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ABSTRACT

We propose a multi-physics operator network for simultaneous and sequential
learning of solution operators of multiple heterogeneous parametric partial dif-
ferential equations. Existing neural operators are adept at learning the solution
operator of only a single physical system, and adapting to new physical equations
requires training a new surrogate model from scratch with physics-specific inten-
sive hyperparameter tuning. The proposed multi-physics neural operator leverages
the recent advancements in wavelet-based kernel integral-induced neural opera-
tor modeling and instantiates a memory-based ensembling strategy for projecting
heterogeneous physical systems into a common shared feature space. The local
channel-level ensembling is supported by context gates, which not only utilize
the shared features to embed the features of multiple heterogeneous physical sys-
tems into the network parameters but also allow the multi-physics operator to
learn new solution operators by transferring knowledge sequentially; this allows
the proposed model to continually learn without forgetting. We illustrate the ef-
ficacy of our algorithm by simultaneously and sequentially learning six complex
time-dependent solution operators of six physical systems. The inference results
on the simultaneous and sequentially trained models depict the ability to infer
previously seen physical systems without fine-tuning and catastrophic forgetting,
indicating the characteristics of a foundation model. The framework also demon-
strates the super-resolution property and generalization to out-of-distribution input
conditions.

1 INTRODUCTION

Scientific Machine Learning (SciML) involves the development of Machine Learning (ML) algo-
rithms for solving physical systems governed by complex partial differential equations (PDEs), and
has emerged as a computationally efficient alternative to classical numerical techniques like finite
element method (FEM) (Hughes| 2012), spectral element method (SEM) (Lord et al.l 2014), and
finite volume methods (FVM) (Moukalled et al.l [2016). The seminal works in SciML using mod-
ern ML methods for solving high-dimensional PDEs include neural networks (NNs) (Han et al.,
2017; 2018 [Sun et al.| 2020), constrained NNs (Sirignano & Spiliopoulos,, [2018};|Zhu et al.,|2019),
variational NNs (Yu et al.,|2018), and physics-informed NNs (Raissi et al.| [2019). However, these
frameworks require retraining from scratch as and when the input conditions, i.e., initial/boundary
conditions, system parameters, etc., change. One potential alternative is to employ transfer learn-
ing (Goswami et al.|[2020; (Chakraborty, 2021} |Chen et al.,[2021)); however, this is only effective for
small perturbations in the input. The solution to this problem involves approximating operators of
PDEs by using recently developed Neural Operators (NOs) (Li et al.| [2020ajb; |Gupta et al., 2021}
Lu et al., [2021; Wang et al., [2021} [Tran et al., [2021} |Li et al., 2022} [Tripura & Chakraborty| 2023
Hao et al., 2023} [Navaneeth et al.| 2024} Raonic et al., [2024). However, NOs are physics-specific,
and as the governing physics of the underlying system changes, one needs to retrain the NOs from
scratch. Additionally, as the NO is trained on the new physics, it forgets the previously learned
operators. To address this apparent gap, we here propose the multi-physics operator network for
in-context learning (m-PhOeNIX), which treats the PDEs of physical systems as one task and learns
solution operators of multiple heterogeneous parametric PDEs in a single model. Besides simulta-
neous learning, m-PhOeNIX can also sequentially learn the operators’ of new physical systems by
ensembling the shared features of previously acquired operators without catastrophic forgetting.
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The idea of in-context learning has gained some traction in the Natural Language Processing (NLP)
community. In-context learning in Natural Language Processing (NLP) refers to a model’s abil-
ity to perform tasks by interpreting and leveraging information provided within a specific context
rather than relying solely on prior training. This approach allows models such as GPT2 (Radford
et al.l [2019), GPT3 (Brown et al., [2020), CLIP (Radford et al., 2021}, ALIGN (Jia et al.l [2021)),
PALM (Chowdhery et al., 2022), and REALM (Guu et al., 2020) to dynamically adapt their behav-
ior based on the immediate context provided in the input prompt. The existence of such a concept
of learning on multiple PDEs in SciML can be found in [Yang et al.[ (2023)); McCabe et al.| (2023));
Herde et al.| (2024); [Rahman et al.| (2024); Hao et al.| (2024). At the core, these frameworks use
transformer-based sequence modeling approaches for homogenization of the operators of multiple
physical systems to simultaneously learn solution operators of differential equations (DEs) from
prompted data. The proposed m-PhOeNIX is a departure from this idea; instead, we utilize Green’s
integral (Dufty, [2015) kernel-based formulation. Green’s formalism provides a direct connection to
DEs in mathematics, whose success is not limited to classical mechanics (Hartmann, 2012) but in
conjunction with nonlinear activation functions also evident in integral kernel-based NOs (Li et al.,
20204} |Gupta et al.| 2021} [Tripura & Chakraborty, [2023; [Rafiq et al, [2022). Note that the pro-
posed m-PhOeNIX is the first operator learning approach that allows both multi-task (simultaneous)
learning and continual learning without catastrophic forgetting.

The ability to reason and combine already learned tasks is a hallmark of intelligence. This requires
modularity to support distributed learning and combinatorial strategy to meaningfully combine the
previously acquired knowledge (Thrun, |1998). In the m-PhOeNIX framework, we achieve the mod-
ularity and meaningful combining of knowledge by instantiating a distributed learning strategy mo-
tivated from (Wang et al., 2020; [Veness et al., [2021). We introduce expert wavelet integral blocks
by parameterizing an ensemble of local integral kernels to ensemble task-specific NOs at the local
kernel level. This enables distributed learning of different features of the multi-physics operator.
Context gates are introduced to direct the predictions from local kernels toward a common operator
by meaningfully weighing the local kernels based on the PDE label and context information. Over-
all, this work makes the following contributions: (1) It instantiates local kernel-level combinatorial
representation learning strategy for the NOs. (2) It projects the physics of multiple heterogeneous
systems into a common distributed feature space and simultaneously learns the multiple operators.
(3) It performs combinatorial transfer of old operators to learn operators of new physical systems
without catastrophic forgetting. We showcase the efficacy of m-PhOeNIX by simultaneously and
sequentially learning operators of complex mechanics-oriented partial differential equations.

2 EXISTING WORKS

Neural Operator. Neural operators learn the discretization invariant solution operator of para-
metric PDEs, which are defined as a family of PDEs where the input conditions, such as the initial
and boundary conditions (ICs/BCs), system parameters, source functions, etc., are allowed to vary
over a finite range. Neural operators are trained only once, and once trained, the solutions for a
new set of inputs require only a forward pass of the network. The literature on neural operators
includes the universal approximation theorem-based deep operator network (DeepONet) (Lu et al.,
2021)), integral-kernel-based architectures like Fourier neural operator (FNO) (L1 et al., 2020a), fac-
torized Fourier neural operators (F-FNO) (Tran et al} 2021]), wavelet neural operator (Tripura &
Chakraborty) 2023), multiwavelet transform operator (MWT) (Gupta et al., 2021}, spectral neural
operator (SNO) (Fanaskov & Oseledets| [2023), spatio-spectral neural operator (SSNO) (Rafig et al.,
2022), and Laplace neural operator (LNO) (Cao et al., 2023)), attention-based architectures like
operator-former (L1 et al., [2022)), Gnot (Hao et al., |2023)), waveformer (Navaneeth & Chakraborty),
2024]), and convolution-based convolution neural operator (CNO) (Raonic et al.,[2024). These archi-
tectures provide sufficiently accurate approximations to the solution operators of only one physical
system or equations, and for every new physical system, a new neural operator has to be trained.
Addressing this limitation is one of the primary concerns of this paper.

Integral kernel based neural Operator. Given the variable input conditions and solution spaces
A = C(Q;R%) and U := C(2; R9), where Q C R? is a non-empty, bounded closed set denoting
the solution domain, the neural operators approximate the solution operator D : A4 x 8 — U by
parameterizing D with a finite parametric space 6 such an input a € A will be mapped to a unique
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solution u € U. Approximating the mapping u(z) = D(a)(x) involves the following deep net-
work, u(z) = (Qogpo...0qj0...0qg0oP)(a)(z), where P : R% s R% increases the kernel
dimension and Q : R% — R%: projects the feature space to solution space. The input a is first
uplifted to vy = P(a), over which a series of iterative updates ¢ : R > v; — v;1; € R%
are applied. The iterative updates g are expressed using integral kernels as (Li et al., [2020al),
g;i(-) =T (K(a;0€0)+g(pc8))(:) for j € h, where ' : R — R is a point-wise non-
linear activation operator, and X € C(£2;R%) is the integral operator. The integral opera-
tor KC(a(z); ¢) is defined as a convolution between the network kernel ky and input v;(z) as,
(Kov;) (x) = [ kg (x— &) v;(£)dé. The pointwise linear transformation g : R — R is
modeled as a linear network or 1 x 1 convolution.

Wavelet neural operator. The method of performing the convolution (Kyv;) (z) varies across
different architectures. In wavelet neural operator (WNO), the convolution is performed in the
wavelet domain by projecting the inputs using wavelet decomposition. Given the wavelet and in-
verse wavelet transforms W and W™, the parameterization of the kernel k,, in the wavelet domain
can be expressed as, (KCpv;) (z) = lel (Rg - Wyvj] (s,7)) () where s € Z* and r € 7Z de-
note the scale and translation parameters of the wavelet basis 1 (x) € L?(R"). It is imperative to
note that the kernels R are directly defined in the wavelet domain. Given the input @ € R4*%
in a domain with d point discretization one has [Wyv,](s,r) € R¥»*dv. By defining a net-
work kernel Ry € Rw*dvxdv " the kernel convolution is expressed as, (R - [Wyv;] (s, ™))k =
Z?QO(R@ijk [Wywjl,,. (s,7). However, the wavelet decomposition Wyv;](s, ) yields approxi-
mate (A,,) and detailed (A, ) wavelet coefficients of the input. The implementation of WNO, there-
fore, involves two kernel convolutions using the kernels ’R‘i and RB. The kernel R‘g learns the

features in the approximate space of the wavelet coefficients, and the kernel RE learns the features
in the detailed space of wavelet coefficients.

Multi-Physics operator. The success of massive language models has recently spurred the devel-
opment of large transformer-based multi-physics models for surrogate modeling in SciML. Among
the primary multi-physics models are the transformer-based ICON (Yang et al.}|2023)) and MPP (Mc-
Cabe et al.| 2023). While ICON supports super-resolution features, it lacks the ability to fine-tune
on downstream tasks. Conversely, MPP supports fine-tuning on downstream tasks but lacks super-
resolution properties. Recent transformer-based frameworks such as Poseidon (Herde et al., |[2024),
CoDA-NO (Rahman et al.,2024), and DPoT (Hao et al., 2024) tackle the challenges of both super-
resolution and fine-tuning on new PDEs. In these frameworks, for every new downstream task,
a downstream model is trained by initializing the weights from the pre-trained model. However,
these models do not support sequential learning, as each time a new downstream model is created,
the previously learned features are often forgotten—Ieading to catastrophic forgetting of pre-trained
tasks. To address this limitation, we propose a local ensembling strategy for pre-training and se-
quential learning of PDE operators. We focus on fine-tuning only a small part of the pre-trained
network to sequentially adapt to downstream tasks, where we leverage newly learned features to
sequentially learn new PDEs. We consider ICON and MPP as two representative frameworks of
transformer-based multi-physics architectures for comparing our method.

3  ALGORITHM OF M-PHOENIX

The central idea in the m-PhOeNIX framework involves distributed operator learning of a diverse
set of heterogeneous physical systems by projecting the set of systems into a common distributed
space and later sequentially adapting the multi-physics operator to new physical systems without
retraining the complete model. To address this, we introduce local wavelet experts to learn distinct
features of heterogeneous physical systems. Secondly, we introduce the context gates to weight the
local experts based on the task query, thereby supporting the transfer of knowledge during sequential
learning and differentiating between tasks during prediction on previously learned systems.

Local wavelet experts. We define the local wavelet experts to be the wavelet convolution inte-
grals used in the WNO architecture. Unlike in WNO, where the same wavelet basis is adopted
across all the integral layers, we parameterize each local wavelet expert using a unique wavelet
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PDE Label (a) Multi-Physics Operator Network for In-context learning (m-PhOeNIX)
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Figure 1: Architecture of m-PhOeNIX multi-physics operator learner. (a) The input {a,z} are
encoded into v, using P which is updated using EWIBs and later projected to solution w using Q.
The ensembling between the local wavelet experts, indicated by the color gradients, is performed
using the context gates. (b) The context gate uses the task label and context information to estimate
the expert weights using an FFEN. For 2D applications, the field size is first reduced using shallow
CNN. (c) A m-PhOeNIX model is first pre-trained on a diverse set of pre-training physical systems.
For new equations/operators, the pre-trained model is sequentially fine-tuned by backpropagating
loss through the context gate parameters while fixing the m-PhOeNIX weights.

basis function v, for e € d., where d. denotes the number of local experts inside an ex-
pert wavelet integral block to localize different feature of input in a separate wavelet space.
The local convolution integrals involved in the parameterization of local wavelet experts are de-
noted as, (K§v;)(x) = [,k (x — &) v;(£)dE, which in the wavelet domain is evaluated as,

(Kgvj)(z) = WJ:(R; - [Wy,vj] (s,7))(x). This yields the following kernel convolution,
(RS - Wy, v3] (5,7))jk = 320 (RE )i W, w51, (,7).

Expert wavelet integral blocks (EWIBs). The EWIBs approximates the true operator by prob-
abilistically combining the predictions of a set of local wavelet experts. While each local expert
predicts a distinct feature, by mixing the individual predictions, the EWIB predicts the solution of a
specific physical system. The global kernel K (a(z); ¢) as a weighted combination of local wavelet
experts weighted by the probabilities p € R% is expressed as,

(K(¢ € 0)v)) (@) =

With ¢ denoting the softmax function, the mixing probabilities p € R% are estimated using the
context gate o(G(e | v(x),7;0,)) on the input v(z) and equation label 7. The context gate has its
own model parameters 6,. The final parameterization equation is expressed as,

de _ d
(K6 € 0)v;) () =3 (e it (327, (RE),, Wovilin(s.n) ) @) ). @
The implementation steps of the EWIBs are provided in Algorithm [I]

de
(pe - (KGvj)(x)); z€Q, jeh (1)

e=1

Dimension of the parameterization space. For a R? dimensional discretization and d, input
features, we have a € R%*% and v; € R4, The DWT yields the detailed and approximation
components D, € R%*dv and A, € R**4dv where d,, = 27°d + 2(dy, — 1) with dy denoting
the vanishing moment of the wavelet basis .. For a finite-dimensional parameterization space, we
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choose to parameterize the kernels R in the highest wavelet compression level s. In the wavelet
domain, we perform a global convolution by defining the kernels R¢, € R v,

Algorithm 1 Expert wavelet integral block (EWIB)

Input: v; € R*% PDE label 7, and wavelet bases {1, }% ;.
I: Deﬁne the context gate: G(p € 0,).

2: Obtain p € R,

3: Define the local kernels: R; € RiwxdvXdo for e € (.

4: for e + d. do

5: {Ay, Dy }e [Ww v;](s,7)(z) € Rdwxdv, > Local DWT
6: {A, D!} Z (R ) ”k)({A* Di}e), i > Convolution
7: Vi () W, ({A* D*}e). > Local IDWT
8: end for

9:

Probabilisitic mixing of local prediction: v, = F(Zg;l Pe V51 + (g vj)).

Context gates. Modeling complex and diverse heterogeneous tasks using multiple expert models
is a well-studied topic in machine learning (Yuksel et al.| [2012; Mattern, [2012). In m-PhOeNIX,
combining predictions of individual local experts is facilitated by context gates G(v(x),7;0,),
which map the equation label 7 and the updated solution v;(z) from previous EWIBs (context
information) to the local experts’ probabilities p € R% to be used for local mixing. Each EWIB q;
has its own context gate G;(v;(x),7;60,). Given v; € R and 7 € Z*, the probability vector
p; for j*" EWIB is estimated as,

exp (G(e | vj,1q,(T);0 € 8,))
S exp[G(e | v), 1, (1) € 6,)]

where 1,4, (7) is the one-hot encoding of the operator label 7, and G(e | v;, 14, (7); 6,) : RY — R4«
is a context gate parameterized by 6,, conditioned on the input v; and the task label 7.

pe=p(e|v;,7)= , Pe € Pj, 3)

Multi-physics operator learning of heterogeneous physical systems. We consider m set of
physical systems defined by the differential operators N : A, xU, — Q. for T € m, where the pair
{A;,U,, Q,} denote the Banach spaces of input variables, solution, and source, which is allowed
to differ across physical systems. Given the input and solution pairs {(al,u?)X ,}™ , and the op-
erator labels: {TJ Ty, we approximate the multiphysics solution operator Dy *™ : Ag.p, — Up:m
using the m-PhOeNIX framework. The training involves simultaneous updates of EWIB and con-
text gate parameters 6 and 6,. During pre-training of the m-PhOeNIX model on initial m-PDEs,
the order of the operators does not matter due to the label information 7 € Z™ in the context gate.

With the pre-trained multi-physics operator ngv"”" : Ag.m — Uo.m, the sequential operator learning
of new physical systems is done by fine-tuning the context gate G(6,). Since the backpropagation
of loss through the EWIB parameters 0 is prohibited during sequential learning, the wall-clock time
per epoch for fine-tuning reduces by a factor of half; for details, see Appendix Given a new
system represented by the differential operator Ny, 11 : Ami1 = Upa1, and the training pairs
{a]"*, uf’“ N | the pre-trained m-PhOeNIX model is fine-tuned, where the loss function is only

backpropagated to the context gate weights @p.

Successful training results in the adapted solution operator DN” mUNmt1 {Apg:m U A1} —
{Up.rn Ul 41}, which not only maps the inputs A, 1 of new system ./\/m+1 to the solutions U, 41
but also predicts the solutions of previous seen differential operators { N, . .., N, } without catas-
trophic forgetting. This procedure is repeated for new operators 7 € { Ny, 11.a1 }, Where M > m.
For every new system, the state dictionaries of the context gate parameters are stored locally, which
is loaded along with the expert block parameter whenever inference on previous physical systems
is required without catastrophic forgetting (Kirkpatrick et al., 2017) and rehearsal (Jeeveswaran
et al.,[2023). Thus, m-PhOeNIX eliminates the need to save large neural network models, thereby
achieving data and resource efficiency. The schematic description of the multi-physics learning is
portrayed in whereas the implementation steps are provided in Algorithm 2]
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Algorithm 2 Multi-physics operator learning of heterogeneous physical systems

Input: Training pairs {(al,u])N ,}™ , for pre-training operators {\p,...,N,}, PDE labels:
{7j}]L1, wavelet bases {1e}% ,, and {(a], uwl )N M for new operators {Ny, 1.0}
1: Pre-train m-PhOeNIX model: ng om o A+ U, for T € m.
2: for new physical systems, 7 € {Ny;11,..., Ny} do
3: for epoch <— epochs do

4 Set gradient update ‘False’ for 6.

5 Context information: v§(z) = P(a" (z)).

6 Predict from partially adapted model: u] (z) = D, 0 N (a™)(x).

7: Fine-tuning context gate: 8, <— 0, — aVg, L (u” (z), ul(x)).

8 end for

9 Output: Adapted operator Dév 0N L A U AR} = {Uoem U}
10: end for

4 NUMERICAL ILLUSTRATIONS

We consider six 1D and six 2D time-dependent PDE examples, each representing a different physical
system. Each example consists of 1400 training samples for different ICs, totaling 8400 1D and 2D
training spatio-temporal trajectories. The performance in each example is examined for 100 test ICs,
ie., 6 x 100 = 600 different trajectories. Here, the physical systems refer to different governing
PDEs, and the initial conditions are modeled as random fields using the Gaussian process (GP). The
solution domain is considered as € [0, 1] with 257 spatial discretizations for 1D and Q € [0, 1]2
with 64 x 64 mesh for 2D illustrations. We have used 10 and 5 local wavelet experts in the 1D
and 2D m-PhOeNIX models, respectively. Other details of model hyperparameters and compute
resources are provided in detail in Appendix [A]

Problem setup. We train four different multi-physics operator models. In (i) and (ii), we learn
the multi-physics operators of 1D and 2D physical systems. The learned operators are denoted
as D{,‘fo’m : U{O:m}|QX[O’1O] — U{O:m}|QX[11’T), which maps the solutions u{ozm}|9x[0,10] of
m-physical systems at first 10-time steps in the domain Q € R? to the solutions at later time
steps. This demonstration intends to showcase the capability of simultaneous operator learning
of multiple heterogeneous physical systems without few-shot learning during prediction. In (iii)
and (iv), we pre-train m-PhOeNIX models for 1D and 2D physical systems on initial two to three
physical systems and then sequentially learn new solution operators of other heterogeneous phys-
ical systems. The pre-trained m-PhOeNIX models are adapted to new physical systems by se-
quentially fine-tuning only the context function. The sequentially adapted models are denoted as
DJB\/O:’"UN* : L0mIUNE lax[0,10] ul0muN7 lox[11,7)» Where No., UN represents the adaption
to new physical system A.. This demonstration intends to display the capability of the adapted
model to predict previously seen physical systems N.,,, in addition to the new system N without
catastrophic forgetting.

(a) Jaccard distance (b) Cosine similarity (c) Jaccard distance (d) Cosine similarity
between 1D PDEs | between 1D PDEs . between 2D PDEs between 2D PDEs

.0 -1.0 .0
AC Ng Bg Av Ht Wv AC Ng Bg Av Ht Wv Av Ng AC Ht Bg NS Av Ng AC Ht Bg NS

Figure 2: Similarity between the physical systems. Jaccard distance metric varies between 0 and 1,
with 0 indicating no overlap and 1 complete overlap between PDEs. Cosine distance varies between
-1 to 1, with 1 indicating a perfect match and O indicating a completely different PDE.
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Task Similarity. Here, we demonstrate the heterogeneity between the undertaken tasks. In par-
ticular, we measure the similarity between the datasets of 1D and 2D physical systems using the
Jaccard distance (Rajaraman & Ullman, 2011) and cosine similarity (Singhal et al.l 2001). Ex-
amples of physical systems are Allen Cahn (Ac), Nagumo (Ng), Burgers (Bg), advection (Av),
Heat (Ht), wave (Wv), and Navier-Stokes PDEs (NS). The data generation details are provided in
Appendix [F} The cosine similarity between the systems N; and N is defined as Sc(N;,N;) =
(NEN;)/(INGNIING I, where || - || is the Frobenius Norm. The Jaccard distance is defined as
Sy(Ni, N;) = 1—|N;NN;|/|N; UNj|. Ttis evident from the S (N5, N;) and S 7 (N, N;) metrics
in[Figure 2]that the operators are significantly different from each other.

Simultaneous operator learning of multiple physical systems. The proposed m-PhOeNIX
presents an ensembling strategy between the integral kernels to support prediction on all the simul-
taneously trained heterogeneous physical systems without fine-tuning during inference. We train
two m-PhOeNIX models on six 1D and 2D physical systems, each trained on 8400 different training
samples from six different physical systems. The solutions at the first ten time steps are used to
predict the solutions at the next 20 time steps for 1D and 10-time steps for 2D physical systems. The
performance of trained models is tested by predicting solutions for a total of 600 initial conditions,
100 for each physical system. It is evident from the relative error in the temporal prediction in
that the mean prediction error over the entire test dataset for each physical system is < 2% for
1D systems and < 4% in most of the cases for the 2D systems. This indicates that the m-PhOeNIX
provides in-context operator learning of multiple heterogeneous physical systems.

(a) Multi-Physics learning of 1D PDEs (b) Multi-Physics learning of 2D PDEs

0.05 0.10
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Figure 3: Prediction error of temporal evolutions of physical systems after simultaneously learning
operators of all 8400 parametric PDEs. The shaded region indicates the 95% confidence interval (CI)
of the prediction error over the test dataset involving 100 different ICs for each physical system.

Sequential operator learning of heterogeneous physical systems. We now investigate the effi-
cacy of m-PhOeNIX against catastrophic forgetting of previously learned operators by sequentially
learning solution operators of up to 4 for 1D and up to 3 for 2D heterogeneous physical systems. The
pre-trained model is simultaneously trained on 2800 training samples from the Nagumo and Burgers
equation for 1D systems and 4200 training samples from the Navier-Stokes, Allen-Cahn, and Burg-
ers equation for 2D systems. The pre-trained models are then adapted to new physical systems by
training the context gates sequentially on 580 samples from each new system. Sequentially learned
models are tested on 100 test samples from previously seen and unseen future physical systems. The
predictive accuracy of the temporal predictions on other tasks after being sequentially trained on an-
other task is illustrated in|Figure 4]and|Figure 5| The prediction accuracy is estimated as v = 1 — ¢,
where ¢ is the relative L? norm of the predictive error. The higher the value of the metric v, the
better the predictions. It is evident in the results that the sequentially trained m-PhOeNIX models
do not catastrophically forget previously seen physical systems.

Zero-shot prediction on super-resolution. Like existing task-specific neural operators, the m-
PhOeNIX also exhibits discretization invariant properties without fine-tuning on a new resolution.
While the multi-physics m-PhOeNIX is trained on a spatial resolution of 257 for 1D and 64 x 64
for 2D, we examine the zero-shot generalization to higher resolution by predicting the solutions at
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Continual learning on 1D parametric PDEs

Train:Nagumo & Burgers Train:Advection PDE Train:Allen-Cahn PDE  Train:Heat PDE Train:Wave PDE
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Figure 4: Sequential operator learning of 1D physical systems. The pre-trained m-PhOeNIX model
is trained on Nagumo and Burgers equation, later sequentially trained on 4 new systems (indicated
by columns), and sequentially tested on each system (indicated by rows). For e.g., consider the right
column, which indicates the pre-trained m-PhOeNIX model’s predictive performance on all systems
after being sequentially trained on advection, Allen-Cahn, heat, and wave PDE:s.
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Figure 5: Sequential operator learning of 2D physical systems. An m-PhOeNIX model is pre-trained
on Navier-Stokes, Allen-Cahn, and Burgers equations, later sequentially adapted to 3 new physical
systems (indicated by columns), and sequentially tested on each task (indicated by rows).

resolutions of 514 for 1D and 128 x 128 for 2D examples. During zero-shot prediction, higher-
resolution input fields are directly fed to the EWIBs. However, the context information is sub-
sampled to training resolution before feeding to the context gates. The relative prediction error
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averaged over the previous 100 different test samples is illustrated in The mean relative
errors are found to increase to < 6% for 1D examples and, in most cases, < 4% for 2D examples.

(a) Zero-shot super (b) Zero-shot super (c) Multiphysics (d) Multiphysics
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Figure 6: (a) & (b) Zero-shot prediction at higher resolution. The shaded region indicates the 95% CI
of the prediction error, averaged over 100 different ICs at increased resolution. (c) & (d) Prediction
error for out-of-distribution dataset. The shaded region indicates the 95% CI of the prediction error,
averaged over 100 different out-of-distribution ICs.

Out-of-distribution generalization. Here, we examine the generalization ability of the pre-
trained m-PhOeNIX models to initial random fields beyond the training distribution. The “out-
of-distribution” datasets are generated using the same kernels as the in-distribution dataset but with
different GP kernel parameters. The details are provided in Appendix [F2] The performance is as-
sessed on 100 initial random fields from each physical system. The results in indicate that
the relative error remains approximately < 6% for 1D and < 5% for most of the 2D problems.

Table 1: Performance against task-specific operators. m-PhOeNIX* indicates the multiphysics
model trained on all six PDEs simultaneously. Overall best performing metric is indicated in bold
blue color. Best performing multi-physics metric is indicated in bold brown color.

Model Performance on 1D PDEs (relative L? error norm in %)

Allen-Cahn Nagumo Burgers Heat Wave Advection
DeepONet 1.36+.56 2.29+.62 5.96+1.7 1.22+.46 1.25+.47 0.56+.42
FNO 0.28+.17 0.17+.13 041+32  0.25+.17 1.67+.52  0.15+.09
WNO 0.66+.03 0.67+.31 221420 0.79+.31 1.66+.49  0.35+.20
CNO 1.36+.63 0.94+.52 2.03+1.8 1.41+.59 1.47+.43  0.38+.20
m-PhOeN.  0.22+.06 0.30+.16 0.31+.15 0.11+.06 0.34+.09 0.15+.09
ICON 7.86+.20 8.24+.21 9.09+.24 591+22 993+25 4.61+.17
m-PhOeN.*  0.37+.09 0.41+.18 0.88+42 047£16 1.01£27 0.44+21
Model Performance on 2D PDEs (relative L? error norm in %)

Navier-Stokes  Allen-Cahn  Burgers Advection Nagumo  Heat

DeepONet  2.55+.45 0.83£.17 6.16£1.1  7.43%.67 1.76+.41  4.50%+1.3
FNO 1.11+.28 0.22+.05 0.21+.07 0.17+.02 0.21+.05 1.23+.76
WNO 0.30=£.06 0.91+.18 048+.11 1.62+.17  0.92+.17 1.42+.82
CNO 2.87+£1.8 0.86£.20 1.30+£55  0.93£.09 1.14+32 1.22+.34
m-PhOeN 0.62+.13 0.19+.04 0.14+.03 0.38+.04 0.26+.05 0.34+.19
AVIT-B 4.96=£1.2 4.99+4.5 499427 5.02424  5.13+43 5.01*£14
AVIT-L 4.981+0.5 5.01+0.4 5.01£04 5.01£0.1  4.98+0.1 5.01£02
m-PhOeN.*  2.5840.3 1.86+£1.1 21713 2.50£1.6 3.10£12 1.79£04
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Comparison against existing multiphysics operators. Here, we provide a comparison with the
ICON (Yang et al.|[2023)) and MPP (McCabe et al., | 2023) multi-physics operators. While the avail-
able ICON codes support only 1D problems, the available MPP codes are released for only 2D
examples; thus, we have limited the comparison to 1D PDEs for ICON and to 2D PDEs for MPP.
We simultaneously trained the ICON and MPP on six PDEs like the multiphysics m-PhOeNIX
model. We have used the 31.56M parameter model of ICON from Yang et al.| (2023)) and AVIT-B
(116M parameters) and AVIT-L (409M parameters) models of MPP from [McCabe et al.|(2023)). On
the contrary, the 1D and 2D m-PhOeNIX models have a size of 9.05M and 22.5M, i.e., the 1D m-
PhOeNIX model is less than 1/3rd the size of ICON and the 2D m-PhOeNIX model is less than 1/5th
the size of the MPP-AVIT-B and less than 1/16th the size of the MPP-AVIT-L model. The prediction
errors are summarised in Table |1} where it is evident that even though the 1D and 2D m-PhOeNIX
models are significantly smaller than the compared multi-physics models, m-PhOeNIX outperforms
the compared models on the undertaken dataset.

Problem-specific comparison. We also compare the efficacy of the proposed m-PhOeNIX frame-
work with existing problem-specific NOs like DeepONet, FNO, WNO, and CNO at the single-task
level. For each system, we train independent problem-specific NOs. Alongside the multi-physics
pre-trained m-PhOeNIX model, we also compare task-specific m-PhOeNIX models. The relative
L? error norms of the predictions from different models averaged over 100 testing samples are pro-
vided in Table[I} where we observe that the m-PhOeNIX model, trained on a single task, performs
outstandingly in most of the cases. Only in a few cases FNO beats the m-PhOeNIX results by a
small margin. The multiphysics m-PhOeNIX model yields a relatively higher error as compared to
the single-task m-PhOeNIX model. However, the accuracy of the multiphysics m-PhOeNIX model
remains far better than the MPP models. These results also suggest that if required by fine-tuning
the pre-trained multi-physics m-PhOeNIX model on a specific task, a high prediction accuracy can
be achieved. We believe that by enlarging the model, the prediction error can further be minimized.

5 LIMITATIONS

The m-PhOeNIX framework extends the novel concept of distributed learning to NOs by intro-
ducing local wavelet experts as integral kernel approximators for multiple heterogeneous physical
systems. However, in its current form, m-PhOeNIX requires a small initial trajectory to learn the
time-dependent solution operators, which may be challenging to obtain for high-dimensional solu-
tion fields. Although initial studies in the appendix suggest that a high-dimensional model could
potentially mitigate the need for an initial trajectory, detailed studies beyond the 1D case are not
carried out. During zero-shot prediction on super-resolutions, the context gate currently takes sub-
sampled inputs at the training resolution. To directly handle inputs at the super-resolution level,
innovations such as an operator-enhanced context gate are needed, but these have not yet been intro-
duced in this work. Additionally, this study does not address the implementation of the m-PhOeNIX
framework on PDEs with irregular grids. Moreover, m-PhOeNIX requires system identities or labels
as inputs, but how to differentiate between physical systems in an automated way during sequential
learning, particularly when there is no clear task boundary, is not discussed.

6 DISCUSSIONS

We introduce the m-PhOeNIX framework for simultaneously and sequentially learning operators
of multiple heterogeneous physical systems without catastrophic forgetting. While existing inte-
gral kernel-based NOs are effective at learning operators for a single physical system, m-PhOeNIX
advances this by incorporating innovations such as modularity and local ensembling, enabling pre-
training and sequential adaptation in scientific machine-learning tasks. The robustness of the frame-
work is demonstrated through twelve 1D and 2D benchmark problems from computational me-
chanics. Additionally, we plan to enhance the shared feature space of the pre-trained m-PhOeNIX
framework by utilizing large, diverse datasets from various physical systems, which will allow new
operators to be sequentially learned with minimal samples. Our future efforts will also focus on
integrating physics directly into the m-PhOeNIX model for data-free learning and simulating multi-
physics phenomena.
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A APPENDIX: DETAILS ON MODEL ARCHITECTURE

Hyperparameters. Four expert wavelet integral blocks (WIBs) are used in the 1D and 2D m-
PhOeNIX models. Each EWIB consists of 10 and 5 local wavelet experts for 1D and 2D models.
The 1D EWIBs use orthogonal Daubechies wavelets (Daubechies| |1992) with vanishing moments
from 1 — 10, and the 2D EWIBs use Biorthogonal wavelets with vanishing moments from 1 — 5.
These wavelets project the inputs to wavelet space in the local experts so as to capture the global and
local patterns in features. The wavelet compression level is fixed at 4. As activation operator mish
activation function (Misra, [2019) is used. The transformations P, Q, and g(-) are modeled as 1 x 1
convolutions with d,, = 64 channels. The 1D context gate is designed as a 5-layered deep feed-
forward network (FNN) with 256, 128, 64, 32, and 10 perceptrons in each layer. The 2D context
gate consists of two CNN layers with 64 and 32 kernels, each kernel of a size 3, which follows the
FNN in the 1D context gate. In total, 1D and 2D m-PhOeNIX models have approximately 9.05 and
22.5 million parameters. The ADAM optimizer is used with 0.001 as the initial learning rate and
109 as weight decay. A step scheduler with 20 stepsize and 0.5 decay rate is used. During the
sequential learning of new physical systems, the decay step is modified to 15.

Computational complexity of EWIBs. Given an input field v;(z) € R?, the DWT and IDWT
have O(d) time complexity. An s level of wavelet compression results in wavelet coefficients of size
R<«. Spectral convolution of the coefficients incurs O(d,,) computational time. Designing g(-) as
a1 x 1 convolution incurs O(d) time. As d,, < d, the time complexity of an EWIB is O(dd.).

Compute resources. All training, fine-tuning, and testing are performed on a Ubuntu 20.04 system
with a 12-core Xeon Silver 4214R Processor and a single Nvidia RTX A5000 24GB GPU card. The
models are developed, trained, and fine-tuned in PyTorch 1.12.1. The wavelet decomposition is
performed using the Pytorch Wavelets 1.3.0 (Cotter} 2020).

B APPENDIX: ABLATION STUDIES

B.1 MULTI-PHYSICS LEARNING WITHOUT INITIAL TRAJECTORY

Here, we examine the ability of the m-PhOeNIX framework to learn the multi-physics solution oper-
ator of heterogeneous physical systems from single initial conditions instead of the initial trajectory.
We carry out the study on the 1D physical systems, where we learn the multi-physics operator
DQ[O"" s ul%m g wl%™ g 4 ), which maps the initial conditions u{%™}{q ., of m-
physical systems to the solutions at £ > £y. We train two multi-physics m-PhOeNIX models. The
first model is the same 9.05 million parameter model used in the main results. In the second model,
the uplifting channel dimension is increased to 100, resulting in a 20.88 million parameter model.
The relative L? error norms of the predictions from these models are provided in Table[2} Given the
same model size (9.05M), the relative errors are observed to be higher in the m-PhOeNIX model
trained from only initial conditions. However, the relative error in the 20.88M model is found to be
smaller than the 9.05M model, which indicates that a high-dimensional model is required for further
improvement in the predictions. Overall, the results indicate that at the cost of a higher training
cost, the m-PhOeNIX model can also effectively learn multi-physics solution operators from initial
conditions without a need for the initial trajectory.

Table 2: Prediction error (%) of m-PhOeNIX models after training from initial conditions.

Model size  Allen-Cahn Nagumo Burgers Heat Wave Advection

9.05M 1.84+1.69 1.99+1.77 2.02+1.16 2.08+£1.05 1.21+0.40 0.73£0.27
20.88M 1.13+1.05 0.68£0.15 1.23£0.26 1.67+0.37 1.994+0.55 0.27+£0.28

B.2 EFFECT OF NUMBER OF LOCAL WAVELET EXPERTS

Here, we examine the effect of the number of local wavelet experts inside the EWIBs on the perfor-
mance of the m-PhOeNIX framework. We conducted the study by sequentially learning the solution
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operators of the 1D physical systems by considering 4, 7, 10, 13, and 16 local wavelet experts inside
each EWIB. The number of EWIBs and other hyperparameters is kept the same as before. In all
the cases, the pre-trained model is trained on the Nagumo and Burgers equation simultaneously and
later adapted to Advection, Allen-Cahn, Heat, and Wave equations. The relative prediction error on
a physical system after learning the corresponding physical systems is portrayed in [Figure 7(a). It
is evident in the results that increasing the number of experts in EWIBs not only decreases the rela-
tive prediction error over the pre-training physical systems but also prevents the relative error from
increasing over the sequentially learned equations. However, it is necessary to note that increasing
the number of experts increases the training time epoch, which according to our compute resources
are found to be ~ 57s, 75s, 105s, 173s, and 210s of computer wall time per epoch for 4, 7, 10, 13,
and 16 experts, respectively.
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Figure 7: Summary of the ablation study. (a) Effect of the number of local wavelet experts on the
performance of m-PhOeNIX over the considered 1D physical systems. (b) Computer wall time for
one epoch for pre-training and sequential learning of new physical systems. The pre-trained model
for 1D equations is trained on Nagumo and Burgers equations simultaneously, and for 2D equations
is trained on Navier-Stokes, Allen-Cahn, and Burgers equations simultaneously.

B.3 TRAINING COST OF PRE-TRAINING AND SEQUENTIAL LEARNING

The proposed multi-physics operator network extends the concept of pre-training and finetuning
from natural language processing to scientific machine learning, where we train an initial model on
two to three physical systems and then adapt to new PDEs through local ensembling. In particular,
the pre-training is performed on 2800 training samples from 2 physical systems (1400 each) for
1D and 4200 training samples from 3 physical systems for 2D physical systems. The pre-trained
model is later sequentially trained on 580 test samples from each new physical system. The training
cost per epoch is illustrated in [Figure 7(b). It is evident that with a pre-trained model, the cost of
learning new equations is reduced by more than 2 times in both 1D and 2D tasks. Training the pre-
trained models on more diverse physical systems and input conditions to enrich the feature space of
m-PhOeNIX may yield a further reduction in training time during sequential learning.

C APPENDIX: ARCHITECTURE DETAILS OF M-PHOENIX

EWIBs. The m-PhOeNIX models for both 1D and 2D examples contain 4 EWIBs, each contain-
ing 10 local wavelet experts. The local wavelet experts employ the Daubechies wavelets with the
vanishing moments 1 — 10. The wavelet compression level is 4 across all the local wavelet ex-
perts. The “mish” activation function is used in all the EWIBs. The encoding transformation P is
modeled as a 1 x 1 convolution with 64 kernels. The decoding transformation Q is modeled as a
two-layer 1 X 1 convolution with 128 and 1 kernels, respectively. The linear skip transformation g(-)
is also modeled as 1 x 1 convolution layer with dimensions of P, which in this case is 64 kernels. A
summary is provided in Table 3]

Optimizer. The Adam optimizer with weight decay 102 is used. A step scheduler with step_size
20 and decay rate 0.5 is used for faster convergence. The loss is backpropagated over a batch size of
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Table 3: Architecture details of multiphysics m-PhOeNIX models
EWIBs #experts In-channel Gates Number of kernels in EWIBs  # Parameters
H 2 G @&

ID 4 10 11 4 64 64 64 64 9.05M
2D 4 10 11 4 64 64 64 64 22.5M

20. The network parameters are optimized for 150 epochs for 1D examples and 100 epochs for 2D
examples.

Context gate. The context gate for 1D equations is modeled as a six-layered dense network
with “mish” activation function in the hidden layers and “Softmax” at the output layer. The in-
put size is R? 4 6, where 6 denotes the number of classes in the one-hot encoding of task la-
bels. The numbers of perceptions in the hidden layers are taken as {512, 256, 128, 64, 32}, with
the output size as 10 for ten local wavelet experts. The context gate for 2D equations is mod-
eled as three convolution networks followed by the three-layered dense network. The convolu-
tion networks are designed as Conv2D(c¢;,,=C,y,1=64,k=5,5=2), Conv2D(c¢;,=Coy+=064,k=5,s=1), and
Conv2D(c;p=Cout=64,k=5,5=1), where k denotes kernel size and s denotes stride. The dense net-
work has the input size 256 + 6, with the perceptions in the hidden layers as {128, 64, 10}. The
setting of activation functions is kept the same as 1D.

D APPENDIX: ARCHITECTURE DETAILS OF THE TASK-SPECIFIC OPERATORS

For the comparison against the existing task-specific operators like DeepONet (Lu et al., |2021),
FNO (Li et al.| |2020a), WNO (Tripura & Chakrabortyl |2023)), and CNO (Raonic et al., 2024)), we
train an independent NO for every different physical system. The same dataset used for training
the simultaneous and sequential models is considered here. To highlight, the spatial resolutions are
considered as 257 for 1D examples and 64 x 64 for the 2D examples. In all the examples, the aim
is to approximate the operator D : u|QX[O,1o] X 0 — u|ox (11,7), Which maps the solutions at first
10-time steps in the domain €2 to the solutions at later time steps, in a similar manner to the main
results presented in this study. The architectures of the compared models are as follows:

* DeepONet: For the 1D problems, we design the branch net as two-layer feed-forward
networks (FFNs) with 512 perceptrons at each layer. The trunk net is designed as a three-
layer FFN with 512 perceptions at each layer. The Adam optimizer is run for 2.5 x 10°
iterations with a learning rate of 1 x 1073. The ReLU activation is used in the branch and
trunk nets.

For 2D problems, the branch net is designed with three convolution layers and 2 feed-
forward layers. The convolution layers have 64, 128, and 128 kernels with the sizes 5, 5,
and 3, respectively. A stride of 2 is used in the first two convolution layers. The feed-
forward layers have 128 perceptions at each layer. The trunk net is designed as a four-layer
FFN with 128 perceptions in each layer. Here, the Adam optimizer is run for 10° iterations
with an initial learning rate of 3 x 10~%, which is reduced at every 2 x 10* iterations using
a step decay rate of 0.5. The same ReLU activation is used in the branch and trunk nets.

* FNO: For both 1D and 2D examples, four Fourier blocks are used, with 64 in and out
channels in each Fourier block. The Fourier modes are considered as 16 for 1D and 12
for 2D problems. The parameters are optimized using the Adam optimizer. A total of 500
epochs with 20 batch sizes are used in both 1D and 2D problems. An initial learning rate of
1x 1073 is used, which is reduced at every 50 epoch for 1D and 100 epoch for 2D problems
with the decay rate of 0.5. In all examples, the GeLU activation is used. A weight decay of
1 x 10~% is also utilized in the problems.

* WNO: Similar to FNO, four wavelet blocks are used in all the 1D and 2D examples. Each
wavelet block has 64 and 32 kernels in 1D and 2D problems. The level of wavelet decom-
position is considered as 5 for 1D and 4 for 2D problems. The parameters are optimized
using the Adam optimizer. A total of 500 epochs with 20 batch sizes are used in the 1D
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problems, whereas in 2D problems, a total of 200 epochs with 20 batch sizes are used. An
initial learning rate of 1 x 1072 is used, which is reduced at every 50 epoch for 1D problems
and 100 epoch for 2D problems at a rate of 0.5. In all examples, the GeLU activation and
a weight decay of 1 x 10~* is used.

CNO: For training the CNO framework on 1D problems, we use 4 numbers of downsam-
pling block D, 4 numbers of upsampling block I/, 4 numbers of invariant block Z, and
4 numbers of resnet block R. For details on these blocks, see Raonic et al.| (2024). The
channel multiplier is set to 16. Except for 2D Advection and Allen-Cahn problems, we
increase the number of resnet blocks to 6, whereas for 2D Advection and Allen-Cahn prob-
lems, we use 4 resnet blocks. For all 2D problems, the channel multiplier is set to 32. The
convolution kernel size is taken as 3.

The AdamW optimizer with a total of 500 epochs with 50 batch sizes is used in all the
problems. An initial learning rate of 1 x 1073 is used, which is reduced at every 50 epoch
at a rate of 0.5 for 1D problems and 10 epoch at a rate of 0.98 for 2D problems. The
‘cno_Irelu’ mentioned in the CNO paper is used as an activation function. The weight
decay is set to 1 x 1076 for 1D and 1 x 1078 for 2D problems. The filter details are kept
the same as those on the CNO paper.

m-PhOeNIX: Four EWIBs are used in all the examples. In 1D problems, ten local wavelet
experts are considered in each WIB, whereas in 2D problems, four local wavelet experts are
considered. In 1D problems, the local wavelet experts are parameterized using Daubechies
wavelets with vanishing moments 1 — 10, and in 2D problems, all the local wavelet experts
are parameterized using bi-orthogonal wavelets. The level of wavelet decomposition is
considered as 4 for all the problems. In the case of 1D problems, 32 kernels and in the case
of 2D problems, 30 kernels are used in each local wavelet expert.

Adam optimizer is used in all the problems. A total of 150 epochs with 20 batch sizes
are used to optimize the parameters. The weight decay is set at 1 x 10~ in all problems.
An initial learning rate of 1 x 1072 is used in the problems, which is reduced at every 25
epochs with a decay rate of 0.5. The local wavelet experts use mish activation to solve all
the problems.

The size of model parameters is provided in Table ]

Table 4: Details of the model parameters. m-PhOeNIX* indicates the multiphysics model trained

on all six PDEs simultaneously.

Model Model parameters of 1D PDEs

Allen-Cahn Nagumo Burgers Advection Heat Wave
DeepONet 922k 922k 922k 922k 922k 922k
FNO 551k 551k 551k 551k 551k 551k
WNO 877k 746k 615k 877k 615k 615k
CNO 672k 672k 672k 672k 672k 672k
m-PhOeNIX  2.87M 2.87TM 2.8 2.87TM 28TM  2.87M
m-PhOeNIX* +— 9.05M —
Model Model parameters of 2D PDEs

Advection  Nagumo Allen-Cahn Heat Burgers Navier-Stokes
DeepONet 241M 241M 241M 241M 241M 2.79M
FNO 927k 927k 927k 927k 927k 927k
WNO 1.06M 1.06M 1.06M 1.06M 1.06M  1.06M
CNO 15.68M 2.96M 15.68M 2.96M 296M  2.96M
m-PhOeNIX  4.21M 421M 4.21M 4.21M 421IM  421M
m-PhOeNIX* +— 22.5M —
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E APPENDIX: DETAILS OF MULTI-PHYSICS MODELS

E.1 IN-CONTEXT OPERATOR NETWORKS (ICON) ARCHITECTURE

We have directly used the 31.56 million parameter ICON model from the paper by|Yang et al.| (2023)
except for the batch size, which is modified to 16. The training is performed for 100K steps. The
AdamW optimizer is used for optimizing the network parameters. For more details on the ICON-
transformer architecture, see the supplementary material of [Yang et al.[(2023).

E.2 MULTIPLE PHYSICS PRETRAINING (MPP) ARCHITECTURE

The AViT-B and AViT-L models of the MPP are directly used from the original paper by McCabe
et al.| (2023) with a change in the number of artificial epochs and number of time history. The
artificial epoch size is kept at 400 so that for an epoch of 500, the total training step reaches 200K.
The number of time histories to be used for prediction is kept at 10, the same as the training of m-
PhOeNIX models. The AViT-B and AViT-L models have 116 million and 409 million parameters.
For more details on the embedding dimension, dense layers, number of multi-heads, number of
encoder-decoder blocks, and token size, please refer to McCabe et al.| (2023).

F APPENDIX: DATA DESCRIPTION

F.1 IN-DISTRIBUTION DATASET

The governing equations of motion of the example physical systems and the conditions used for gen-
erating training samples are provided in Table 5] Different conditions are simulated from Gaussian
random fields (GRF) with radial basis function (RBF) kernel except for the Navier-Stokes equation.
The RBF kernel is given as,

2
K = oo (1222, o
205

where the amplitude and lengthscale parameters oy, and ¢; for each of the physical problems are
provided in Table[6] The domain of the examples is simulated given in Table[6] All the examples are
simulated using periodic boundary conditions u(z = 0,t) = u(x = 1,t). A total of 1400 training
and 100 testing pairs are generated with different conditions for each physical system. While in
multiphysics learning, all 1400 data are utilized, in sequential learning, only 580 pairs of data are
used to learn new solution operators.

Table 5: Description of physical systems

# Physical system Differential equation Condition
1 Wave Opu(z,t) = I/Au(x,t) u(z,0)
2 Burgers Ou(z,t) + 0.50,u*(x,t) = vOu(x,t) u(x, 0)
3 Advection Ou(z,t) + adyu(z,t) =0 u(z, 0)
4  Heat Ou(z, t) = aAu(z,t) u(x, 0)
5 Allen-Cahn Ou(x,t) = edppu(z, t) + u(z, t) — u(z, t)? u(x,0)
6 Nagumo Ou(z,t) = vAu(zx,t) + u(x, t)(1 — u(x, b)) (u(z, t) — @)  u(z,0)
7 Navier-Stokes  Jyw(x,t) + u(z,t) - Vw(x, t) = vAw(x, t) + f(z ) w(x,0)
V- u(x,t) =0

* For solving the 1D Burgers, 1D wave, 1D advection, and 1D heat equations, finite differ-
ence (FDM) codes are written. For solving the 1D Allen-Cahn and 1D Nagumo equation,
codes are written using the pseudo-spectral element method. The time-forwarding of the
solutions is done using a sampling frequency of 1000Hz. The space is discretized into 257
grid points in all the examples. The physical systems are solved using At = 0.001 sec-
onds; however, the synthetic dataset is generated by recording the time-marching solutions
at every t=0.2s, resulting in 50-time steps for each operator.
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Table 6: Details of data generation. B.C. indicates the boundary condition.

# Physical system Problem Coefficients Domain Kernel parameters
Wave 1D v=20.1 x€[0,1],t€[0,100 o¢=0.1,£=0.1
"2 Burgers ID v=10"% =z €[0,1],t€[0,10] o0=01,/=01
2D v=10"3 xe[0,1)% t€0,1] o¢=0.1,£=0.25
~ 3 Advection ID a=005 z€][0,1], t€]0,10] o0=0.1,£=0.25
2D a=0.01 x €[0,1]%, t €[0,1] 0=0.1,¢=0.3
"4 Heat ID a=10"%  2€[0,1],t€0,10] o¢=01,0=01 ~
2D a=10"3 x €[0,1]%, t €[0,1] c=01,¢=025
"5 Allen-Cahn ~ ID  e=10"% z€][0,1],t€[0,10] o0=0.1,=01
2D e=10"3 re[0,1)% t€0,1] o¢=0.1,¢=0.1
~6 Nagumo ID 1 v=10"%  z€[0,1],t€[0,10] o¢=01¢=01
2D v=10"3 ref0,1)?,t€0,1] o¢=01,£=03
~7  Navier-Stokes 2D v=10"% =z €][0,1]? te0,200 -

e The 2D Burgers and 2D advection equations are solved using the FDM method. The 2D
heat, 2D Allen-Cahn, 2D Nagumo, and 2D Navier-Stokes equations are solved using the
spectral element method. For solving 2D heat, 2D Allen-Cahn, and 2D Nagumo equations,
a sampling frequency of 1000Hz is used. Similar to the 1D examples, the systems are
solved using At = 0.001 seconds, while the synthetic dataset is created by recording the so-
lutions at At = 0.02 seconds. For generating training data for the Navier-Stokes equation,
the force field is generated as f(x,y) = 0.1 (sin (27 (x 4+ y)) + cos (27 (x +y))). The
initial vorticity fields are generated from a GRF NV(0, 73/2(— A +49I)~25). The time evo-
lution of the solutions is predicted using the Crank—Nicolson scheme with a At = 104
whereas the data for training are recorded at every ¢=1s. For more details, see |Li et al.
(20204a).

F.2 OUT-OF-DISTRIBUTION DATASET

To examine the robustness of the proposed multi-physics operator against out-of-distribution training
operators, we generate the out-of-distribution testing dataset from different RBF kernel parameters.
A total of 100 out-of-distribution samples for each equation are generated. The description of the
kernel parameters is provided in Table|[/| Note that other settings, such as the systems parameters
and the domain, are kept the same as the training conditions.

Table 7: Out-of-distribution data generation details. ¢/(-, -) denotes uniform distribution.

1D Equation ~ Coefficients Domain Kernel parameters

Allen-Cahn e=10"3 z €10,1], t €10,10] = U(0.05, 0. 5) =1(0.01,0.5)
Nagumo v=10"3 x € [0,1], t € [0, 10] =U(0.05,1), £ =U(0.01, O 5)
Burgers v=10"3 x €10,1], t € [0,10] = U(0.05, 0. 5) = U(0. 01 0.5)
Advection o =0.05 x €10,1], t € [0,10] =U(0.05,1), £ = U(0.01, O 5)
Heat a=10"3 z €10,1], t €0,10] = U(0.05, 025) ¢ =11:(0.01,0.5)
Wave v=20.1 x €1]0,1], t € [0,10] =1(0.05,0.5), ¢ M(0.01,0.4)
2D Equation Coefficients Domain Kernel parameters

Allen-Cahn e=10"3 x €[0,1)?%, t €0,1] =1(0.05,0.2), ¢ =U(0.1,0.5)
Nagumo v=10"3 r€[0,1]2, t €0,1] =1(0.05,0.2), £ =1£(0.1,0.5)
Burgers v=10"3 x €[0,1]%, t €0,1] = 1(0.05,0.2), ¢ = U(0.1,0.5)
Advection a = 0.01 r€[0,1]2, t €10,1] =1(0.05,0.2), £ =1(0.1,0.5)
Heat a=10"% 2€[0,1)% te0,1] o=U 0.0570.2), £ =U(0.1,0.5)
Navier-Stokes v = 1073 z € [0,1]%, t € [0,20] 0,23(—A +49I)7°)
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We demonstrate the degree of heterogeneity between the in- and out-of-distribution datasets in
Figure 8| To demonstrate the heterogeneity, we use the Jaccard distance and cosine similarity as
the heterogeneity measures. The cosine similarity between the systems N; and N is defined as
Sc(Ni,Nj) = (NENG)/(IIN:|[ING])), where || - || is the Frobenius Norm. The Jaccard distance is
defined as S;(N;, N;) = 1 — |N; NN;|/IN; UN|. Ttis evident that the out-of-distribution datasets
are significantly different from the in-distribution datasets.

(a) Jaccard distance (b) Cosine similarity (c) Jaccard distance (d) Cosine similarity
between 1D PDEs between 1D PDEs . between 2D PDEs

between 2D PDEs

Out-of-distribution data

. 1.0
AC Ng Bg Av Ht Wv AC Ng Bg Av Ht Wv Av Ng AC Ht Bg NS
In-distribution data

Av Ng AC Ht Bg NS

Figure 8: Similarity between the in- and out-of-distribution datasets. Jaccard distance metric varies
between 0 and 1, with O indicating no overlap and 1 complete overlap between PDEs. Cosine
distance varies between -1 to 1, with 1 indicating a perfect match and O indicating a completely
different PDE.

G APPENDIX: SOLUTION TRAJECTORIES

In this section, we show the solution trajectory of a representative sample of the pre-trained and
sequentially trained 2D physical systems. The m-PhOeNIX model was pre-trained on 1400 tra-
jectories from Incompressible Navier-Stokes, Allen-Cahn, and Burgers’ equation, and sequentially
adapted on the Advection, Nagumo, and Heat equation using 580 trajectories from each system.

Incompressible Navier-Stokes equation
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Figure 9: Solutions trajectories of pre-trained incompressible Navier-Stokes equation. The solution
trajectory is shown for a representative initial condition.
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Allen-Cahn equation
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Figure 10: Solutions trajectories of pre-trained Allen-Cahn equation.
shown for a representative initial condition.

The solution trajectory is

Burgers equation
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Figure 11: Solutions trajectories of pre-trained Burgers’ equation. The solution trajectory is shown
for a representative initial condition.

Advection equation
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Figure 12: Solutions trajectories of sequentially trained Advection equation. The solution trajectory
is shown for a representative initial condition.
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Nagumo equation
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Figure 13: Solutions trajectories of sequentially trained Nagumo equation. The solution trajectory
is shown for a representative initial condition.
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Figure 14: Solutions trajectories of sequentially trained Heat equation. The solution trajectory is
shown for a representative initial condition.
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H APPENDIX: OUTPUT PROBABILITIES CONTEXT GATES

Here, we illustrate the ensembling probabilities of the local wavelet experts. There are four hidden
expert wavelet integral layers and, correspondingly, four context gates. Each hidden layer has ten
local wavelet experts. The ensembling probabilities of the local experts predicted by the context
gates are provided in Fig. The probabilities are obtained by averaging over all the testing

samples and time steps.
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Figure 15: Probabilities resulting from context gates for different problems. Both 1D and 2D multi-
physics models have 4 hidden layers, and each hidden layer is accompanied by its own context gate.
Each context gate predicts the probabilities of ten local wavelet experts.
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Figure 16: Relative L? error over 100 test samples of Darcy equation. The aim is to map permeability
fields to pressure fields. The black dots denote the minimum error among the wavelet basses.
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Figure 17: Distribution of absolute error over the spatial domain for a representative sample of Darcy
equation in a rectangular domain. The aim is to map permeability fields to pressure fields.
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Figure 18: Performance of m-PhOeNIX to changing boundary conditions, exemplified on the Darcy
equation in a triangular domain. The aim is to predict pressure fields for given boundary conditions.
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Figure 19: Kullback-Leibler (KL) divergence and Mahalanobis distance between the PDE datasets.
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