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ABSTRACT

GUI grounding, the task of mapping natural-language instructions to pixel coor-
dinates, is crucial for autonomous agents, yet remains difficult for current VLMs.
The core bottleneck is reliable patch-to-pixel mapping, which breaks when ex-
trapolating to high-resolution displays unseen during training. Current approaches
generate coordinates as text tokens directly from visual features, forcing the model
to infer complex position-to-pixel mappings implicitly; as a result, accuracy de-
grades and failures proliferate on new resolutions. We address this with two com-
plementary innovations. First, RULER tokens serve as explicit coordinate mark-
ers, letting the model reference positions similar to gridlines on a map and ad-
just rather than generate coordinates from scratch. Second, Interleaved MRoPE
(I-MROPE) improves spatial encoding by ensuring that width and height dimen-
sions are represented equally, addressing the asymmetry of standard positional
schemes. Experiments on ScreenSpot, ScreenSpot-V2, and ScreenSpot-Pro show
consistent gains in grounding accuracy, with the largest improvements on high-
resolution interfaces. By providing explicit spatial guidance rather than relying
on implicit learning, our approach enables more reliable GUI automation across
diverse resolutions and platforms.1

1 INTRODUCTION

GUI grounding is the task of mapping natural language instructions to precise pixel coordinates in
graphical user interfaces, enabling autonomous agents to interact with software as humans do (Zhang
et al., 2025a; Wang et al., 2024a; Zheng et al., 2024). This capability is fundamental for computer
automation: without accurate grounding, agents cannot click buttons, fill forms, or navigate inter-
faces reliably. Although early approaches relied on structured metadata from HTML/DOM trees
or accessibility APIs (Li et al., 2020; Deng et al., 2023), these methods face significant limitations:
they require access to the underlying UI structure, which is often unavailable in desktop applications,
inconsistent across platforms, or completely absent in legacy systems. Pure vision-based ground-
ing, which operates directly on screenshots, offers universal applicability across any visual interface
without requiring special access or instrumentation (Qin et al., 2025; Wang et al., 2025b; Guo et al.,
2025). This approach mirrors human interaction with GUIs and enables automation of any software
visible on screen, from modern web applications to legacy desktop tools.

Current vision-based approaches typically formulate GUI grounding as a coordinate generation task,
where models output pixel positions as text tokens (e.g., “x=523, y=217”). This paradigm,
adopted by models such as SeeClick (Cheng et al., 2024), CogAgent (Hong et al., 2024), and UI-
TARS (Qin et al., 2025), treats coordinate prediction as a standard language modeling problem.
However, this approach faces a fundamental challenge illustrated in Figure 1: models must learn
to map from high-dimensional visual positional embeddings to precise numerical coordinates as to-
ken outputs without explicit spatial guidance. The mapping is entirely implicit: the model receives
visual patches with positional embeddings and must learn to translate these abstract and similar
representations into exact and distinct pixel value tokens through its language modeling head.

This implicit approach leads to two critical problems. First, unreliable coordinate prediction:
Without explicit guidance linking positions to coordinates, models struggle to learn stable mappings,

1Our code and models will be public upon acceptance.
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Figure 1: A comparison between traditional direct positional embedding-to-pixel coordinate map-
ping and RULER’s explicit coordinate mapping.

requiring extensive training data and still producing inconsistent results (Gou et al., 2025; Wu et al.,
2025a). Second, poor resolution generalization: Models trained on specific resolutions generally
fail when deployed on different screen sizes, as the implicit mapping function learned during training
does not transfer to new coordinate ranges (Nayak et al., 2025; Li et al., 2025b).

We also identify a technical limitation in the way current VLMs encode spatial information. Stan-
dard Multidimensional Rotary Positional Embedding (MRoPE), used in state-of-the-art models like
Qwen2-VL and Qwen2.5-VL (Wang et al., 2024b; Bai et al., 2025), assigns different frequency
bands to height and width dimensions sequentially. This creates an imbalance where one dimension
receives only high-frequency components while another receives only low-frequency components,
leading to uneven spatial modeling capabilities across axes, a previously overlooked issue that im-
pacts grounding precision.

To address these challenges, we introduce a framework that provides explicit spatial guidance for
GUI grounding through two key innovations:

Firstly, RULER (Rotary position-to-pixeL mappER) tokens establish an explicit coordinate ref-
erence system within the model. As illustrated in Figure 1, these auxiliary tokens encode pixel
coordinates directly and share positional embeddings with the corresponding image patches. In-
stead of regressing the coordinates from abstract features, the models can now refer to the nearest
RULER token and perform simple bounded arithmetic to determine exact positions. This transforms
an unstable regression problem into a robust reference-and-adjustment mechanism, similar to how
humans might use gridlines on a map.

Secondly, Interleaved MRoPE (I-MROPE) addresses frequency imbalance in standard positional
encodings. By interleaving rather than sequentially assigning frequency components across spatial
dimensions, it distributes high- and low-frequency signals uniformly across width and height. This
produces balanced spatial representations and improves the model’s ability to distinguish positions
along both axes equally.

Training models from scratch with our framework and finetuning existing VLMs with RULER to-
kens, we perform extensive evaluation on ScreenSpot (Cheng et al., 2024), ScreenSpot-V2 (Wu
et al., 2025b), and ScreenSpot-Pro (Li et al., 2025b). Our approach achieves significant improve-
ments: on the challenging ScreenSpot Pro benchmark with high-resolution displays exceeding our
training resolution, we improve accuracy from 31.1% to 37.2% through finetuning alone, demon-
strating strong generalization capability. These gains are achieved with minimal computational over-
head, as RULER tokens add less than 1% to the total token count even for 8K displays.

Our work makes three key contributions: (1) We identify and formalize the implicit mapping prob-
lem in current GUI grounding approaches, showing how it leads to poor accuracy and resolution brit-
tleness; (2) We introduce RULER tokens, an explicit coordinate reference mechanism that transforms
unstable regression into robust spatial referencing; (3) We present I-MROPE, a balanced positional
embedding scheme that provides equal spatial modeling capacity across dimensions. Together, these
innovations establish a more principled approach to GUI grounding that treats pixel-level precision
as an explicit architectural concern rather than an emergent property.
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2 RELATED WORK

Positional Embeddings in Vision-Languge Models. Rotary Positional Embedding (RoPE) (Su
et al., 2024) encodes positions by rotating embedding dimension pairs with angles proportional to
token indices, but suffers from a long-term decay bias in low-frequency components. HoPE (Li
et al., 2025a) zeros out these low-frequency terms to prevent long-range bias. For vision-language
models, abundant visual tokens exhaust RoPE’s context window; V2PE (Ge et al., 2024) rescales
step sizes for vision tokens, while CircleRoPE (Wang et al., 2025a) projects image tokens into cir-
cular space orthogonal to text, ensuring equal cross-modal distances. For video, M-RoPE (Wang
et al., 2024b) separately encodes spatial-temporal dimensions but disrupts cross-modal alignment
by offsetting text tokens. Video RoPE (Liu et al., 2025) addresses this by rotating spatial positions
while preserving text-video continuity and relative spatial information. Currently, Qwen2-VL and
Qwen2.5-VL’s MRoPE (Wang et al., 2024b; Bai et al., 2025) is one of the most prevailing multidi-
mensional positional embedding due to the popularity of these models. However, the implementa-
tion of MRoPE results in a biased partition of RoPE features for each spatial-temporal dimensions.
Our I-MROPE provides an elegant improvement to MRoPE that provides a full frequency spectrum
of RoPE features for each spatial-temporal dimension, which allows the model to perform better
position perception.

GUI Grounding Models. Given the limitations of general-purpose models on UI grounding
tasks (Li et al., 2025b; Nayak et al., 2025), recent work has focused on developing task-specific mod-
els. Early approaches formulated coordinate prediction (UI grounding) as a text generation problem.
For example, JEDI (Xie et al., 2025) and UI-TARS (Qin et al., 2025) finetune open-source VLMs on
synthetically generated data to enhance grounding capabilities. Building on this, GTA1 (Yang et al.,
2025) and SE-GUI (Yuan et al., 2025) leverage reinforcement learning, specifically GRPO (Shao
et al., 2024), with rule-based rewards to self-improve grounding performance. PHI-GROUND (Zhang
et al., 2025b) introduces a label smoothing strategy that weights coordinate token predictions by their
numerical distance from the ground truth, while emphasizing digit positions (e.g., tens, hundreds).
In contrast, some recent approaches have moved away from text-based coordinate generation. For
example, GUI-ACTOR (Wu et al., 2025a) proposes coordinate-free grounding, where the model di-
rectly predicts the visual patches corresponding to the target locations. However, current methods
either generate coordinates as natural language response, which requires mapping positional embed-
dings to number tokens, or requires large changes to the model architecture, which is not directly
compatible with general tasks. Our introduced RULER provides both explicit guidance for mapping
position information to tokens, while keeping the model’s original autoregressive generation design
to maximize compatibility with other model usage scenarios.

3 METHOD

We present a framework for UI grounding that addresses fundamental limitations in how current
VLMs handle spatial perception. Our approach introduces two complementary innovations: (i) In-
terleaved Multidimensional Rotary Positional Embedding (I-MROPE) that provides balanced
spatial representations, and (ii) RULER tokens that establish explicit position-to-pixel coordinate
mappings. We provide an overview of our proposed method in Figure 2.

3.1 RULER: EXPLICIT POSITION-TO-PIXEL COORDINATE MAPPING

Current VLMs predict pixel coordinates for GUI grounding by generating coordinates as text tokens
(e.g., “x=523, y=217”). Since the source of such coordinate-related information is only recorded
by image tokens’ positional embeddings, generating coordinate tokens requires implicit and direct
mapping from high-dimensional visual features’ positional embeddings to natural language number
tokens. This approach suffers from unstable learning dynamics and poor generalization to unseen
resolutions, as the learned regression functions are inherently resolution-specific (Gou et al., 2025;
Wu et al., 2025a).

To provide a more explicit guidance for the model in generating pixel coordinates, we propose
RULER, which introduces auxiliary tokens that explicitly encode pixel coordinates and share posi-
tional embeddings with corresponding image patches. Inspired by the induction head mechanism in

3
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Figure 2: Model architecture. Our framework augments vision-language models with two key
innovations: (1) RULER tokens that provide explicit position-to-coordinate mappings, transform-
ing coordinate prediction from regression to retrieval, and (2) I-MROPE that rebalances positional
embeddings by interleaving frequency components across spatial dimensions, ensuring equal repre-
sentational capacity for width and height, and

pretrained Transformers (Olsson et al., 2022), we take advantage of the model’s learned capability to
compare position IDs and to copy tokens according to their positions, and use a series of tokens with
carefully designed position IDs and token values as a ruler for the image. With the help of these
tokens, instead of regressing pixel values from positional embeddings, the model finds a RULER
token whose positional encoding best aligns with an image patch, and copy its value as a reference
coordinate value. Based on the retrieved coordinate value, the model only needs to add a number
bounded by a constant b internally to get the final output number, where b is irrelevant of the image
resolution, reducing the generalization gap on images with higher resolutions than the trained ones.
An illustrated comparison between RULER and traditional grounding methods is shown in Figure 1.

Specifically, consider an image partitioned (tokenized) into H × W patches each covering p × p
pixels, and let xsys denote system tokens, xvision the visual patch embeddings, and xprompt the text
prompt embeddings. We augment the input sequence with a set of auxiliary coordinate tokens xRULER

as follows:
xinput =

[
xsys,xRULER,xvision,xprompt

]
, (1)

We construct each RULER token ri ∈ xRULER so that it shares the same spatial position ID as a visual
patch and has the face token value of the initial pixel coordinate of the corresponding visual patch.
This construction both aligns RULER’s position with input visual patches and aligns its value with
output coordinate tokens; thus, bridges the position-to-coordinate mapping:

PERULER(ri) = RMRoPE
Θ,t0+i (2)

where RMRoPE is a multidimensional RoPE operator, and t0 is a fixed temporal index ensuring that
the height and width components match those of the vision token at spatial position i. In practice,
t0 is the initial spatial position ID of the image patches. Note that RULER only models one of
the multiple dimensions of spatial position IDs, since t0 is the same for both height and width
dimensions, and each image patch covers a square part of image. Thus, the mapping between height
or width to the pixel coordinate values is identical. This sharing of RULER mapping on multiple
spatial dimensions helps reduce the number of RULER tokens and improve efficiency.

To further manage computational cost, we introduce RULER tokens at regular intervals s instead of
having them for each position:

R = {ri : i ∈ {0, s, 2s, ..., ⌊max(H,W )/s⌋ · s}} (3)

In this case, the arithmetic bound is b = s × p. The RULER tokens are generated during the
preparation of multimodal inputs. When the input sequence has multiple images, we generate a
RULER token sequence before each image with position ID corresponding to each image.

4
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3.2 I-MROPE: INTERLEAVED MULTIDIMENSIONAL ROTARY POSITIONAL EMBEDDING

Positional embeddings encode spatial information in vision transformers. Multidimensional RoPE
(MRoPE) (Wang et al., 2024b; Bai et al., 2025) extends standard RoPE to VLMs by decomposing
positions into multiple spatial-temporal dimensions. However, a critical limitation of MRoPE is that
it creates a frequency imbalance between spatial dimensions.

Rotary positional embeddings (RoPE) encode relative positions by applying rotation matrices di-
rectly to the query and key vectors in each attention head. Let m ∈ N denote the position index
of a token and d the dimension of the attention head. For each 2 × 2 block, RoPE rotates a pair of
dimensions by a position-dependent angle mθj . The rotation matrix Rθj ,m applied to the query and
key vectors is thus expressed as:

Rθj ,m =

(
cos(mθj) − sin(mθj)
sin(mθj) cos(mθj)

)
, θj = b−2j/d, (4)

where b is a hyperparameter called RoPE base. The frequency θj decreases exponentially with
the dimension index j, producing a spectrum that ranges from high-frequency to low-frequency
components as j progresses from 0 to d, which is illustrated in the right part of Figure 2. In standard
MRoPE, these frequencies are partitioned and assigned consecutively to different spatial-temporal
dimensions:

RMRoPE
Θ,t,h,w = diag(RΘt,t,RΘh,h,RΘw,w) (5)

where Θt, Θh, and Θw denote disjoint yet consecutive subsets of the frequency spectrum θj . This
sequential allocation leads to an imbalance: the high-, mid-, and low-frequency parts of the RoPE
vector are fully and only occupied by the temporal, height, and width dimensions, respectively. As
a result, each dimension is biased towards a limited and different frequency band, constraining the
representational capacity and degrading grounding performance across axes (Liu et al., 2024c; Wang
et al., 2024c). This imbalance also potentially results in different inner processing mechanisms of
each spatial-temporal dimension due to the different modeling behaviors of their corresponding
positional embedding.

I-MROPE addresses this imbalance by distributing the frequency spectrum uniformly across spatial
dimensions through frequency interleaving. Specifically, instead of assigning consecutive frequency
bands to a single axis, each frequency index j is cyclically mapped.

Dimension assignment for frequency j : pj =


w if j mod 3 = 0

h if j mod 3 = 1

t if j mod 3 = 2

(6)

where pj denotes the spatial dimension (width, height, or temporal) assigned to frequency θj .

This interleaving ensures that every dimension receives a full range of frequencies, combining high-
frequency components for fine-grained localization with low-frequency components for long-range
dependencies. Like vanilla MRoPE, text tokens in the sequence have identical temporal, height, and
width indices (t = h = w = m), and the formulation reduces exactly to standard RoPE:

RI-MROPE
Θ,m,m,m = RRoPE

Θ,m (7)

This preserves backward compatibility with pre-trained language models while providing more bal-
anced spatial representations for vision tasks.

4 EXPERIMENTAL SETUP

Training Setup. We conduct two sets of experiments to validate our approach: training from
scratch and finetuning existing VLMs. For the from-scratch experiments, we build on the LLaVA-
NeXT framework (Liu et al., 2024b) using SigLIP-SO400M-14@384 (Zhai et al., 2023) as vision
encoder and Qwen2.5 7B Instruct (Qwen et al., 2024) as language decoder. We replace the standard
1D positional embeddings in the language decoder in LLaVA-NeXT with MRoPE or I-MROPE,
and integrate RULER tokens into the input sequence during both training and inference.

Following the LLaVA-NeXT training paradigm, we employ a two-stage training process. First,
we perform vision-language alignment pretraining on the LLaVA-558K dataset (Liu et al., 2024a),

5
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training only the MLP projection layer. Second, we conduct domain-specific supervised finetuning
on UI grounding tasks, training both the projection layer through full finetuning and the language
model through LoRA (Hu et al., 2022) for parameter efficiency.

For finetuning experiments, we adapt Qwen2.5-VL 7B Instruct (Bai et al., 2025) by introducing
RULER tokens and focus on verifying the significance of RULER alone on grounding performance.
We do not change the original model’s MRoPE to avoid dramatic changes to the learned model
behaviors regarding positional embedding. We use Qwen2.5-VL’s default system prompt and chat
template for all the finetuning experiments.

In all experiments, we set the RULER token’s default interval as s = 8 in the main experiments.
For I-MROPE, since GUI grounding does not require a temporal dimension, we use 2D MRoPE
and I-MROPE in the from-scratch training experiments. Specifically, the dimension assignment for
frequency j is:

Dimension assignment for frequency j : pj =

{
h if j mod 2 = 0

t if j mod 2 = 1
(8)

The training process follows standard VLM objectives with UI grounding tasks. The model learns to
leverage RULER tokens for coordinate prediction while I-MROPE provides balanced spatial repre-
sentations throughout the transformer layers. This combination enables precise pixel-level ground-
ing without compromising general vision-language capabilities. More hyperparameter settings can
be found in Appendix B.

Training Data. Both experimental settings are trained on the UGround dataset (Gou et al., 2025),
which provides comprehensive UI grounding annotations on websites. It contains approximately 8M
element annotations across 775K screenshots, providing diverse training signals for robust ground-
ing capabilities.

To comply with Qwen2.5-VL’s post-training settings regarding coordinates (Bai et al., 2025), we
pre-process all coordinates in UGround to use raw pixel values rather than normalized ones. This
choice ensures consistency with our RULER token design, which requires each patch’s size in terms
of the output coordinate to be a square, and avoids the ambiguity introduced by normalization in
different aspect ratios.

Evaluation Setup. We evaluate our models on three UI grounding benchmarks:
ScreenSpot (Cheng et al., 2024), ScreenSpot-V2 (Wu et al., 2025b), and ScreenSpot Pro (Li
et al., 2025b). Each benchmark presents screenshots paired with natural language instructions that
describe the target UI elements. Models must predict the pixel coordinates corresponding to the
described element.

ScreenSpot and ScreenSpot-V2 contain 1,272 instructions each on mobile, desktop, and web plat-
forms, with V2 correcting the annotation errors from the original. ScreenSpot-Pro presents a
more challenging scenario with 1,581 tasks from 23 professional desktop-only applications fea-
turing higher resolution interfaces and greater domain shift from typical training data. In particular,
ScreenSpot-Pro features higher-resolution images than our training data, making it a strong test of
resolution generalization.

We preprocess all benchmarks to use raw pixel coordinates for evaluation, ensuring fair comparison
between methods.2 We measure performance using Element Accuracy, which considers a prediction
correct if the predicted point falls within the ground-truth bounding box of the target element. We
use the evaluation setting and the code provided by Wu et al. (2025a).

Baselines. We compare against state-of-the-art UI grounding models of comparable scale. Our
baseline models includes Qwen-2-VL 7B Instruct (Wang et al., 2024b), one of the most commonly
used open-source VLMs; SeeClick-9.6B (Cheng et al., 2024), an early specialized UI grounding
model; OS-Atlas-7B (Wu et al., 2025b), a model designed for operating system interactions; Aguvis-
7B (Xu et al., 2025), which uses visual grounding with bounding box supervision; UGround-V1-
7B (Gou et al., 2025) trained on the same UGround dataset; UI-TARS-7B (Qin et al., 2025), a recent

2For baselines trained with normalized coordinates, we apply appropriate transformations to the output to
enable comparison.
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Table 1: Grounding element accuracy on ScreenSpot-Pro. The results of models marked with † are
adopted from Wu et al. (2025a). Best results per column within each comparable model group
are shown in bold. Note that results in the first two groups are not directly comparable to ours,
either because the models are closed-source (weights/architectures unavailable) or because their
training data and underlying base models are unclear or incomparable. We nevertheless include
these numbers for reference.

Model Dev Creative CAD Scientific Office OS Avg

GPT-4o† 0.7 0.6 1.5 1.2 0.9 0.0 0.8
Claude Compute† 12.6 16.8 11.9 25.8 26.9 8.1 17.1

Qwen2-VL-7B† 1.3 0.9 0.4 3.5 3.0 0.5 1.6
SeeClick-9.6B† 0.3 0.6 1.9 2.0 0.9 1.5 1.1
OS-Atlas-7B† 17.7 17.9 10.3 24.4 27.4 16.8 18.9
Aguvis-7B† 16.1 21.4 13.8 34.6 34.3 19.4 22.9
UGround-V1-7B 28.1 31.7 14.6 39.0 49.6 24.5 31.1
UI-TARS-7B 36.1 32.8 18.0 50.0 53.5 24.5 35.7
GUI-Actor-7B + Verifier† 38.8 40.5 37.2 44.5 64.8 43.9 44.2

Trained From Scratch with LLaVA-NeXT Framework
LLaVA-NeXT + LLaVA PE 23.1 25.5 12.6 35.4 43.8 20.5 26.8
LLaVA-NeXT + MRoPE 26.8 29.4 13.6 36.5 47.5 21.2 29.2
LLaVA-NeXT + I-MROPE 27.1 29.8 13.8 36.6 47.8 21.5 29.4
LLaVA-NeXT + I-MROPE + RULER 28.2 32.1 15.3 40.5 51.6 24.8 32.1

Finetuning
Qwen2.5-VL 31.4 34.2 17.1 42.8 54.0 28.3 34.6
Qwen2.5-VL + RULER 34.2 36.5 21.1 43.9 55.4 32.0 37.2

strong baseline; and GUI-Actor-7B (Wu et al., 2025a) which uses attention-based grounding instead
of outputting coordinates. All baseline numbers are reported from original papers or reproduced
using official implementations with consistent evaluation protocols. Note that our models use less
training data than GUI-Actor. Besides, our models are only trained on UGround and thus have not
seen data from domains other than websites, unlike UI-TARS and GUI-Actor.

5 RESULTS

5.1 GUI GROUNDING PERFORMANCE

We present the comparison among the models trained from scratch with RULER and I-MROPE, the
finetuned models equipped with RULER, and the baseline models on ScreenSpot-Pro, ScreenSpot,
and ScreenSpot-V2 in Table 1, Table 2, and Table 3, respectively.

For the from-scratch training experiments, multidimensional RoPE consistently outperforms the de-
fault 1D RoPE (LLaVA PE) across all benchmarks. Furthermore, our proposed I-MROPE achieves
both lower training loss and stronger grounding performance than the original MRoPE, demonstrat-
ing the effectiveness of balancing the spectrum across the spatial dimensions. RULER tokens further
enhance performance by providing guidance on position-to-coordinate mapping, achieving the best
overall results among all models trained from scratch across all datasets. Noticeably, the gains from
RULER are most pronounced on ScreenSpot-Pro, reflecting how its reference-then-copy mechanism
and bounded pixel coordinate arithmetic across resolutions help generalization to higher resolution
grounding tasks.

For fine-tuning experiments, we also observe that adding RULER consistently improves perfor-
mance, with the largest gains on the higher-resolution ScreenSpot-Pro benchmark. Although RULER
does not achieve state-of-the-art results partly due to the limited training data and domains, our ex-
periments nevertheless demonstrate that incorporating RULER reliably enhances grounding perfor-
mance under comparable training conditions.

7
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Table 2: Grounding element accuracy on ScreenSpot. The results of models marked with † are
adopted from Wu et al. (2025a). Best results per column within each group are shown in bold.

M-Text M-Icon D-Text D-Icon W-Text W-Icon Avg

GPT-4† 22.6 24.5 20.2 11.8 9.2 8.8 16.2
GPT-4o† 20.2 24.9 21.1 23.6 12.2 7.8 18.3
Claude Computer Use† - - - - - - 83.0
Gemini 2.0† - - - - - - 84.0

Qwen2-VL-7B† 75.5 60.7 76.3 54.3 35.2 25.7 55.3
SeeClick-9.6B† 78.0 52.0 72.2 30.0 55.7 32.5 53.4
OS-Atlas-7B† 93.0 72.9 91.8 62.9 90.9 74.3 82.5
Aguvis-7B 95.6† 77.7 93.8 67.1 88.3 75.2 84.4
UGround-v1-7B 93.0 79.9 93.8 76.4 90.9 84.0 86.3
UI-TARS-7B 94.5 85.2 95.9 85.7 90.0 83.5 89.5
GUI-Actor-7B + Verifier† 96.0 83.0 93.8 82.1 92.2 87.4 89.7

Trained From Scratch with LLaVA-NeXT Framework
LLaVA-NeXT + LLaVA PE 88.9 74.2 88.3 70.2 85.7 75.4 80.5
LLaVA-NeXT + MRoPE 90.0 76.2 90.2 72.7 88.3 77.5 82.5
LLaVA-NeXT + I-MROPE 90.5 76.9 90.9 73.4 88.5 77.7 83.0
LLaVA-NeXT + I-MROPE + RULER 91.4 77.0 91.5 73.2 89.5 77.2 83.3

Finetuning
Qwen2.5-VL 93.4 80.5 94.6 76.4 91.1 84.6 86.8
Qwen2.5-VL + RULER 94.2 84.1 93.6 76.5 92.4 85.3 87.7

Table 3: Grounding element accuracy on ScreenSpot-V2. The results of models marked with † are
adopted from Wu et al. (2025a). Best results per column within each group are shown in bold.

M-Text M-Icon D-Text D-Icon W-Text W-Icon Avg

GPT-4o + OmniParser-v2† 95.5 74.6 92.3 60.9 88.0 59.6 80.7

SeeClick-9.6B† 78.4 50.7 70.1 29.3 55.2 32.5 55.1
OS-Atlas-7B† 95.2 75.8 90.7 63.6 90.6 77.3 84.1
Aguvis-7B† 95.5 77.3 95.4 77.9 91.0 72.4 86.0
UGround-V1-7B 95.0 83.3 95.0 77.8 92.1 77.2 87.6
UI-TARS-7B 96.9 89.1 95.4 85.0 93.6 85.2 91.6
GUI-Actor-7B + Verifier† 97.2 84.8 94.3 85.0 94.0 85.2 90.9

Trained From Scratch with LLaVA-NeXT Framework
LLaVA-NeXT + LLaVA PE 92.4 78.8 90.1 75.3 87.9 74.1 83.1
LLaVA-NeXT + MRoPE 93.2 79.1 90.8 76.6 88.0 76.3 84.0
LLaVA-NeXT + I-MROPE 93.4 80.0 91.3 77.5 88.1 76.7 84.5
LLaVA-NeXT + I-MROPE + RULER 95.0 82.7 90.3 79.8 88.6 77.1 85.6

Finetuning
Qwen2.5-VL 95.6 85.2 95.2 80.8 92.5 79.9 88.2
Qwen2.5-VL + RULER 96.2 87.0 95.3 80.5 93.2 81.6 89.0

5.2 ANALYSIS ON RULER TOKEN INTERVAL

To analyze the effect of changing the interval of the RULER token, we provide a sensitivity analysis
of s in Equation 3. The results are shown in Figure 3.

In the figure, we notice that all interval settings yield consistent improvements compared to models
without RULER tokens in all datasets. However, varying the RULER token interval does not yield
significant or consistent improvements on the benchmarks. Based on the results, we adopt the setting
of s = 8 as a good trade-off between performance and efficiency. However, it should be noted
that in extremely low-resolution settings such as mobile phone screenshot grounding, an interval
s = 16 may inject only a single RULER token, leading to reduced performance in the mobile-related
subtasks of ScreenSpot and ScreenSpot-V2.
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Figure 3: Ablation study on RULER token intervals s across different benchmarks and training
settings.
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Figure 4: Analysis of the ratio of the number of RULER tokens to the number of image tokens under
common mobile phone and computer screen resolutions for different RULER intervals. All numbers
are in percentages (%).

5.3 EFFICIENCY ANALYSIS

To demonstrate the efficiency of adding RULER tokens, we provide an efficiency analysis in the
p = 8 setting in Figure 4. In this figure, we report the ratio of RULER tokens to image tokens
in common resolutions of mobile phones and computer screens under different interval settings.
Even in the extreme 8K screenshot scenarios and using an interval of s = 2, RULER only adds 68
additional tokens, which is merely 0.2% of the total number of vision tokens. For low-resolution
mobile screenshots, the highest ratio of RULER to vision tokens observed is 2.8%, where the impact
on efficiency remains negligible. These results confirm that the introduction of tokens RULER can
effectively improve grounding performance while maintaining efficiency.

6 CONCLUSIONS AND LIMITATIONS

We presented a framework for GUI grounding that replaces implicit position-to-pixel coordinate
mapping with explicit spatial guidance. RULER tokens provide coordinate references that trans-
form unstable regression into robust reference and adjustment, while I-MROPE corrects frequency
imbalances in the positional embeddings. Our approach achieves consistent improvements across
benchmarks, with particularly strong gains on high-resolution displays beyond training resolutions,
validating its generalization capability. The minimal computational overhead (less than 1% of token
increase) makes deployment practical. Future work could explore adaptive token placement and ex-
tension to video interfaces. The success of explicit spatial guidance over implicit learning suggests
broader applications beyond GUI automation for any task that requires precise visual localization.
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Nicolas Chapados, M. Tamer Özsu, Aishwarya Agrawal, David Vazquez, Christopher Pal, Perouz
Taslakian, Spandana Gella, and Sai Rajeswar. Ui-vision: A desktop-centric gui benchmark for
visual perception and interaction, 2025. URL https://arxiv.org/abs/2503.15661.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads. arXiv preprint arXiv: 2209.11895,
2022.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao
Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with native
agents. arXiv preprint arXiv:2501.12326, 2025.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv
preprint arXiv: 2412.15115, 2024.

11

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2005.03776
https://arxiv.org/abs/2005.03776
https://proceedings.neurips.cc/paper_files/paper/2024/file/1f84412e84da6440ca355d87184cb1b3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/1f84412e84da6440ca355d87184cb1b3-Paper-Conference.pdf
https://openreview.net/forum?id=w0H2xGHlkw
https://openreview.net/forum?id=w0H2xGHlkw
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://openreview.net/forum?id=JO7k0SJ5V6
https://arxiv.org/abs/2503.15661


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. arXiv preprint arXiv: 1910.02054, 2019.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang, Min-
jia Zhang, Dong Li, and Yuxiong He. Zero-offload: Democratizing billion-scale model training.
arXiv preprint arXiv: 2101.06840, 2021.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.
03300.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomput., 568(C), February 2024. ISSN
0925-2312. doi: 10.1016/j.neucom.2023.127063. URL https://doi.org/10.1016/j.
neucom.2023.127063.

Chengcheng Wang, Jianyuan Guo, Hongguang Li, Yuchuan Tian, Ying Nie, Chang Xu, and Kai
Han. Circle-rope: Cone-like decoupled rotary positional embedding for large vision-language
models. arXiv preprint arXiv:2505.16416, 2025a.

Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang, and Jitao
Sang. Mobile-agent: Autonomous multi-modal mobile device agent with visual perception. arXiv
preprint arXiv:2401.16158, 2024a.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model’s
perception of the world at any resolution. arXiv preprint arXiv: 2409.12191, 2024b.

Suyuchen Wang, Ivan Kobyzev, Peng Lu, Mehdi Rezagholizadeh, and Bang Liu. Resonance RoPE:
Improving context length generalization of large language models. In Lun-Wei Ku, Andre Mar-
tins, and Vivek Srikumar (eds.), Findings of the Association for Computational Linguistics: ACL
2024, pp. 586–598, Bangkok, Thailand, August 2024c. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.findings-acl.32. URL https://aclanthology.org/2024.
findings-acl.32/.

Xinyuan Wang, Bowen Wang, Dunjie Lu, Junlin Yang, Tianbao Xie, Junli Wang, Jiaqi Deng, Xi-
aole Guo, Yiheng Xu, Chen Henry Wu, Zhennan Shen, Zhuokai Li, Ryan Li, Xiaochuan Li,
Junda Chen, Boyuan Zheng, Peihang Li, Fangyu Lei, Ruisheng Cao, Yeqiao Fu, Dongchan Shin,
Martin Shin, Jiarui Hu, Yuyan Wang, Jixuan Chen, Yuxiao Ye, Danyang Zhang, Dikang Du, Hao
Hu, Huarong Chen, Zaida Zhou, Haotian Yao, Ziwei Chen, Qizheng Gu, Yipu Wang, Heng Wang,
Diyi Yang, Victor Zhong, Flood Sung, Y. Charles, Zhilin Yang, and Tao Yu. Opencua: Open foun-
dations for computer-use agents, 2025b. URL https://arxiv.org/abs/2508.09123.

Qianhui Wu, Kanzhi Cheng, Rui Yang, Chaoyun Zhang, Jianwei Yang, Huiqiang Jiang, Jian Mu,
Baolin Peng, Bo Qiao, Reuben Tan, et al. Gui-actor: Coordinate-free visual grounding for gui
agents. arXiv preprint arXiv:2506.03143, 2025a.

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng,
Zichen Ding, Liheng Chen, Paul Pu Liang, and Yu Qiao. OS-ATLAS: Foundation action model
for generalist GUI agents. In The Thirteenth International Conference on Learning Representa-
tions, 2025b. URL https://openreview.net/forum?id=n9PDaFNi8t.

Tianbao Xie, Jiaqi Deng, Xiaochuan Li, Junlin Yang, Haoyuan Wu, Jixuan Chen, Wenjing Hu,
Xinyuan Wang, Yuhui Xu, Zekun Wang, et al. Scaling computer-use grounding via user interface
decomposition and synthesis. arXiv preprint arXiv:2505.13227, 2025.

Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao
Yu, and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous GUI interac-
tion. In Forty-second International Conference on Machine Learning, 2025. URL https:
//openreview.net/forum?id=PlihOwfx4r.

12

https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://doi.org/10.1016/j.neucom.2023.127063
https://doi.org/10.1016/j.neucom.2023.127063
https://aclanthology.org/2024.findings-acl.32/
https://aclanthology.org/2024.findings-acl.32/
https://arxiv.org/abs/2508.09123
https://openreview.net/forum?id=n9PDaFNi8t
https://openreview.net/forum?id=PlihOwfx4r
https://openreview.net/forum?id=PlihOwfx4r


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yan Yang, Dongxu Li, Yutong Dai, Yuhao Yang, Ziyang Luo, Zirui Zhao, Zhiyuan Hu, Junzhe
Huang, Amrita Saha, Zeyuan Chen, et al. Gta1: Gui test-time scaling agent. arXiv preprint
arXiv:2507.05791, 2025.

Xinbin Yuan, Jian Zhang, Kaixin Li, Zhuoxuan Cai, Lujian Yao, Jie Chen, Enguang Wang, Qibin
Hou, Jinwei Chen, Peng-Tao Jiang, et al. Enhancing visual grounding for gui agents via self-
evolutionary reinforcement learning. arXiv preprint arXiv:2505.12370, 2025.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training. IEEE International Conference on Computer Vision, 2023. doi: 10.1109/
ICCV51070.2023.01100.

Chaoyun Zhang, Liqun Li, Shilin He, Xu Zhang, Bo Qiao, Si Qin, Minghua Ma, Yu Kang, Qing-
wei Lin, Saravan Rajmohan, et al. Ufo: A ui-focused agent for windows os interaction. In
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association
for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp.
597–622, 2025a.

Miaosen Zhang, Ziqiang Xu, Jialiang Zhu, Qi Dai, Kai Qiu, Yifan Yang, Chong Luo, Tianyi Chen,
Justin Wagle, Tim Franklin, et al. Phi-ground tech report: Advancing perception in gui grounding.
arXiv preprint arXiv:2507.23779, 2025b.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v(ision) is a generalist
web agent, if grounded. In ICML, 2024. URL https://openreview.net/forum?id=
piecKJ2DlB.

A LLM USAGE STATEMENT

For this work, GitHub Copilot provided light coding assistance during human-authored code de-
velopment. Claude was used for grammar check and language polishing of manually written text
sections after completion.

B IMPLEMENTATION DETAILS

We provide detailed training configurations for our experiments in the following. All experiments
are performed on 8 NVIDIA H100 GPUs.

B.1 TRAINING FROM SCRATCH

Stage 1: Vision-Language Alignment Pretraining. We follow the LLaVA-NeXT training
paradigm. The model uses SigLIP-SO400M-14@384 (Zhai et al., 2023) as the vision encoder and
Qwen2.5 7B Instruct (Qwen et al., 2024) as the language model. During pretraining, we train only
the MLP projection layer while keeping both vision and language models frozen. Training is per-
formed on the LLaVA-558K dataset (Liu et al., 2023) for 1 epoch with a learning rate of 1 × 10−3

using cosine scheduling and 3% warmup ratio. We use a per-device batch size of 4 with gradient
accumulation steps of 2, resulting in an effective batch size of 64 across 8 GPUs. The maximum
sequence length is set to 8,192 tokens. Images are processed using the AnyRes configuration with
a maximum of 9 patches and grid pinpoints ranging from (1×1) to (12×6) to accommodate high-
resolution images during inference. We employ DeepSpeed Zero-2 with CPU offload (Ren et al.,
2021) and mixed precision training (bf16) for memory efficiency. For models using RULER, we set
the token interval to s = 8, while positional embedding configurations (default LLaVA PE, MRoPE,
or I-MRoPE) are specified throughout the pretraining and finetuning process.

Stage 2: Domain-Specific Finetuning. Using the pretrained projection layer from Stage 1, we
finetune on the UGround dataset (Gou et al., 2025) with coordinates converted to raw pixel values
to match our RULER token design. In this stage, we train the projection layer with full parameter
finetuning and the language model using LoRA (Hu et al., 2022) with rank 16 for parameter effi-
ciency. The base learning rate is set to 1× 10−5 for the projection layer and LoRA parameters. We
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use a per-device batch size of 1 with gradient accumulation steps of 4, yielding an effective batch
size of 32. The maximum sequence length is extended to 16,384 tokens to accommodate higher-
resolution images. Training runs for 1 epoch with cosine learning rate scheduling and 3% warmup.
We continue using DeepSpeed Zero-2 with CPU offload and bf16 mixed precision.

B.2 FINETUNING QWEN2.5-VL

For adapting the pretrained Qwen2.5-VL 7B Instruct model (Bai et al., 2025), we use a conservative
finetuning approach to preserve the existing capabilities of the model while adding RULER tokens.
We maintain the model’s original MRoPE configuration to avoid disrupting learned position-aware
behaviors. The model is finetuned with a low learning rate of 1 × 10−5 using cosine scheduling
with 3% warmup to ensure stable adaptation. We use a per-device batch size of 4 with gradient
accumulation steps of 4, resulting in an effective batch size of 128. The maximum sequence length
remains at 16,384 tokens, and we utilize Qwen2.5-VL’s dynamic resolution capability with pixel
counts ranging from 784 to 50,176. Training runs for 1 epoch on the UGround dataset with all
components (vision encoder, MLP projector, and language model) being trainable. We employ
DeepSpeed Zero-3 (Rajbhandari et al., 2019) for distributed training and bf16 mixed precision.
RULER tokens are integrated into the input sequence with interval s = 8 when specified, and we
use Qwen2.5-VL’s native chat template and system prompts for consistency with the pretrained
model’s behavior.

B.3 EVALUATION PROTOCOL

All models are evaluated using greedy decoding (temperature=0) with the same maximum sequence
length as training. For ScreenSpot benchmarks, we preprocess all coordinates to raw pixel values
and use the evaluation code from Wu et al. (2025a). Element accuracy is computed by checking
if the predicted coordinate falls within the ground-truth bounding box. We ensure consistent pre-
processing across all baselines for fair comparison.
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