

000 001 002 003 004 005 IMPROVING GUI GROUNDING WITH EXPLICIT 006 POSITION-TO-COORDINATE MAPPING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

027 GUI grounding, the task of mapping natural-language instructions to pixel coor-
028 dinates, is crucial for autonomous agents, yet remains difficult for current VLMs.
029 The core bottleneck is reliable patch-to-pixel mapping, which breaks when ex-
030 trapolating to high-resolution displays unseen during training. Current approaches
031 generate coordinates as text tokens directly from visual features, forcing the model
032 to infer complex position-to-pixel mappings implicitly; as a result, accuracy de-
033 grades and failures proliferate on new resolutions. We address this with two com-
034 plementary innovations. First, **RULER tokens** serve as explicit coordinate mark-
035 ers, letting the model reference positions similar to gridlines on a map and *ad-
036 just* rather than generate coordinates from scratch. Second, **Interleaved MRoPE**
037 (**I-MRoPE**) improves spatial encoding by ensuring that width and height dimen-
038 sions are represented equally, addressing the asymmetry of standard positional
039 schemes. Experiments on ScreenSpot, ScreenSpot-V2, and ScreenSpot-Pro show
040 consistent gains in grounding accuracy, with the largest improvements on high-
041 resolution interfaces. By providing explicit spatial guidance rather than relying
042 on implicit learning, our approach enables more reliable GUI automation across
043 diverse resolutions and platforms.¹

1 INTRODUCTION

044 GUI grounding is the task of mapping natural language instructions to precise pixel coordinates in
045 graphical user interfaces, enabling autonomous agents to interact with software as humans do (Zhang
046 et al., 2025a; Wang et al., 2024a; Zheng et al., 2024). This capability is fundamental for computer
047 automation: without accurate grounding, agents cannot click buttons, fill forms, or navigate inter-
048 faces reliably. Although early approaches relied on structured metadata from HTML/DOM trees
049 or accessibility APIs (Li et al., 2020; Deng et al., 2023), these methods face significant limitations:
050 they require access to the underlying UI structure, which is often unavailable in desktop applications,
051 inconsistent across platforms, or completely absent in legacy systems. Pure vision-based ground-
052 ing, which operates directly on screenshots, offers universal applicability across any visual interface
053 without requiring special access or instrumentation (Qin et al., 2025; Wang et al., 2025b; Guo et al.,
054 2025). This approach mirrors human interaction with GUIs and enables automation of any software
055 visible on screen, from modern web applications to legacy desktop tools.

056 Current vision-based approaches typically formulate GUI grounding as a coordinate generation task,
057 where models output pixel positions as text tokens (e.g., “x=523, y=217”). This paradigm,
058 adopted by models such as SeeClick (Cheng et al., 2024), CogAgent (Hong et al., 2024), and UI-
059 TARS (Qin et al., 2025), treats coordinate prediction as a standard language modeling problem.
060 However, this approach faces a fundamental challenge illustrated in Figure 1: models must learn
061 to map from high-dimensional visual positional embeddings to precise numerical coordinates as to-
062 ken outputs without explicit spatial guidance. The mapping is entirely *implicit*: the model receives
063 visual patches with positional embeddings and must learn to translate these abstract and similar
064 representations into exact and distinct pixel value tokens through its language modeling head.

065 This implicit approach leads to two critical problems. First, **unreliable coordinate prediction**:
066 Without explicit guidance linking positions to coordinates, models struggle to learn stable mappings,

067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1330
1331
1332
1333
1334
1335
13

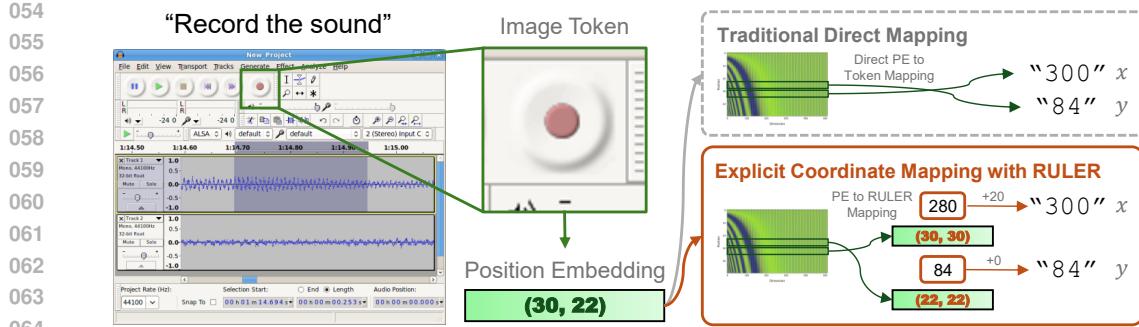


Figure 1: A comparison between traditional direct positional embedding-to-pixel coordinate mapping and RULER’s explicit coordinate mapping.

requiring extensive training data and still producing inconsistent results (Gou et al., 2025; Wu et al., 2025a). Second, **poor resolution generalization**: Models trained on specific resolutions generally fail when deployed on different screen sizes, as the implicit mapping function learned during training does not transfer to new coordinate ranges (Nayak et al., 2025; Li et al., 2025b).

We also identify a technical limitation in the way current VLMs encode spatial information. Standard Multidimensional Rotary Positional Embedding (MRoPE), used in state-of-the-art models like Qwen2-VL and Qwen2.5-VL (Wang et al., 2024b; Bai et al., 2025), assigns different frequency bands to height and width dimensions sequentially. This creates an imbalance where one dimension receives only high-frequency components while another receives only low-frequency components, leading to uneven spatial modeling capabilities across axes, a previously overlooked issue that impacts grounding precision.

To address these challenges, we introduce a framework that provides explicit spatial guidance for GUI grounding through two key innovations:

Firstly, **RULER (Rotary position-to-pixel mappER) tokens** establish an explicit coordinate reference system within the model. As illustrated in Figure 1, these auxiliary tokens encode pixel coordinates directly and share positional embeddings with the corresponding image patches. Instead of regressing the coordinates from abstract features, the models can now refer to the nearest RULER token and perform simple bounded arithmetic to determine exact positions. This transforms an unstable regression problem into a robust reference-and-adjustment mechanism, similar to how humans might use gridlines on a map.

Secondly, **Interleaved MRoPE (I-MRoPE)** addresses frequency imbalance in standard positional encodings. By interleaving rather than sequentially assigning frequency components across spatial dimensions, it distributes high- and low-frequency signals uniformly across width and height. This produces balanced spatial representations and improves the model’s ability to distinguish positions along both axes equally.

Training models from scratch with our framework and finetuning existing VLMs with RULER tokens, we perform extensive evaluation on ScreenSpot (Cheng et al., 2024), ScreenSpot-V2 (Wu et al., 2025b), and ScreenSpot-Pro (Li et al., 2025b). Our approach achieves significant improvements: on the challenging ScreenSpot Pro benchmark with high-resolution displays exceeding our training resolution, we improve accuracy from 31.1% to 37.2% through finetuning alone, demonstrating strong generalization capability. These gains are achieved with minimal computational overhead, as RULER tokens add less than 1% to the total token count even for 8K displays.

Our work makes three key contributions: (1) We identify and formalize the implicit mapping problem in current GUI grounding approaches, showing how it leads to poor accuracy and resolution brittleness; (2) We introduce RULER tokens, an explicit coordinate reference mechanism that transforms unstable regression into robust spatial referencing; (3) We present I-MRoPE, a balanced positional embedding scheme that provides equal spatial modeling capacity across dimensions. Together, these innovations establish a more principled approach to GUI grounding that treats pixel-level precision as an explicit architectural concern rather than an emergent property.

108 **2 RELATED WORK**

110 **Positional Embeddings in Vision-Language Models.** Rotary Positional Embedding (RoPE) (Su
 111 et al., 2024) encodes positions by rotating embedding dimension pairs with angles proportional to
 112 token indices, but suffers from a long-term decay bias in low-frequency components. HoPE (Li
 113 et al., 2025a) zeros out these low-frequency terms to prevent long-range bias. For vision-language
 114 models, abundant visual tokens exhaust RoPE’s context window; V2PE (Ge et al., 2024) rescales
 115 step sizes for vision tokens, while CircleRoPE (Wang et al., 2025a) projects image tokens into cir-
 116 cular space orthogonal to text, ensuring equal cross-modal distances. For video, M-RoPE (Wang
 117 et al., 2024b) separately encodes spatial-temporal dimensions but disrupts cross-modal alignment
 118 by offsetting text tokens. Video RoPE (Liu et al., 2025) addresses this by rotating spatial positions
 119 while preserving text-video continuity and relative spatial information. Currently, Qwen2-VL and
 120 Qwen2.5-VL’s MRoPE (Wang et al., 2024b; Bai et al., 2025) is one of the most prevailing multi-
 121 dimensional positional embedding due to the popularity of these models. However, the implementa-
 122 tion of MRoPE results in a biased partition of RoPE features for each spatial-temporal dimensions.
 123 Our I-MROPE provides an elegant improvement to MRoPE that provides a full frequency spectrum
 124 of RoPE features for each spatial-temporal dimension, which allows the model to perform better
 125 position perception.

126 **GUI Grounding Models.** Given the limitations of general-purpose models on UI grounding
 127 tasks (Li et al., 2025b; Nayak et al., 2025), recent work has focused on developing task-specific mod-
 128 els. Early approaches formulated coordinate prediction (UI grounding) as a text generation problem.
 129 For example, JEDI (Xie et al., 2025) and UI-TARS (Qin et al., 2025) finetune open-source VLMs on
 130 synthetically generated data to enhance grounding capabilities. Building on this, GTA1 (Yang et al.,
 131 2025) and SE-GUI (Yuan et al., 2025) leverage reinforcement learning, specifically GRPO (Shao
 132 et al., 2024), with rule-based rewards to self-improve grounding performance. PHI-GROUND (Zhang
 133 et al., 2025b) introduces a label smoothing strategy that weights coordinate token predictions by their
 134 numerical distance from the ground truth, while emphasizing digit positions (e.g., tens, hundreds).
 135 In contrast, some recent approaches have moved away from text-based coordinate generation. For
 136 example, GUI-ACTOR (Wu et al., 2025a) proposes coordinate-free grounding, where the model di-
 137 rectly predicts the visual patches corresponding to the target locations. However, current methods
 138 either generate coordinates as natural language response, which requires mapping positional embed-
 139 dings to number tokens, or requires large changes to the model architecture, which is not directly
 140 compatible with general tasks. Our introduced RULER provides both explicit guidance for mapping
 141 position information to tokens, while keeping the model’s original autoregressive generation design
 142 to maximize compatibility with other model usage scenarios.

143 **3 METHOD**

145 We present a framework for UI grounding that addresses fundamental limitations in how current
 146 VLMs handle spatial perception. Our approach introduces two complementary innovations: **(i) Interleaved**
 147 **Multidimensional Rotary Positional Embedding (I-MROPE)** that provides balanced
 148 spatial representations, and **(ii) RULER** tokens that establish explicit position-to-pixel coordinate
 149 mappings. We provide an overview of our proposed method in Figure 2.

151 **3.1 RULER: EXPLICIT POSITION-TO-PIXEL COORDINATE MAPPING**

153 Current VLMs predict pixel coordinates for GUI grounding by generating coordinates as text tokens
 154 (e.g., “ $x=523$, $y=217$ ”). Since the source of such coordinate-related information is only recorded
 155 by image tokens’ positional embeddings, generating coordinate tokens requires implicit and direct
 156 mapping from high-dimensional visual features’ positional embeddings to natural language number
 157 tokens. This approach suffers from unstable learning dynamics and poor generalization to unseen
 158 resolutions, as the learned regression functions are inherently resolution-specific (Gou et al., 2025;
 159 Wu et al., 2025a).

160 To provide a more explicit guidance for the model in generating pixel coordinates, we propose
 161 RULER, which introduces auxiliary tokens that explicitly encode pixel coordinates and share pos-
 162 itional embeddings with corresponding image patches. Inspired by the induction head mechanism in

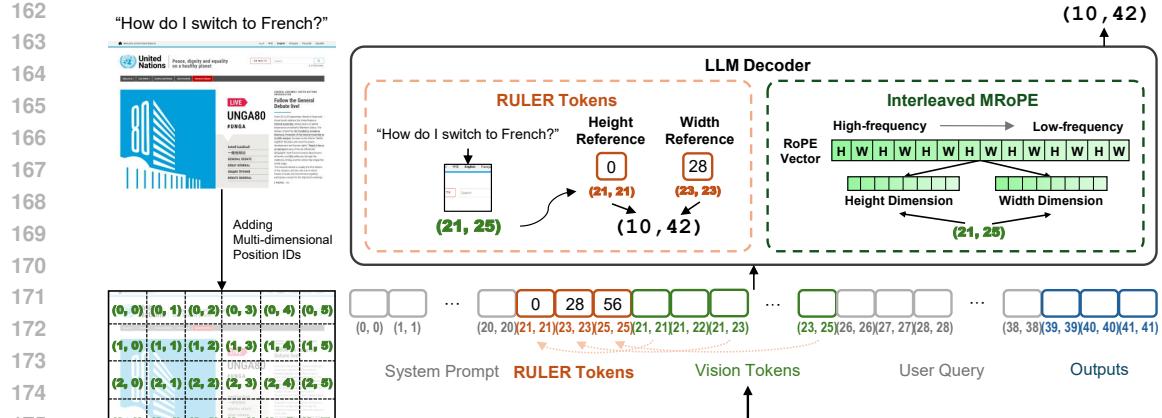


Figure 2: **Model architecture.** Our framework augments vision-language models with two key innovations: (1) RULER tokens that provide explicit position-to-coordinate mappings, transforming coordinate prediction from regression to retrieval, and (2) I-MRoPE that rebalances positional embeddings by interleaving frequency components across spatial dimensions, ensuring equal representational capacity for width and height, and

pretrained Transformers (Olsson et al., 2022), we take advantage of the model’s learned capability to compare position IDs and to copy tokens according to their positions, and use a series of tokens with carefully designed position IDs and token values as a ruler for the image. With the help of these tokens, instead of regressing pixel values from positional embeddings, the model finds a RULER token whose positional encoding best aligns with an image patch, and copy its value as a reference coordinate value. Based on the retrieved coordinate value, the model only needs to add a number bounded by a constant b internally to get the final output number, where b is irrelevant of the image resolution, reducing the generalization gap on images with higher resolutions than the trained ones. An illustrated comparison between RULER and traditional grounding methods is shown in Figure 1.

Specifically, consider an image partitioned (tokenized) into $H \times W$ patches each covering $p \times p$ pixels, and let \mathbf{x}_{sys} denote system tokens, $\mathbf{x}_{\text{vision}}$ the visual patch embeddings, and $\mathbf{x}_{\text{prompt}}$ the text prompt embeddings. We augment the input sequence with a set of auxiliary coordinate tokens $\mathbf{x}_{\text{RULER}}$ as follows:

$$\mathbf{x}_{\text{input}} = [\mathbf{x}_{\text{sys}}, \mathbf{x}_{\text{RULER}}, \mathbf{x}_{\text{vision}}, \mathbf{x}_{\text{prompt}}], \quad (1)$$

We construct each RULER token $r_i \in \mathbf{x}_{\text{RULER}}$ so that it shares the same spatial position ID as a visual patch and has the face token value of the initial pixel coordinate of the corresponding visual patch. This construction both aligns RULER’s position with input visual patches and aligns its value with output coordinate tokens; thus, bridges the position-to-coordinate mapping:

$$\text{PE}_{\text{RULER}}(r_i) = \mathbf{R}_{\Theta, t_0+i}^{\text{MRoPE}} \quad (2)$$

where $\mathbf{R}^{\text{MRoPE}}$ is a multidimensional RoPE operator, and t_0 is a fixed temporal index ensuring that the height and width components match those of the vision token at spatial position i . In practice, t_0 is the initial spatial position ID of the image patches. Note that RULER only models one of the multiple dimensions of spatial position IDs, since t_0 is the same for both height and width dimensions, and each image patch covers a square part of image. Thus, the mapping between height or width to the pixel coordinate values is identical. This sharing of RULER mapping on multiple spatial dimensions helps reduce the number of RULER tokens and improve efficiency.

To further manage computational cost, we introduce RULER tokens at regular intervals s instead of having them for each position:

$$\mathcal{R} = \{r_i : i \in \{0, s, 2s, \dots, \lfloor \max(H, W)/s \rfloor \cdot s\}\} \quad (3)$$

In this case, the arithmetic bound is $b = s \times p$. The RULER tokens are generated during the preparation of multimodal inputs. When the input sequence has multiple images, we generate a RULER token sequence before each image with position ID corresponding to each image.

216 3.2 I-MRoPE: INTERLEAVED MULTIDIMENSIONAL ROTARY POSITIONAL EMBEDDING
217

218 Positional embeddings encode spatial information in vision transformers. Multidimensional RoPE
219 (MRoPE) (Wang et al., 2024b; Bai et al., 2025) extends standard RoPE to VLMs by decomposing
220 positions into multiple spatial-temporal dimensions. However, a critical limitation of MRoPE is that
221 it creates a frequency imbalance between spatial dimensions.

222 Rotary positional embeddings (RoPE) encode relative positions by applying rotation matrices di-
223 rectly to the query and key vectors in each attention head. Let $m \in \mathbb{N}$ denote the position index
224 of a token and d the dimension of the attention head. For each 2×2 block, RoPE rotates a pair of
225 dimensions by a position-dependent angle $m\theta_j$. The rotation matrix $\mathbf{R}_{\theta_j, m}$ applied to the query and
226 key vectors is thus expressed as:

$$227 \quad \mathbf{R}_{\theta_j, m} = \begin{pmatrix} \cos(m\theta_j) & -\sin(m\theta_j) \\ \sin(m\theta_j) & \cos(m\theta_j) \end{pmatrix}, \quad \theta_j = b^{-2j/d}, \quad (4)$$

230 where b is a hyperparameter called RoPE base. The frequency θ_j decreases exponentially with
231 the dimension index j , producing a spectrum that ranges from high-frequency to low-frequency
232 components as j progresses from 0 to d , which is illustrated in the right part of Figure 2. In standard
233 MRoPE, these frequencies are partitioned and assigned consecutively to different spatial-temporal
234 dimensions:

$$234 \quad \mathbf{R}_{\Theta_t, h, w}^{\text{MRoPE}} = \text{diag}(\mathbf{R}_{\Theta_t, t}, \mathbf{R}_{\Theta_h, h}, \mathbf{R}_{\Theta_w, w}) \quad (5)$$

235 where Θ_t , Θ_h , and Θ_w denote disjoint yet consecutive subsets of the frequency spectrum θ_j . This
236 sequential allocation leads to an imbalance: the high-, mid-, and low-frequency parts of the RoPE
237 vector are fully and only occupied by the temporal, height, and width dimensions, respectively. As
238 a result, each dimension is biased towards a limited and different frequency band, constraining the
239 representational capacity and degrading grounding performance across axes (Liu et al., 2024c; Wang
240 et al., 2024c). This imbalance also potentially results in different inner processing mechanisms of
241 each spatial-temporal dimension due to the different modeling behaviors of their corresponding
242 positional embedding.

243 I-MRoPE addresses this imbalance by distributing the frequency spectrum uniformly across spatial
244 dimensions through frequency interleaving. Specifically, instead of assigning consecutive frequency
245 bands to a single axis, each frequency index j is cyclically mapped.

$$246 \quad \text{Dimension assignment for frequency } j : \quad p_j = \begin{cases} w & \text{if } j \bmod 3 = 0 \\ h & \text{if } j \bmod 3 = 1 \\ t & \text{if } j \bmod 3 = 2 \end{cases} \quad (6)$$

250 where p_j denotes the spatial dimension (width, height, or temporal) assigned to frequency θ_j .

251 This interleaving ensures that every dimension receives a full range of frequencies, combining high-
252 frequency components for fine-grained localization with low-frequency components for long-range
253 dependencies. Like vanilla MRoPE, text tokens in the sequence have identical temporal, height, and
254 width indices ($t = h = w = m$), and the formulation reduces exactly to standard RoPE:

$$255 \quad \mathbf{R}_{\Theta, m, m, m}^{\text{I-MRoPE}} = \mathbf{R}_{\Theta, m}^{\text{RoPE}} \quad (7)$$

257 This preserves backward compatibility with pre-trained language models while providing more bal-
258 anced spatial representations for vision tasks.

260 4 EXPERIMENTAL SETUP
261

263 **Training Setup.** We conduct two sets of experiments to validate our approach: training from
264 scratch and finetuning existing VLMs. For the from-scratch experiments, we build on the LLaVA-
265 NeXT framework (Liu et al., 2024b) using SigLIP-SO400M-14@384 (Zhai et al., 2023) as vision
266 encoder and Qwen2.5 7B Instruct (Qwen et al., 2024) as language decoder. We replace the standard
267 1D positional embeddings in the language decoder in LLaVA-NeXT with MRoPE or I-MRoPE,
268 and integrate RULER tokens into the input sequence during both training and inference.

269 Following the LLaVA-NeXT training paradigm, we employ a two-stage training process. First,
270 we perform vision-language alignment pretraining on the LLaVA-558K dataset (Liu et al., 2024a),

270 training only the MLP projection layer. Second, we conduct domain-specific supervised finetuning
 271 on UI grounding tasks, training both the projection layer through full finetuning and the language
 272 model through LoRA (Hu et al., 2022) for parameter efficiency.

273 For finetuning experiments, we adapt Qwen2.5-VL 7B Instruct (Bai et al., 2025) by introducing
 274 RULER tokens and focus on verifying the significance of RULER alone on grounding performance.
 275 We do not change the original model’s MRoPE to avoid dramatic changes to the learned model
 276 behaviors regarding positional embedding. We use Qwen2.5-VL’s default system prompt and chat
 277 template for all the finetuning experiments.

278 In all experiments, we set the RULER token’s default interval as $s = 8$ in the main experiments.
 279 For I-MROPE, since GUI grounding does not require a temporal dimension, we use 2D MRoPE
 280 and I-MROPE in the from-scratch training experiments. Specifically, the dimension assignment for
 281 frequency j is:

$$283 \text{ Dimension assignment for frequency } j : \quad p_j = \begin{cases} h & \text{if } j \bmod 2 = 0 \\ t & \text{if } j \bmod 2 = 1 \end{cases} \quad (8)$$

285 The training process follows standard VLM objectives with UI grounding tasks. The model learns to
 286 leverage RULER tokens for coordinate prediction while I-MROPE provides balanced spatial repre-
 287 sentations throughout the transformer layers. This combination enables precise pixel-level ground-
 288 ing without compromising general vision-language capabilities. More hyperparameter settings can
 289 be found in Appendix B.

290 **Training Data.** Both experimental settings are trained on the UGround dataset (Gou et al., 2025),
 291 which provides comprehensive UI grounding annotations on websites. It contains approximately 8M
 292 element annotations across 775K screenshots, providing diverse training signals for robust ground-
 293 ing capabilities.

294 To comply with Qwen2.5-VL’s post-training settings regarding coordinates (Bai et al., 2025), we
 295 pre-process all coordinates in UGround to use raw pixel values rather than normalized ones. This
 296 choice ensures consistency with our RULER token design, which requires each patch’s size in terms
 297 of the output coordinate to be a square, and avoids the ambiguity introduced by normalization in
 298 different aspect ratios.

300 **Evaluation Setup.** We evaluate our models on three UI grounding benchmarks:
 301 ScreenSpot (Cheng et al., 2024), ScreenSpot-V2 (Wu et al., 2025b), and ScreenSpot Pro (Li
 302 et al., 2025b). Each benchmark presents screenshots paired with natural language instructions that
 303 describe the target UI elements. Models must predict the pixel coordinates corresponding to the
 304 described element.

305 ScreenSpot and ScreenSpot-V2 contain 1,272 instructions each on mobile, desktop, and web plat-
 306 forms, with V2 correcting the annotation errors from the original. ScreenSpot-Pro presents a
 307 more challenging scenario with 1,581 tasks from 23 professional desktop-only applications fea-
 308 turing higher resolution interfaces and greater domain shift from typical training data. In particular,
 309 ScreenSpot-Pro features higher-resolution images than our training data, making it a strong test of
 310 resolution generalization.

311 We preprocess all benchmarks to use raw pixel coordinates for evaluation, ensuring fair comparison
 312 between methods.² We measure performance using *Element Accuracy*, which considers a prediction
 313 correct if the predicted point falls within the ground-truth bounding box of the target element. We
 314 use the evaluation setting and the code provided by Wu et al. (2025a).

316 **Baselines.** We compare against state-of-the-art UI grounding models of comparable scale. Our
 317 baseline models includes Qwen-2-VL 7B Instruct (Wang et al., 2024b), one of the most commonly
 318 used open-source VLMs; SeeClick-9.6B (Cheng et al., 2024), an early specialized UI grounding
 319 model; OS-Atlas-7B (Wu et al., 2025b), a model designed for operating system interactions; Aguvis-
 320 7B (Xu et al., 2025), which uses visual grounding with bounding box supervision; UGround-V1-
 321 7B (Gou et al., 2025) trained on the same UGround dataset; UI-TARS-7B (Qin et al., 2025), a recent

322
 323 ²For baselines trained with normalized coordinates, we apply appropriate transformations to the output to
 enable comparison.

324
 325 Table 1: Grounding element accuracy on **ScreenSpot-Pro**. The results of models marked with \dagger are
 326 adopted from Wu et al. (2025a). Best results per column within each comparable model group
 327 are shown in **bold**. Note that results in the first two groups are not directly comparable to ours,
 328 either because the models are closed-source (weights/architectures unavailable) or because their
 329 training data and underlying base models are unclear or incomparable. We nevertheless include
 330 these numbers for reference.

Model	Dev	Creative	CAD	Scientific	Office	OS	Avg
GPT-4o \dagger	0.7	0.6	1.5	1.2	0.9	0.0	0.8
Claude Compute \dagger	12.6	16.8	11.9	25.8	26.9	8.1	17.1
Qwen2-VL-7B \dagger	1.3	0.9	0.4	3.5	3.0	0.5	1.6
SeeClick-9.6B \dagger	0.3	0.6	1.9	2.0	0.9	1.5	1.1
OS-Atlas-7B \dagger	17.7	17.9	10.3	24.4	27.4	16.8	18.9
Aguvis-7B \dagger	16.1	21.4	13.8	34.6	34.3	19.4	22.9
UGround-V1-7B	28.1	31.7	14.6	39.0	49.6	24.5	31.1
UI-TARS-7B	36.1	32.8	18.0	50.0	53.5	24.5	35.7
GUI-Actor-7B + Verifier \dagger	38.8	40.5	37.2	44.5	64.8	43.9	44.2
<i>Trained From Scratch with LLaVA-NeXT Framework</i>							
LLaVA-NeXT + LLaVA PE	23.1	25.5	12.6	35.4	43.8	20.5	26.8
LLaVA-NeXT + MRoPE	26.8	29.4	13.6	36.5	47.5	21.2	29.2
LLaVA-NeXT + I-MRoPE	27.1	29.8	13.8	36.6	47.8	21.5	29.4
LLaVA-NeXT + I-MRoPE + RULER	28.2	32.1	15.3	40.5	51.6	24.8	32.1
<i>Finetuning</i>							
Qwen2.5-VL	31.4	34.2	17.1	42.8	54.0	28.3	34.6
Qwen2.5-VL + RULER	34.2	36.5	21.1	43.9	55.4	32.0	37.2

349
 350 strong baseline; and GUI-Actor-7B (Wu et al., 2025a) which uses attention-based grounding instead
 351 of outputting coordinates. All baseline numbers are reported from original papers or reproduced
 352 using official implementations with consistent evaluation protocols. Note that our models use less
 353 training data than GUI-Actor. Besides, our models are only trained on UGround and thus have not
 354 seen data from domains other than websites, unlike UI-TARS and GUI-Actor.

357 5 RESULTS

360 5.1 GUI GROUNDING PERFORMANCE

362 We present the comparison among the models trained from scratch with RULER and I-MRoPE, the
 363 finetuned models equipped with RULER, and the baseline models on ScreenSpot-Pro, ScreenSpot,
 364 and ScreenSpot-V2 in Table 1, Table 2, and Table 3, respectively.

365 For the from-scratch training experiments, multidimensional RoPE consistently outperforms the de-
 366 fault 1D RoPE (LLaVA PE) across all benchmarks. Furthermore, our proposed I-MRoPE achieves
 367 both lower training loss and stronger grounding performance than the original MRoPE, demon-
 368 strating the effectiveness of balancing the spectrum across the spatial dimensions. RULER tokens fur-
 369 ther enhance performance by providing guidance on position-to-coordinate mapping, achieving the best
 370 overall results among all models trained from scratch across all datasets. Noticeably, the gains from
 371 RULER are most pronounced on ScreenSpot-Pro, reflecting how its reference-then-copy mechanism
 372 and bounded pixel coordinate arithmetic across resolutions help generalization to higher resolution
 373 grounding tasks.

374 For fine-tuning experiments, we also observe that adding RULER consistently improves per-
 375 formance, with the largest gains on the higher-resolution ScreenSpot-Pro benchmark. Although RULER
 376 does not achieve state-of-the-art results partly due to the limited training data and domains, our ex-
 377 periments nevertheless demonstrate that incorporating RULER reliably enhances grounding per-
 378 formance under comparable training conditions.

378
 379 Table 2: Grounding element accuracy on **ScreenSpot**. The results of models marked with \dagger are
 380 adopted from Wu et al. (2025a). Best results per column within each group are shown in **bold**.

	M-Text	M-Icon	D-Text	D-Icon	W-Text	W-Icon	Avg
GPT-4 \dagger	22.6	24.5	20.2	11.8	9.2	8.8	16.2
GPT-4o \dagger	20.2	24.9	21.1	23.6	12.2	7.8	18.3
Claude Computer Use \dagger	-	-	-	-	-	-	83.0
Gemini 2.0 \dagger	-	-	-	-	-	-	84.0
Qwen2-VL-7B \dagger	75.5	60.7	76.3	54.3	35.2	25.7	55.3
SeeClick-9.6B \dagger	78.0	52.0	72.2	30.0	55.7	32.5	53.4
OS-Atlas-7B \dagger	93.0	72.9	91.8	62.9	90.9	74.3	82.5
Aguvis-7B	95.6 \dagger	77.7	93.8	67.1	88.3	75.2	84.4
UGround-v1-7B	93.0	79.9	93.8	76.4	90.9	84.0	86.3
UI-TARS-7B	94.5	85.2	95.9	85.7	90.0	83.5	89.5
GUI-Actor-7B + Verifier \dagger	96.0	83.0	93.8	82.1	92.2	87.4	89.7
<i>Trained From Scratch with LLaVA-NeXT Framework</i>							
LLaVA-NeXT + LLaVA PE	88.9	74.2	88.3	70.2	85.7	75.4	80.5
LLaVA-NeXT + MRoPE	90.0	76.2	90.2	72.7	88.3	77.5	82.5
LLaVA-NeXT + I-MRoPE	90.5	76.9	90.9	73.4	88.5	77.7	83.0
LLaVA-NeXT + I-MRoPE + RULER	91.4	77.0	91.5	73.2	89.5	77.2	83.3
<i>Finetuning</i>							
Qwen2.5-VL	93.4	80.5	94.6	76.4	91.1	84.6	86.8
Qwen2.5-VL + RULER	94.2	84.1	93.6	76.5	92.4	85.3	87.7

400
 401 Table 3: Grounding element accuracy on **ScreenSpot-V2**. The results of models marked with \dagger are
 402 adopted from Wu et al. (2025a). Best results per column within each group are shown in **bold**.

	M-Text	M-Icon	D-Text	D-Icon	W-Text	W-Icon	Avg
GPT-4o + OmniParser-v2 \dagger	95.5	74.6	92.3	60.9	88.0	59.6	80.7
SeeClick-9.6B \dagger	78.4	50.7	70.1	29.3	55.2	32.5	55.1
OS-Atlas-7B \dagger	95.2	75.8	90.7	63.6	90.6	77.3	84.1
Aguvis-7B \dagger	95.5	77.3	95.4	77.9	91.0	72.4	86.0
UGround-V1-7B	95.0	83.3	95.0	77.8	92.1	77.2	87.6
UI-TARS-7B	96.9	89.1	95.4	85.0	93.6	85.2	91.6
GUI-Actor-7B + Verifier \dagger	97.2	84.8	94.3	85.0	94.0	85.2	90.9
<i>Trained From Scratch with LLaVA-NeXT Framework</i>							
LLaVA-NeXT + LLaVA PE	92.4	78.8	90.1	75.3	87.9	74.1	83.1
LLaVA-NeXT + MRoPE	93.2	79.1	90.8	76.6	88.0	76.3	84.0
LLaVA-NeXT + I-MRoPE	93.4	80.0	91.3	77.5	88.1	76.7	84.5
LLaVA-NeXT + I-MRoPE + RULER	95.0	82.7	90.3	79.8	88.6	77.1	85.6
<i>Finetuning</i>							
Qwen2.5-VL	95.6	85.2	95.2	80.8	92.5	79.9	88.2
Qwen2.5-VL + RULER	96.2	87.0	95.3	80.5	93.2	81.6	89.0

422 5.2 ANALYSIS ON RULER TOKEN INTERVAL

423 To analyze the effect of changing the interval of the RULER token, we provide a sensitivity analysis
 424 of s in Equation 3. The results are shown in Figure 3.

425 In the figure, we notice that all interval settings yield consistent improvements compared to models
 426 without RULER tokens in all datasets. However, varying the RULER token interval does not yield
 427 significant or consistent improvements on the benchmarks. Based on the results, we adopt the setting
 428 of $s = 8$ as a good trade-off between performance and efficiency. However, it should be noted
 429 that in extremely low-resolution settings such as mobile phone screenshot grounding, an interval
 430 $s = 16$ may inject only a single RULER token, leading to reduced performance in the mobile-related
 431 subtasks of ScreenSpot and ScreenSpot-V2.

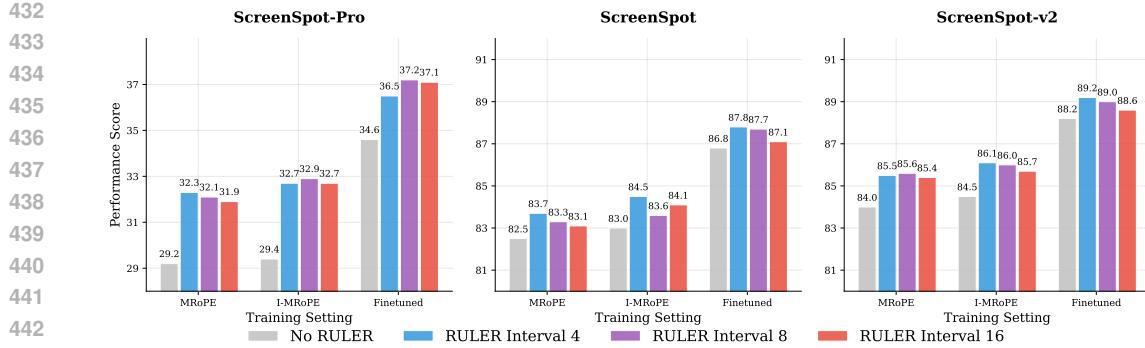


Figure 3: Ablation study on RULER token intervals s across different benchmarks and training settings.

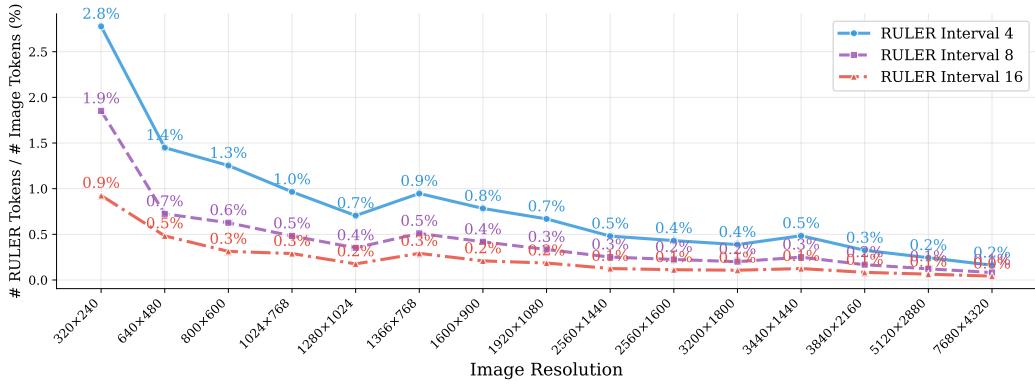


Figure 4: Analysis of the ratio of the number of RULER tokens to the number of image tokens under common mobile phone and computer screen resolutions for different RULER intervals. All numbers are in percentages (%).

5.3 EFFICIENCY ANALYSIS

To demonstrate the efficiency of adding RULER tokens, we provide an efficiency analysis in the $p = 8$ setting in Figure 4. In this figure, we report the ratio of RULER tokens to image tokens in common resolutions of mobile phones and computer screens under different interval settings. Even in the extreme 8K screenshot scenarios and using an interval of $s = 2$, RULER only adds 68 additional tokens, which is merely 0.2% of the total number of vision tokens. For low-resolution mobile screenshots, the highest ratio of RULER to vision tokens observed is 2.8%, where the impact on efficiency remains negligible. These results confirm that the introduction of tokens RULER can effectively improve grounding performance while maintaining efficiency.

6 CONCLUSIONS AND LIMITATIONS

We presented a framework for GUI grounding that replaces implicit position-to-pixel coordinate mapping with explicit spatial guidance. RULER tokens provide coordinate references that transform unstable regression into robust reference and adjustment, while I-MRoPE corrects frequency imbalances in the positional embeddings. Our approach achieves consistent improvements across benchmarks, with particularly strong gains on high-resolution displays beyond training resolutions, validating its generalization capability. The minimal computational overhead (less than 1% of token increase) makes deployment practical. Future work could explore adaptive token placement and extension to video interfaces. The success of explicit spatial guidance over implicit learning suggests broader applications beyond GUI automation for any task that requires precise visual localization.

486 REFERENCES
487

488 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
489 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
490 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
491 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. *arXiv
492 preprint arXiv: 2502.13923*, 2025.

493 Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Li YanTao, Jianbing Zhang, and Zhiyong
494 Wu. SeeClick: Harnessing GUI grounding for advanced visual GUI agents. In *Proceedings
495 of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
496 Papers)*, pp. 9313–9332, Bangkok, Thailand, August 2024. Association for Computational Lin-
497 guistics. doi: 10.18653/v1/2024.acl-long.505. URL [https://aclanthology.org/2024.
498 acl-long.505/](https://aclanthology.org/2024.acl-long.505/).

499 Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
500 Yu Su. Mind2web: Towards a generalist agent for the web. In *Thirty-seventh Conference on
501 Neural Information Processing Systems Datasets and Benchmarks Track*, 2023. URL <https://openreview.net/forum?id=kiYqbO3wqw>.

503 Junqi Ge, Ziyi Chen, Jintao Lin, Jinguo Zhu, Xihui Liu, Jifeng Dai, and Xizhou Zhu. V2pe: Improv-
504 ing multimodal long-context capability of vision-language models with variable visual position
505 encoding. *arXiv preprint arXiv:2412.09616*, 2024.

506 Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and
507 Yu Su. Navigating the digital world as humans do: Universal visual grounding for GUI agents.
508 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=kxnoqaisCT>.

509 Dong Guo, Faming Wu, Feida Zhu, Fuxing Leng, Guang Shi, Haobin Chen, Haoqi Fan, Jian Wang,
510 Jianyu Jiang, Jiawei Wang, Jingji Chen, Jingjia Huang, Kang Lei, Liping Yuan, Lishu Luo,
511 Pengfei Liu, Qinghao Ye, Rui Qian, Shen Yan, Shixiong Zhao, Shuai Peng, Shuangye Li, Si-
512 hang Yuan, Sijin Wu, Tianheng Cheng, Weiwei Liu, Wenqian Wang, Xianhan Zeng, Xiao Liu,
513 Xiaobo Qin, Xiaohan Ding, Xiaojun Xiao, Xiaoying Zhang, Xuanwei Zhang, Xuehan Xiong,
514 Yanghua Peng, Yangrui Chen, Yanwei Li, Yanxu Hu, Yi Lin, Yiyuan Hu, Yiyuan Zhang, Youbin
515 Wu, Yu Li, Yudong Liu, Yue Ling, Yujia Qin, Zanbo Wang, Zhiwu He, Aoxue Zhang, Bairen Yi,
516 Bencheng Liao, Can Huang, Can Zhang, Chaorui Deng, Chaoyi Deng, Cheng Lin, Cheng Yuan,
517 Chenggang Li, Chenhui Gou, Chenwei Lou, Chengzhi Wei, Chundian Liu, Chunyuan Li, Deyao
518 Zhu, Donghong Zhong, Feng Li, Feng Zhang, Gang Wu, Guodong Li, Guohong Xiao, Haibin
519 Lin, Haihua Yang, Haoming Wang, Heng Ji, Hongxiang Hao, Hui Shen, Huixia Li, Jiahao Li,
520 Jialong Wu, Jianhua Zhu, Jianpeng Jiao, Jiashi Feng, Jiaze Chen, Jianhui Duan, Jihao Liu, Jin
521 Zeng, Jingqun Tang, Jingyu Sun, Joya Chen, Jun Long, Junda Feng, Junfeng Zhan, Junjie Fang,
522 Junting Lu, Kai Hua, Kai Liu, Kai Shen, Kaiyuan Zhang, Ke Shen, Ke Wang, Keyu Pan, Kun
523 Zhang, Kunchang Li, Lanxin Li, Lei Li, Lei Shi, Li Han, Liang Xiang, Liangqiang Chen, Lin
524 Chen, Lin Li, Lin Yan, Liying Chi, Longxiang Liu, Mengfei Du, Mingxuan Wang, Ningxin Pan,
525 Peibin Chen, Pengfei Chen, Pengfei Wu, Qingqing Yuan, Qingyao Shuai, Qiuyan Tao, Renjie
526 Zheng, Renrui Zhang, Ru Zhang, Rui Wang, Rui Yang, Rui Zhao, Shaoqiang Xu, Shihao Liang,
527 Shipeng Yan, Shu Zhong, Shuaishuai Cao, Shuangzhi Wu, Shufan Liu, Shuhan Chang, Songhua
528 Cai, Tenglong Ao, Tianhao Yang, Tingting Zhang, Wanjun Zhong, Wei Jia, Wei Weng, Weihao
529 Yu, Wenhao Huang, Wenjia Zhu, Wenli Yang, Wenzhi Wang, Xiang Long, XiangRui Yin, Xiao
530 Li, Xiaolei Zhu, Xiaoying Jia, Xijin Zhang, Xin Liu, Xincheng Zhang, Xinyu Yang, Xiongcai Luo,
531 Xiuli Chen, Xuantong Zhong, Xuefeng Xiao, Xujing Li, Yan Wu, Yawei Wen, Yifan Du, Yihao
532 Zhang, Yining Ye, Yonghui Wu, Yu Liu, Yu Yue, Yufeng Zhou, Yufeng Yuan, Yuhang Xu, Yuhong
533 Yang, Yun Zhang, Yunhao Fang, Yuntao Li, Yurui Ren, Yuwen Xiong, Zehua Hong, Zehua Wang,
534 Zewei Sun, Zeyu Wang, Zhao Cai, Zhaoyue Zha, Zhecheng An, Zhehui Zhao, Zhengzhuo Xu,
535 Zhipeng Chen, Zhiyong Wu, Zhuofan Zheng, Zihao Wang, Zilong Huang, Ziyu Zhu, and Zuquan
536 Song. Seed1.5-vl technical report, 2025. URL <https://arxiv.org/abs/2505.07062>.

537 Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
538 Wang, Yuxiao Dong, Ming Ding, and Jie Tang. Cogagent: A visual language model for gui
539 agents. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR)*, pp. 14281–14290, June 2024.

540 Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 541 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International Con-*
 542 *ference on Learning Representations*, 2022. URL [https://openreview.net/forum?](https://openreview.net/forum?id=nZeVKeFYf9)
 543 [id=nZeVKeFYf9](https://openreview.net/forum?id=nZeVKeFYf9).

544 Haoran Li, Yingjie Qin, Baoyuan Ou, Lai Xu, and Ruiwen Xu. Hope: Hybrid of position embedding
 545 for length generalization in vision-language models. *arXiv preprint arXiv:2505.20444*, 2025a.

546 Kaixin Li, Ziyang Meng, Hongzhan Lin, Ziyang Luo, Yuchen Tian, Jing Ma, Zhiyong Huang, and
 547 Tat-Seng Chua. Screenspot-pro: Gui grounding for professional high-resolution computer use.
 548 *arXiv preprint arXiv:2504.07981*, 2025b.

549 Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. Mapping natural language
 550 instructions to mobile ui action sequences, 2020. URL [https://arxiv.org/abs/2005.](https://arxiv.org/abs/2005.03776)
 551 [03776](https://arxiv.org/abs/2005.03776).

552 Haogeng Liu, Quanzeng You, Xiaotian Han, Yongfei Liu, Huaibo Huang, Ran He,
 553 and Hongxia Yang. Visual anchors are strong information aggregators for multi-
 554 modal large language model. In *Advances in Neural Information Processing Systems*, volume 37,
 555 pp. 17696–17718. Curran Associates, Inc., 2024a. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/1f84412e84da6440ca355d87184cb1b3-Paper-Conference.pdf.

556 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In
 557 *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=w0H2xGH1kw>.

558 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
 559 Llava-next: Improved reasoning, ocr, and world knowledge, January 2024b. URL <https://llava-vl.github.io/blog/2024-01-30-llava-next/>.

560 Xiaoran Liu, Hang Yan, Chenxin An, Xipeng Qiu, and Dahua Lin. Scaling laws of RoPE-based
 561 extrapolation. In *The Twelfth International Conference on Learning Representations*, 2024c. URL
 562 <https://openreview.net/forum?id=J07k0SJ5V6>.

563 Zikang Liu, Longteng Guo, Yepeng Tang, Tongtian Yue, Junxian Cai, Kai Ma, Qingbin Liu,
 564 Xi Chen, and Jing Liu. Vrope: Rotary position embedding for video large language models.
 565 *arXiv preprint arXiv:2502.11664*, 2025.

566 Shravan Nayak, Xiangru Jian, Kevin Qinghong Lin, Juan A. Rodriguez, Montek Kalsi, Rabiul Awal,
 567 Nicolas Chapados, M. Tamer Özsü, Aishwarya Agrawal, David Vazquez, Christopher Pal, Perouz
 568 Taslakian, Spandana Gella, and Sai Rajeswar. Ui-vision: A desktop-centric gui benchmark for
 569 visual perception and interaction, 2025. URL <https://arxiv.org/abs/2503.15661>.

570 Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
 571 Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
 572 Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
 573 Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
 574 and Chris Olah. In-context learning and induction heads. *arXiv preprint arXiv: 2209.11895*,
 575 2022.

576 Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao
 577 Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with native
 578 agents. *arXiv preprint arXiv:2501.12326*, 2025.

579 Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 580 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 581 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 582 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
 583 Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
 584 Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *arXiv*
 585 *preprint arXiv: 2412.15115*, 2024.

594 Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
 595 toward training trillion parameter models. *arXiv preprint arXiv: 1910.02054*, 2019.
 596

597 Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang, Min-
 598 jia Zhang, Dong Li, and Yuxiong He. Zero-offload: Democratizing billion-scale model training.
 599 *arXiv preprint arXiv: 2101.06840*, 2021.

600 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 601 Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
 602 matical reasoning in open language models, 2024. URL <https://arxiv.org/abs/2402.03300>.
 603

604 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
 605 hanced transformer with rotary position embedding. *Neurocomput.*, 568(C), February 2024. ISSN
 606 0925-2312. doi: 10.1016/j.neucom.2023.127063. URL <https://doi.org/10.1016/j.neucom.2023.127063>.
 607

608 Chengcheng Wang, Jianyuan Guo, Hongguang Li, Yuchuan Tian, Ying Nie, Chang Xu, and Kai
 609 Han. Circle-rope: Cone-like decoupled rotary positional embedding for large vision-language
 610 models. *arXiv preprint arXiv:2505.16416*, 2025a.

611 Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang, and Jitao
 612 Sang. Mobile-agent: Autonomous multi-modal mobile device agent with visual perception. *arXiv
 613 preprint arXiv:2401.16158*, 2024a.
 614

615 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 616 Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
 617 Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model's
 618 perception of the world at any resolution. *arXiv preprint arXiv: 2409.12191*, 2024b.
 619

620 Suyuchen Wang, Ivan Kobyzhev, Peng Lu, Mehdi Rezagholizadeh, and Bang Liu. Resonance RoPE:
 621 Improving context length generalization of large language models. In Lun-Wei Ku, Andre Mart-
 622 ins, and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics: ACL
 623 2024*, pp. 586–598, Bangkok, Thailand, August 2024c. Association for Computational Linguis-
 624 tics. doi: 10.18653/v1/2024.findings-acl.32. URL [https://aclanthology.org/2024.
 625 findings-acl.32/](https://aclanthology.org/2024.findings-acl.32/).

626 Xinyuan Wang, Bowen Wang, Dunjie Lu, Junlin Yang, Tianbao Xie, Junli Wang, Jiaqi Deng, Xi-
 627 aole Guo, Yiheng Xu, Chen Henry Wu, Zhennan Shen, Zhuokai Li, Ryan Li, Xiaochuan Li,
 628 Junda Chen, Boyuan Zheng, Peihang Li, Fangyu Lei, Ruisheng Cao, Yeqiao Fu, Dongchan Shin,
 629 Martin Shin, Jiarui Hu, Yuyan Wang, Jixuan Chen, Yuxiao Ye, Danyang Zhang, Dikang Du, Hao
 630 Hu, Huarong Chen, Zaida Zhou, Haotian Yao, Ziwei Chen, Qizheng Gu, Yipu Wang, Heng Wang,
 631 Diyi Yang, Victor Zhong, Flood Sung, Y. Charles, Zhilin Yang, and Tao Yu. Opencua: Open foun-
 632 dations for computer-use agents, 2025b. URL <https://arxiv.org/abs/2508.09123>.
 633

634 Qianhui Wu, Kanzhi Cheng, Rui Yang, Chaoyun Zhang, Jianwei Yang, Huiqiang Jiang, Jian Mu,
 635 Baolin Peng, Bo Qiao, Reuben Tan, et al. Gui-actor: Coordinate-free visual grounding for gui
 636 agents. *arXiv preprint arXiv:2506.03143*, 2025a.

637 Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng,
 638 Zichen Ding, Liheng Chen, Paul Pu Liang, and Yu Qiao. OS-ATLAS: Foundation action model
 639 for generalist GUI agents. In *The Thirteenth International Conference on Learning Representa-
 640 tions*, 2025b. URL <https://openreview.net/forum?id=n9PDAFNi8t>.

641 Tianbao Xie, Jiaqi Deng, Xiaochuan Li, Junlin Yang, Haoyuan Wu, Jixuan Chen, Wenjing Hu,
 642 Xinyuan Wang, Yuhui Xu, Zekun Wang, et al. Scaling computer-use grounding via user interface
 643 decomposition and synthesis. *arXiv preprint arXiv:2505.13227*, 2025.

644 Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao
 645 Yu, and Caiming Xiong. Aguviz: Unified pure vision agents for autonomous GUI interac-
 646 tion. In *Forty-second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=PlihOwfz4r>.
 647

648 Yan Yang, Dongxu Li, Yutong Dai, Yuhao Yang, Ziyang Luo, Zirui Zhao, Zhiyuan Hu, Junzhe
 649 Huang, Amrita Saha, Zeyuan Chen, et al. Gta1: Gui test-time scaling agent. *arXiv preprint*
 650 *arXiv:2507.05791*, 2025.

651
 652 Xinbin Yuan, Jian Zhang, Kaixin Li, Zhuoxuan Cai, Lujian Yao, Jie Chen, Enguang Wang, Qibin
 653 Hou, Jinwei Chen, Peng-Tao Jiang, et al. Enhancing visual grounding for gui agents via self-
 654 evolutionary reinforcement learning. *arXiv preprint arXiv:2505.12370*, 2025.

655 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
 656 image pre-training. *IEEE International Conference on Computer Vision*, 2023. doi: 10.1109/
 657 ICCV51070.2023.01100.

658
 659 Chaoyun Zhang, Liqun Li, Shilin He, Xu Zhang, Bo Qiao, Si Qin, Minghua Ma, Yu Kang, Qing-
 660 wei Lin, Saravan Rajmohan, et al. Ufo: A ui-focused agent for windows os interaction. In
 661 *Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association*
 662 *for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp.
 663 597–622, 2025a.

664 Miaosen Zhang, Ziqiang Xu, Jialiang Zhu, Qi Dai, Kai Qiu, Yifan Yang, Chong Luo, Tianyi Chen,
 665 Justin Wagle, Tim Franklin, et al. Phi-ground tech report: Advancing perception in gui grounding.
 666 *arXiv preprint arXiv:2507.23779*, 2025b.

667 Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v(ision) is a generalist
 668 web agent, if grounded. In *ICML*, 2024. URL <https://openreview.net/forum?id=piecdKJ2D1B>.

672 A LLM USAGE STATEMENT

673
 674 For this work, GitHub Copilot provided light coding assistance during human-authored code de-
 675 velopment. Claude was used for grammar check and language polishing of manually written text
 676 sections after completion.

678 B IMPLEMENTATION DETAILS

680 We provide detailed training configurations for our experiments in the following. All experiments
 681 are performed on 8 NVIDIA H100 GPUs.

683 B.1 TRAINING FROM SCRATCH

685 **Stage 1: Vision-Language Alignment Pretraining.** We follow the LLaVA-NeXT training
 686 paradigm. The model uses SigLIP-SO400M-14@384 (Zhai et al., 2023) as the vision encoder and
 687 Qwen2.5 7B Instruct (Qwen et al., 2024) as the language model. During pretraining, we train only
 688 the MLP projection layer while keeping both vision and language models frozen. Training is per-
 689 formed on the LLaVA-558K dataset (Liu et al., 2023) for 1 epoch with a learning rate of 1×10^{-3}
 690 using cosine scheduling and 3% warmup ratio. We use a per-device batch size of 4 with gradient
 691 accumulation steps of 2, resulting in an effective batch size of 64 across 8 GPUs. The maximum
 692 sequence length is set to 8,192 tokens. Images are processed using the AnyRes configuration with
 693 a maximum of 9 patches and grid pinpoints ranging from (1×1) to (12×6) to accommodate high-
 694 resolution images during inference. We employ DeepSpeed Zero-2 with CPU offload (Ren et al.,
 695 2021) and mixed precision training (bf16) for memory efficiency. For models using RULER, we set
 696 the token interval to $s = 8$, while positional embedding configurations (default LLaVA PE, MRoPE,
 697 or I-MRoPE) are specified throughout the pretraining and finetuning process.

698 **Stage 2: Domain-Specific Finetuning.** Using the pretrained projection layer from Stage 1, we
 699 finetune on the UGround dataset (Gou et al., 2025) with coordinates converted to raw pixel values
 700 to match our RULER token design. In this stage, we train the projection layer with full parameter
 701 finetuning and the language model using LoRA (Hu et al., 2022) with rank 16 for parameter effi-
 702 ciency. The base learning rate is set to 1×10^{-5} for the projection layer and LoRA parameters. We

702 use a per-device batch size of 1 with gradient accumulation steps of 4, yielding an effective batch
 703 size of 32. The maximum sequence length is extended to 16,384 tokens to accommodate higher-
 704 resolution images. Training runs for 1 epoch with cosine learning rate scheduling and 3% warmup.
 705 We continue using DeepSpeed Zero-2 with CPU offload and bf16 mixed precision.

706

707 B.2 FINETUNING QWEN2.5-VL

708

709 For adapting the pretrained Qwen2.5-VL 7B Instruct model (Bai et al., 2025), we use a conservative
 710 finetuning approach to preserve the existing capabilities of the model while adding RULER tokens.
 711 We maintain the model’s original MRoPE configuration to avoid disrupting learned position-aware
 712 behaviors. The model is finetuned with a low learning rate of 1×10^{-5} using cosine scheduling
 713 with 3% warmup to ensure stable adaptation. We use a per-device batch size of 4 with gradient
 714 accumulation steps of 4, resulting in an effective batch size of 128. The maximum sequence length
 715 remains at 16,384 tokens, and we utilize Qwen2.5-VL’s dynamic resolution capability with pixel
 716 counts ranging from 784 to 50,176. Training runs for 1 epoch on the UGround dataset with all
 717 components (vision encoder, MLP projector, and language model) being trainable. We employ
 718 DeepSpeed Zero-3 (Rajbhandari et al., 2019) for distributed training and bf16 mixed precision.
 719 RULER tokens are integrated into the input sequence with interval $s = 8$ when specified, and we
 720 use Qwen2.5-VL’s native chat template and system prompts for consistency with the pretrained
 721 model’s behavior.

722

723 B.3 EVALUATION PROTOCOL

724

725 All models are evaluated using greedy decoding (temperature=0) with the same maximum sequence
 726 length as training. For ScreenSpot benchmarks, we preprocess all coordinates to raw pixel values
 727 and use the evaluation code from Wu et al. (2025a). Element accuracy is computed by checking
 728 if the predicted coordinate falls within the ground-truth bounding box. We ensure consistent pre-
 729 processing across all baselines for fair comparison.

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755