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ABSTRACT
Serving large language models (LLMs) efficiently requires elaborate request scheduling to satisfy service-level
objectives (SLOs). In the context of LLM serving, SLOs include the constraints on Time-to-First-Token (TTFT)
and Time-per-Output-Token (TPOT). Existing serving systems apply a coarse-grained request scheduling that
follows a fixed principle at different iterations during the serving procedure, leading to (1) a significant request
latency distribution bias between TTFT and TPOT, and (2) a significant distribution variance among different
requests as shown in Fig. 1(a), and hence causes disappointing SLO attainment.

We identify that fine-grained scheduling based on a formal description of the design space addresses the issues
mentioned above. To this end, we first formulate a scheduling design space with flexible control of the request
execution order and the workload at each iteration. Based on that, we introduce a state-aware scheduling strategy,
which is aware of two kinds of states: the states from the single request perspective and the states from the
systemic perspective, and further leverages the trade-off between TTFT and TPOT and the trade-off among
different requests to improve the SLO attainment, as shown in Fig. 2. We implement SOLA with the above
insights. Given SLO constraints, the evaluation shows that SOLA enhances the SLO attainment from 45.5% to
99.4%, and serves 1.04-1.27× more requests than the state-of-the-art systems on average.

1 INTRODUCTION

Large language models (LLMs) have achieved impressive in-
telligence ability, empowering a broad range of application
domains including chatbots (Brown et al., 2020; Adiwar-
dana et al., 2020; Roller et al., 2021), code assistants (Feng
et al., 2020; Svyatkovskiy et al., 2020), retrieval-augmented
generation (Lewis et al., 2020; Izacard & Grave, 2020; Guu
et al., 2020), and agent-based applications (Bubeck et al.,
2023; Ouyang et al., 2022; OpenAI, 2023). However, LLM
service introduces a considerable latency due to the billion-
scale model parameters (Zhou et al., 2024; Aminabadi et al.,
2022; Vaidya et al., 2023; Hong et al., 2024). Hence, speci-
fying the latency constraints in the service-level objectives
(SLOs) for the practical demand is essential. For LLMs, the
processing of a request contains two phases: prefill phase
and decode phase. The prefill phase processes the input
prompt and generates the first output token, and the decode
phase generates the output tokens iteration by iteration in
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Figure 1. Using vLLM’s default strategy vs. enhanced attainment
(i.e., the percentage of requests within the SLOs) with SOLA,
when serving Llama3-70B (Meta, 2024) with ShareGPT (Sharegpt,
2023) dataset on 4 A100 GPUs. The SLOs are 500ms for TTFT
and 200ms for TPOT, represented by the left corner box. The input
request rate is set to 4.6 request/s.

an auto-regressive manner, with one token at each iteration.
The latency between request arrival and the first output token
being generated via the prefill phase is denoted as Time-to-
First-Token (TTFT), and the latency per token in the decode
phase is denoted as Time-per-Output-Token (TPOT). TTFT
and TPOT are both essential for user experience. For real-
time applications including conversation, TTFT is important
for responsive promptness, and TPOT is crucial for reading
smoothness and efficiency.

LLM service providers receive thousands of requests within
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Figure 2. The twofold trade-offs in SOLA benefit the SLO attain-
ment. (a) The trade-off between TTFT and TPOT from the per-
spective of a request. (b) The trade-off among different requests.

a short period. Adhering to the latency constraints in SLOs,
how to improve the system throughput to support more re-
quests is an important topic. In general, TTFT and TPOT
are measured on individual requests. Prioritizing a single re-
quest means assigning more resources to the request within
a time slice, which benefits its TTFT and TPOT. Neverthe-
less, system throughput focuses on the total of the requests.
Over-assigning resources to a single request diminishes the
resources available for others, negatively impacting the over-
all system throughput. Therefore, scheduling is essential for
managing resource assignments when requests compete for
limited resources. The goal of scheduling in LLM serving is
to maximize the request processing rate of the system under
TTFT and TPOT constraints.

Request batching is a preliminary scheduling method to im-
prove throughput. However, requests in LLM serving may
have different input and output lengths, making request-
level batching inefficient. To this end, Orca (Yu et al., 2022)
proposes the continuous batching technique, scheduling ex-
ecution and batching requests at the granularity of iterations
(an execution of prefill phase or decode phase) instead of
requests. Based on that, Sarathi-Serve (Agrawal et al., 2024)
and DeepSpeed-FastGen (Holmes et al., 2024) propose the
SplitFuse method to chunk the prefill requests along the
sequence dimension and schedule the decode requests to-
gether with the chunked prefill requests within one iteration.
Thus, an iteration refers to the execution of a batch of prefill
requests or decode requests, or a mixed batch containing
both types of requests.

The essence of scheduling is forming a sequence of iter-

ations where each iteration can be a prefill, decode, or
a mixed iteration, and specifying the workload size for
each iteration. Specifically, vLLM (Kwon et al., 2023)
prioritizes prefill iteration, resulting in better TTFT at the
cost of TPOT degradation. The higher priority of pre-
fill iteration aggregates a large number of requests in de-
code phases, which improves the system throughput but
prolongs the TPOT for each request. In contrast, Faster-
Transformer (NVIDIA, 2017a) prioritizes decode iteration,
leading to better TPOT at the cost of worse TTFT and sys-
tem throughput. Sarathi-Serve (Agrawal et al., 2024) and
DeepSpeed-FastGen (Holmes et al., 2024) try to balance
TTFT and TPOT by scheduling the mixed iterations.

We identify that existing serving systems fail to recognize
and handle the bias and the variance of the latency distri-
bution depicted in Fig. 1(a). The bias represents the gap
between the SLO constraint margin on TTFT and that on
TPOT, featuring one of them having much lower attain-
ment against its SLO. The variance represents the inter-
request variance against the SLO constraint margin, with
many requests failing the SLOs while others still hav-
ing redundant budgets to spare. The reason is that the
existing designs schedule requests according to some fixed
principles (e.g., prefill-prioritized or decode-prioritized) but
lack more fine-grained management of the trade-off between
TTFT and TPOT, and the trade-off among different requests.
Some previous works support the request-level priority, in-
cluding FastServe (Wu et al., 2023) that uses preemptive
scheduling to minimize the total latency by giving shorter
requests a higher priority. Recent work (Fu et al., 2024)
tries to predict the relative order among requests without
knowing the accurate lengths, also following the shortest-
job-first (SJF) scheduling principle. Another work (Sheng
et al., 2024) defines the fairness between users and treats the
requests from different users with different priorities. But
those works decide the execution order of requests merely
based on lengths or token numbers but are unaware of the
SLOs, therefore lacking the ability to handle the trade-off
among different requests to maximize the SLO attainment.

In this work, we propose a fine-grained scheduling frame-
work to maximize the SLO attainment for LLM serving.
Compared to existing works, the fined-grained scheduling
enables the changing of scheduling strategy at iteration
level, and hence tune the workload for each execution dur-
ing the serving procedure. First, we model the scheduling
workflow and build the design space to unleash the poten-
tial changes in the scheduling strategy. The core idea is to
control the execution order for different requests and the
workload size for each iteration.

Secondly, complex contentions exist between prefill and
decode phases, and exist among different requests. At the
phase level, prefill phase and decode phases have heavy con-
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tention on the limited computation and memory resources,
leading to TTFT and TPOT interference. At the request
level, managing the scheduling priority among different re-
quests to balance the latencies is non-trivial. To this end,
we further propose a state-aware scheduling strategy, which
monitors two kinds of states: the states from the single re-
quest perspective and the states from the systemic perspec-
tive, to support system-level strategic decisions to optimize
request-level latency. Based on the states, we leverage the
trade-off between TTFT and TPOT (see Fig. 2(a)), and the
trade-off among different requests (see Fig. 2(b)). For each
iteration, the request execution order and the workload size
are derived by solving a constrained optimization problem.
Thus, state-aware scheduling enables effective trade-offs
as mentioned, further enhancing the SLO attainment from
Fig. 1(a) to Fig. 1(b). As a result, the improved SLO at-
tainment enables the system to serve more requests under
certain SLO constraints.

This paper makes the following contributions:

• We formulate a fine-grained scheduling framework for
LLM serving, which supports the adjustable scheduling
of requests at the granularity of iterations. At each
iteration, the framework enables the variation of the
scheduling by controlling the request execution order
and the workload size.

• We introduce a state-aware scheduling strategy, which
is generated based on the monitoring of two kinds
of states: the states from the perspectives of a single
request and the system, respectively. Based on the
monitored states, we optimize the scheduling strategy
to balance the trade-offs between TTFT and TPOT
and among different requests, to maximize the SLO
attainment for the whole system.

• We implement SOLA and evaluate on various bench-
marks. The results show that SOLA improves the SLO
attainment by over 50%, and hence can serve up to
1.27× more requests compared to the existing designs.

2 BACKGROUND AND RELATED WORKS

In this section, we introduce the background knowledge
involved in LLM serving, and the related works.

2.1 LLM Processing Phases

The mainstream LLMs (Meta, 2024; Zhang et al., 2022;
QwenLM, 2024; Young et al., 2024) utilize the Trans-
former (Vaswani et al., 2017) architecture, which predicts
the probability of a sequence of tokens (x1, . . . , xn) based
on autoregressive decomposition (Bengio et al., 2000). The
core of a Transformer-based model is the self-attention
mechanism, which produces query, key, and value vectors

for each token via linear projection, calculates the attention
score by multiplying the query vector with all the preceding
key vectors, and then computes the output as a weighted
average of the value vectors. For the one-by-one token gen-
eration, the key and value vectors of earlier tokens (denoted
as KV cache) are cached for future token generation. Thus,
sequence processing with LLM is typically divided into the
following two phases.

Prefill Phase. Prefill phase acts as the initial execution for a
request. The model receives a sequence of input tokens sent
by the request and calculates the probability of the first new
token. The model also produces the key vectors and value
vectors, which are stored as KV cache.

Decode Phase. At each iteration, the model processes the
latest output token, calculating the probability of the next
token while utilizing both KV cache and the newly com-
puted key and value vectors. This phase continues until the
generation of output tokens reaches a pre-defined maximum
length or an end-of-sequence token is produced.

2.2 LLM Serving

In LLM serving, users send requests to the server. The serv-
ing system processes the request on the LLM and returns
the output tokens to the users as responses. Commonly used
performance metrics in LLM serving include TTFT, TPOT,
throughput, and goodput. TTFT and TPOT measure the
request-level latency perceived by users, while throughput
and goodput measure the system-level performance. As
mentioned in Sec. 1, TTFT and TPOT are both essential
for user experience, and the agreement between service
providers and users determines SLOs (e.g., TTFT ≤ 0.5s,
TPOT ≤ 0.1s) as the latency constraints. Goodput (Zhong
et al., 2024) is a system-level metric that considers the la-
tency constraints, and we employ goodput as the evaluation
metric in this work.

2.3 Related Works

Fundamentals for LLM Serving. Continuous batching
proposed by Orca (Yu et al., 2022) is the basic technique
in LLM serving, which allows the finished requests to exit
and the arrived requests to be batched for computation at
each iteration, thereby beneficial for both system-level uti-
lization and request-level latency. Current LLM serving
systems widely apply the PagedAttention by vLLM (Kwon
et al., 2023), managing the KV cache as pages. Such paged
storage significantly removes memory fragmentation and
improves memory utilization. Moreover, the efficient GPU
kernels (Dao, 2023; Dao et al., 2023; NVIDIA, 2017b) ben-
efit the hardware utilization and improve the serving perfor-
mance. We adopt those fundamental techniques in SOLA.

LLM Scheduling. Considering the distinct prefill phase
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and decode phase, the scheduling in LLM serving requires
specific designs. vLLM (Kwon et al., 2023) by default prior-
itizes the prefill phase of new arrivals over the decode phases
of the running requests. FasterTransformer (NVIDIA,
2017a) executes the decode phases of all the running re-
quests without interruption of the incoming requests. In-
tuitively, such monotony in prioritization always benefits
either TTFT or TPOT and harms the other, leading to the dis-
tribution bias as mentioned in Sec. 1. The SplitFuse method
in Sarathi-Serve (Agrawal et al., 2024) and DeepSpeed-
FastGen (Holmes et al., 2024) takes a step to balance TTFT
and TPOT, via adjusting the stalls between two phases. But
SplitFuse fails to ensure the bias between TTFT and TPOT
is corrected. Besides, previous works (Wu et al., 2023;
Sheng et al., 2024; Fu et al., 2024) discuss the prioritization
among requests but do not consider the SLOs. But those
works reveal only part of the scheduling design space, and
are not aware of the request-level latency during scheduling,
thus being sub-optimal in SLO attainment.

Disaggregated System Design. Recent works including
Splitwise (Patel et al., 2023), TetriInfer (Hu et al., 2024), and
DistServe (Zhong et al., 2024) demonstrate the efficiency
of disaggregating the prefill and the decode phases of a
request to different instances. ExeGPT (Oh et al., 2024)
proposes different scheduling strategies involving assigning
the execution of prefill and decode phases to different GPUs,
and discusses the performance under the latency constraint.
Those disaggregated systems demand more GPUs to deploy
the service, necessitating high request rates to saturate the
GPU capacity. This work mainly focuses on the system that
locates prefill and decode phases on the same GPU.

3 MOTIVATION

3.1 Coarse-Grained versus Fine-Grained Scheduling

3.1.1 Performance Comparison

Based on Fig. 1(a), we go one step further to analyze the
disadvantages of coarse-grained scheduling in existing de-
signs. In Fig. 1(a) about 35% of requests fail the TPOT
SLO, and among them, there exist requests whose TTFTs

are far lower than the constraint, indicating a potential sat-
isfaction for the SLO with the trade-offs between TTFT
and TPOT. Moreover, the distribution in Fig. 1(a) is highly
decentralized with a significant variance among requests,
potentially indicating a better SLO attainment with the
trade-off among different requests. As outlined in Fig. 2,
fine-grained scheduling enhances the SLO attainment by tak-
ing advantage of twofold trade-offs. From the perspective of
a single request, fine-grained scheduling reduces the TPOT
of the request while maintaining its TTFT within the SLO,
refining the non-compliant request to meet both SLOs (see
Fig. 2(a)). For requests with significant latency differences,
fine-grained scheduling manages more resources for the re-
quest with large latency while assuring the SLO satisfaction
of the request with short latency (see Fig. 2(b)). There-
fore, compared to coarse-grained scheduling, fine-grained
scheduling enables the twofold trade-offs and exploits the
potential optimization for SLO attainment.

3.1.2 Trade-Off Analysis

We further discuss the ability of fine-grained scheduling
to manage the twofold trade-offs described in Fig. 2. The
processing of each request includes the prefill phase and the
decode phase, with each comprising one or more iterations.
For each request, TTFT measures the latency of waiting and
the prefill phase, while TPOT measures the average latency
during the decode phase. The difficulty of scheduling
under the SLOs arises from the latency being measured
at the request level, whereas the scheduling occurs at the
iteration level. Existing works focus on the iteration-level
designs but overlook the global observation of the request
latency, thus failing to manage the twofold trade-offs in
Fig. 2. To address the issue, the following three types of
contention need careful handling.

• Contention 1. Prefill and Decode Requests. As
shown in Fig. 3(a), compared to the prefill-prioritized
situation, the prioritization for decode requests keeps
the TPOT distribution lower but prolongs TTFT dis-
tribution. Therefore, the contention exists when the
requests in one phase are prioritized while the requests
in the other phase are stalled. Note that such contention
has varying impacts on different requests, e.g., insert-
ing prefill requests causes a larger TPOT increase for
the decode requests with shorter output lengths.

• Contention 2. Prefill and Prefill Requests. If the
two requests (Req. 1 and Req. 2) in Fig. 3(b) are ex-
ecuted one by one, the prioritized request will gain a
better TTFT (Req. 1) but the other one will incur ad-
ditional waiting time (Req. 2). Batching two requests
together leads to a same TTFT for both, and the TTFT
is slightly lower than the original TTFT for the second
request, if the GPU capacity is not saturated, which is
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Table 1. Symbols in the scheduling framework at the i-th iteration.

Class Symbol Explanation

Setting M max KV cache memory
T TTFT SLO of TTFT
T TPOT SLO of TPOT

State mratio
i KV cache memory used ratio

(system) Qwait
i waiting request queue

Qrun
i running request queue

pTTFT
i ratio of real-time TTFT to SLO

pTPOT
i ratio of real-time TPOT to SLO

Di output length distribution

State tTTFT
i,r real-time TTFT

(request r) tTPOT
i,r real-time TPOT
lout
i,r generated output length
lleft
i,r predicted left length to run
knew
i,r number of tokens to be added

linr input length

Strategy ni number of requests to run
ki number of tokens to run
Fi sorting func. for waiting requests

Cost Model Cp
i cost model for prefill requests
Cd
i cost model for decode requests

the situation in Fig. 3(b). The TTFT change caused
by batching depends on the request input lengths and
also the computational capacity of the system. Without
batching, the execution order between Req. 1 and Req.
2 decides which request bears the waiting latency.

• Contention 3. Decode and Decode Requests. The
contention among decode requests happens when the
system memory is full, and some requests are pre-
empted to spare space for continuing the decode itera-
tions of the others. The preempted requests are either
swapped to CPU or recomputed, thereby suffering a
larger TPOT than the retained ones. One alternative
solution is to early reduce the batch size for decode
iterations based on the peak memory prediction, hence
avoiding the memory overflow, which we will spec-
ify in Sec. 5.1. However, such an early reduction still
forces part of the decode requests to wait. Retaining
how many (workload size) and which (execution order)
requests decides the TPOTs of all requests.

Considering that the system has hundreds of requests simul-
taneously, the scheduling strategy unchanged for different
iterations fails to handle those contentions properly. Thus,
fine-grained scheduling is necessitated to perform better
trade-offs and optimize the system performance.

3.2 Challenges for Fine-Grained Scheduling

Performing fine-grained scheduling faces several challenges,
and we list corresponding insights to uncover the approach

to building an efficient fine-grained scheduling framework.

Lack of design space. Previous works reveal only part of
the design space in the scheduling procedure (Agrawal et al.,
2024; Wu et al., 2023; Fu et al., 2024), and the scheduling
is always hard-coded (Kwon et al., 2023; ModelTC, 2024),
thus failing to vary with iterations. To address the issue,
we propose a fine-grained framework with comprehensive
control of the request execution order and the workload size,
enabling the strategy to change at every iteration.

How to control request-level latency via iteration-level
behavior. As mentioned in Sec. 1, scheduling plays a role in
managing the system resources for serving different requests.
However, the existing scheduling design fails to be aware
of and control the latency of a certain request but merely
follows a tendency toward the objective. To tackle the chal-
lenge, we propose the method of state-aware scheduling,
monitoring both the request states and the system states to
guide the fine-grained adjustment.

How to achieve an effective trade-off between TTFT
and TPOT. The current scheduling strategies including
SplitFuse fail to reduce TTFT or TPOT while moderately
maintaining the other within the constraints, and it is es-
sential to design a scheduling strategy that considers both
TTFT and TPOT during serving. Therefore, we propose to
solve a constrained optimization problem to generate the
strategy at each iteration, taking both SLOs into account.

4 SOLA: STATE-AWARE SCHEDULING

In this section, we present the proposed fine-grained schedul-
ing framework and the state-aware method in detail. First,
we model the scheduling workflow in LLM serving and
clarify the orthogonal variables that a scheduling strategy
is designed on. The modeling enables the expression of
existing scheduling strategies and further uncovers the ex-
tended space to support fine-grained scheduling. Then we
formulate the constrained optimization problems based on
the monitored states and generate the optimized strategy by
solving the optimization problem for each iteration.

4.1 Design Space and Modeling

The variables in Table. 1 model the scheduling process in
LLM serving. As outlined in Table 1, the Setting class
comprises the deployment settings predetermined by users
or constrained by the hardware platform. These settings are
fixed once the LLM is deployed for a specific scenario. The
variables within the State class change during the serving
process, reflecting real-time updates in memory, sequence
length, and request latency. The variables in the Strategy
collectively form the design space for scheduling strategies.
Besides, SOLA utilizes Cost Model for latency prediction,
which is detailed in Sec. 5.2.
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Algorithm 1 Scheduling at the i-th iteration.
Input: M , Qwait

i , Qrun
i , mratio

i , ni, ki, Fi

1: Initialize Qrun
i ← ∅

2: if get req num(Qwait
i ) = 0 then

3: Return (Qwait
i ,Qrun

i )
4: end if
5: Qwait

i ← Fi(Q
wait
i )

6: for r ∈ Qwait
i do

7: mpeak ← cal peak mem(Qrun
i ∪ r)

8: if mpeak ≥M × (1−mratio
i ) then

9: continue
10: end if
11: Qrun

i ← Qrun
i .push req with token num(r, knew

i,r )

12: Qwait
i ← Qwait

i .pop req with token num(r, knew
i,r )

13: if get req num(Qrun
i ) ≥ ni then

14: break
15: end if
16: if get token num(Qrun

i ) ≥ ki then
17: break
18: end if
19: end for
20: Return (Qwait

i ,Qrun
i )

4.1.1 Design Space

Following the insight of scheduling based on the request
execution order and workload size control, for the i-th it-
eration, we employ the function Fi to control execution
order and the variables ki and ni to control workload size.
The strategy with those variables is characterized as follows:
(1) Fi decides the order in which the waiting requests are
added for execution. (2) For the i-th iteration, the maxi-
mum number of requests for execution is defined as ni, and
the maximum number of tokens for execution is denoted
as ki, having ni = |Qrun

i |, ki =
∑

r∈Qrun
i
(knew

i,r ). Note that
knew
i,r = 1 for decode requests, and knew

i,r ≤ linr for prefill
requests considering being chunked. Importantly, ni, ki and
Fi are treated as variables that evolve with each iteration,
enabling the strategy to adapt to the twofold trade-offs (see
Sec. 3.1) during the serving process.

4.1.2 Scheduling Algorithm

At the i-th iteration, the scheduler selectively transfers re-
quests from the waiting queue Qwait

i to the running queue
Qrun

i for execution. The waiting queue Qwait
i and the run-

ning queue Qrun
i can include both the prefill requests and the

decode requests. Setting, State, and Strategy are the inputs
for scheduling, and the details are outlined in Algorithm 1.
For simplification, preemption and swapping are excluded,
as both introduce extra latency and are generally avoidable
through strategic design. Initially, the running request queue
Qrun

i is initialized as empty. If there is no request waiting,
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Figure 4. Overview of state-aware scheduling. 1⃝ The states of all
requests are updated when an iteration (prefill, decode, or mixed)
finishes. 2⃝ The statistics of request states are collected to form the
system states. 3⃝ The cost models are tuned based on the system
states. 4⃝ The strategy optimizer derives the scheduling strategy
based on the states, the cost models, and the given SLOs.

there will be no execution. Otherwise, each request in the
waiting queue Qwait

i is evaluated individually as detailed in
the for-loop starting at line 6. Before this evaluation, Qwait

i

is sorted to prioritize certain requests. During validation,
based on the peak memory prediction, the scheduler checks
whether sufficient memory is available for accommodating
the candidate request (see details in Sec. 5.1). Then it ver-
ifies if the number of requests in Qrun

i surpasses the limit
ni or the number of tokens exceeds ki set by the strategy.
The pushing and popping operations at lines 11 and 12 are
adjusted for the chunked prefill requests. At the end of the
algorithm, the requests in Qrun

i are scheduled for execution.

The modeling enables the expression of existing schedul-
ing strategies. Take the SplitFuse method implemented in
vLLM (Kwon et al., 2023) as an example, ni is 256 and ki
is 512 under the default setting. For the sorting function Fi,
decode requests are prioritized, and the requests at the same
phase are sorted in the first-come-first-serve (FCFS) order.

4.2 System Overview

As illustrated in Fig. 4, the workflow of SOLA includes two
parts: state monitor and strategy generator. The state moni-
tor is responsible for updating the states of each request after
a finished iteration and derives the statistical information,
i.e., the system states, from all the request states. The cost
models in the strategy generator predict the processing la-
tency and are tuned by the system states at every iteration to
achieve high prediction accuracy. The predicted latency en-
ables the strategy optimizer to generate the optimal strategy
for scheduling at the next iteration.
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Table 2. The conversion of constrained optimization problems.

Condition (or) Constrained Optimization

(1) 1 > pTPOT
i > pTTFT

i minmaxr(t
TPOT
i,r )

(2) pTPOT
i > 1 > pTTFT

i s.t. maxr(t
TTFT
i,r ) ≤ T TTFT

(1) 1 > pTTFT
i > pTPOT

i minmaxr(t
TTFT
i,r )

(2) pTTFT
i > 1 > pTPOT

i s.t. maxr(t
TPOT
i,r ) ≤ T TPOT

Sort

piTTFT > 1, piTPOT > 1 

piTPOT > 1 > piTTFT
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Figure 5. State transition of the system latency statistic. The target
transition is towards the state where both TTFT and TPOT satisfy
the constraints (lower right corner).

4.3 State Monitor

The state monitor in SOLA updates the following states
when an iteration finishes. (1) Request latency. The execu-
tion time of the latest iteration is added to the total latency,
and the real-time TTFT and TPOT (i.e., tTTFT

i,r and tTPOT
i,r ) of

each request are calculated. (2) System latency statistic.
To obtain the systemic view of latency fulfillment, we define
pTTFT/TPOT
i = maxr(t

TTFT/TPOT
i,r )/T TTFT/TPOT. The real-time

attainment of TTFT/TPOT SLO is 100% if pTTFT/TPOT
i ≤ 1.

SOLA handles the trade-off between TTFT and TPOT based
on pTTFT/TPOT

i , which is detailed in Sec. 4.4.1. (3) Request
length. The state monitor records the generated length lout

i,r

and the remaining output length lleft
i,r for each request. Since

the output length is unknown before a request is finished,
lleft
i,r is a predicted value. Specifically, SOLA estimates lleft

i,r

based on the collected output length distribution. (4) Sys-
tem length distribution. The output length distribution
Di is collected for length prediction. The finished requests
are classified by the ranges of the input length and the max-
imum output length, and the output lengths are collected
separately for each range combination to form a distribution.
(5) System memory usage. For the convenience of memory
management, the ratio of the used KV cache memory at the
current iteration mratio

i is recorded.

4.4 Strategy Generator

Using the monitored states, the strategy generator generates
the scheduling strategy based on the formulation of two con-
strained optimization problems, which consider both TTFT
and TPOT SLOs via constraint and optimization. At each
iteration, the strategy generator first identifies which con-
strained optimization problem to solve, i.e. either optimize

TPOT subject to TTFT, or optimize TTFT subject to TPOT.
Then, the strategy generator derives request execution order
(Fi) and workload size (ni, ki) for scheduling by solving
one of the constrained optimization problems.

4.4.1 Constrained Optimization

As discussed in Sec. 3, the strategies for optimizing TTFT
and TPOT interfere with each other. To address the chal-
lenge, we formulate constrained optimization problems with
dynamic conversion between the constraint and the opti-
mization objective, to be aware of both SLOs. As shown in
Table. 2, the conversion is controlled based on the real-time
TTFT/TPOT of the requests in the system. We optimize
the less fulfilled latency (TTFT or TPOT) respective to its
SLO. However, when both fail to satisfy the SLOs, the con-
straint is supposed to be loosened. As outlined in Fig. 5, we
loosen the constraint until one of the latencies satisfies the
constraint, so that the constrained optimization still works.
To loosen the constraint, suppose that there are a% (a<100)
of the requests satisfying the constraint, then the maximum
operations in Sec. 4.3, the following Eq. 1 and Eq. 2 are
correspondingly modified to a%-level maximum. Then, we
employ hierarchical prioritization to control request exe-
cution order and make the final decision on the scheduled
requests according to the constrained workload size.

4.4.2 Hierarchical Prioritization (Fi)

As outlined in Fig. 6, we first decide the execution order
between the two phases. We prioritize prefill requests when
optimizing TTFT subject to TPOT, otherwise prioritize
decode requests when optimizing TPOT subject to TTFT.
Based on that, we apply a sliding window over iterations
to compare the fulfillment between TTFT and TPOT, to
mitigate the influence of sudden changes.

The second level of prioritization focuses on the execu-
tion order among requests at the same phase. For each
prefill request, the TTFT comprises the waiting and pre-
fill latencies. Thus, instead of the first-come-first-serve
(FCFS) order, all the prefill requests in waiting are sorted to
a descending order of (tTTFT

i,r + Cp
i (r)), where Cp

i (r) is the
predicted future prefill time based on the cost model, and
the sum is the predicted TTFT of request r. Considering
that TPOT measures the average latency per output token
(except for the first token), its output length significantly
impacts the TPOT of each request. Therefore, all the de-
code requests in waiting are sorted to a descending order
of (tTPOT

i,r × lout
i,r + Cd

i (Q
run
i−1)× lleft

i,r)/(l
out
i,r + lleft

i,r), which rep-
resents the predicted TPOT of request r. Since the output
length is unknown before a request is finished, we predict
lleft
i,r based on the system length distribution (see Sec. 4.3).

The method of length prediction is not the main focus of this
work, and there are works exploring the design to improve
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Figure 6. Prioritization and workload control of SOLA. A-G are
different requests. Subscript p denotes a prefill iteration and sub-
script d denotes a decode iteration, respectively.

the prediction accuracy (Wu et al., 2023; Hu et al., 2024).
We illustrate the details of the cost models Cp

i and Cd
i in

Sec. 5.2.

4.4.3 Constrained Workload (ni, ki)

Note that optimizing TTFT or TPOT does not mean reduc-
ing it toward the SLO at any cost. Such extreme adjustment
leads to the oscillation between TTFT and TPOT. The core
idea lies in ensuring the minimum resources to meet the
constraint for TTFT or TPOT while doing the best to op-
timize the other one. Thus, we elaborate on the constrained
workload design from the perspectives of ensuring the con-
straint and trying the best for optimization. As shown in
Fig. 6, the workload controls of the two constrained opti-
mization problems are discussed separately.

Optimize TTFT subject to TPOT. The prefill requests are
prioritized but the execution number is constrained. Con-
sidering that the insertion of the prefill requests increases
TPOT, the workload of the prefill requests is constrained to
meet the TPOT SLO by

max
{r|tTPOT

i,r >0,r∈Qwait
i }

(
tTPOT
i,r +

Cp
i (Q

run
i )

lout
i,r

)
≤ T TPOT. (1)

The chunking of prefill requests allows the number of added
tokens to be controllable (see lines 19 and 20 in Algo-
rithm 1). We opt to set ki instead of ni to achieve more
fine-grained control. Leveraging the tile-quantization effect
on hardware (Agrawal et al., 2024), the token number limi-
tation ki is set to be the maximum multiples of the tile size
(e.g., 128 for A100 GPUs) that satisfies Eq. 1. If all the
prefill requests in Qwait

i are added to Qrun
i without breaking

Eq. 1, the decode request is added one by one until the total
token number is ki. Meanwhile, ni is set to an invalid value.

Optimize TPOT subject to TTFT. All the decode requests
are added for execution first, and the number of the prefill
requests in waiting is constrained by

max
r∈Qwait

i

(
tTTFT
i,r + Cp

i (Q
run
i ) + Cd

i (Q
run
i ) + Cp

i (r)
)
≤ T TTFT,

(2)

where tTTFT
i,r is the existing TTFT of request r, the sum

of Cp
i (Q

run
i ) and Cd

i (Q
run
i ) is the predicted latency of this

iteration, and Cp
i (r) is the predicted prefill latency of request

r. Here we use ni rather than ki to control the workload
size, as TTFT is measured only if all the input tokens of the
request are processed. Thus, ni is set to be the minimum
number that satisfies Eq. 2, and ki is given an invalid value.

5 IMPLEMENTATION

We implement SOLA as a standalone framework in Python
code. SOLA contains interfaces to integrate into serving sys-
tems and replace the original schedulers. Currently, SOLA
supports vLLM (Kwon et al., 2023) as the backend, which
is an open-source serving system, with techniques includ-
ing continuous batching, paged memory management, opti-
mized operators, and tensor-parallel distributed inference.

5.1 Peak Memory Prediction

Preemption happens when the memory allocation for
the next iteration fails, and the low-priority requests are
swapped out to the CPU or handled later with recompu-
tation, to spare memory for the next token generation of
other requests. Such preemption overhead grows with the
increasing workload, leading to an intolerable overhead. To
address the issue, LightLLM (ModelTC, 2024) proposes
to predict the peak memory consumption of a certain re-
quest upon its arrival, preventing the potential occurrence
of preemption. Following LightLLM, we adopt the design
of the peak memory prediction mechanism to evaluate the
impact of a new adding request on memory consumption to
determine whether to process the new request (see line 9 in
Algorithm 1), ensuring the future allocation is available.

5.2 Cost Model (Cp, Cd)

Given certain requests for execution, the cost models are
introduced to predict the processing latency. Due to the
difference in dataflow, we respectively build cost model
Cp and Cd for prefill and decode requests. As shown in
Fig. 4, the cost models are initialized using profiling data
from off-line inference. We initialize the cost model as the
polynomial of input request length, KV cache length, batch
size, etc.

Cp = a0
∑
r

lhas
r linr + b0

∑
r

(linr )
2 + c0

∑
r

linr + d0, (3)

Cd = a1
∑
r

1 + b1
∑
r

(lhas
r ) + c1, (4)

where a0, .., d0, a1, .., c1 are fitting parameters. In Eq. 3, we
introduce lhas

r to denote KV cache length in case the prefill
request r is chunked. Cp mainly considers the floating point
operations (FLOPs) of the linear and attention operators
under request batching, while Cd measures the memory
access in the dominated operators.
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Figure 7. End-to-end SLO attainment comparison under tight and loose SLOs.

Table 3. Benchmarks and SLO requirements in evaluation.

Model Parallelism SLOs (TTFT/TPOT) DatasetTight Loose

Llama3-8B TP=1 0.4/0.15s 0.6/0.225s ShareGPT
Llama3-70B TP=4 0.5/0.2s 1.0/0.4s ShareGPT

Qwen1.5-14B TP=2 0.8/0.2s 1.2/0.3s ShareGPT
Vicuna1.5-7B-16k TP=1 2.55/0.16s 3.825/0.24s LongBench

Qwen1.5-72B TP=4 2.425/0.2s 4.85/0.4s LongBench

Leveraging the continuity in serving procedure (e.g., the
trend of the KV cache length variation), for the i-th iteration,
we employ a scaling ratio γi to adjust the cost model linearly.
The scaling ratio is tuned by the real-time latency from the
state monitor as follows.

γi = α
t(r)

Cp/d
0 (r)

+ (1− α)γi−1, Cp/d
i = γiCp/d

0 , (5)

where t(r) is the recorded latency of request r, and α is the
confidence of the tuning result. We sum up the predicted
latencies from two cost models for the mixed iteration, and
the scaling ratio γi implicitly reflects the batching effect.

6 EVALUATION

We evaluate SOLA on various benchmarks (see Table 3)
and the evaluation demonstrates that SOLA improves input
request rate by 1.08-1.27 × and 1.04-1.11× on average
while staying within the latency SLOs for 90% and 99% of
the requests, respectively. Meanwhile, SOLA introduces
merely 0.40%-0.45% scheduling overhead.

6.1 Setup

Testbed. We conduct experiments on a server with eight
pairwise connected NVIDIA A100 80GB SXM4 GPUs, and
the corresponding software environment includes CUDA
12.1 (Nvidia, 2024), NCCL 2.18 (Awan et al., 2016), Py-
Torch 2.3.0 (Paszke et al., 2019).

Benchmark. As listed in Table. 3, we evaluate SOLA un-
der various scenarios including with open-source LLMs of
different sizes. For each scenario, we sample from suitable

datasets and generate request arrival times using Poisson
distribution to emulate the real-world workloads.

• Chatbot. We sample 2000 requests from the
ShareGPT (Sharegpt, 2023) dataset and test on the
latest Llama3 (Meta, 2024) and Qwen1.5 (QwenLM,
2024) series models.

• Long-text Understanding. We use all 832 requests
from the LongBench (Bai et al., 2023) dataset for eval-
uation. LongBench has an input length of 3.3k on av-
erage, and we test with the Vicuna1.5-7B-16k (Chiang
et al., 2023) fined-tuned from Llama2 (Touvron et al.,
2023) and Qwen1.5-72B (QwenLM, 2024) models.

Metric. We set 10×/15× of the single request latency to
be the tight/loose SLOs for 7B-14B models. Considering
the batch size shrinks with larger models, we set 5×/10×
of the single request latency to be the tight/loose SLOs for
70B-72B models. The detailed numbers are listed in Ta-
ble 3. To measure the sensitivity against SLO variation, we
also conduct experiments of other SLO settings in Sec. 6.5.
We measure the SLO attainment as the major metric under
increasing input request rates and compare the goodput (i.e.,
the maximum input request rate) under 90% and 99% SLO
attainment.

Baseline. SOLA is integrated into the SOTA serving system
vLLM (Kwon et al., 2023) (v0.4.2) to demonstrate the effec-
tiveness. We compare SOLA with vLLM-D and vLLM-S
strategies, where vLLM-D denotes the default strategy that
prioritizes the prefill requests and vLLM-S denotes the inte-
gration of the SplitFuse method. We use vLLM-S instead of
the original implementation from Sarathi-Serve (Agrawal
et al., 2024), as Sarathi-Serve is an early fork from vLLM.
Such comparison avoids the impact of irrelevant factors such
as operator-level differences. Since the chunk size (i.e., the
maximum token number) impacts the performance of the
SplitFuse method, we vary some choices to select the best
one for evaluation. Searching for an optimal chunk size in
advance is non-trivial, as discussed in the work (Cheng et al.,
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Figure 8. Normalized goodput comparison.

Table 4. The scheduling overhead ratio comparison.
Method Llama3-70B+ShareGPT Vicuna1.5-7B+LongBench

vLLM-S 1.17% 0.85%
vLLM-D 1.38% (+0.19%) 1.05% (+0.20%)
SJF 1.39% (+0.20%) 1.03% (+0.18%)
SOLA 1.62% (+0.45%) 1.28% (+0.40%)

2024). For this work, to compare with vLLM-S, we set the
chunk size to 1024 for chatbot and 4096 for long-context un-
derstanding. We also implement the shortest-job-first (SJF)
principle adopted in previous works (Wu et al., 2023; Fu
et al., 2024) on top of vLLM (v0.4.2) as a baseline, which
is denoted as SJF in the results.

6.2 End-to-End Performance

6.2.1 SLO Attainment Comparison

Fig. 7 illustrates the end-to-end serving performance of
SOLA compared to baselines. On most benchmarks, SOLA
achieves better SLO attainments and supports higher input
request rates under the given SLOs. On average, SOLA
serves 1.27×, 1.11×, and 1.08× more requests than vLLM-
S, vLLM-D, and SJF, while staying within the SLO con-
straints for 90% of the requests (Fig. 8(a)). Moreover, con-
sidering 99% of the requests satisfying the SLOs, SOLA
serves 1.11×, 1.06×, and 1.04× more requests than vLLM-
S, vLLM-D, and SJF (Fig. 8(b)), respectively. It is worth
noting that vLLM-S performs poorly with long context, as
the limit of chunk size prevents the long inputs from imme-
diate handling. The prefill-prioritized principle of vLLM-D
is well suited for the LongBench dataset, and SOLA em-
ulates such behavior, together with the request execution
order control, to gain a slightly higher attainment. The per-
formance of SJF is close to SOLA under the tight SLO, as it
also performs trade-offs among different requests, and when
SLO is tight, the space for performing trade-offs between
TTFT and TPOT is little.

6.2.2 TTFT-TPOT Plane Visualization

The latency distribution helps us explore the underlying
mechanism in SOLA. First, the distribution center of SOLA
lying close to the dotted line represents an effective trade-
off between TTFT and TPOT, which removes the bias in
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Figure 9. Latency distribution comparison. The dotted line is the
linear scaling of the single request latency.
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Figure 10. Performance against SLO variation.

Fig. 2(a). Besides, the distribution of SOLA maintains
collected with low variance, which arises from the trade-off
between low-latency and high-latency requests.

6.3 Ablation Studies

6.3.1 Benefit Breakdown

On the LongBench dataset, the memory is fully utilized and
the prediction mechanism becomes effective. Both the state-
aware scheduling and the peak memory prediction mecha-
nism (see Sec. 5.1) contribute to the SLO attainment. E.g.,
when serving Qwen1.5-72B on LongBench, the attainment
of SOLA is 96.5% under 0.45 request/s. The attainment de-
grades to 93.5% without state-aware scheduling and 93.0%
without peak memory prediction.

6.3.2 Cost Model Accuracy

To observe the accuracy of the cost models (see Sec. 5.2),
we record each iteration’s predicted latency and real latency.
The average absolute errors are 4.98%-5.92% for all the
benchmarks in Table. 3. We also test the accuracy on the
arXiv (Cohan et al., 2018) dataset with extremely long in-
puts, and the average absolute error is 8.91%.
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6.4 Overhead

We measure the scheduling overhead by calculating the
ratio of the scheduling duration to the whole serving dura-
tion. To reduce the scheduling overhead, we use a memory
threshold to apply the memory prediction computation only
when necessary. Moreover, we optimize the statistical pro-
cedure in the state monitor and use the momentum update
to avoid repeated matrix multiplications in memory pre-
diction. As shown in Table 4, the scheduling overhead of
SOLA is negligible, leading to merely 0.45% and 0.40%
overhead increases with the heavier workload (Llama3-70B
& ShareGPT) and the lighter workload (Vicuna1.5-7B &
LongBench), respectively. In fact, the overhead mostly
comes from preparing the structured inputs instead of the
scheduling logic.

6.5 Sensitivity against SLO Variation

For Llama3-8B and Qwen1.5-14B, we set 5× and 20×
of the single request latency to be the very tight and very
loose SLOs, respectively. The results under those SLOs are
depicted in Fig. 10. SOLA achieves similar performance
with the best under the very tight SLO, and significantly
outperforms others under the very loose SLO, which is
consistent with the intuition that SOLA gains advantages
with a looser SLO, as there is more space for trade-offs.

7 CONCLUSION

In this paper, we introduce SOLA, a fine-grained scheduling
framework to optimize the SLO attainment in LLM serv-
ing. Based on the formulated design space that enables the
flexible control of request execution order and workload
size, SOLA applies a state-aware mechanism to optimize
the scheduling strategy at each iteration. Such fine-grained
scheduling allows SOLA to manage the twofold trade-offs
at the phase level and the request level, further enhancing
the SLO attainment and serving more requests.
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