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Abstract. While diffusion models have achieved state-of-the-art results
in continuous domains like image generation, their application to inher-
ently discrete data such as natural language and DNA presents unique
challenges. Continuous-space adaptations often introduce artifacts and
complexities, motivating a focused investigation into models that op-
erate directly on discrete data. This survey provides a comprehensive
overview of the methods and advancements in the field of discrete diffu-
sion models. We review the foundational formulations, including Denois-
ing Diffusion Probabilistic Models (DDPMs) and Score-Based Genera-
tive Models (SGMs), and their theoretical adaptations to discrete state
spaces. We then chronologically survey advancements across key modal-
ities—Natural Language Processing and genomic sequences—examining
critical research topics such as novel forward processes and the adapta-
tion of pre-trained language models. By synthesizing these developments
and outlining future research directions, this paper offers a structured
overview to this rapidly evolving field.

1 Introduction

Generative modeling is a central task in machine learning that aims to learn
a probability distribution from data, enabling the generation of novel samples.
While various model families exist, including Variational Autoencoders (VAESs),
Generative Adversarial Networks (GANs), and flow-based models, diffusion mod-
els have emerged as a state-of-the-art paradigm, notably surpassing the previ-
ously dominant GANs in high-fidelity image generation [Dhariwal and Nichol
[2021]. Diffusion models were first introduced by |Sohl-Dickstein et al.| [2015],
where theoretical formulations for both discrete and continuous data spaces were
explored. However, subsequent research has been mainly focused on continuous
data spaces with applications to image generation, leading to powerful models
such as GLIDE, DALL-E 2, and Imagen, which have demonstrated remarkable
success|Conneau et al|[2020], Nichol et al.|[2022], Ramesh et al.[|2022]. Motivated
by these results, research has increasingly focused on adapting these models to
discrete data, which enables the modeling of sequences like natural language and
genomic sequences |Austin et al|[2021], |[Sarkar et al. [2024]. These methods can
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be broadly grouped into two categories: continuous diffusion, which applies the
diffusion process to continuous representations (e.g., embeddings) |Gulrajani and
Hashimoto| [2023| that stand in for discrete values, and discrete diffusion |Austin
et al| [2021], which operates directly on the discrete values themselves. While
both approaches have been explored, initial research often favored continuous
diffusion formulations due to the availability of established methods from im-
age generation. However, in fields like natural language processing (NLP) and
genomic sequence modeling. It has been found that continuous formulations
can suffer from higher sampling time and may exhibit "rounding errors" when
mapping output embeddings back to their corresponding discrete tokens |Lou
et al. [2024], |Li et al.| [2024]. Consequently, subsequent research has increasingly
shifted focus toward discrete formulations. This rapid proliferation of distinct
methods, theoretical insights, and novel applications within the discrete diffu-
sion landscape has created a need for a structured review to integrate these
developments.

In this survey, we explore the advancements and research directions of dis-
crete diffusion models. To best address inherently discrete data types like natural
language and genomic sequences, we focus exclusively on fully discrete diffusion
models, setting aside their continuous counterparts, while referring the reader to
existing surveys on continuous diffusion models [Li et al.| [2023], [Yi et al.[[2024],
Zou et al|[2023|, |Zhu and Zhao| [2023]. We will examine the main theoretical
foundations of diffusion models, key research interests, and summarize advance-
ments within each modality. We will also provide a chronological perspective
on the development of these models across different modalities, reflecting on
the findings and highlighting potential future research directions. Our research
questions are as follows:

— What advancements have been made for discrete diffusion models?

How have formulations for continuous diffusion models been adapted to the
discrete data domain?

What research directions have been explored within the field?

What are the potential research directions for natural language and DNA
generating using diffusion models?

The rest of the paper is structured as follows. Section [ introduces a frame-
work to understand diffusion models. Section [3] details the different noising pro-
cesses. Section [4 discusses methods to adapt autoregressive models to use diffu-
sion. Section [5| outlines a chronological evolution of research results and direc-
tions per modality and [f] discusses limitations and future research directions.

2 Formulations of diffusion models

Diffusion models are best understood within the broader context of generative
modeling. The goal of generative modeling is to create a model that can generate
novel samples that are characteristic of the data distribution on which it was
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Fig. 1. A simplified visualization of the probability distribution of image data. The
surface represents the probability density landscape, where the peaks correspond to
regions of high probability containing meaningful data, such as the images of the cat
and dog. The flat 'valleys’ represent regions of low probability, where data points are
noise.

trained. In this sense, the model learns an approximation of the probability dis-
tribution of the training data [Song et al.|[2021]. This concept can be visualized
as a landscape shaped by probability; hills represent regions of high probabil-
ity where data points are concentrated, while valleys represent low-probability
regions, which can be seen as pure noise as shown in Figure [1] Within this
framework, a diffusion model learns to navigate from these valleys to the peaks,
which represent plausible data points. It achieves this by taking small, iterative
steps across the data space, with each step designed to gradually increase the
probability of its position.

An analogy is that the model learns to act as a compass. At any given point
in the landscape, it indicates the direction of steepest ascent in probability,
guiding the generation process step-by-step from noise towards a high-likelihood
data sample. To learn this navigation, the model is trained on data at various
stages of noising. This is achieved through the forward process, where a prede-
fined schedule of noise is incrementally added to the training data. This process
gradually transforms a data point (z() into pure, unstructured noise (xr), as
shown in Figure 2] The model’s task is then to learn the reverse process: given a
noisy data point (xr) it is trained to remove noise over multiple small iterative
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Forward diffusion process
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Fig. 2. An intuitive example of the diffusion process. The forward process gradually
corrupts data (xo) by adding noise over several timesteps (z¢), eventually resulting in
pure, unstructured noise (z7). A model then learns the reverse process, which starts
with noise and learns to denoise it back into a clean sample.

Reverse diffusion process

time steps, until it reaches a plausible data point (xg). Thus, the model learns
to reverse the diffusion process.

Although all diffusion models are based on this forward-reverse process paradigm,
they differ in their mathematical formulations. These formulations are not mutu-
ally exclusive; rather, they represent different methods of defining the same core
diffusion process. Consequently, there is not one that always outperforms the
other, but their different mathematical formulation do enable different sampling
techniques and training objectives which come with their own characteristics.

So far, we have intuitively described this diffusion as occurring over a series
of discrete timesteps, as labeled from z¢ to z7 in Figure[2] However it is also pos-
sible to formulate diffusion models with a continuous time variable. Empirical
results indicate that continuous-time approaches can offer slight performance
advantages over their discrete-time counterparts, particularly in terms of per-
plexity and generation quality, though these improvements are generally modest
|Sahoo et al.| [2024].

There are many established formulations of diffusion models, the most known
of them are: denoising diffusion probabilistic models (DDPMs) ,
Score-based Generative Models (SGMs) |Song et al.| [2021], Denoising Diffusion
Implicit Models (DDIM) [Song et al.| [2022], diffusion models using Stochastic
Differential Equations (SDEs) or Odinary Differential Equations (ODE) [Song

et al 2021).

While all these formulations were originally made to model continuous data,
DDPM and SGMs have since been adapted to work directly on discrete data
|Austin et al.| [2021], Meng et al.||2023].We give an introduction to these formu-
lations and how they have been adapted to work on discrete data in appendix
5. 2)
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3 Forward processes

Diffusion models consist of a forward process that incrementally perturbs data
and a learned reverse process designed to denoise the data by undoing these
perturbations |Johnson et al|[2021]. As a result, changes to the forward process
redefine the task the model learns and can yield desirable reverse processes.

The foundational work of [Forre et al.|[2022] uses a forward process with uni-
form resampling. In this approach, the probability that each token in a sequence
is uniformly resampled increases as the time step ¢ approaches T. At t =T, the
sequence x7 ideally follows a uniform distribution over all possible tokens.

Austin et al.| [2021] introduced a framework for discrete diffusion models,
utilizing transition matrices to define various forward processes. A notable ex-
ample is absorbing diffusion, where the probability of each token transitioning to
a special [MASK] token increases with ¢. In this scheme, the fully corrupted se-
quence zp consists entirely of [MASK] tokens. This approach shares conceptual
similarities with Masked Language Modeling (MLM) Devlin et al.[[2019].

In the same work [Austin et al.| [2021] also proposed a forward process based
on token embedding distance. This method corrupts tokens by swapping them
with others, with a higher probability of swapping to tokens that are semanti-
cally or syntactically similar (i.e., closer in the embedding space). Despite this
structured noise, the process is designed such that x still converges to a uniform
distribution of tokens.

The aforementioned forward processes typically modify sequence elements in-
place. This constraint can pose challenges for the denoising model; for instance,
if an element is predicted in an incorrect position, subsequent denoising steps
may become more difficult. To address this, [Johnson et al.| [2021] incorporated
explicit insertion [INS] and deletion [DEL] operations into the corruption and
denoising framework. This allows the model to insert new elements between
existing ones or remove elements entirely, providing greater flexibility to correct
erroneously placed tokens during generation.

He et al| [2022] developed the spindle noise schedule, which can be viewed
as an adaptive forward process influencing not only the rate but also the order
of token corruption. This schedule addresses two key observations: (1) different
tokens within a sequence convey varying amounts of information, and (2) denois-
ing language models often predict high-frequency (less surprising) tokens earlier
in the reverse process, thereby rapidly increasing likelihood. The spindle noise
schedule corrupts sequences by ensuring a uniform amount of information is de-
graded at each step and by corrupting the most informative tokens early in the
forward process. This design encourages the model to generate less informative
("easy") tokens first during its backward (denoising) process He et al.|[2022].

4 Diffusion adaptation

The similarity between the training objective of MLMs and the denoising task
in masked diffusion models was notably explored in |Austin et al.|[2021]. MLMs,
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such as BERT, are pretrained using a bidirectional attention mechanism, allow-
ing each token to attend to all other tokens in the sequence to predict randomly
masked positions. This inherent bidirectionality made them suitable candidates
for adaptation into denoising networks within diffusion frameworks, a strategy
leveraged by subsequent works such as [He et al|[2022] and [Ye et al| [2023].
Given the wide availability of pretrained language models (pLMs) and the sig-
nificant cost of pre-training new models from scratch, adapting existing pLMs
for diffusion-based generation is a compelling research direction.

A key difference in their pretraining objectives lies in the scope of the de-
noising task: MLMs are typically trained by masking a fixed, small percentage
of tokens (e.g., 15%), whereas a diffusion process involves a spectrum of masking
levels, from 0% to 100% masked tokens. Consequently, these MLM-based models
generally require fine-tuning to effectively serve as denoising networks across the
full range of diffusion timesteps.

However, many of the largest and most capable language models are au-
toregressive (AR) causal language models, employing causal attention masks.
These masks restrict the attention mechanism, permitting a token to attend
only to preceding tokens in the sequence. This fundamental architectural dif-
ference poses a challenge when adapting AR models to diffusion frameworks,
which often benefit from or require bidirectional context for optimal denoising.
The work by |Gong et al|[2024] addresses this disparity. They introduce "at-
tention mask annealing"—a technique to gradually transition the model from
its native causal attention to a more bidirectional attention suitable for diffu-
sion—alongside a mechanism to handle the "shift operation" (aligning the AR
model’s next-token prediction with the diffusion model’s current-token denois-
ing objective), thereby enabling the adaptation of causal language models to a
diffusion-based generative framework.

A primary motivation for repurposing pLMs is to leverage the representa-
tions learned during their pre-training. This approach has proven effective, with
Gong et al.| [2024] showing that diffusion models adapted from AR foundations
can achieve performance competitive with their original AR counterparts across
various tasks. While these adapted models do not represent a universal improve-
ment—exhibiting stronger performance on some benchmarks and weaker on oth-
ers—the value of knowledge transfer is evident. A direct comparison by [Han et al.
[2024] revealed that adapted diffusion models outperform their randomly initial-
ized counterparts. This finding strongly suggests that the adaptation process
successfully repurposes the learned representations of the original autoregressive
models, providing a more effective starting point than training from scratch.

Notably adapting AR pretrained models to diffusion has been explored for a
very limited extent in the field of genomics. Penzar et al.[[2023] adapts a sequence
to expression model to diffusion and uses it to generate DNA sequences.
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5 Advancements across modalities

This section examines the motivations, key results, and major research topics for
discrete diffusion models across two principal modalities: Natural language and
DNA. We provide a chronological overview of the field’s progression to illustrate
how it has reached its current state. Subsequently, we elaborate on individual
models, summarizing their core methodologies and significant findings. Table
in Appendix summarizes all diffusion models for NLP covered in this survey,
while Table [2] similarly summarizes the diffusion models for genomic sequence
modeling.

5.1 Natural language

Generative modeling has become widespread in the field of NLP. With applica-
tions of these models now in daily public use, advancements in this domain are of
significant interest. Consequently, the potential for diffusion models to serve as an
alternative to the dominant autoregressive paradigm has attracted considerable
research attention |Ye et al| [2023|Deschenaux and Gulcehre| [2024]Sahoo et al.
2024]He et al. [2022] |Lou et al.|[2024] Ye et al. [2024b|Gulrajani and Hashimoto
2023|Wu et al.| [2023]Gong et al.|[2023]Zhang et al. [2024].

Diffusion models possess several distinct advantages over autoregressive mod-
els. A primary advantage is their capacity for parallel token generation, which
can lead to increased sampling speed and efficiency. Furthermore, their poten-
tial for sequence-agnostic processing allows for a bidirectional context window,
addressing a known limitation of autoregressive (AR) causal language models.
This unidirectional constraint in AR models is implicated in phenomena such as
the "reversal curse," where a model learns a directional relationship (e.g., "A is
B") but fails to infer its converse ("B is A") Berglund et al. [2024].

Initial research into natural language generation with diffusion models often
involved applying the diffusion processes to continuous token embedding spaces
\Gulrajani and Hashimoto| [2023[Wu et al| [2023]Gong et al.| [2023]Zhang et al|
[2024]. This approach allowed for the adaptation of continuous diffusion methods,
typically developed for image generation. However, continuous-space diffusion for
natural language can necessitate a higher number of diffusion steps (and network
evaluations), as multiple small perturbations in the embedding space may be
required to effect a change equivalent to altering a single discrete token
. Additionally, this continuous approach requires a dequantization
step to map the diffused token embeddings back to discrete tokens, a non-trivial
process that significantly impacts model performance |Li et al| [2022|Lin et al/
[2022|Shabalin et al.| [2025].

The viability of fully discrete diffusion models as generative language models
prompted investigations into their scalability . Given that the
success of Large Language Models (LLMs) is significantly attributed to their
massive parameter counts Brown et al|[2020] Hoffmann et al.| [2022], compara-
ble scaling properties are crucial for discrete diffusion models to be competitive
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alternatives. [Nie et al.| [2024] found that masked diffusion models (MDMs) ex-
hibit scaling laws similar to AR models, although they required approximately
16 times more compute to achieve the same validation loss. This compute gap,
however, might be narrowed through optimizations in training and sampling
procedures. Subsequent work by [Nie et al.|[2025] continued to explore the scal-
ing of diffusion language models (DLMs). They contended that validation loss
alone might not fully represent model performance, instead evaluating models on
a suite of language understanding and reasoning benchmarks such as MMLU,
ARC-C, and PIQA. Their findings indicated that DLMs matched the scaling
trends of AR models on these tasks, and in some instances, even surpassed them
Nie et al. [2025].

Nie et al. [2024] also investigated whether DLMs could overcome the "rever-
sal curse" [Berglund et al.| [2024], a phenomenon previously discussed where AR
models struggle with bidirectional inference due to their unidirectional attention
mechanism. In contrast, diffusion models typically employ a bidirectional atten-
tion mechanism, allowing tokens to attend to the entire context. Nie et al.|[2024]
reported that their diffusion models were largely able to overcome the rever-
sal curse, achieving high accuracy on inferring reversed relationships where AR
models failed. The ability of diffusion models to overcome the reversal curse high-
lights a potential fundamental difference in how they process and reason about
information compared to AR models. [Ye et al.|[2023| explored this further by
adapting MLMs like XLM-RoBERTa for diffusion-based generation and evalu-
ating their reasoning capabilities on the GSM8K benchmark, which comprises
grade-school math problems requiring multi-step reasoning. While their models
did not match the performance of strong AR models on these complex reasoning
tasks, qualitative analysis revealed that the diffusion models exhibited distinct
reasoning patterns, including forms of backward reasoning and an inclination to
generate final answers early in the process. Building on the concept of explicit
reasoning steps, [Ye et al.| [2024b| introduced Diffusion-of-Thought (DoT), an
analogue to the Chain-of-Thought (CoT) prompting used in AR models. Unlike
CoT, which generates reasoning tokens sequentially, DoT integrates these think-
ing steps within the reverse diffusion process. Evaluations on GSM8K showed
that DoT-enabled diffusion models could outperform CoT-prompted AR models
of similar size. Furthermore, DoT demonstrated a practical trade-off between
efficiency and performance, with accuracy improving as the number of diffusion
steps increased.

5.2 Genomic sequences

The challenge of modeling genomic sequences shares fundamental properties
with NLP, as both revolve around generating sequences of discrete elements.
This parallel has historically justified the transfer of methods from one field to
the other, with autoregressive models having been applied extensively to the
genomic sequence modeling task Benegas et al.|[2025]. Following this precedent,
diffusion models now represent a promising new approach for this cross-domain
application. However, modeling genomic sequences presents unique challenges
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distinct from natural language, primarily stemming from its sparsity and the
intricate nature of genomic regulation [Sarkar et al.|[2024]. A significant portion
of the genome is non-coding, and within this, only a small fraction comprises cis-
regulatory elements (e.g., transcription factor binding sites, promoters) crucial
for gene expression. This creates a substantial class imbalance between function-
ally informative and non-informative positions, making the accurate modeling
of DNA’s regulatory grammar an ongoing research frontier |Sarkar et al.| [2024].

While autoregressive genomic language models (GLMs) have been explored
Nguyen et al. [2023] [Benegas et al.| [2025], the bidirectional contextual under-
standing offered by diffusion models presents a compelling alternative, particu-
larly given their success in other domains [Yang et al.| [2023]. Current research
in applying diffusion models to DNA predominantly focuses on the conditional
generation of regulatory sequences. This often involves leveraging guidance mech-
anisms to generate DNA with desired characteristics, such as specific expression
levels, cell-type specificity, or species-specific features.

An early approach in this direction was the Dirichlet Diffusion Score Model
(DDSM) |Avdeyev et al.| [2023]. DDSM introduced a score-based Stochastic Dif-
ferential Equation (SDE) diffusion model operating in continuous probability
simplex space. A key innovation was its method for handling discrete DNA
data: the diffusion process was defined such that its stationary distribution is
the Dirichlet distribution, providing a natural way to map the model’s continuous
outputs back to discrete nucleotide probabilities. Conditioned on transcription
initiation signal profiles—which quantify the frequency of transcription initiation
at each nucleotide position—DDSM was capable of generating human promoter
sequences designed to exhibit specific transcription initiation patterns, thereby
offering a means to control predicted expression levels.

Subsequently, DNA-Diffusion [DaSilva et al.| [2024] employed a Denoising
Diffusion Probabilistic Model (DDPM) formulation, also operating on contin-
uous values. Unlike DDSM’s simplex space, DNA-Diffusion represented DNA
sequences as one-hot encoded vectors with binary values mapped to a continu-
ous range of [-1, 1]. Diffusion and denoising occurred in this continuous space,
with the final discrete sequence recovered by taking the argmax over the channel
dimension at each position. Conditioned on cell type, DNA-Diffusion generated
sequences that were distinct from the training set and, importantly, exhibited
predicted increases in regulatory activity within the target cell type.

A shift towards models operating directly on discrete data was marked by
DNA Discrete Diffusion (D3) [Sarkar et al.| [2024]. Adopting the formulation for
discrete diffusion based on estimating data distribution ratios (as in |Lou et al.
[2024], foundational to D3’s approach), D3 represented a significant step as a
fully discrete DNA diffusion model. Its forward process was specifically tailored
for genomic sequences, designed to converge to a uniform distribution and per-
turbing only a single nucleotide at each step. Evaluated on diverse tasks includ-
ing human promoter, fly enhancer, and cell-type-specific regulatory sequence
generation, D3 demonstrated an improved ability to capture the diversity of
cis-regulatory grammars compared to previous methods [Sarkar et al.|[2024].
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Another distinct strategy, Latent Diffusion Models (LDMs), was introduced
to DNA sequence generation by DiscDiff [Li et al.|[2024]. This approach first
encodes DNA sequences into a continuous latent space using a Variational Au-
toencoder (VAE). Diffusion and denoising processes are subsequently performed
within this lower-dimensional latent space, after which the VAE’s decoder recon-
structs novel DNA sequences from the generated latent representations. Recog-
nizing that LDM-generated sequences may exhibit errors at the single nucleotide
level, DiscDiff also proposes ’Absorb-Escape.” This post-processing technique uti-
lizes an autoregressive model to resample specific nucleotides that were assigned
low confidence by the diffusion model during generation.

The paradigm of masked discrete diffusion was applied to DNA sequence
modeling by Sahoo et al. in their work on Masked Diffusion Language Models
(MDLM) |Sahoo et al.|[2024], primarily focused on natural language but with no-
table experiments on DNA. MDLM is formulated as a discrete diffusion model
employing an absorbing state (masking) forward process and a continuous-time
Rao-Blackwellized ELBO that simplifies to a weighted average of masked lan-
guage modeling losses. This work marked a key application of absorbing state
diffusion to DNA. Notably, their MDLM, when applied to DNA, achieved genera-
tive perplexity approaching that of HyenaDNA Nguyen et al.|[2023], a prominent
autoregressive DNA language model. This result underscored the potential of dis-
crete diffusion models, particularly those with efficient objectives like MDLM,
as competitive alternatives for DNA sequence modeling.
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6 Discussion and Future Directions

6.1 DNA diffusion models

The application of diffusion models to DNA sequence modeling, while promising,
remains less explored compared to their use in NLP. Yet, diffusion models possess
characteristics that could be uniquely advantageous for DNA generation. The
bidirectional context inherent in DNA, and the capacity of diffusion models to
capture complex distributions and generate diverse, novel outputs, make them
a compelling avenue for generating functional DNA sequences.

A key research direction that garners attention is increasing the sequence
length of these models. Longer sequence contexts are crucial for accurately mod-
eling interactions between distal cis-regulatory elements, a known challenge in
genomics Sarkar et al|[2024]. Successfully scaling sequence length could enable
applications such as the de novo design of DNA inserts that are contextually
aware of their surrounding genomic environment. Diffusion models, with their
inherent ability for infilling and conditional generation, are particularly well-
suited for such tasks.

Multitask learning with diffusion models in genomics is another promising,
yet relatively unexplored, frontier. This approach involves training a single model
to concurrently predict different types of genomic data, such as DNA sequence,
associated gene expression values, and chromatin accessibility. While the intu-
ition is that learning shared representations across related tasks could improve
model performance or data efficiency |Kathail et al.| [2024], comprehensive evi-
dence demonstrating consistent, significant gains in predictive performance over
single-task models across diverse genomic applications is still developing. Never-
theless, it stands to reason that leveraging the interdependencies between differ-
ent genomic modalities could lead to more robust predictions. Such multi-task
models could also enable precise control over sequence generation, for instance,
by specifying a target expression profile and generating the corresponding DNA
sequence. A significant hurdle, however, is the limited availability of large-scale,
matched multi-modal genomic datasets, which currently constrains the training
of these models.

6.2 Diffusion adaptation

The similarities between the MLM objective and the denoising process in diffu-
sion models have enabled the adaptation of pretrained language models for dif-
fusion tasks. However, open questions remain regarding the comparative perfor-
mance of these ‘adapted diffusion models’ versus true diffusion models’ trained
from scratch. Notably, for natural language modelling, it has not been tested if
adapted diffusion models beat the reversal curse to the same extent that true
diffusion models do.

This leads to a crucial question: do adapted diffusion models acquire new
knowledge during the adaptation process, or do they primarily repurpose existing
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representations? Investigating the extent of parameter changes during adapta-
tion, similar to analyses done for reinforcement learning Mukherjee et al.[[2025],
could offer insights into how drastically model weights are altered. However, a
more qualitative experiment would be needed to fully asses if the adaptation to
diffusion results in new knowledge, like testing if previous unknown relationships
have been inferred by the adaptation to diffusion.

Furthermore, while studies He et al.[|[2022],|Gong et al.|[2024] describe general
training regimes for adaptation (e.g., number of tokens and training duration),
the reasoning determining the optimal amount of data or training duration for
effective adaptation often come down to, convergence on validation metrics or
efficient use of computational resources. While effective, such approaches may
not be available in compute-constrained scenarios. This motivates the need for
more eflicient training schemes, such as those leveraging parameter-efficient fine-
tuning methods like LoRA Hu et al.|[2021]. A first example of this approach is
LoRA-Adapted Diffusion (LAD), which demonstrates that LoRA fine-tuning
alone can be sufficient to transform a pretrained autoregressive model into an
effective diffusion-based generator Kuiper et al|[2025]. However the use of those
methods has only been explored to a limited extent |Gong et al.| [2024], and
questions remain about it’s impact on the adaptation to diffusion.

At the time of writing, diffusion adaptation has not been applied in the
field of DNA modelling. A key consideration for this adaptation is the diversity
of tokenization strategies used by AR DNA language models. While the DNA
diffusion models explored in this survey operate at the base-pair level, existing
AR models use strategies based on either k-mers or individual base pairsBenegas
et al.[[2025]. However, there is no fundamental reason why diffusion models could
not also use k-mer tokenization. Furthermore, if we generalize from findings in
diffusion for natural language generation, fully discrete techniques may be a
more natural fit for k-mer vocabularies than the continuous methods explored
so far. Nonetheless, adapting AR DNA language models for diffusion remains an
unexplored avenue of research.

7 Conclusion

Diffusion models are establishing themselves as competitive alternatives to au-
toregressive methods for generating discrete sequential data. Having demon-
strated their potential beyond their origins in image generation, their successful
adaptation to the discrete data space has unlocked new possibilities for mod-
eling complex data distributions like natural language and genomic sequences.
This survey has charted the field’s progression from continuous-space adapta-
tions toward fully discrete formulations, which have resolved key challenges such
as embedding rounding errors and inefficient sampling. Our review highlights
several critical advancements. The development of diverse forward processes,
particularly those based on absorbing/masking states, has created a strong con-
ceptual link to MLMs. This link has enabled a significant research direction:
the adaptation of pretrained language models for diffusion-based generation. In
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natural language generation, diffusion models have shown interesting character-
istics, such as beating the "reversal curse," hinting at improved reasoning. In
genomics, while still a nascent field of application, diffusion models are demon-
strating a critical application in the conditional generation of functional DNA
sequences, moving beyond simple generation to guided molecular design.

Despite these successes, much work lies ahead. While diffusion models are
proving their competitiveness, they do not yet represent a universal improve-
ment over existing methods, with challenges like the increased training compute
required for scaling remaining an open area for optimization. We are optimistic
that discrete diffusion models can achieve a foundational role in both natural
language and genomics, but further efforts are needed to rigorously benchmark
their capabilities and demonstrate their utility. As we have discussed, future re-
search should not only focus on optimizing these methods but also on tackling
fundamental questions about the nature of the knowledge they acquire and the
unique tasks for which they are best suited.
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Table 1. Summary of discrete diffusion models for natural language generation. The column Type indicates if a
model uses a discrete (D) or continuous (C) formulation and the column Time indicates if a model uses a discrete
time variable (D) or a continuous time variable (C).

Model Name Type Formulation Time

Forward Process

Sampling Technique

Noising Schedule

DiffusionBERT D
[He et all

022

D3PM [Austin] D
XLM-RYe | D
SEDDLou | D
RADDIOu | D
DDPDILiu_ | D
MDMfYe | D

DiffuGPT D
DiffuLLaMA
[2024
MDMNie | D
et al.| 2024
MDLM D
[2024
D
D
D

(2025
LLaDANie | D
et al. I2025I

DDPM D
DDPM D
DDPM D

SGM C

SGM C
DDPM C
DDPM D
DDPM C
DDPM C
DDPM C
DDPM D
DDPM C
DDPM C
DDPM C

Absorbing

Uniform, Absorbing,
Discretized Gaussian,
Token embedding
distance

Absorbing

Uniform, Absorbing

Absorbing

Uniform, Absorbing

Absorbing

Absorbing

Absorbing

Absorbing

Entropy-based noising

Absorbing

Absorbing

Absorbing

Not specified

Not specified

Not specified

Euler method,
Tweedie T-leaping

Euler method,
Tweedie T-leaping

Adaptive Gillespie

easy-first
TopK decoding

Ancestral sampling

Greedy sampling

Ancestral sampling,
Semi-Autoregressive

Entropy-Adaptive
Gibbs Sampling

Ancestral sampling

First-Hitting Sampler

Low-confidence remasking,
semi-AR remasking

Spindle

Linear, Cosine

Spindle

Geometric,
log-linear

Log-linear

Not specified

Not specified

Linear

Not specified

Log-linear

Entropy-based

Linear, Geometric,
Cosine

Not specified

Warmup-Stable-
Decay

# The paper adapted an existing XLM-RoBERTa model as the denoising network.
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Table 2. Summary of diffusion models for DNA sequence generation. The column Type indicates the
diffusion space: Discrete (D) or Continuous (C). The column Time indicates if a model uses a discrete
time variable (D) or a continuous time variable (C).

Model Type Formulation Time Forward Sampling Technique Noising
Name Process Schedule

. Not applicable
DDSM C Sg]g/ll?,/ C Multivariate Time-dilation (uses weighting

Jacobi .
Avdeyev function)
et al. I2023I

DNA- C DDPM D Gaussian Iterative denoising Linear
Diffusion noise

I2024I
Tau-leaping,

D3 D SGM (@) Uniform Tweedie denoiser Geometric

et al. I2024I resampling analog

DiscDiff[Li__ | D DDPM p Uniform Absorb & Escape Not specified
Im‘ 5094 resampling  (A&E), Fast A&E
Efficient Ancestral .
D Samplin Log Linear,
MDLM D DDPM C Absorbing g p A gt’ . Cosine Squared,
Sahoo et al.l emi-Autoregressive Cosine, Linear

5094 Sampling
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8.2 Discrete diffusion formulations

Denoising diffusion probabilistic models (DDPM) A denoising diffusion
probabilistic model has two Markov chains: the forward chain that corrupts data
and the backwards chain that recovers the data from the corrupted sample. The
forward process is typically designed such that any data point converges to a
simple prior distribution 7(z), typically a Gaussian.

The foundational work of |Sohl-Dickstein et al.[[2015] introduced the diffusion
probabilistic model, which was later improved by [Ho et al.| [2020] into the well
known denoising diffusion probabilistic model (DDPM). Following the first im-
plementation of a fully discrete diffusion model by [Forre et al.|[2022], the work of
Austin et al. [2021] generalized the DDPM formulation for discrete data. Their
key innovation was the use of a transition matrix to define the forward process.
This matrix can be explicitly designed to control how data is noised and to which
prior distribution it converges. The framework proposed by |Austin et al.[][2021]
is frequently used in subsequent work [He et al|[2022|Lou et al. [2024]Sahoo et al.
[2024], and is therefore briefly described here.

For a data sample @y composed of one-hot encoded vectors of length K
(representing K categories), the forward process is a Markov chain that generates
a sequence of latent variables @1, @, ..., . This process is defined by a series
of transition matrices @Q,, which dictate the iterative noising of the data. A single
step in this forward process is defined as:

q(z¢ | xi-1) = Cat (z;p = 11Q,) (1)

where Cat(x; p) is a categorical distribution. The probability vector p is the
product of the one-hot row vector x;_; and the transition matrix Q,.

Due to the chain rule of probability and the Markov property, the distribution
of x; at any timestep ¢ given xy can be computed in closed form by taking the
cumulative product of the transition matrices Q,:

q(z¢ | xo) = Cat (fEt;P = wo@) ,  with @ =Q,Q,...Q, (2)

The forward process g(z¢|z:—1) should be designed such that it’s posterior
q(xi—1|zt, 20) is tractable. Using Bayes’ rule, it can be expressed as:

q(iBt | mtflvm()) Q(wtfl | 5'30)
q (x| o)

. _
— Cat (:ct_l;p _ @ O0Qiy xOQt‘l) .

q(Ti—1 | ¢, 20) =
(3)
z0Q, ]

The model learns a reverse process, pg(@;—1|x:), to approximate this true

posterior. This is achieved by optimizing a variational upper bound on the neg-
ative log-likelihood, often referred to as the Evidence Lower Bound (ELBO):



22 L. de Groot et al.

Lt = Eq(ao) [ Dxv g (7 | Z0) [P (27)]

Lt

T
+ ZEq(m\wo) [DxL g (xt—1 | ¢, o) [[po (211 | 24)]] (4)

t=2

Liy
—Eq (21 |20) log po (zo | x1)]].

Lo

Each term in the objective has a distinct role; the term Lt is the difference
between the distribution of a fully noised sample and our chosen prior p(xr).
When the forward process is designed to converge to a known stationary dis-
tribution when ¢ reaches T regardless of x, this term becomes zero. The L;_;
terms drive the learning process by minimizing the KL divergence between the
learned reverse step pg(a¢—1|x:) and the true posterior q(x;—1|xs, o). Finally,
the Ly term accounts for the final timestep that bridges the slightly noisy x; to
the uncorrupted data xy. By minimizing this negative log-likelihood term, the
training objective forces the model to assign high probability to the true data
xo when conditioned on its slightly noisy counterpart x;. It effectively serves as
the loss for the final step of the reverse diffusion trajectory, ensuring that the
model can accurately map the slightly noisy latent state back to the clean data
manifold.

Score-based generative models (SGMs) Unlike likelihood-based models
that optimise probabilities directly, score-based generative models rely on the
score function Hyvarinen|[2005]. For a probability density function p(x) = e—Z(m) ,
the score function is given by the gradient of its log-density V, logp(z). Intu-
itively, it can be interpreted as a vector field pointing in the direction of the
steepest increase in probability density.

The formulation of the score function, V, logpy(z), is a key advantage of
score-based models because it allows for a derivation where the often intractable
normalising constant Zy is eliminated Hyvarinen| [2005], |Song and Ermon/ [2020].
The derivation proceeds as follows:

e—fo(x)
V. logpg(z) = V, log
o
=V, (log e 1) _log Zg) (Logarithm of a quotient)
=V, loge 1@ _ Vv, log Zy (Linearity of the gradient)
= V(—fo(z)) — V,log Zy (Logarithm and exponential cancel)
=—V,fo(z)—0 (Since Zy is not a function of x)
= 7vacf9 (I)

(5)
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Fig. 3. Illustration of a score function with increasing levels of noise added to the data.
The arrows represent the score function, a vector field that points in the direction of
increasing data probability. The orange colormap indicates the probability density of
the data. > (Left) At the start of the process (low noise), the score function can be
ill-defined in regions of low data density. > (Center to Right) As noise is added over
time, the data distribution diffuses and becomes smoother. This allows the model to
learn a stable score function that is well-behaved across the entire data space. This
Figure is inspired by Figure 2 from [Song and Ermon| [2020]

In this derivation, the term V, log Zy vanishes. This is because the normali-
sation constant Zyp = [ e~ 7o) dy’ is a function of the model parameters 6 and
does not depend on any specific value of x. Consequently, log Zy is also a con-
stant with respect to x, and its gradient V, log Zy is zero. This means the score
function can be computed and learned without needing to evaluate Zy, which is
a major advantage for models where Zy is intractable |Song and Ermon [2020].

However learning a score model is not triv-
ial and the output of score is frequently in-
correct for positions that lay outside of the - Tn2 -
data distribution that the model was trained
on. To perform better in these low data den- T
sity locations, score-based generative models l T " plead) ~ plz}
typically perturb the input data with Gaus- e
sian noise at various levels, and then learn
a score-based model conditioned on the noise
level (forming a Noise Conditional Score Net-
work, or NCSN) [Song and Ermon)| [2020]. This
process of. adding noi.se diffuses'the'original Fig. 4. Visualisation of the Con-
data distribution (as illustrated in Figure @), crete Score for a data point
causes regions that were initially of low data and its local neighborhood N (z) =
density in the unperturbed space to be more g, ..., .. The color intensity of
frequently encountered as noisy samples dur- each neighbor ,; indicates the
ing training. relative change in probability for

The score function V logpy (x) is only the transition from x, with darker
applicable to continuous space colors signifying a more favorable

[2011]Meng et al|[2023]. Many adaptations of tia?Sition to a higher probability
state.

Tns TnK
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a score function that work in discrete space
have been considered Hyvérinen| [2007|Hyvari-
nen| [2007|Lyu [2012]] however the one that
has been adopted within the field is the Concrete Score Meng et al.|[2023]. The
concrete score works by considering a set of neighbours N'(z) = xy1, ..., Tp for
a datapoint x. The concrete score ¢,,,,. (x; ) for a given data distribution

Ddata (ZE) is:

T
cpdata (X; N) A Pdata (an) — Pdata (X) el Pdata (Xnk) — Pdata (X) (6)
Pdata (X) Pdata (X)

The term % represents the relative change in probability when mov-
ing from z to z,,, and is evaluated for each neighbor (z,,). The neighborhood
structure N (z) defines a directed graph over the data points, and the Concrete
Score provides values for each edge (z, z,,) indicating the local attractiveness of
transitioning to that neighbor in terms of probability. Meng et al.| [2023] also de-
fined concrete score matching, which is the objective for a concrete score model

co(N) -

Losu(0) =Y paata (%) I} N) = e (N3 (7)

where ¢g(x; V') denotes the score model and c,,,,, (x; V) the true score. the
objective function is then simply the average squared Euclidean distance between
the learned score and the true score. However, this objective is intractable as it
requires the true score ¢, , which depends on the unknown data distribution.
To overcome this, Meng et al.|[2023] derived a practical, tractable objective that
avoids this dependency. For the full derivation, we refer the reader to the original
work.

Continuous time frameworks The DDPM framework discussed above works
with a discrete time variable, where ¢ takes integer values from a set {1,...,T}.
In this formulation, the diffusion process is a discrete-time Markov chain, where
each step can be seen as a generalization of a Bernoulli process to a categor-
ical draw. However, the time variable can also be treated as continuous. For
diffusion models operating on continuous data, this has been done by formu-
lating the forward and backward diffusion processes as stochastic differential
equations (SDEs) [Song et al| [2020]. This SDE-based approach was shown to
generate higher-quality samples, achieving remarkable results on image gener-
ation benchmarks. Beyond improved sample quality, a key advantage of this
continuous-time perspective is the derivation of an equivalent ordinary differen-
tial equation (ODE) from the reverse-time SDE. This deterministic ODE for-
mulation is particularly beneficial as it enables exact log-likelihood computation
and more flexible, faster sampling algorithms [Song et al.[[2020].
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The analog for extending diffusion to discrete data spaces is formulating
the process as a Continuous-Time Markov Chain (CTMC). This continuous-
time formulation unlocks several significant advantages over its discrete-time
counterpart. A key motivation is the enhanced flexibility it affords; because the
model learns a process defined for any continuous time ¢, it is not constrained to
a fixed number of denoising steps. This allows for the use of more sophisticated
and efficient sampling algorithms, such as adaptive samplers, which can improve
generation quality and computational efficiency |[Campbell et al. [2022],|Liu et al.
[2024]. From a theoretical standpoint, the CTMC framework leads to simpler
and more elegant training objectives, enabling simplifying the Evidence Lower
Bound (ELBO) to a weighted integral of cross-entropy losses Sahoo et al.| [2024],
Shi et al.| [2025]. Crucially, these benefits are not merely theoretical; ablation
studies have empirically demonstrated that continuous-time formulations can
marginally outperform their discrete-time counterparts in terms of perplexity
Sahoo et al.|[2024].

A continuous-time framework for diffusion models in discrete state spaces was
first explored theoretically by |Austin et al.| [2021]. The work of |Campbell et al.
[2022] further developed and implemented this framework, providing a practical
foundation that many subsequent models have built upon. We will now give a
brief overview of this framework.

A CTMC can be conceptualized as a process where a variable transitions
between discrete states at random moments in continuous time. Its evolution
is governed by the Markov property, meaning the future state depends only on
the current state. The process of transitioning is governed by the transition rate
matrix, R;, which is formally defined as:

- T G—at(@ | T) — oz
REo=m= a

(8)

where R(Z,z) is an element of the rate matrix, and gy ;—a¢(|Z) is the in-
finitesimal transition probability of being in state x at time ¢ given the process
was in state & at time ¢ — At. The Kronecker delta, d; 3, is 1 if = & and 0
otherwise. Its role is to separate the calculation for transitions between different
states from the calculation for remaining in the same state. Consequently, the
off-diagonal elements of R; hold the non-negative instantaneous rates of transi-
tioning to a neighboring state, while the diagonal elements hold the non-positive
rates of leaving the current state, ensuring that the rows of the matrix sum to
ZEro.

Conversely, the transition probability for an infinitesimally small time step
At can be expressed as:

Qet—ae(@ | ) = 005 + R(Z, 1) At + o( At) (9)

The transition rate matrix R; can be viewed as the continuous-time analog of
the transition probability matrix @; from the discrete DDPM framework [Austin
et al.[[2021]. It can also be designed to enable different forward processes, such
as uniform or absorbing diffusion.
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Calculating the transition probabilities over a finite interval requires inte-
grating the Kolmogorov differential equations |(Campbell et al.[[2022]. This can
be done analytically if the rate matrices at different times commute (i.e., R; and
Ry commute for all ¢,t'). A practical way to satisfy this condition is to define the
rate matrix as Ry = B(t)Rp, where Ry is a time-independent base rate matrix
defining the structure of transitions (e.g., uniform), and 3(¢) is a scalar noise
schedule that controls the speed of noising over time. The authors of |Campbell
et al|[2022] provide the analytical solution for the forward process transition
probabilities, g;o(x = j|lzo = 4), which is obtained by solving the Kolmogorov
forward equation for their specific choice of rate matrix R;.

8.3 Search strategy

Papers included in this survey were found by initially searching Google scholar
and Ar-ziv with the search term: "Discrete diffusion", "Discrete diffusion Natural
Language", "Discrete diffusion DNA". Additionally papers mentioned in related
works sections of papers were also added to the list, recursively, until no new
papers were found.
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