, \\ (\mathcal{M}_{<t} \setminus \{\mathbf{Z}_j\}) \cup \{\mathbf{Z}_t\}, & \text{otherwise.} \end{cases} \quad (6)$$

261 Here τ is the retrieval threshold used in Section 3.2. This policy preserves *thread continuity* by
 262 updating the best-matching slot when relevant, and by opening a new slot when relevance is low.
 263

270 **Algorithm 1:** Inference: Retrieve → Generate → Compress → WriteBack

271 **Input:** compressor f_{comp} ; frozen generator f_{gen} ; tokens C ; threshold τ ; decay α

272 **Output:** $\{\hat{r}_t\}_{t=1}^T$

273 1 $\mathcal{M} \leftarrow \emptyset$

274 2 **for** $t = 1$ **to** T **do**

275 3 **if** $\max_i s_i \geq \tau$ **then**

276 4 | $\mathcal{R}_t \leftarrow \{\mathbf{Z}_i : s_i > \tau\}$ // (1) Similarity-based Retrieval

277 5 **else if** $\mathcal{M} \neq \emptyset$ **then**

278 6 | $j \leftarrow \arg \max_i s_i$; $\mathcal{R}_t \leftarrow \{\mathbf{Z}_j\}$

279 7 **else**

280 8 | $\mathcal{R}_t \leftarrow \emptyset$

281 9 $\hat{r}_t \leftarrow f_{\text{gen}}([\mathcal{R}_t; q_t])$; $\mathbf{Z}_t \leftarrow f_{\text{comp}}(\mathcal{R}_t, q_t, \hat{r}_t, C)$ // (2) Generate & Compress

282 10 **if** $\mathcal{M} = \emptyset$ **then**

283 11 | $\mathcal{M} \leftarrow \{\mathbf{Z}_t\}$

284 12 **else if** $\max_i s_i < \tau$ **then**

285 13 | $\mathcal{M} \leftarrow \mathcal{M} \cup \{\mathbf{Z}_t\}$

286 14 **else**

287 15 | $\mathcal{M} \leftarrow (\mathcal{M} \setminus \{\mathbf{Z}_j\}) \cup \{\mathbf{Z}_t\}$ // (3) Memory Update

288 16 update recency counters Δt_i for $\mathbf{Z}_i \in \mathcal{M}$

291

292 Because no gradients flow through selection or write-back, the per-turn cost is small and independent

293 of dialogue length; yet the memory remains semantically coherent, avoiding redundancy and drift

294 without expensive gradient-based editing at inference. We provide a more detailed discussion of

295 alternative memory update variants in Appendix C.

296

297 **Retrieval-aware truncated BPTT** In multi-turn dialogue with compressed memory, the model

298 does not attend to the full history; it consults a tiny set of states selected by retrieval. Standard

299 BPTT (Werbos, 1990) backpropagates through *all* past turns (costly and misaligned with usage),

300 while conventional TBPTT (Schmidt, 2019) truncates by a fixed window (agnostic to which turns

301 were actually consulted). We therefore align credit assignment with *retrieval-defined* dependencies.

302 Specifically, we minimize the per-turn negative log-likelihood

303

$$\mathcal{L} = \frac{1}{T} \sum_{t=1}^T \ell_t, \quad \ell_t = -\log P_\phi(r_t \mid q_t, \mathcal{R}_t), \quad (7)$$

304 and perform a reverse-time backward pass with a *one-hop* truncation along the memory updated

305 chain:

$$\frac{\partial \ell_t}{\partial \mathbf{Z}_{j_t}} \neq 0 \text{ iff } \delta_t \geq \tau, \quad \frac{\partial \ell_t}{\partial \mathbf{Z}_s} = 0 \text{ for all } s \neq j_t. \quad (8)$$

306 Equivalently, with a mask $M_{s,t} = \mathbb{1}[s = j_t] \cdot \mathbb{1}[\delta_t \geq \tau]$,

$$\frac{\partial \mathcal{L}}{\partial \mathbf{Z}_s} = \sum_{t=1}^T M_{s,t} \frac{\partial \ell_t}{\partial \mathbf{Z}_s}.$$

307 For off-topic turns ($\delta_t < \tau$) we keep the arg-max slot for *forward* continuity but detach it in training,

308

$$\tilde{\mathbf{Z}}_{j_t} = \text{stopgrad}(\mathbf{Z}_{j_t}), \quad \mathbb{1}[\delta_t \geq \tau] = 0 \Rightarrow \frac{\partial \ell_t}{\partial \mathbf{Z}_{j_t}} = 0,$$

309 so credit never flows into mismatched memory. Compared to full BPTT (credit through the entire

310 history) and windowed TBPTT (credit through a fixed span), (8) aligns supervision with the *actual*

311 *causal path* used at turn t (the single retrieved/updated thread), prevents spurious long-range gradients,

312 and scales with the number of *consulted* states rather than dialogue length, exactly matching the

313 retrieval-based, thread-centric structure of multi-turn conversations. We further discuss limitations

314 of full BPTT and fixed window TBPTT in Appendix D.

324 **Inference** Algorithm 1 outlines the inference procedure. Each turn we retrieve the most relevant
 325 thread states and, together with the user query, feed them to the frozen generator to produce a
 326 response. We then compress the turn into a new thread state and update memory (insert on topic
 327 shift, otherwise revise the active state); inference is fully gradient-free, keeping latency low.
 328

329 **4 EXPERIMENTS**
 330

331 **4.1 DATASETS**
 332

333 To measure long-horizon coherence, we follow the setting of existing works (Xu et al., 2022) and
 334 evaluate on Multi-Session Chat (MSC) (Xu et al., 2022) and REALTALK (Lee et al., 2025), two
 335 recent multi-session corpora structured around re-engagements occurring after hours or days. All
 336 datasets used are publicly available for research purposes.

337 MSC contains human-human conversations spanning up to five sessions. We use the official training
 338 split with 1 001 episodes (averaging 53.3 utterances). For evaluation, we leverage sessions 2–5,
 339 yielding an average of 66 utterances per conversation.

340 REALTALK is a real-world WhatsApp-style corpus featuring 10 conversations collected across 21
 341 days, averaging 21.9 sessions and 894.4 utterances per conversation. To effectively validate the
 342 robustness and transferability to longer context, we evaluate on REALTALK in a zero-shot setting.
 343 Also, we use two evaluation settings for REALTALK: *all-sessions*, which includes cross-session
 344 history to test long-term context, and *per-session*, which restricts inputs to the current session only.
 345

346 To assess whether MSC and REALTALK genuinely require long-range context and whether target
 347 responses are generic, we provide an LLM-based dataset characterization with human verification
 348 in Appendix E.

349 **4.2 BASELINES**
 350

351 We compare against strong, widely used baselines under the same evaluation protocol and backbone;
 352 implementation specifics are described in Appendix B.

- 354 • **Full-prompting** feeds the entire dialogue history at every turn.
- 355 • **Truncation** uses only the last $k=5$ turns.
- 356 • **Summarization** generates recursive textual summaries of the history using a frozen LLM,
 357 and use the summaries as history.
- 358 • **In-Session RAG** retrieves top-5 prior turns from the same dialogue by semantic similarity
 359 and concatenates them for the response generation.
- 360 • **AutoCompressor** (Chevalier et al., 2023) splits the history into chunks and recursively
 361 compresses each chunk into learnable compression tokens, accumulating a summary.
- 362 • **ICAE** (Ge et al., 2024) employs an autoencoder compressor with a frozen generator. We
 363 evaluate three update rules to cover common usages:
 - 364 – **ICAE (incremental)**: reuse previous latents and re-encode the new turn with them
 (relay update).
 - 365 – **ICAE (one-shot)**: re-encode the full available context each turn (original setting).
 - 366 – **ICAE (append)**: compress the new turn and concatenate latents without revision
 (growing latent length).

367 All baselines share the same frozen Llama-2-Chat-7B (Touvron et al., 2023) generator unless
 368 the cited method requires fine-tuning (e.g., Chevalier et al., 2023); this keeps comparisons focused
 369 on *context management* rather than decoder capacity.

370 **4.3 EVALUATION**
 371

372 We adopt a set of widely used, complementary metrics aligned with common practices in dialogue
 373 and summarization research. Following prior works (Chevalier et al., 2023; Ge et al., 2024), we

378 Table 1: **Main Results on MSC and REALTALK.** We report perplexity (PPL), BLEU, and
 379 ROUGE (R-L, R-1, R-2), where REALTALK results are zero-shot. On REALTALK, we use the
 380 *per-session* setting due to GPU memory limits of several compression baselines (AutoCompressor
 381 and ICAE variants). For text-only baselines (Full prompting, Truncation, Summarization and In-
 382 Session RAG), each input context is truncated to the model’s maximum context length. Our model
 383 clearly outperforms all baseline models in all metrics on both benchmarks.

Models	MSC					REALTALK				
	PPL↓	BLEU↑	R-L↑	R-1↑	R-2↑	PPL↓	BLEU↑	R-L↑	R-1↑	R-2↑
Full prompting	41.245	0.008	0.110	0.157	0.015	25.546	0.022	0.110	0.160	0.020
Truncation	30.890	0.012	0.128	0.184	0.024	23.830	0.023	0.114	0.165	0.022
Summarization	41.849	0.013	0.128	0.172	0.024	26.087	0.023	0.114	0.168	0.023
In-Session RAG	35.530	0.008	0.110	0.148	0.014	26.789	0.020	0.103	0.151	0.015
AutoCompressor	9.285	0.012	0.121	0.145	0.019	12.625	0.019	0.055	0.134	0.019
ICAE (incremental)	513.774	0.006	0.057	0.069	0.005	124.024	0.020	0.068	0.086	0.013
ICAE (one-shot)	27.656	0.017	0.133	0.190	0.027	21.390	0.025	0.118	0.166	0.026
ICAE (append)	<i>Out of memory</i>					<i>Out of memory</i>				
Ours	8.431	0.023	0.160	0.205	0.037	9.789	0.035	0.134	0.176	0.030

395
 396 Table 2: **Closed-loop vs. teacher-forcing on the REALTALK (all-sessions).** Results for our
 397 method under teacher forcing (ground-truth history) and closed-loop generation (conditioning on
 398 the model’s own past responses) over the full multi-session history.

Setting	PPL↓	BLEU↑	R-L↑	R-1↑	R-2↑
Teacher-forcing	9.556	0.036	0.140	0.184	0.035
Closed-loop	9.576	0.036	0.137	0.182	0.032

405 employ perplexity (PPL) to measure the generative fluency. For measuring content alignment with
 406 human responses, we report BLEU (Papineni et al., 2002) (up to 4-gram precision) and ROUGE
 407 (Lin, 2004) as standard reference-based metrics. BLEU computes n-gram precision against refer-
 408 ence responses. R-1 (ROUGE-1) and R-2 (ROUGE-2) measure unigram and bigram recall, indi-
 409 cating lexical coverage, while R-L (ROUGE-L) utilizes the longest common subsequence to reflect
 410 structural similarity and fluency.

4.4 RESULTS

411
 412 Table 1 presents a comprehensive evaluation of our framework on the MSC and REALTALK
 413 datasets. Our method consistently outperforms all baselines across perplexity (PPL), BLEU, and
 414 ROUGE metrics, while operating on significantly fewer tokens.

415
 416 Unlike full-prompts, truncation, or summarization baselines that process raw text linearly, our
 417 approach incrementally compresses dialogue turns into fixed-size latent representations and retrieves
 418 only the memories relevant to the current query. This retrieval-aware, token-efficient design allows
 419 our model to maintain high response quality even as dialogue length increases — achieving superior
 420 fluency and coherence while processing less than 0.009% of the raw context on REALTALK (e.g.,
 421 8.5k vs. 412k tokens).

422
 423 Compared to prior latent compression approaches such as AutoCompressor and ICAE, which are
 424 designed for static, one-shot settings, our model achieves superior performance with similar or lower
 425 memory usage. This demonstrates the effectiveness of our incremental compression strategy and
 426 retrieval-based memory refinement in the evolving dialogue. In particular, the naive incremental
 427 ICAE baseline catastrophically fails ($PPL \approx 513$). This is due to a structural mismatch between
 428 ICAE’s one-shot training objective and repeated compression, which we further discuss in Appendix
 429 F.

430
 431 Finally, Table 2 reports our REALTALK *all-sessions* results under both teacher forcing and closed-
 432 loop generation; most baselines cannot be evaluated in this setting without truncation due to GPU
 433 memory limits. Notably, our model generalizes robustly to REALTALK, a much longer, more open-

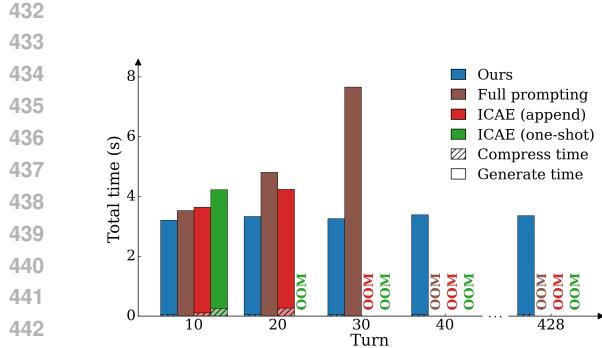


Figure 3: **Latency vs. dialogue length.** Total wall-clock time (s) to process a single dialogue when the maximum number of turns is capped at $\{10, 20, 30, 40, 428\}$. Bars compare **Ours**, **Full prompting**, **ICAE (append)**, and **ICAE (one-shot)**. The hatched segment denotes *compression time* and the solid segment denotes *generation time*; “OOM” marks methods that run out of memory at that turn. Evaluations use REALTALK in the *all-sessions* setting by truncating to the most recent turns.

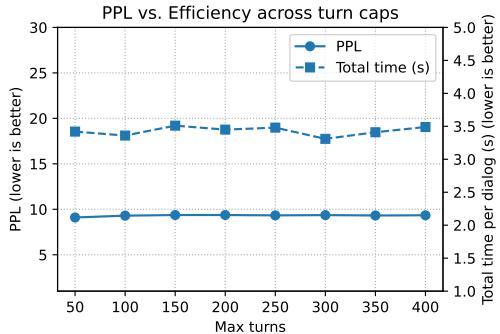


Figure 4: **Latency vs. performance across turn caps.** Dual-axis plot with *PPL* (left, lower is better) and *total time per dialog* in seconds (right, lower is better) versus the maximum number of turns $\{50, 100, 150, 200, 250, 300, 350, 400\}$. Evaluations use the all-sessions REALTALK setting by truncating to the most recent turns.

domain dataset, despite being trained only on MSC. As a zero-shot evaluation, this result underscores our method’s adaptability on both domain and length shifts. Moreover, the small difference between teacher forcing and closed-loop suggests stable long-horizon behavior over hundreds of turns. We further report $\text{mean} \pm \text{std}$ over three random seeds with seed-level significance tests in Appendix G, and additional closed-loop comparisons on REALTALK in Appendix H.

4.5 LATENCY COMPARISON

Figure 3 and 4 report total wall-clock time per dialogue as we cap the maximum number of retained turns at $\{10, 20, 30, 40, 428\}$. We decompose runtime into *compression* (hatched) and *generation* (solid). Our method remains nearly constant at $\sim 3\text{--}3.5\text{s}$ across turn caps, with negligible compression overhead (hatched segment is a thin sliver). In contrast, Full prompting grows rapidly ($\approx 3.6\text{s}@10$, $\approx 4.7\text{s}@20$, $\approx 7.7\text{s}@30$) and becomes OOM beyond 30 turns. ICAE (append) is slower than ours at 10–20 turns and becomes OOM from 30 onward; ICAE (one-shot) is slower at 10 and becomes OOM already at 20. At 30 turns, ours is roughly $2.4\times$ faster than Full prompting. Most noticeably, *ours is the only approach that handles 428 turns*, reflecting the effectiveness of our novel retrieval-conditioned incremental compression. These results demonstrate our proposed C-DIC successfully scales to ever-growing, open-ended dialogue with strong memory and computational efficiencies. For the detailed latency components, see Table 11 in Appendix I. Note that OOM is setting-dependent: ICAE(append) scales primarily with the *number of turns*, whereas ICAE(one-shot) is constrained mainly by *total context length*. Consequently, their OOM thresholds can differ between the *all-sessions* latency evaluation here and the *per-session* results in Table 1.

4.6 ABLATIONS

We ablate three components of our system: *incremental compression* (IC), *retrieval-aware truncated BPTT* (R-TBPTT), and the *memory module* (retrieval + write-back) for context threading. As shown in Table 3, removing IC causes the greatest degradation. PPL rises from **9.356** to **25.527** and ROUGE-2 drops from **0.056** to **0.018**, indicating that turn-wise compression and revision are critical for preserving salient content. Disabling R-TBPTT also degrades supervision quality, confirming the benefit of backpropagating one hop along the actual retrieval path. Despite removing the memory-based context threading gives slightly better PPL, it yields markedly worse BLEU and recall (ROUGE scores), implying our proposed context threading greatly improves the long-

486
 487 **Table 3: Ablation study on the REALTALK dataset.** We evaluate the contribution of incremental
 488 compression (IC), retrieval-aware truncated backpropagate through time (R-TBPTT) and memory
 489 by removing each component from the full model. All variants are evaluated at the final turn of each
 490 conversation under the *all-sessions* setting to assess long-term generation quality.

Models	PPL \downarrow	BLEU \uparrow	R-L \uparrow	R-1 \uparrow	R-2 \uparrow
C-DIC	9.356	0.069	0.173	0.213	0.056
(-) Incremental Compression	25.527	0.040	0.075	0.103	0.018
(-) Retrieval-aware Truncated BPTT	12.295	0.025	0.119	0.172	0.018
(-) Memory-based Context Threading	9.197	0.046	0.128	0.188	0.025

491 horizon coherence. In general, the full model (C-DIC) achieves state-of-the-art performance and
 492 demonstrates the necessity and complementary gains of all IC, R-TBPTT, and memory-based con-
 493 text threading.

5 CONCLUSION

503 In this paper, we present **Context-Driven Incremental Compression (C-DIC)**, a thread-aware dia-
 504 logue memory for long conversations. It replaces full-context prompting with a lightweight *retrieve*
 505 → *revise* → *write-back* loop trained via retrieval-aware truncated BPTT, enabling cross-turn context
 506 sharing and revision without re-encoding the entire history. By modeling conversations as inter-
 507 interleaved threads and retrieving only the compressed history relevant to the active context, C-DIC
 508 retains what matters and discards what does not, maintaining contextual fluency at low cost. Empir-
 509 ically, it remains stable where static compressors collapse under multi-turn rollout, outperforming
 510 truncation, summarization, and static latent baselines while reducing inference costs. It sustains
 511 nearly flat end-to-end latency (approximately 3~3.5s) despite growing dialogue history, and is the
 512 only method demonstrated to handle up to 428 turns, underscoring the scalability of our incremental,
 513 retrieval-conditioned design. Ablations confirm that each component—incremental compression,
 514 retrieval-aware TBPTT, and memory-based context threading—contributes materially to the overall
 515 gains in coherence and faithfulness.

516 C-DIC has several limitations that we leave for future work. In this paper, we focus on long-term
 517 dialogue generation in open-domain chit-chat settings, and we do not evaluate on long-horizon,
 518 domain-specific tasks (e.g., medical advice, factual QA, coding assistants). Extending C-DIC to
 519 such domains remains an important direction. In addition, our datasets contain conversations of up
 520 to roughly 400 turns, which makes it challenging to conduct reliable human preference studies, since
 521 annotators would need to read and reason over very long histories. Designing scalable human (or
 522 LLM-as-judge) evaluation protocols tailored to such ultra-long dialogues is another key avenue for
 523 future work.

524 REFERENCES

- 525 Aydar Bulatov, Yuri Kuratov, and Mikhail S. Burtsev. Recurrent memory transformer, 2022. URL
 526 <https://arxiv.org/abs/2207.06881>.
- 527 Nitay Calderon, Roi Reichart, and Rotem Dror. The alternative annotator test for LLM-as-a-judge:
 528 How to statistically justify replacing human annotators with LLMs. In Wanxiang Che, Joyce
 529 Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd*
 530 *Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 531 16051–16081, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-
 532 8-89176-251-0. doi: 10.18653/v1/2025.acl-long.782. URL <https://aclanthology.org/2025.acl-long.782/>.
- 533 Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and Danqi Chen. Adapting language models to
 534 compress contexts, 2023. URL <https://arxiv.org/abs/2305.14788>.
- 535 Tao Ge, Jing Hu, Lei Wang, Xun Wang, Si-Qing Chen, and Furu Wei. In-context autoencoder for
 536 context compression in a large language model, 2024. URL <https://arxiv.org/abs/2307.06945>.

- 540 Google. Gemini: A family of highly capable multimodal models. *CoRR*, abs/2312.11805, 2023.
 541
- 542 Philippe Laban, Hiroaki Hayashi, Yingbo Zhou, and Jennifer Neville. Llms get lost in multi-turn
 543 conversation, 2025. URL <https://arxiv.org/abs/2505.06120>.
- 544 Dong-Ho Lee, Adyasha Maharana, Jay Pujara, Xiang Ren, and Francesco Barbieri. Realtalk: A 21-
 545 day real-world dataset for long-term conversation, 2025. URL <https://arxiv.org/abs/2502.13270>.
- 546
- 547 Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In *Text Summarization
 548 Branches Out*, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguis-
 549 tics. URL <https://aclanthology.org/W04-1013/>.
- 550
- 551 Microsoft. Chatgpt. <https://chatgpt.com>, 2025. Accessed: 2025-09-23.
- 552 Jesse Mu, Xiang Lisa Li, and Noah Goodman. Learning to compress prompts with gist tokens, 2024.
 553 URL <https://arxiv.org/abs/2304.08467>.
- 554
- 555 Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
 556 and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
 557 synthesis, 2023. URL <https://arxiv.org/abs/2203.13474>.
- 558
- 559 Charles Packer, Sarah Wooders, Kevin Lin, Vivian Fang, Shishir G. Patil, Ion Stoica, and Joseph E.
 560 Gonzalez. Memgpt: Towards llms as operating systems, 2024. URL <https://arxiv.org/abs/2310.08560>.
- 561
- 562 Nicholas Pangakis, Samuel Wolken, and Neil Fasching. Automated annotation with generative ai
 563 requires validation, 2023. URL <https://arxiv.org/abs/2306.00176>.
- 564
- 565 Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
 566 evaluation of machine translation. In *Proceedings of the 40th Annual Meeting on Association
 567 for Computational Linguistics*, ACL '02, pp. 311–318, USA, 2002. Association for Computational
 568 Linguistics. doi: 10.3115/1073083.1073135. URL <https://doi.org/10.3115/1073083.1073135>.
- 569
- 570 Jack W. Rae, Anna Potapenko, Siddhant M. Jayakumar, and Timothy P. Lillicrap. Compressive
 571 transformers for long-range sequence modelling, 2019. URL <https://arxiv.org/abs/1911.05507>.
- 572
- 573 Mathieu Ravaut, Aixin Sun, Nancy Chen, and Shafiq Joty. On context utilization in summarization
 574 with large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Pro-
 575 ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
 576 1: Long Papers)*, pp. 2764–2781, Bangkok, Thailand, August 2024. Association for Computa-
 577 tional Linguistics. doi: 10.18653/v1/2024.acl-long.153. URL [https://aclanthology.org/2024.acl-long.153/](https://aclanthology.org/2024.acl-long.153).
- 578
- 579 Robin M. Schmidt. Recurrent neural networks (rnns): A gentle introduction and overview, 2019.
 580 URL <https://arxiv.org/abs/1912.05911>.
- 581
- 582 Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey, 2022.
 583 URL <https://arxiv.org/abs/2009.06732>.
- 584
- 585 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 586 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
 587 Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
 588 Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
 589 Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
 590 Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
 591 Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
 592 Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
 593 Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
 Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
 Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
 Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
 2023. URL <https://arxiv.org/abs/2307.09288>.

- 594 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 595 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL <https://arxiv.org/abs/1706.03762>.
- 596
- 597 Qingyue Wang, Yanhe Fu, Yanan Cao, Shuai Wang, Zhiliang Tian, and Liang Ding. Recursively
 598 summarizing enables long-term dialogue memory in large language models, 2025. URL <https://arxiv.org/abs/2308.15022>.
- 599
- 600
- 601 P.J. Werbos. Backpropagation through time: what it does and how to do it. *Proceedings of the IEEE*,
 602 78(10):1550–1560, 1990. doi: 10.1109/5.58337.
- 603
- 604 David Wingate, Mohammad Shoeybi, and Taylor Sorensen. Prompt compression and contrastive
 605 conditioning for controllability and toxicity reduction in language models, 2022. URL <https://arxiv.org/abs/2210.03162>.
- 606
- 607 Jing Xu, Arthur Szlam, and Jason Weston. Beyond goldfish memory: Long-term open-domain
 608 conversation. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), *Proceed-
 609 ings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1:
 610 Long Papers)*, pp. 5180–5197, Dublin, Ireland, May 2022. Association for Computational Lin-
 611 guistics. doi: 10.18653/v1/2022.acl-long.356. URL <https://aclanthology.org/2022.acl-long.356/>.
- 612
- 613 Zihao Yi, Jiarui Ouyang, Yuwen Liu, Tianhao Liao, Zhe Xu, and Ying Shen. A survey on recent
 614 advances in llm-based multi-turn dialogue systems, 2024. URL <https://arxiv.org/abs/2402.18013>.
- 615
- 616
- 617

A KEY-VALUE CACHING

618 A standard engineering mitigation for inference is *key-value (KV) caching*, which stores the hidden
 619 states of past tokens layer-by-layer so that only the newest tokens are processed afresh (Tay et al.,
 620 2022). Caching indeed reduces *compute* for *unchanged* prefixes, but it introduces several limitations
 621 that are critical in an interactive setting. First, any user edit invalidates the cache from the edit point
 622 onward, which forces a full recomputation of attention. Second, KV caching trades FLOPs for
 623 memory: the cache footprint grows linearly with both dialogue length and layer count, quickly
 624 exhausting GPU memory when thousands of sessions run concurrently. Third, caching leaves the
 625 *attention distribution* unchanged, so the model still under-attends to mid-history tokens, a known
 626 positional-bias issue that harms long-range coherence.

627

B IMPLEMENTATION DETAILS

628 We implement our models with the Llama2-Chat-7B backbone by adapting the ICAE (Ge et al.,
 629 2024) checkpoint to the multi-turn dialogue setting. This provides a strong initialization for
 630 compression and allows us to focus on the effect of incremental, thread-aware memory. For practicality
 631 and to isolate the contribution of the memory mechanism, we freeze all weights of the base model
 632 and update only the LoRA-adapted compressor and the learnable compression tokens during
 633 training. All training and inference were conducted using an NVIDIA A100 80GB GPU. Fine-tuning
 634 required around 17 GPU hours on a single A100 GPU. Across all experiments employing the ICAE
 635 checkpoint, we use a compression token length of 128, a retrieval threshold $\tau = 0.8$, and cosine
 636 similarity with exponential decay (decay rate $\alpha = 0.05$). For training, we use a batch size of 1
 637 while inference is performed with batch sizes of 8 and 1 for the MSC and REALTALK datasets,
 638 respectively. We finetune our model for 2 epochs, using AdamW with a learning rate of 2×10^{-4} .

639

C ALTERNATIVE MEMORY UPDATE STRATEGIES

640 We implemented two alternatives to the simple replacement-based write-back: (i) Exponential Mov-
 641 ing Average (EMA) updates with decay factors $\beta \in \{0.3, 0.5, 0.7\}$, using $\beta \cdot \text{old_memory} + (1 -$
 642 $\beta) \cdot \text{new_memory}$, and (ii) a 2-layer gating network that learns to interpolate between the old and
 643 new memory states. As shown in Table 4, EMA brings at best marginal gains only on the R-1 metric

and often yields noticeably worse performance on other metrics, while the gated variant provides only small improvements on some ROUGE scores at the cost of additional complexity. Given this trade-off, we adopt the replacement policy as the simpler and more robust choice.

Table 4: **Comparison of memory update strategies on MSC-session 5.** Performance as a function of the selection threshold τ . We report PPL \downarrow , BLEU \uparrow , ROUGE-L \uparrow , ROUGE-1 \uparrow , and ROUGE-2 \uparrow .

Strategy	PPL \downarrow	BLEU \uparrow	R-L \uparrow	R-1 \uparrow	R-2 \uparrow
Replacement	8.427	0.030	0.160	0.206	0.040
EMA ($\beta = 0.3$)	8.442	0.027	0.157	0.208	0.035
EMA ($\beta = 0.5$)	8.836	0.027	0.155	0.203	0.036
EMA ($\beta = 0.7$)	9.929	0.021	0.145	0.186	0.030
Gate	8.503	0.026	0.162	0.209	0.037

D LIMITATIONS OF FULL BPTT AND FIXED-WINDOW TBPTT FOR DIALOGUE MEMORY

Under full BPTT, the gradient with respect to a memory slot Z_s aggregates contributions from all future turns where that slot is actually consulted ($Z_s \in R_t$):

$$\frac{\partial L}{\partial Z_s} = \sum_{t=1}^T \mathbf{1}[Z_s \in R_t] \frac{\partial \ell_t}{\partial Z_s}. \quad (9)$$

However, implementing full BPTT requires keeping the computation graph for all T turns in memory, so the activation cost grows linearly with dialogue length. For long conversations this becomes prohibitive in practice and quickly leads to out-of-memory (OOM) errors.

In standard fixed-window TBPTT with horizon K , at each turn t all slots older than K steps are detached from the computation graph before retrieval. Concretely, retrieval reads

$$\tilde{Z}_s = \begin{cases} \text{stopgrad}(Z_s), & s \leq t - K, \\ Z_s, & s > t - K, \end{cases} \quad R_t \subset \{\tilde{Z}_s\}_{s < t}. \quad (10)$$

By the chain rule, for any $s \leq t - K$,

$$\frac{\partial \ell_t}{\partial Z_s} = \frac{\partial \ell_t}{\partial \tilde{Z}_s} \frac{\partial \tilde{Z}_s}{\partial Z_s} = \frac{\partial \ell_t}{\partial \tilde{Z}_s} \cdot 0 = 0, \quad (11)$$

even if $Z_s \in R_t$ (i.e., the slot is selected and used at turn t). The truncated gradient therefore becomes

$$\frac{\partial L}{\partial Z_s} \Big|_{\text{TBPTT}} = \sum_{t=1}^T \mathbf{1}[Z_s \in R_t] \mathbf{1}[t - s < K] \frac{\partial \ell_t}{\partial Z_s}, \quad (12)$$

so any selected memory state Z_s that is retrieved only after it falls outside the K -step window receives no gradient signal from those distant uses.

E DATASET CHARACTERIZATION AND ANNOTATION RELIABILITY

We perform additional analysis to quantify (i) how often reference responses depend on distant context in MSC/REALTALK and (ii) how frequently target responses are generic, along with human verification of the LLM judge.

E.1 DO MSC / REALTALK REQUIRE DISTANT CONTEXT?

LLM-based annotation. We use GPT-4o to label whether a *candidate past utterance* contains **necessary** or **materially helpful** information for producing the **reference assistant response** to a target query. To avoid degraded judge reliability on very long prompts, we adopt a pairwise protocol: each instance consists of (i) one historical utterance and (ii) the final-turn context (latest user query

+ reference response), and the model outputs a binary label (helpful / not helpful).¹ We then aggregate utterance-level labels into **conversation-level** statistics (e.g., whether any supporting utterance occurs ≥ 10 turns back).

LLM-based annotation (genericity). Separately, we label each reference response as **generic** vs. **not-generic**.² A response is *generic* if it can be plausibly reused across many different queries with minimal editing; otherwise it is *not-generic*.

Sampling. We sample 500 and 320 conversations from MSC and REALTALK, respectively, restricting to dialogues with ≥ 11 turns so that “ ≥ 10 turns back” is well-defined. These sample sizes provide stable estimation of conversation-level rates at reasonable cost (worst-case 95% margin $\approx \pm 4\text{--}6$ percentage points), consistent with cost-aware yet reliable LLM annotation practice (Pangakis et al., 2023).

Results. As shown in Table 5, long-range dependencies are common in both datasets under these measures, while generic targets are rare. This suggests that strong performance on MSC/REALTALK is unlikely to be explained solely by short-range cues or templated responses.

Table 5: Dataset characterization via GPT-4o annotation. n = sampled dialogues. Evid. ≥ 10 : fraction of *supporting utterances* occurring ≥ 10 turns before the final response. Farthest ≥ 10 : fraction of dialogues whose most distant supporting utterance is ≥ 10 turns back. Generic: fraction of target responses labeled generic.

Dataset	n	Evid. ≥ 10 (%)	Farthest ≥ 10 (%)	Generic (%)
REALTALK	320	66.94	40.31	6.25
MSC	500	44.92	70.80	2.00

E.2 HUMAN VERIFICATION OF JUDGE RELIABILITY

To validate the GPT-4o labels, we run a human verification study with three annotators on 50 randomly sampled items per task and dataset, following the recommended LLM-as-a-judge verification setting in (Calderon et al., 2025). We provide the human verification guidelines and summarize the verification results below.

E.2.1 HUMAN VERIFICATION GUIDELINES

A. Helpful-turn verification (utterance-level). You are shown: (1) the latest user query, (2) the final assistant reference response, (3) one past utterance from the same dialogue, and (4) the LLM label: helpful / not helpful.

- **helpful**: the past utterance contains information that is *necessary or clearly useful* to produce the final assistant response to the latest query (e.g., key facts, entities, constraints, preferences, or clarifications that the response depends on).
- **not helpful**: removing the past utterance would not materially change a reasonable final response (e.g., irrelevant details, small talk).

Mark **Correct = 1** if the LLM’s helpful/not helpful label matches your judgment under the above definition; else **Correct = 0**.

¹**Instruction 1 (utterance relevance).** You are given the latest user query and the assistant’s response of a conversation along with an utterance from the past conversation. Your task is to determine if the utterance is helpful to generating the assistant’s response to the latest user query. If it is helpful, respond with **helpful**; otherwise, respond with **not helpful**.

²**Instruction 2 (generic response).** You are given the latest user query and the assistant’s final response of a conversation. Decide whether the assistant’s final response is generic. A response is *generic* if it could be pasted into many different conversations/questions with minimal editing (e.g., greetings/farewells/small talk). Otherwise *not generic*. Output only generic or not generic.

756 **B. Generic-response verification (final-response-level).** You are shown: (1) the latest user query,
 757 (2) the final assistant reference response, and (3) the LLM label: generic / not generic.
 758

- 759 • **generic:** the response could be pasted into many different conversations/queries with minimal
 760 edits (e.g., greetings/small talk, vague encouragement, “it depends” without specifics, generic
 761 steps not tailored to the query).
- 762 • **not generic:** the response provides concrete details, constraints, specific recommenda-
 763 tions/decisions.
- 764

765 Mark **Correct = 1** if the LLM’s generic/not generic label matches your judgment under the
 766 above definition; else **Correct = 0**.

767

768 E.2.2 HUMAN VERIFICATION RESULTS

769

770 Table 6 shows the human verification results. GPT-4o labels match human judgments with high
 771 accuracy (about 90–96% accuracy) and strong inter-annotator consistency, supporting the reliability
 772 of our LLM-based labels for dataset-level characterization.

773

774 Table 6: Human verification of GPT-4o annotations (three annotators; 50 items per task and dataset).
 775 ACC is accuracy against the human majority vote. Agree is observed inter-annotator agreement.
 776 Fleiss’ κ measures agreement beyond chance.

777

779 Task	780 MSC			781 REALTALK		
	780 ACC (%)	781 Agree	781 Fleiss’ κ	781 ACC (%)	781 Agree	781 Fleiss’ κ
780 Helpful-turn label	92.000	0.920	0.527	90.000	0.987	0.921
781 Generic-response label	95.918	0.973	0.652	96.000	0.973	0.653

785 F ANALYSIS OF INCREMENTAL ICAE FAILURE MODES

786

787 The incremental ICAE variant fails for structural reasons (latent drift arising from repeatedly ap-
 788 plying a one-shot objective) whereas ICAE (append) that simply accumulates compressed context
 789 and ICAE (one-shot) that re-encodes the full available context each turn work at short and medium
 790 lengths but run out of memory on very long conversations.

791 ICAE is trained with a one-shot compression objective: it learns to encode a contiguous context
 792 span into a latent in a single step. In the incremental variant, however, we repeatedly apply this
 793 compressor to its own compressed outputs as the dialogue progresses. This leads to latent drift
 794 and error compounding, because the model is never trained to use or update *already-compressed*
 795 contexts. Empirically, the response quality degrades rapidly across turns, as shown in Figure 1a.

796 By contrast, ICAE (append) and ICAE (one-shot) perform reasonably well at short and medium
 797 lengths, but eventually run out of memory on very long conversations as shown in Table 11 and
 798 Figure 3. In other words, ICAE (append) and ICAE (one-shot) are effective but not scalable, whereas
 799 the naive incremental application is scalable but unstable. This mismatch is exactly what motivates
 800 our design: C-DIC modifies the architecture and training scheme to support *incremental* use of
 801 compression while mitigating the catastrophic degradation observed in incremental ICAE.

802

803 G MULTI-SEED ROBUSTNESS AND SIGNIFICANCE TESTS

804

805 To assess robustness to random initialization and stochastic training effects, we repeat all MSC and
 806 REALTALK experiments with three random seeds (42/43/44). We report mean \pm std across seeds
 807 for PPL, BLEU, and ROUGE-1/2/L. For REALTALK, results are reported in the *per-session* setting
 808 due to GPU memory limits of certain compression baselines under the full long-context setup (see
 809 Figure 3 and Table 11).

810 G.1 MEAN \pm STD ACROSS SEEDS
811812 Tables 7 and 8 summarize mean \pm std over three runs on MSC and REALTALK, respectively. Across
813 three independent runs, our method exhibits low run-to-run variance (e.g., PPL std \approx 0.04 on both
814 datasets) while consistently outperforming the strongest baseline ICAE(one-shot) across all reported
815 metrics.816
817 Table 7: MSC results (mean \pm std over seeds 42/43/44).
818819

Models	PPL \downarrow	BLEU \uparrow	R-L \uparrow	R-1 \uparrow	R-2 \uparrow
AutoCompressor	9.109 \pm 0.273	0.014 \pm 0.002	0.121 \pm 0.002	0.145 \pm 0.003	0.021 \pm 0.001
ICAE (incremental)	561.702 \pm 347.397	0.007 \pm 0.001	0.063 \pm 0.006	0.075 \pm 0.008	0.005 \pm 0.001
ICAE (one-shot)	29.188 \pm 1.371	0.017 \pm 0.000	0.132 \pm 0.001	0.188 \pm 0.002	0.027 \pm 0.001
Ours	8.385\pm0.042	0.025\pm0.002	0.159\pm0.001	0.202\pm0.003	0.037\pm0.000

825 Table 8: REALTALK results (mean \pm std over seeds 42/43/44). Results are in the *per-session* setting.
826827

Models	PPL \downarrow	BLEU \uparrow	R-L \uparrow	R-1 \uparrow	R-2 \uparrow
AutoCompressor	12.283 \pm 0.352	0.020 \pm 0.001	0.090 \pm 0.030	0.138 \pm 0.003	0.020 \pm 0.001
ICAE (incremental)	135.827 \pm 39.254	0.019 \pm 0.001	0.071 \pm 0.003	0.089 \pm 0.003	0.013 \pm 0.001
ICAE (one-shot)	25.115 \pm 3.388	0.025 \pm 0.001	0.113 \pm 0.005	0.159 \pm 0.006	0.024 \pm 0.002
Ours	9.764\pm0.043	0.034\pm0.001	0.136\pm0.002	0.177\pm0.002	0.032\pm0.001

834 G.2 SEED-LEVEL SIGNIFICANCE TESTS
835836 As additional evidence that gains are not driven by a favorable seed, we compute p-values using
837 a paired t-test on the *seed-wise differences* between our method and ICAE(one-shot) (three paired
838 observations). Table 9 reports the resulting p-values. For PPL, we apply the test on log(PPL) to
839 reflect the likelihood (average NLL) scale. Against ICAE(one-shot), improvements are statistically
840 significant on both datasets (all $p < 0.05$).841
842 Table 9: Paired t-test p-values for **Ours** vs. ICAE(one-shot) across three seeds (42/43/44).
843844

Dataset	log(PPL)	BLEU	R-L	R-1	R-2
MSC	2.8×10^{-4}	0.010	9.6×10^{-5}	0.003	5.6×10^{-4}
REALTALK	0.004	0.002	0.013	0.027	0.024

849 H CLOSED-LOOP EVALUATION
850851 This section reports additional results under *closed-loop* generation, where the assistant’s past turns
852 in the context are replaced by the model’s own previously generated responses (user turns are
853 kept fixed from the dataset). This evaluation explicitly stress-tests error accumulation under self-
854 conditioned history.855 Table 10 evaluates all methods on REALTALK in the *per-session* setting. We use per-session to keep
856 methods comparable and largely runnable: several compression baselines exceed GPU memory
857 under the full long-context (*all-sessions*) configuration, and ICAE(append) is OOM even in per-
858 session (reported explicitly).859 As shown in Table 10, our method achieves the best overall performance among runnable baselines
860 across all reported metrics. Compared with the teacher-forcing results in Table 1, scores decrease
861 slightly, which is expected under closed-loop generation due to compounding errors and occasional
862 user–assistant misalignment on offline corpora. Nevertheless, the degradation for our method is
863 modest, providing evidence that C-DIC remains stable when conditioning on its own generations.

864
865
866 Table 10: Closed-loop results on REALTALK (per-session).
867
868
869
870
871
872
873

Models	PPL \downarrow	BLEU \uparrow	R-L \uparrow	R-1 \uparrow	R-2 \uparrow
Full prompting	29.666	0.020	0.106	0.150	0.017
Truncation	28.174	0.021	0.109	0.156	0.019
Summarization	27.977	0.022	0.110	0.162	0.021
In-Session RAG	26.789	0.020	0.103	0.149	0.015
AutoCompressor	13.111	0.020	0.111	0.144	0.021
ICAE (incremental)	124.024	0.020	0.068	0.088	0.012
ICAE (one-shot)	17.364	0.024	0.109	0.152	0.023
ICAE (append)			<i>Out of memory</i>		
Ours	9.754	0.034	0.133	0.173	0.031

874
875
876 I DETAILED LATENCY COMPONENTS
877878
879
880
881
882
883 Table 11 decomposes end-to-end latency on REALTALK-*all sessions* as the maximum number of
preserved turns increases ($\{10, 20, 30, 40, 428\}$). We report *Comp. Time* (time spent on context
preparation such as compression/selection) and *Gen. Time* (model runtime to produce the response);
Total Time is their sum. All values are in seconds. *Out of memory* indicates a method failed at that
context length.884
885
886
887
888 Table 11: **Latency components depending on the max number of turns.** Compression (**Comp.**
Time) and generation (**Gen. Time**) times for ICAE (one-shot), ICAE (append), and C-DIC
(Ours) on REALTALK at maximum turns $\{10, 20, 30, 40, 428\}$. The total latency equals **Comp.**
Time + Gen. Time All values are in seconds. *Out of memory* indicates the baseline failed to run at
that maximum turn due to the context length.

Models	Max # of Turns	Comp. Time	Gen. Time	Total Time
Full prompting		0.00	3.53	3.53
ICAE (one-shot)	10	0.26	3.97	4.24
ICAE (append)		0.11	3.53	3.64
Ours		0.05	3.16	3.21
Full prompting		0.00	4.81	4.81
ICAE (one-shot)	20		<i>Out of memory</i>	
ICAE (append)		0.27	3.97	4.24
Ours		0.05	3.28	3.33
Full prompting		0.00	7.66	7.66
ICAE (one-shot)	30		<i>Out of memory</i>	
ICAE (append)			<i>Out of memory</i>	
Ours		0.05	3.21	3.26
Full prompting			<i>Out of memory</i>	
ICAE (one-shot)	40		<i>Out of memory</i>	
ICAE (append)			<i>Out of memory</i>	
Ours		0.05	3.34	3.40
Full prompting			<i>Out of memory</i>	
ICAE (one-shot)	428		<i>Out of memory</i>	
ICAE (append)			<i>Out of memory</i>	
Ours		0.06	3.30	3.36

908
909
910 J ABLATION ON RETRIEVAL THRESHOLD
911912
913
914
915
916
917 In C-DIC, the retrieval threshold τ is not directly optimized but interacts with **learned** representations:
during training, the encoder and memory updater adapt such that cosine similarities between
the query and relevant memory states evolve in a way that is compatible with a fixed decision bound-
ary τ . As shown in Table 12, we empirically find that performance is stable for a broad range of
values (roughly 0.2–0.8); only very low thresholds (which make almost all states “similar”) or very
high thresholds (which make almost no states “similar”) lead to noticeable degradation, because the
model either over-updates or under-utilizes memory.

918
 919 Table 12: **Performance as a function of the selection threshold τ .** Performance as a function of
 920 the selection threshold τ . We report PPL, BLEU, ROUGE-L, ROUGE-1, and ROUGE-2, evaluated
 921 on MSC-session 5 at the final dialogue turn to assess long-term generation quality.

Threshold	PPL \downarrow	BLEU \uparrow	R-L \uparrow	R-1 \uparrow	R-2 \uparrow
0.1	9.593	0.022	0.150	0.193	0.033
0.2	8.351	0.025	0.155	0.203	0.034
0.3	8.334	0.027	0.162	0.212	0.041
0.4	8.346	0.028	0.159	0.204	0.039
0.5	8.362	0.026	0.156	0.203	0.036
0.6	8.325	0.028	0.157	0.208	0.037
0.7	8.383	0.027	0.156	0.207	0.036
0.8	8.427	0.030	0.160	0.206	0.040
0.9	12.202	0.022	0.139	0.190	0.027

K EFFECT OF COMPRESSION TOKEN LENGTH

This work studies *incremental* compression for multi-turn dialogue by extending ICAE (Ge et al., 2024), rather than re-optimizing the underlying compressor for static-document compression. Accordingly, unless otherwise stated, our main experiments use the publicly released ICAE checkpoint, which provides a single compression length (128 tokens).

To examine the impact of compression length in the multi-turn setting, we train ICAE-style compressors with 64, 128, and 256 tokens on MSC (Xu et al., 2022) using the same ICAE training objectives (one-shot continuation and auto-encoding). We then fine-tune the dialogue model with our proposed method while varying only the compression token budget. Table 13 reports results on MSC under the 5-session evaluation setting.

Table 13: **Comparison of compression token lengths on MSC-session 5.** Performance as a function of the selection threshold τ . We report PPL \downarrow , BLEU \uparrow , ROUGE-L \uparrow , ROUGE-1 \uparrow , and ROUGE-2 \uparrow .

Comp. Token Length	PPL \downarrow	BLEU \uparrow	R-L \uparrow	R-1 \uparrow	R-2 \uparrow
64	8.604	0.023	0.157	0.201	0.036
128	8.582	0.023	0.155	0.200	0.034
256	8.646	0.022	0.160	0.205	0.037

These results indicate that performance is relatively stable across 64–256 tokens, with differences in PPL and generation metrics being modest and without a clear monotonic trend. This suggests that C-DIC is not overly sensitive to the exact compression capacity within this range.

L LONGMEMEVAL: LONG-CONTEXT QA EVALUATION

This appendix reports an additional evaluation on LONGMEMEVAL_S, a benchmark designed to assess long-term memory and question answering in chat assistants. We evaluate in a **zero-shot** setting using the same LLM backbone across all methods (Llama-2-Chat-7B). We compare (i) full prompting and (ii) latent-compression baselines (ICAE variants), against (iii) our CDIC-based approach. Following the LONGMEMEVAL protocol, we use **GPT-4o** as the automatic judge to determine answer correctness and report Accuracy.

Table 14 shows that CDIC yields the best accuracy among the compared methods, improving over full prompting while using substantially fewer input tokens. These results provide evidence that CDIC improves QA performance under long-context settings, complementing our dialogue-generation results on MSC and REALTALK.

M REALTALK: TWO-SESSION EVALUATION

The REALTALK (Lee et al., 2025) dataset contains substantially longer multi-session dialogues than MSC (Xu et al., 2022). In Table 1, we therefore report results *per session* to avoid out of

972 Table 14: **LongMemEval results (zero-shot).** All methods use the same backbone (LLaMA2-7B).
 973 Accuracy is computed by a GPT-4o judge following the LONGMEMEVAL evaluation protocol.
 974

975	Models	Accuracy↑
976	Full prompting	0.086
977	ICAE (incremental)	0.010
978	ICAE (one-shot)	0.004
979	Ours	0.116

980
 981 memory issue. For completeness, Table 15 reports performance on the subset of REALTALK
 982 conversations with **two sessions**. We follow the same evaluation protocol and hyperparameters as
 983 in the main results. Note that our model shows consistent performance without the session limit in
 984 Figure 4.
 985

986 Table 15: **REALTALK two-session results.** Test performance on conversations with up to two
 987 sessions. Lower is better for PPL; higher is better for BLEU/ROUGE.
 988

989	Models	PPL ↓	BLEU ↑	R-L ↑	R-1 ↑	R-2 ↑
990	Full prompting	27.225	0.022	0.109	0.159	0.020
991	Truncation	21.865	0.026	0.109	0.174	0.028
992	Summarization	26.120	0.023	0.118	0.172	0.025
993	In-Session RAG	27.435	0.019	0.100	0.145	0.014
994	AutoCompressor	11.150	0.020	0.112	0.146	0.022
995	ICAE (incremental)	218.103	0.017	0.059	0.073	0.007
996	ICAE (one-shot)	<i>Out of memory</i>				
997	ICAE (append)	<i>Out of memory</i>				
998	Ours	9.870	0.034	0.132	0.175	0.029

1000 N ADDITIONAL RESULTS ON MULTI-SESSION CHAT (MSC)

1001 Table 16 reports a detailed breakdown of model quality setting across different session lengths (2–5)
 1002 as well as the aggregate over all sessions. We evaluate generation with perplexity (PPL; lower is
 1003 better) and text-overlap metrics (BLEU, ROUGE-L/1/2; higher is better).
 1004

1005 O QUALITATIVE EXAMPLES

1006 We present one of the qualitative examples demonstrating C-DIC’s effectiveness in context coherence
 1007 in a long dialogue setting in Figure 7 and 8.
 1008

1026
1027
1028
1029
1030
1031

1032 Table 16: Comparison across MSC sessions. Lower is better for PPL; higher is better for others.
1033

1034

Models	Session	PPL ↓	BLEU ↑	R-L ↑	R-1 ↑	R-2 ↑
Full prompting	AVG	41.245	0.008	0.110	0.157	0.015
Truncation		30.890	0.012	0.128	0.184	0.024
Summarization		41.849	0.013	0.128	0.172	0.024
In-Session RAG		35.530	0.008	0.110	0.148	0.014
AutoCompressor		9.285	0.012	0.121	0.174	0.021
ICAE (incremental)		513.774	0.006	0.057	0.069	0.005
ICAE (one-shot)		27.656	0.017	0.133	0.190	0.027
Ours		8.431	0.023	0.160	0.205	0.037
Full prompting	5	40.801	0.012	0.113	0.165	0.016
Truncation		26.252	0.014	0.136	0.198	0.028
Summarization		38.9759	0.0148	0.129	0.1881	0.024
In-Session RAG		33.931	0.009	0.112	0.163	0.014
AutoCompressor		9.364	0.012	0.123	0.151	0.020
ICAE (incremental)		442.062	0.006	0.061	0.074	0.004
ICAE (one-shot)		30.312	0.016	0.134	0.196	0.027
Ours		8.553	0.024	0.160	0.211	0.038
Full prompting	4	40.621	0.009	0.109	0.157	0.014
Truncation		26.427	0.013	0.133	0.188	0.024
Summarization		40.162	0.012	0.130	0.190	0.024
In-Session RAG		33.318	0.008	0.110	0.161	0.014
AutoCompressor		9.222	0.012	0.129	0.150	0.020
ICAE (incremental)		454.005	0.006	0.061	0.074	0.004
ICAE (one-shot)		29.261	0.016	0.133	0.194	0.028
Ours		8.418	0.022	0.158	0.205	0.037
Full prompting	3	40.221	0.009	0.110	0.157	0.014
Trunc.-5		27.678	0.014	0.127	0.192	0.020
Summarization		42.804	0.012	0.127	0.184	0.024
In-Session RAG		35.751	0.008	0.110	0.158	0.018
AutoCompressor		9.222	0.012	0.123	0.150	0.020
ICAE (incremental)		505.368	0.006	0.058	0.070	0.004
ICAE (one-shot)		26.971	0.018	0.137	0.195	0.029
Ours		8.350	0.023	0.162	0.206	0.037
Full prompting	2	43.323	0.003	0.109	0.153	0.013
Truncation		29.414	0.013	0.133	0.188	0.023
Summarization		45.456	0.012	0.126	0.183	0.024
In-Session RAG		39.120	0.008	0.108	0.148	0.017
AutoCompressor		9.333	0.011	0.110	0.149	0.017
ICAE (incremental)		653.668	0.006	0.058	0.070	0.004
ICAE (one-shot)		24.081	0.018	0.130	0.174	0.025
Ours		8.404	0.022	0.159	0.198	0.037

1074
1075
1076
1077
1078
1079

1080
1081
1082

Figure 5: **Qualitative example #1 (LongMemEval)**. Multi-session dialogue in chronological order (previous sessions → current session).

1083
1084

Dialogue Snippet

1085
1086
1087
Session 1~11

... (56 turns) ...

1088
1089
Session 12

... (1 turn) ...

1090
1091
1092
1093
1094
Turn #58

S1: I'm also thinking of exploring other platforms like Instagram and Twitter to promote my writing services. Do you have any tips on how to get started with those platforms, especially since I don't have much experience with them? By the way, speaking of first purchases, I remember getting a **10% discount** on my first purchase from that new clothing brand last month, which was nice.

1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122

S2: Great mention about the discount! Who doesn't love a good deal, right? Now, let's dive into getting started with Instagram and Twitter to promote your writing services. Both platforms have unique features and audiences, so I'll provide you with some tips to help you get started: **Instagram:** 1. **Visual content is key:** Instagram is all about visuals, so focus on creating high-quality images, graphics, or videos that showcase your writing skills, books, or writing process. 2. **Use hashtags strategically:** Research and use relevant hashtags in your captions to increase visibility. You can use a mix of niche-specific hashtags (e.g., #writingcommunity, #freelancewriting) and broader hashtags (e.g., #writerslife, #booklovers). 3. **Create an Instagram Stories strategy:** Share behind-the-scenes content, sneak peeks, or Q&A sessions to engage with your audience. You can also use the "swipe-up" feature to drive traffic to your website or other social media profiles. 4. **Leverage Instagram's features:** Use IGTV for longer-form content, Reels for short videos, and IG Live for real-time engagement. 5. **Collaborate with other writers or influencers:** Partner with fellow writers or influencers in your niche to reach new audiences and create content that appeals to a broader range of people. 6. **Post consistently:** Aim for at least 3-5 posts per week, but make sure you don't sacrifice quality for quantity. 7. **Engage with your audience:** Respond to comments, answer questions, and use Instagram's features like polls and quizzes to encourage interaction. **Twitter:** 1. **Keep it concise:** Twitter is all about short, bite-sized content. Keep your tweets concise, informative, and engaging. 2. **Use hashtags:** Research and use relevant hashtags in your tweets to increase visibility. You can use a mix of niche-specific hashtags (e.g., #writingtips, #freelancewriting) and broader hashtags (e.g., #writerslife, #books). 3. **Tweet regularly:** Aim for at least 5-10 tweets per week, but make sure you don't overwhelm your audience. 4. **Engage with others:** Respond to tweets, answer questions, and participate in Twitter Chats to build relationships with other writers, influencers, and potential clients. 5. **Share a mix of content:** Share your own content, retweet relevant articles or tweets, and participate in Twitter polls to keep your audience engaged. 6. **Use Twitter Ads:** Consider running targeted ads to increase your reach and engagement, especially if you're just starting out. 7. **Optimize your profile:** Make sure your Twitter profile is complete, including a profile picture, header image, and bio that clearly states your writing services and expertise. **Additional Tips:** 1. **Cross-promote:** Share your Instagram and Twitter content on your other social media platforms, like Facebook and LinkedIn, to reach a broader audience. 2. **Be authentic:** Be yourself, and let your personality shine through on both platforms. This will help you build a loyal following and attract potential clients who resonate with your voice and style. 3. **Monitor and adjust:** Keep an eye on your analytics and adjust your strategy based on what's working and what's not. Remember, building a presence on Instagram and Twitter takes time and effort. Focus on creating high-quality content, engaging with your audience, and promoting your writing services consistently. Good luck!

... (4 turn) ...

1123
1124
1125
Session 13~48

... (187 turns) ...

Question: What was the discount I got on my first purchase from the new clothing brand?

Full prompting: "I'm just an AI, I don't have access to personal information or purchase history, ..."

1126
1127
1128
1129

ICAE (incremental): "I am really excited to see what kind of discount you got given on your first purchase from the new clothing brand!"

1130
1131

ICAE (one-shot): "southeast asian cultures: southeast asian cultures have a rich history of textile and print design, ..."

1132
1133

Ours: "You got **10 %** off your first purchase!"

Ground-truth: "10 %"

1134
 1135 Figure 6: **Qualitative example #2 (LongMemEval).** Multi-session dialogue in chronological order
 1136 (previous sessions → current session).

1137 **Dialogue Snippet**

1138 **Session 1~4**

1140 ... (14 turns) ...

1141 **Session 5**

1143 ... (1 turn) ...

1144 **Turn #16**

1145 **S1:** I love these ideas! I'm definitely going to consider the Global Street Food theme. By the way, I've also
 1146 had a great experience with a BBQ theme, like **the one we had at Mike's place two weeks ago**, where we
 1147 watched a football game together. Do you have any BBQ recipe ideas that would fit well with the Global
 1148 Street Food theme?

1149 **S2:** A BBQ theme can be a fantastic way to incorporate grilled and smoky flavors into your Global Street
 1150 Food potluck. Here are some BBQ-inspired recipes ... *(continued)*

1151 **S1:** That's great! I think I'll have a mix of grilled and non-grilled dishes to cater to different tastes. By
 1152 the way, I've also had experience with dinner parties that are more low-key, like **the ones we had at Alex's**
 1153 **place yesterday**, where we had a potluck and tried out different cuisines from around the world, and **also at**
 1154 **Mike's place**, where we had a BBQ and watched a football game together. Do you have any tips on how to
 1155 make the party more interactive and engaging for guests?

1156 **S2:** You're referring to creating a more immersive and engaging experience for your guests. ... *(continued)*

1157 ... (2 turns) ...

1158 **Session 6~8**

1159 ... (8 turns) ...

1160 **Session 9**

1162 **Turn #28**

1163 **S1:** I'm looking for some Italian recipe ideas for a dinner party I'm hosting soon. **I attended a lovely**
 1164 **Italian feast at Sarah's place last week**, and it inspired me to try out some new dishes. Do you have any
 1165 recommendations for a beginner like me?

1166 **S2:** Buon appetito! I'm thrilled to hear that Sarah's Italian feast inspired you to host your own dinner party.
 1167 Italian cuisine is incredibly diverse and rich, so I'd be happy to help you with some recipe ideas perfect for a
 1168 beginner. Here are some classic and delicious Italian dishes ... *(continued)*

1169 **S1:** That's a great list of recipes! I think I'll start with the Spaghetti Aglio e Olio and Chicken Parmesan.
 1170 I've always loved the combination of garlic and olive oil. By the way, speaking of dinner parties, **I've had a**
 1171 **lovely experience at Sarah's place recently**, where we played board games until late into the night after the
 1172 Italian feast. Do you have any recommendations for board games that would be a good fit for a dinner party?

1173 **S2:** Spaghetti Aglio e Olio and Chicken Parmesan are both delicious and crowd-pleasing options. Now,
 1174 about board games for a dinner party ... *(continued)*

1175 ... (4 turns) ...

1176 **Session 10~44**

1177 ... (190 turns) ...

1178 **Question:** How many dinner parties have I attended in the past month?

1179 **Full prompting:** "I'm just an AI, I don't have access to your personal information or calendar, so I'm unable
 1180 to accurately answer your question. However, I can suggest that you check your calendar or contact the hosts
 1181 of any dinner parties you may have attended in the past month ..."

1182 **ICAE (incremental):** "The number of the month? Is that 30! And if you're a math teacher you'll have 30
 1183 students!"

1184 **ICAE (one-shot):** "Reduce, Reuse, Recycle: Implement the 3Rs in your daily life by reducing your consump-
 1185 tion, ..."

1186 **Ours:** "You've attended **3 dinner parties** in the past month."

1187 **Ground-truth:** "Three"

1188
1189
1190
1191
1192
1193

1194 Figure 7: **Qualitative example (MSC - session 5).** Multi-session dialogue in chronological order
1195 (previous sessions → current session).

1196

1197 **Dialogue (prev. sessions → current session)**

1198 **Session 1**

1199 S1: Hi, do you like movies? I really do.
1200 S2: Omgosh, I love movies!
1201 S1: Nice, we have something in common. How do you feel about pizza?
1202 S2: I love pizza. But I love cooking healthy mostly.
1203 S1: Oh, I try, but can't resist pizza and good burgers sometimes....
1204 S2: Lol just because I cook healthy doesn't mean I do not splurge haha.
1205 S1: Good to hear. What do you do? I only work part time now.
1206 S2: I am a mom so I mainly watch my kiddos all day at the moment lol.
1207 S1: That's a busy job. Mine is at a warehouse, that's a busy place, too.
1208 S2: Oh I am sure that is a lot of work!
1209 S1: Yeah, that's why I can only handle part time. I need time for cruising...lol.
1210 S2: I love cruising. I am living in California right now, great place to cruise.

1211

Session 2

1212 S1: My kids really wanted pizza so I got to have a bit of a cheat day.
1213 S2: Oh I love pizza too! What's your favorite toppings?
1214 S1: Anything with meat! ... And extra onions ... How about you?
1215 S2: I love meat pizzas ... chicken, ham, sweetcorn, pineapple.
1216 S1: I LOVE stuffed crust, but I order without to watch my weight.
1217 S2: Same here ... guilty pleasure is takeaway with a movie.
1218 S1: What kinds of movies do you watch together?
1219 S2: Disney; the kids' favorite is Moana.
1220 S1: I prefer comedy, can't wait to see Frozen!
1221 S2: We switched to Moana. I'd love to watch horror.
1222 S1: I had nightmares from Gremlins and Ghoulies as a kid.
1223 S2: Jaws did that to me!

1224

Session 3

1225 S1: Great trailer for a horror movie—want to watch it with me?
1226 S2: Yes! And let's sneak in a pepperoni, sausage, meatball pizza.
1227 S1: No kids, grown-up movie and pizza—perfect!
1228 S2: Add cold beer; need me to bring anything?
1229 S1: Chocolate bars. Any movie prefs?
1230 S2: Avoid slasher if possible.
1231 S1: How about "A Quiet Place 2"?

1232

S2: Sounds good. Then a comedy like *Horrible Bosses*.
1233 S1: Maybe some healthy snacks too.
1234 S2: Thumbs down—let's do cotton candy and bourbon!
1235 S1: I'll bring Woodford Reserve.
1236 S2: I have Blantons from a Buffalo Trace visit!

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

Figure 8: **Qualitative example (continued).** Continuation of the dialogue and model outputs to the final question.

1252

Dialogue (continued)

1253

Session 4

1254

S2: Was the movie scary enough? Recovered from bourbon?

1255

S1: Still having nightmares; could've had more bourbon.

1256

S2: There's never enough. **I'm recovering from injuring myself with pizza!**

1257

S1: Oh no—did you cut yourself slicing it?

1258

S2: Kids distracted me; missed a bone in the chicken and sliced my throat when I swallowed.

1259

S1: You're joking?! Will that put you off chicken?

1260

S2: No, I'll still put chicken on pizza, but my voice sounds like Freddy Kruger.

1261

S1: LOL. Entertaining bedtime stories for the kids—NOT!

1262

S2: They're scared but well behaved—it was almost worth it.

1263

S1: Now that you know scary voices help, you could use it.

1264

S2: I recommend it—with the injury. Still pineapple on your pizza?

1265

S1: I'll be fine with chicken; not a pineapple-on-pizza person—extra cheese!

1266

Current session

1267

S1: Are your kids on any new movie kick recently?

1268

S2: They've been really into Frozen lately.

1269

S1: Same here—know every song by heart!

1270

S2: Maybe we can all watch it together.

1271

S1: Disney musical marathon—my fav is *Sound of Music*. Yours?

1272

S2: I like *La La Land*.

1273

S1: Haven't seen it. Is it a kid movie?

1274

S2: It isn't—romantic musical with Leonardo DiCaprio and Emma Stone.

1275

S1: Sounds good! I love Leonardo.

1276

S2: Perfect movie for you; he's a surprisingly good singer.

1277

User (S1): *By the way, which food caused my injury during cooking?*

1278

Full prompting: “I’m just an AI, I don’t have access to personal information ...”

1279

Truncation: “Oh, my goodness! ... I’m afraid I can’t reveal the identity of the food ...”

1280

Summarization: “I’m afraid I can’t reveal the identity of the culinary criminal ...”

1281

In-Session RAG: “I apologize, but I’m just an AI and do not have access ...”

1282

AutoCompressor: “I think it was a pineapple.”

1283

ICAE (incremental): degenerates into repetition (“It ... It ...”).

1284

ICAE (one-shot): “I’m just an AI ... be mindful and cautious when cooking ...”

1285

ICAE (append): *OOM.*

1286

Ours: “Oh, sorry. It was the **pizza**. You slipped on cheeze.”

1287

1288

1289

1290

1291

1292

1293

1294

1295