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Figure 1. We present PICO, a novel framework for joint human-object reconstruction in 3D. PICO includes PICO-db, a unique dataset that
pairs natural images with dense vertex-level 3D contact correspondences on both the human and the object. We leverage this dataset for
building PICO-fit, an optimization-based method that fits 3D body and object meshes to an image guided by rich contact constraints. Here,
we show reconstruction results of PICO-fit: 3D human pose and shape (shown with blue color), 3D object pose and shape (shown with
orange color), and contact correspondences (shown with various colors in inset). Note that PICO-fit works for in-the-wild images, as well
as for many previously untackled object classes.

Abstract

Recovering 3D Human-Object Interaction (HOI) from sin-001
gle images is challenging due to depth ambiguities, oc-002
clusions, and the huge variation in object shape and ap-003
pearance. Thus, past work requires controlled settings004
such as known object shapes and contacts, and tackles005
only limited object classes. Instead, we need methods006
that generalize to natural images and novel object classes.007
We tackle this in two main ways: (1) We collect PICO-db,008
a new dataset of natural images uniquely paired with009
dense 3D contact correspondences on both body and ob-010
ject meshes. To this end, we use images from the recent011
DAMON dataset that are paired with annotated contacts,012
but only on a canonical 3D body. In contrast, we seek con-013
tact labels on both the body and the object. To infer these,014
given an image, we retrieve an appropriate 3D object mesh015
from a database by leveraging vision foundation models.016
Then, we project DAMON’s body contact patches onto the017
object via a novel method needing only 2 clicks per patch.018
This minimal human input establishes rich contact corre-019
spondences between bodies and objects. (2) We exploit our020

new dataset in a novel render-and-compare fitting method, 021
called PICO-fit, to recover 3D body and object meshes in 022
interaction. PICO-fit infers contact for the SMPL-X body, 023
retrieves a likely 3D object mesh and contact from PICO-db 024
for that object, and uses the contact to iteratively fit the 3D 025
body and object meshes to image evidence via optimization. 026
Uniquely, PICO-fit works well for many object classes that 027
no existing method can tackle. This is crucial for scaling 028
HOI understanding in the wild. 029

1. Introduction 030

Humans routinely interact with objects. Thus, recovering 031
Human-Object Interaction (HOI) in 3D from natural images 032
is important for human-centric applications such as smart 033
homes, mixed reality, or assistive robots. At its core, this en- 034
tails inferring human pose and shape, object pose and shape, 035
and their spatial arrangement and contacts, all in 3D. 036

Despite progress, the field lies at its infancy due to strong 037
challenges; humans and objects come in a huge variety of 038
shapes, they mutually occlude each other, and contact is of- 039
ten ambiguous in 2D images. Thus, most work focuses on 040
controlled settings, with known object shapes or contacts. 041
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To be practical, however, we need to infer 3D HOI from042
unconstrained 2D images taken in the wild.043

For this task, current methods struggle for two reasons.044
First, no method robustly recovers 3D object shape from045
single images because, unlike for human bodies, there ex-046
ists no single statistical model for object shape. And while047
we might hope that foundation models would provide a so-048
lution, their 3D reasoning skills are still limited. Second,049
given 3D body and object shapes in an image, no method050
robustly recovers their 3D pose and arrangement. Knowing051
the contact between the body and the object would facili-052
tate pose estimation of both. Unfortunately, current meth-053
ods that regress contact information from images either (i)054
infer contact only in 2D [11], (ii) infer 3D contacts only055
on the body [70] ignoring objects, or (iii) train on synthetic056
data [68] so they struggle generalizing to real images.057

We tackle these key limitations with a novel framework058
called PICO (“People In Contact with Objects”) which has059
three key properties: (1) It facilitates 3D HOI reasoning in060
natural images with widely varying viewpoints, occlusions,061
body poses, and objects. (2) It supports human interaction062
with arbitrary object classes, without requiring an a-priori063
known object type or shape. (3) It enables the detection064
of dense contacts on both the human and the object that065
establish rich point correspondences between them.066

Specifically, our PICO approach introduces two novel-067
ties: (1) PICO-db, a dataset of natural images uniquely068
paired with dense body-object 3D contact annotations, and069
(2) PICO-fit, a novel method for reconstructing accurate 3D070
HOI from natural color images by exploiting rich contacts.071
We collect PICO-db and develop PICO-fit as follows.072

PICO-db: 3D HOI contacts. To train models that infer073
3D contacts from in-the-wild images, we need data. The074
only such dataset is DAMON [70], which pairs images with075
3D contacts on the body. These annotations are crowd-076
sourced via an online tool where people “paint” on a T-077
posed 3D body the contact points present in an image; see078
Fig. 2 (dark-gray box). However, DAMON ignores objects.079
This is a key limitation. Moreover, it is non-trivial to extend080
this painting tool to include annotating contact on objects.081
In particular, one needs to ensure that the contacts “painted”082
on an object agree with those “painted” on the body.083

Therefore, to build PICO-db, we repurpose DAMON’s084
body contacts for objects, inspired by the ContactEdit [43]085
method. To this end, we observe that body contacts form086
“patches” of neighboring vertices. ContactEdit defines a087
finite-length “axis” per contact patch as a fine-grained con-088
trol for translating, rotating, and deforming it. Crucially,089
it lets us transfer the patch onto another mesh by just re-090
drawing the axis onto the latter. However, this is intuitive091
only for experts. Instead, we need to democratize this for092
non-experts to collect data at scale. To this end, we au-093
tomatically generate an axis per patch via PCA; the first094

Figure 2. PICO-db dataset annotations. Left to right: Color im-
age. Contacts (shown in various colors) annotated on the body and
object. Contact annotations establish bijective body-object corre-
spondences, denoted with color-coding.

principal component of contact point locations provides the 095
axis direction, and along this we sample its start-/end-ing 096
points. Crucially, this means that projecting a contact patch 097
onto a new mesh requires just two clicks to define the (auto- 098
created) axis. Since this is an easy task, we integrate it into 099
an online tool and use AMT [2] to crowd-source 3D object 100
annotations for DAMON’s images and 3D body contacts. 101

A key problem remains, however. This annotation pro- 102
cess requires a 3D object mesh that is both detailed and 103
manifold. To automate the estimation of 3D object shape, 104
we exploit a large-scale database (we curate Objaverse [14]) 105
and the recent OpenShape [52] foundation model. The latter 106
embeds both images and point clouds (or meshes by exten- 107
sion) in a single latent space. At test time, we embed an 108
image in the latent space, find the nearest-neighbor latent 109
code, and retrieve the respective mesh that likely matches 110
the image. This is a simple-yet-efficient, scalable solution. 111

Using this approach, we collect PICO-db, which con- 112
tains natural images with 3D contact annotations for both 113
humans and objects; see Fig. 2. Note that our contact trans- 114
fer is almost-isometry preserving, i.e., PICO-db has bijec- 115
tive body-object correspondences (color-coded in Fig. 2). 116

PICO-fit: 3D HOI from a 2D image. We develop a new 117
method, called PICO-fit, that takes in a natural image and 118
recovers 3D human pose and shape, object pose and shape, 119
and their spatial arrangement. To this end, we employ 120
an optimization-based render-and-compare fitting method. 121
Specifically, we first initialize 3D body shape and pose via 122
the OSX [49] model. Then, we initialize 3D object shape 123
via OpenShape-based database retrieval (see PICO-db para- 124
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graph above), which scales to novel classes. However, ini-125
tializing object pose in 3D w.r.t. the body is challenging.126
We solve for 3D object pose by exploiting PICO-db’s body-127
object contact point correspondences as follows.128

When operating on PICO-db images we simply exploit129
its annotations. But when operating on unlabeled images,130
there exist no contact correspondences, so past work hand-131
crafts these [90]. Instead, we automatically infer these. To132
this end, given an image, we first infer 3D body contacts133
using DECO [70], and the object class using SAM [37].134
Based on these, we then retrieve from PICO-db the nearest-135
neighbor body contacts, and the respective object shape,136
object contacts, and body-object contact correspondences.137
We find this simple approach to be surprisingly effective138
and we demonstrate how contact correspondences aid in 3D139
recovery of humans interacting with objects (see Fig. 1).140

Evaluation. We extensively compare PICO-fit, both141
quantitatively and qualitatively, with state-of-the-art meth-142
ods (PHOSA [90], HDM [81], CONTHO [57]). A percep-143
tual study shows that PICO-fit reconstructions are perceived144
as much more realistic. Applying PICO-fit on unlabeled145
images shows that it performs well for many previously un-146
tackled object classes, e.g., couches, bananas, and frisbees,147
demonstrating its ability to scale.148

In summary, we make the following main contributions:149
1. We collect PICO-db, the first dataset of natural images150

paired with 3D contact on both humans and objects, with151
dense bijective contact correspondences between them.152

2. To build PICO-db we develop a new method that projects153
existing body contacts onto objects with minimal effort.154

3. We build PICO-fit, a method that recovers 3D HOI from155
an image, scaling to previously untackled object classes.156

2. Related Work157

2.1. 3D Humans from single images158

Estimating 3D human pose and shape from single images159
has evolved from optimization- to learning-based methods.160
Optimization-based methods fit a parametric model [54,161
59, 83] to image cues such as keypoints [7, 59, 83], sil-162
houettes [15, 58], or body-part segmentation masks [44].163
Learning-based methods directly infer body-model param-164
eters from images [16, 39, 45, 47, 64, 71] or videos [35, 38].165
However, some methods infer bodies in model-free fashion166
as vertices [40, 50, 51] or via implicit functions [55, 66, 82].167
Recent work [17, 23, 49] uses transformers for robust infer-168
ence; here we use the OSX [49] model.169

2.2. 3D Objects from single images170

The field has extensively studied estimating 3D objects171
from images. To this end, it has used explicit 3D rep-172
resentations such as voxels [12, 21], point clouds [19] or173
meshes [72], but recently also implicit representations to174

represent objects of varied topologies [1, 3, 87]. Here, we 175
focus on recent learning-based methods made possible by 176
3D object-shape datasets [77, 78], as a detailed review is 177
beyond our scope. However, such methods can only tackle 178
limited object categories present in training datasets. 179

Recent work goes beyond limited categories by using 180
text-to-image diffusion models [63, 65] and large-scale 3D 181
datasets [13, 14]. Zero-1-to-3 [53] re-trains a 2D diffusion 182
model to build a viewpoint-conditioned 3D diffusion model. 183
Others combine 2D and 3D diffusion models [61]. Despite 184
promising results, all these methods require objects to be 185
unoccluded in images, which is unrealistic for HOI. While 186
text-to-3D models [48, 60] do not have this problem, accu- 187
rately describing objects in text is often difficult. 188

To address these issues, we harness recent foundation 189
models [22] that build a joint latent space for several modal- 190
ities. We exploit this space for efficient retrieval via nearest- 191
neighbor search. PointBind [25] and OpenShape [52] do 192
this for text, 3D point clouds (and by extension meshes), 193
and images. Here we use OpenShape to efficiently retrieve 194
a likely 3D object mesh [14] given an image crop around an 195
object; this works even with some occlusion. 196

2.3. 3D Humans and objects from single images 197

Compared to inferring only humans or only objects, jointly 198
inferring them is less explored. To support this direction 199
several datasets have been captured either outdoors [30] or 200
indoors [6, 28, 31] or have been created through synthe- 201
sis [81]; but these all consider only constrained settings. 202
Learned methods [57, 68, 75, 79–81] trained on such data 203
either directly regress humans and objects jointly [57, 81] 204
or first infer contact as a proxy and then exploit this proxy 205
for optimization-based fitting [68, 79, 80]. 206

There has been significantly less work addressing in- 207
the-wild settings. For example, PHOSA [90] infers a hu- 208
man mesh with an off-the-shelf model, retrieves an ob- 209
ject mesh via mask-based database search, and refines its 210
pose via hand-crafted category-wise contact constraints. 211
Wang et al. [73] follow a similar strategy, but replace 212
PHOSA’s hand-crafted constraints with coarse contact in- 213
formation automatically inferred through an LLM. Both 214
category-wise and LLM-based contacts, however, lack 215
image-grounding, resulting in inaccurate HOI reconstruc- 216
tion. In contrast, PICO-fit’s inferred contacts consider the 217
input image and generalize to significantly more diverse ob- 218
jects than previous methods. Moreover, while PHOSA uses 219
a single scale per class, we use instance-specific scale in- 220
ferred directly from pixels. 221

2.4. 3D Contact estimation 222

Studying contact has a long history [5, 34]. For exam- 223
ple, ObMan [29] generates synthetic grasps [56] and uses 224
these to learn likely contacts. In contrast, ContactDB [8] 225
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captures contact regions of real hands grasping 3D-226
printed objects via thermal imaging, while other work227
uses alternative means [41, 88, 89], such as marker-228
based Motion Capture [20, 69] or multi-view RGB-D [10].229
Such work creates datasets for training methods to pre-230
dict, refine, and associate contacts for pose optimization231
[9, 24, 32, 42, 74, 84, 91]. But these datasets are captured232
in the lab, so methods trained on them do not generalize.233

COMA [36] and CHORUS [27] train on synthetic data to234
predict separate human and object contact distributions, and235
get rough correspondences via heuristic thresholds on prox-236
imity/orientation. Instead, PICO-db uses fine manually-set237
contact correspondences on real, natural images.238

More recently, DECO [70], EgoChoir [86] and LEMON239
[85] crowd-source contact areas in natural images through240
online “vertex painting” tools. DECO annotators “paint”241
contact only on the body, while LEMON and EgoChoir an-242
notate on both the human and the object in separate pro-243
cesses; that is, the body and object contacts do not need to244
correspond. We avoid painting contacts on objects by devel-245
oping a novel method that projects DECO’s body contacts246
onto objects with minimal human effort. Crucially, this also247
establishes bijective body-object contact correspondences.248
This goes beyond lab [6, 30, 31] or synthetic [68, 81] data,249
or part-level contacts [90], and serves 3D reconstruction.250

3. PICO-db Dataset251

Training robust 3D HOI methods requires natural images252
paired with both 3D human and object contacts. The253
DAMON dataset [70] pairs natural images [26, 46] with254
vertex-level contacts on the SMPL [54] body, but it lacks255
3D object shapes and object contact.256

To address this, we build a novel method that re-257
trieves matching 3D object meshes given in-the-wild im-258
ages (Sec. 3.1), and projects DAMON’s body-only contacts259
onto the retrieved mesh (Sec. 3.2). We scale this for crowd-260
sourcing contact annotations on the internet (Sec. 3.3). This261
results in PICO-db, the first dataset that pairs in-the-wild262
images with 3D object shapes and contacts on both bodies263
and objects, as well as correspondences between them.264

3.1. 3D Object shape retrieval265

We use OpenShape [52], a model with a joint latent space266
for images and 3D shapes. Offline, we embed the meshes of267
the Objaverse-LVIS [14] database into this space. Online,268
we embed each test image into this space and find the 3269
closest object latent codes via cosine-similarity. Out of 3270
options, an annotator picks the one best matching the image.271

3.2. Contact representation & projection272

DAMON’s body contacts form neighboring-vertex patches.273
We follow “ContactEdit” [43] and represent such patches274
with a contact “axis” (see Fig. 3), i.e. an open curve on the275

Figure 3. Example contact patches with their contact axis.

patch surface. Since every patch vertex can be parameter- 276
ized with its contact axis, transferring patches to another 277
surface boils down to transferring only the axis. Thus, the 278
axis lets us completely unpack body contact patches onto an 279
object with just two clicks, which define the axis start loca- 280
tion and direction, respectively. Crucially, this also defines 281
bijective point correspondences. For details, see Sup. Mat. 282

However, this approach has two key drawbacks. First, 283
although ContactEdit infers a default axis, it is originally 284
designed for 3D professionals [43], who can “redraw” the 285
default axis when it is non-intuitive. This is challenging and 286
time-consuming for non-experts. We tackle this by auto- 287
matically computing a high-quality default axis per patch. 288
To this end, for each body patch, we perform Principal 289
Component Analysis on its vertex locations. Then, starting 290
from the mean, we take positive and negative steps in the 291
direction of the most significant component, and project the 292
resulting two points onto the body surface via closest point 293
queries [67]. An axis is generated by tracing a geodesic be- 294
tween the two points, while all intermediate triangle edge- 295
crossings serve as axis way-points. 296

Second, this approach struggles for contact patches on 297
fine and highly non-convex body areas, such as fingers. 298
Specifically, when synthesizing a patch axis, tracing a 299
“straight” geodesic is hard due to surface concavities. Thus, 300
the axis seems stretched out when transferred to more planar 301
object regions, which confuses annotators and also distorts 302
patches. To tackle this, we create a proxy SMPL mesh with 303
webbed fingers by computing convex hulls for hands; see 304
image in Sup. Mat. This is a simple, yet effective solution. 305

3.3. Collecting PICO-db annotations 306

The contact transfer method of Sec. 3.2 runs in real time 307
and is user-friendly. Thus, we embed this into an interactive 308
web-browser tool. For each DAMON image, we automat- 309
ically parameterize its 3D body contacts (via contact axes) 310
and also retrieve a 3D object shape (see Sec. 3.1). Then, 311
we crowd-source annotations for transferring body contacts 312
onto retrieved objects via Amazon Mechanical Turk. 313
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Specifically, for each body-contact patch, annotators314
click two points on the object mesh – the first click specifies315
the start of the contact axis and the second click specifies its316
orientation. Then, the tool instantly displays the transferred317
contact on the object for visual feedback. Annotators can318
correct errors by repeating the two clicks (overwriting past319
efforts). The tool has features such as mesh rotation, zoom320
in/out, view reset, and a menu for modifying a previously-321
annotated contact patch. For a detailed visualization and322
discussion, see Sup. Mat. and the video on our website.323

PICO-db statistics. We annotate 4123 images, span-324
ning 44 object categories and 627 object instances. To en-325
sure high quality, we select proficient annotators via a qual-326
ification process and continuously review their work. For327
detailed statistics and quality checks, see Sup. Mat.328

4. PICO-fit Method329

We develop PICO-fit, a novel method that, given an image330
I , recovers a 3D human and object mesh realistically reg-331
istered w.r.t. each other. Learning this is intractable due to332
the lack of 3D HOI datasets. Thus, we leverage contact333
correspondences between the body and the object to fit 3D334
meshes to images. But this is hard due to strong occlusions335
and depth ambiguities. We tackle these via a careful initial-336
ization and three-stage fitting (see Fig. 4) as follows.337

4.1. Initialization338

Body shape & pose initialization. We apply the OSX [49]339
regressor on image I to infer a SMPL-X [59] body mesh,340
H, with initial pose θ∗, that has articulated hands.341

Object shape initialization. We apply the method of342
Sec. 3.1, i.e., we use the OpenShape [52] model that embeds343
images and 3D shapes into a single latent space, G. Offline,344
we embed into G the Objaverse-LVIS [14] meshes; for each345
object mesh Oi, we get a latent code gi. Then, we embed346
image I to get the latent code gin and find the closest code347
to it, gj = argmaxj

gj ·gin
∥gj∥∥gin∥ , encoding the object mesh Oj348

that best matches the image. This is automatic, fast, robust349
to some occlusions, preserves 3D details, scales well, and350
easily handles new object classes as databases get richer.351
We initialize scale, s∗o, via GPT-4V; see details in Sup. Mat.352

Contact initialization. For PICO-db images, we use the353
associated annotations. For unlabeled images, we need to354
infer contact correspondences. However, no method can in-355
fer contact correspondences on the object w.r.t. the body,356
due to the huge object shape variance. Our key insight is to357
exploit 3D contact on bodies, which is easier to infer, as key358
to “query” the respective object contact from PICO-db.359

To this end, we infer vertex-level body contact via DECO360
[70]. But this is often noisy, as this problem is unsolved.361
Thus, we further ask GPT-4V “which ⟨body part⟩ is in con-362
tact with the ⟨object⟩” to reduce false negatives (in general),363
and false positives on feet (DECO’s bias); for details see364

Sup. Mat. The estimated contact helps “query” PICO-db to 365
retrieve the closest body-contact annotation that maximizes 366
the intersection-over-union (IoU) between these. This is in- 367
spired by seminal work [76] showing that nearest-neighbor 368
retrieval from a rich database can be better than regression. 369

Since PICO-db body contact is paired with 3D object 370
shape, object contact, and body-object contact correspon- 371
dences, we also retrieve these for free to initialize PICO-fit. 372

4.2. Stage 1: Registering object to body via contact 373

At this point, we have initialized 3D body shape and pose, 374
3D object shape, and body-object contacts. However, the 375
object pose remains unknown. To tackle this, we keep 376
the human fixed and use contact correspondences to solve 377
for object pose, i.e., rotation, Ro ∈ R3, and translation, 378
to ∈ R3. In detail, we use body-to-object (vertex-to-point) 379
correspondences S := {(vi, pi)} where vi ∈ H are human- 380
mesh vertices, while pi ∈ O are points (that might lie inside 381
triangles) on the object surface. Then, we estimate Ro and 382
to and register the object to the body by minimizing a con- 383
tact loss: L1 = Lc =

1
|S|

∑
(vi,pi)∈S ∥vi − pi∥2. 384

However, all regressors are imperfect, so OSX-inferred 385
bodies can be noisy, especially for challenging images. This 386
also affects object pose. So, after stage 1, human and object 387
meshes might be image-misaligned and need refinement. 388
To avoid chicken-and-egg problems in joint refinement, we 389
first refine the object (stage 2) and then the body (stage 3). 390
Empirically, an extra joint-refinement stage does not help. 391

4.3. Stage 2: Aligning the object to the image 392

Here we refine the object to align with the image. First, 393
we render the object mesh, O, into a 2D object mask, M̄o, 394
via an OSX-inferred camera and the PyTorch3D renderer. 395
Then, we detect in image I an object mask, Mo, via SAM 396
[62]. Last, with IoU(·) denoting Intersection-over-Union, 397
we define the object mask loss: Lm

o = 1− IoU(Mo, M̄o). 398
However, this might cause human-object penetrations, 399

as it ignores the relative 3D human-object arrangement. 400
We tackle this here. Let Ωh be a Signed Distance Field 401
(SDF) [28] around the human mesh, H. For a 3D point, 402
Ωh has values proportional to the distance from H, with a 403
positive sign for points inside H and negative outside H. 404
Then, the penetration loss [33], Lp =

∑
vi∈O Ωh(vi), runs 405

over all object vertices, vi, paying a penalty, Ωh(x, y, z) = 406
−min(SDF(x, y, z), 0), when vi penetrates the body. Note 407
that related work [59, 79, 90] penalizes only shallow [4] 408
penetrations and misses extreme ones, in contrast to our Lp. 409

We also define an object scale loss, Ls
o = ∥so − s∗o∥2, 410

to refine the scale based on image evidence (see Lm
o above) 411

while not deviating much from the initial estimate, s∗o. 412
We optimize over object rotation, Ro, translation, to, and 413

scale, so ∈ R. With λ denoting steering weights tuned em- 414
pirically, we minimize: L2 = λcLc+λpLp+λm

o Lm
o +λs

oLs
o. 415
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Stage 1: Object-to-Body Registration Stage 2: Object-Image Alignment Stage 3: Human-Image Alignment
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Figure 4. Overview of PICO-fit, a novel method for fitting interacting 3D body and object meshes to an image. It initializes (Sec. 4.1) 3D
body shape and pose via OSX [49], 3D object shape via OpenShape [52], and body-object contacts via retrieval from PICO-db (Sec. 3).
Then, it takes three steps: (1) It exploits contacts to solve for object pose, to register the object to the body (Sec. 4.2). (2) It refines object
pose (Sec. 4.3) and (3) body pose (Sec. 4.4) to align these to an object and human mask, respectively, detected in the image while satisfying
contacts and avoiding penetrations. For every stage we show inputs, outputs, losses, and optimizable variables. ü Zoom in to see details.

4.4. Stage 3: Refining the human pose416

The goal is to refine the contact between the human and the417
pixel-aligned object from Stage 2. To this end, we employ418
the contact loss Lc to optimize the human pose. However,419
this loss alone does not provide enough constraints and may420
lead to implausible poses. Thus, we add two regularizers.421

First, we define a human mask loss, like the object one422
in Stage 2. Using the same camera as for objects, we ren-423
der the human mesh, H, as a 2D mask, M̄h. We also detect424
in image I a human mask, Mh, via SAM [62]. Then, with425
IoU(·) denoting Intersection-over-Union, the mask loss is426
Lm
h = 1− IoU(Mh, M̄h). But minimizing Lm

h by optimiz-427
ing over θ produces distorted bodies due to depth ambiguity.428
To tackle this we need another regularizer, Lr = ∥θ−θ∗∥2,429
so that pose θ does not deviate much from the initial θ∗.430

Interestingly, we observe that the initial body has a good431
torso pose, but errors increase towards end effectors. Thus,432
we optimize only the pose parameters for the limbs after433
the torso until the ones contacting the object. Assuming434
just one contacting limb for notational simplicity, let C =435
{Jr, Jr+1, . . . , Jc} be the joints from the closest torso joint,436
Jr, to the contacting joint, Jc, along the kinematic chain.437
Then, we only optimize over θC = {θr, θr+1, . . . , θc}. With438
λ denoting steering weights tuned empirically, we mini-439
mize: L3 = λcLc + λpLp + λm

h Lm
h + λθCLθC .440

5. Experiments441

Existing 3D HOI recovery methods [57, 79, 81] perform442
well on datasets they train on. However, they fail for out-443
of-domain (OOD) scenarios, i.e.: (1) unseen in-lab datasets,444
and (2) unseen in-the-wild images; the latter is the main fo-445
cus of our work. Thus, we compare our PICO-fit method446
with both regression-based HOI reconstruction methods,447
i.e., CONTHO [57] and HDM [81], and an optimization-448
based one, i.e., PHOSA [90], on these tasks.449

Methods Ref. Type
GT
con-
tact

InterCap [31] DAMON [70]

PA-CDh PA-CDo PA-CDh+o X vs PICO-fit∗
(cm) ↓ (cm) ↓ (cm) ↓ Pref. Rate (%)

HDM [81] Reg. ✗ 17.34 14.12 13.6 20.1 vs 79.9
CONTHO [57] Reg. ✗ 8.36 24.30 13.14 -
PHOSA [90] Opt. ✗ 10.07 23.36 13.38 -

CONTHO∗ [57] Reg. ✓ 8.16 23.26 12.81 24.7 vs 75.3
PHOSA∗ [90] Opt. ✓ 10.12 20.91 13.28 32.0 vs 68.0

PICO-fit Ours Opt. ✗ 7.43 21.85 10.33 37.3 vs 62.7
PICO-fit∗ Ours Opt. ✓ 6.66 13.34 8.36 ∅

Table 1. Evaluation on 3D HOI reconstruction. Middle column:
Evaluation on InterCap [31] (Sec. 5.1). Since no method trains on
InterCap, this evaluates generalization. Right column: Evaluation
on in-the-wild images via a perceptual study (Sec. 5.2). We report
the preference rate of results from the competing method (denoted
as “X”) over our PICO-fit∗. Left column: “Type” denotes regres-
sion or optimization. Using GT contact is highlighted with ∗.

Datasets. To evaluate 3D HOI reconstruction, two in-lab 450
datasets are widely used, InterCap [31] and BEHAVE [6]. 451
These provide multi-view RGB-D images paired with 3D 452
ground-truth (GT) bodies and objects in interaction, with 453
10 and 20 objects, respectively. Most methods train on 454
BEHAVE. So, we use BEHAVE-trained checkpoints for 455
existing methods, and evaluate generalization to InterCap. 456

Metrics. Following past work [57, 79, 80], we report the 457
Procrustes-Aligned (PA) Chamfer Distance (CD). We com- 458
pute this separately on the SMPL-X body (PA-CDh) and 459
object mesh (PA-CDo), after first performing PA to align 460
the combined human+object mesh with the GT meshes. 461

5.1. 3D HOI reconstruction – OOD in-lab datasets 462

We evaluate PICO-fit and SotA methods on InterCap [31] 463
and report results in Tab. 1. The CONTHO model trains on 464
BEHAVE, while HDM trains on ProciGen [81], a synthetic 465
dataset building on BEHAVE and InterCap. So, with the 466
exception of HDM, InterCap is unseen for all models. Thus, 467
we evaluate generalizability for OOD in-lab images. 468
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RGB Image PHOSA [90] PICO-fit (ours)

Figure 5. Qualitative comparison of PICO-fit vs PHOSA on inter-
net images used for evaluation in the PHOSA paper [90].

Further, we ablate the impact of using ground-truth (GT)469
3D contacts extracted from GT human and object InterCap470
meshes with a distance threshold of 5 cm. This simulates471
perfect contact “detection” to provide an upper bound on472
accuracy. Methods that use GT contact are highlighted with473
a star (∗); see details for each method in Sup. Mat.474

When GT contact is available, PICO-fit∗ significantly475
outperforms all baselines. However, even PICO-fit, which476
does not use GT contact, performs on par with PHOSA∗477
and CONTHO∗, demonstrating its robustness.478

5.2. 3D HOI reconstruction – In-the-wild images479

We evaluate PICO-fit∗ against SotA methods on in-the-wild480
images through a perceptual study conducted on Amazon481
Mechanical Turk. We randomly select 75 images from 42482
object categories in the DAMON dataset, and evaluate each483
method on these samples.484

Participants are shown an image at the center, along with485
reconstructions from PICO-fit∗ and baselines, randomly486
shuffled to the left and right side. The participants mark487
which of the two reconstructions best reflects the image,488
while focusing on the 3D human-object contact and spatial489
alignment. For details about the study, see Sup. Mat.490

Note that CONTHO∗ is only trained on 9 object classes.491
To ensure fair comparison, we evaluate CONTHO∗ on 30492
images that span only these specific 9 objects. Note also that493
HDM outputs a point cloud, while our PICO-fit∗ produces494
meshes. To avoid introducing any visualization bias, we495
convert PICO-fit∗ meshes to point clouds.496

We report results in Tab. 1 (right), in the form of “X vs497
PICO-fit∗”, indicating the percentage of times a competing498
method (“X”) was preferred over our method. On average,499
participants deemed reconstructions produced by PICO-fit∗500
to be more realistic over baselines 74.4% of the time.501

Stage Losses Optimized Procrustes-Aligned (PA)
IDs Lc Lo,m Lp Lh,m Variables CDh ↓ CDo ↓ CDh+o ↓

1 ✓ ✗ ✗ ✗ Ro, to 7.25 24.51 11.47
1+2 ✓ ✓ ✓ ✗ Ro, to, so 6.65 13.67 8.40
1+2+3 (PICO-fit) ✓ ✓ ✓ ✓ Ro, to, so, θC 6.66 13.34 8.36

Table 2. Ablation study for PICO-fit’s three fitting stages. We
evaluate on the InterCap [31] dataset, and report the Procrustes-
Aligned Chamfer Distance (PA-CD) for the human (h), object (o),
and their combination (h+o). The middle columns show the losses
and optimized variables. For qualitative ablation, see Sup. Mat.

Qualitative evaluation. In Fig. 6 we qualitatively com- 502
pare PICO-fit∗ with SotA methods on DAMON images, 503
only for object categories handled by all baselines. In Fig. 7 504
we show PICO-fit∗ reconstructions on object categories that 505
no previous method can handle. Finally, in Fig. 5, we qual- 506
itatively compare PICO-fit with PHOSA, namely the most 507
related SotA method to ours, on the same internet images 508
used in the PHOSA paper [90]. We show qualitative com- 509
parisons of PICO-fit with other baselines in Sup. Mat. 510

These results show that PICO-fit is more robust and gen- 511
eralizes to challenging natural images better than existing 512
methods. Note that PICO-fit handles several object classes 513
for the first time, due to efficient retrieval from PICO-db. 514

5.3. Ablation study 515

We evaluate the contribution of PICO-fit’s stages in Tab. 2. 516
This shows that each stage contributes meaningfully, as the 517
accuracy significantly improves for the optimized elements, 518
while non-optimized ones either improve or, in the worst- 519
case, remain practically unchanged. For quantitative ab- 520
lations on alternate optimization strategies and qualitative 521
ablations on the effect of each PICO-fit stage, see Sup. Mat. 522

6. Conclusions and Future Work 523

Our work emphasizes how contact, on both the human body 524
and the objects it interacts with, is a foundation for reason- 525
ing about 3D HOI. Specifically, we build a new dataset that 526
uniquely pairs natural images with 3D contacts on both the 527
body and the object. Using this, we develop a novel method 528
that exploits contacts to reconstruct 3D HOI from a single 529
image. Our method handles object classes that no existing 530
method handles, via efficient retrieval from our rich dataset. 531

The next step is to make 3D contact estimation more 532
general, efficient, and robust. To that end, we plan to ex- 533
pand and leverage our dataset of in-the-wild contact la- 534
bels to train a direct contact regressor. Specifically, we 535
will leverage PICO-fit to automate the creation of pseudo 536
ground truth training labels. With sufficient training data we 537
should be able to replace our nearest-neighbor lookup from 538
PICO-db with a feed-forward model. Last, we will explore 539
vision-language models [18] to go beyond finite datasets. 540
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RGB Image CONTHO* [57] HDM [81] PHOSA* [90] PICO-fit* (ours)PICO-db contact

Figure 6. Qualitative evaluation of CONTHO∗, HDM and PHOSA∗ alongside PICO-fit∗ on object categories handled by all baselines.
From left to right: input image, pseudo-GT contact annotations in PICO-db, and 3D reconstructions (a side and top-down view per method).
Reconstructions from PICO-fit∗ have better 3D human-object contact and spatial alignment. For more comparisons, see Sup. Mat.

Figure 7. HOI reconstructions from PICO-fit∗ on new, previously untackled object categories. Each row (left to right) shows, for three
input RGB images, PICO-fit∗’s estimated meshes overlaid on the image (camera view) and a side view. For more results, see Sup. Mat.
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