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Abstract

People primarily consult tables to conduct data
analysis or answer specific questions. Text gen-
eration systems that can provide accurate ta-
ble summaries tailored to users’ information
needs can facilitate more efficient access to
relevant data insights. Motivated by this, we
define a new query-focused table summariza-
tion task, where text generation models have
to perform human-like reasoning and analysis
over the given table to generate a tailored sum-
mary. We introduce a new benchmark named
QTSUMM for this task, which contains 7,111
human-annotated query-summary pairs over
2,934 tables covering diverse topics. We inves-
tigate a set of strong baselines on QTSUMM,
including text generation, table-to-text genera-
tion, and large language models. Experimental
results and manual analysis reveal that the new
task presents significant challenges in table-to-
text generation for future research. Moreover,
we propose a new approach named REFAC-
TOR, to retrieve and reason over query-relevant
information from tabular data to generate sev-
eral natural language facts. Experimental re-
sults demonstrate that REFACTOR can bring
improvements to baselines by concatenating
the generated facts to the model input. Our
data and code are publicly available at https:
//github.com/yale-nlp/QTSumm.

1 Introduction

In the era of data-driven decision-making, tabular
data plays a crucial role in facilitating data analysis,
serving as a concise and structured representation
of information (Kukich, 1983; Pasupat and Liang,
2015; Chen et al., 2020c; Zhu et al., 2021; Zhao
et al., 2022a; Tang et al., 2023). People often con-
sult tables to extract valuable insights and make
informed decisions. For example, sales managers
typically explore large tables with specific business
questions to gain insights about clients and pro-
cesses. Sports coaches will analyze performance

Who were the candidates for the race in North Carolina’s 4th
district in 2012? And summarize the result of that election.

David Price from Democratic and Tim D’Annunzio from Republication were candidates
for the race in North Carolina’s 4th district in 2012. David was re-elected with a wide
margin, receiving 74.4% of the vote compared to Tim’s 25.6%. This election result
showed a clear victory for David, who had been in this position since 1996.

According to the voting result, which representative election in
North Carolina districts was the most competitive, and why?

The race in the North Carolina 7th district was the most competitive, as the
Democratic incumbent Mike McIntyre won by a slim margin, with only a 0.2%
difference between him and his Republican challenger David Rouzer. Furthermore,
this election was the only one among all North Carolina districts in 2012 that resulted
in a margin of victory within less than 1 percent.

District Incumbent First Elected Party Candidates

North Carolina 3 Walter Jones Jr 1994 Republican Walter Jones Jr (R) 63.2%
Erik Anderson (D) 36.8%

North Carolina 4 David Price 1996 Democratic David Price (D) 74.4%
Tim D'Annunzio (R) 25.6%

North Carolina 6 Howard Coble 1984 Republican Howard Coble (R) 60.9%
Tony Foriest (D) 39.1%

North Carolina 7 Mike Mcintyre 1996 Democratic Mike Mcintyre (D) 50.1%
David Rouzer (R) 49.9%

North Carolina 8 Larry Kissell 2008 Democratic Richard Hudson (R) 54.1%
Larry Kissell (D) 45.9%

North Carolina 10 Patrick Mchenry 2004 Republican Patrick Mchenry (R) 57.0%
Patsy Keever (D) 43.0%

Title: United States House of Representatives Elections, 2012

Figure 1: An example of QTSUMM. Given the nu-
merous data points in the table, different users may be
interested in various aspects for their own information-
seeking or decision-making purposes. The system needs
to perform human-like reasoning and analysis over rele-
vant table regions to generate a tailored table summary.

tables containing various statistics to develop game
strategies and make team adjustments. However,
effectively accessing and comprehending the infor-
mation contained within a large and complex table
can be time-consuming for users (Hurst, 2000; Pa-
supat and Liang, 2015; Pujara et al., 2021; Nan
et al., 2022a). Text generation systems that can
accurately summarize a provided table according
to users’ information needs have the potential to
greatly enhance data analysis and expedite the pro-
cess of obtaining data insights.

Existing work and datasets on table-to-text gener-
ation (Parikh et al., 2020; Chen et al., 2020a; Cheng
et al., 2022b; Lebret et al., 2016; Moosavi et al.,
2021; Suadaa et al., 2021) have mainly focused on
converting tabular data into coherent statements,
aiming to present the structured data in a human-
readable format. However, these approaches have
overlooked the fundamental goal of addressing
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users’ information-seeking purposes. Table-to-text
generation systems should adopt a more flexible
and interactive approach that allows people to ob-
tain a user-customized summary tailored to their
information needs (Dang, 2006; Xu and Lapata,
2020; Zhong et al., 2021; Xu and Lapata, 2022;
Zhou et al., 2023), as illustrated in Figure 1. While
table question answering (QA) (Pasupat and Liang,
2015; Iyyer et al., 2017; Zhong et al., 2018; Chen
et al., 2020c; Nan et al., 2022b) has made signif-
icant progress in answering fact-based questions,
the primary focus of their approaches is on extract-
ing relevant facts or entities from the table and
composing short-form answers. Nevertheless, in
real-world scenarios, users often have more com-
plex and diverse information needs that extend be-
yond simple fact retrieval. They expect models to
perform human-like reasoning and provide trust-
worthy explanations or analyses that accompany
the extracted insights.

With comprehensive consideration of the real-
world information needs of users when consulting
tabular data, we propose a new task, query-focused
table summarization. In this task, the model is
required to generate a user-customized summary
given the table and user query. To enable research
in this area, we construct a human-annotated table-
to-text generation dataset named QTSUMM1, that
contains 7,111 query-summary pairs over 2,934
Wikipedia tables covering diverse topics. Table 1
compares QTSUMM with previous table-to-text
generation datasets. To the best of our knowledge,
QTSUMM is the first dataset that tackles tasks of
generating user-customized table summaries based
on real-world scenarios.

We provide a comprehensive evaluation of cur-
rent state-of-the-art models, including text genera-
tion (Lewis et al., 2020; Raffel et al., 2020; Chung
et al., 2022), table-to-text generation (Liu et al.,
2022b; Zhao et al., 2022b; Jiang et al., 2022), and
large language models (Touvron et al., 2023a,b;
Zheng et al., 2023; Jiang et al., 2023a; Xu et al.,
2023; OpenAI, 2023). Our results and analysis
from different perspectives reveal that the existing
models struggle in solving this new task, highlight-
ing the challenges the models face when perform-
ing human-like reasoning and analysis to generate
summary tailored to users’ information needs.

1We released the dataset at https://huggingface.
co/datasets/yale-nlp/QTSumm using “gated repos-
itories” to protect the data from automatic crawling (Jacovi
et al., 2023).

To improve both text generation systems for QT-
SUMM, we propose REFACTOR. Given a user
query, REFACTOR can retrieve and reason over
query-relevant facts from the source table to gener-
ate multiple data insights in natural language sen-
tences. Our results illustrate that directly concate-
nating the original input sequence with REFAC-
TOR’s generation can bring effective improvements
to state-of-the-art baseline systems.

We conclude our main contributions as follows:

• We propose a new query-focused table sum-
marization task, and construct a large-scale
benchmark, QTSUMM, comprising 7,111 query-
summary pairs collected in real-world situations.
Strict quality control measures are employed to
ascertain the high quality of the dataset.

• We conduct a systematic study of state-of-the-art
models on QTSUMM, and illustrate that they are
still far behind expert performance, motivating
future research on this new table-to-text task.

• We present REFACTOR for the efficient retrieval
and reasoning of query-relevant facts from tables.
It demonstrates significant enhancements pertain-
ing to state-of-the-art text generation baselines.

2 Related Work

Table-to-Text Generation As illustrated in Ta-
ble 1, existing work and datasets on table-to-text
generation typically pose the problem as either
a single-sentence generation task (Chen et al.,
2020a; Parikh et al., 2020; Cheng et al., 2022b; Liu
et al., 2022a), or a generic summarization task (Le-
bret et al., 2016; Moosavi et al., 2021; Suadaa
et al., 2021). In the single-sentence generation
task (Parikh et al., 2020; Chen et al., 2020a; Cheng
et al., 2022b), the focus is on generating fluent and
faithful descriptions using provided table regions
as a control for text generation. Nevertheless, using
table regions for controlling text generation does
not align with real-world scenarios, where people
refer to tabular data for information-seeking pur-
poses. The generic table summarization tasks (Le-
bret et al., 2016; Moosavi et al., 2021; Suadaa et al.,
2021) aim to create concise and informative sum-
maries based on the content of a given domain-
specific table (i.e., sports or scientific). In contrast,
the tables in QTSUMM cover diverse topics. Fur-
thermore, considering the numerous data points in
the table, various users may be interested in dif-
ferent aspects for their own information-seeking
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Dataset Table Source # Tables / Statements
# Words /
Statement

Explicit Control
Rich in Analysis
& Reasoning?

Single-sentence Table-to-Text

TOTTO (Parikh et al., 2020) Wikipedia 83,141 / 83,141 17.4 Table region ✗

LOGICNLG (Chen et al., 2020a) Wikipedia 7,392 / 36,960 14.2 Table regions ✓

HiTab (Cheng et al., 2022b) Statistics web 3,597 / 10,672 16.4 Table regions & reasoning operator ✓

Generic Table Summarization

ROTOWIRE (Lebret et al., 2016) NBA games 4,953 / 4,953 337.1 ✗ ✗

SciGen (Moosavi et al., 2021) Sci-Paper 1,338 / 1,338 116.0 ✗ ✓

NumericNLG (Suadaa et al., 2021) Sci-Paper 1,355 / 1,355 94.2 ✗ ✓

Table Question Answering

FeTaQA (Nan et al., 2022b) Wikipedia 10,330 / 10,330 18.9 Queries rewritten from TOTTO ✗

Query-Focused Table Summarization

QTSUMM Wikipedia 2,934/ 7,111 68.0 Queries from real-world scenarios ✓

Table 1: Comparison between QTSUMM and existing table-to-text generation datasets.

purposes, making it challenging to create a generic
summary that encompasses all the salient informa-
tion within the table. Therefore, in this paper, we
propose and investigate a new task setting related
to query-focused summarization. FeTaQA (Nan
et al., 2022b) is a table QA dataset that collects
queries by rewriting ToTTo’s (Parikh et al., 2020)
statements into questions and uses the same state-
ments as the answers. In comparison with FeTaQA,
the queries in QTSUMM were annotated under real-
world scenarios, making them more natural and
better-reflecting users’ actual information needs.

Reasoning Over Tabular Data Enhancing the
table reasoning capabilities of models is essential
for a variety of tasks related to tables, such as ta-
ble question answering (Pasupat and Liang, 2015;
Iyyer et al., 2017; Zhong et al., 2018; Zhao et al.,
2023d), table fact verification (Chen et al., 2020b),
and table-to-text generation (Chen et al., 2020a;
Cheng et al., 2022b). One prevalent approach is
pre-training models with table-text joint reasoning
data (Herzig et al., 2020; Liu et al., 2022b; Zhao
et al., 2022b; Liu et al., 2022a; Jiang et al., 2022;
Dong et al., 2022; Cheng et al., 2022a; Xie et al.,
2022). Nevertheless, these models generate text in
an end-to-end manner, resulting in reduced explain-
ability and difficulties in handling more complex
reasoning, such as arithmetic calculation. There-
fore, we propose REFACTOR, which can retrieve
and generate query-relevant facts from tables as
intermediate results for model input (Zhou et al.,
2022; Zhao et al., 2023b), mitigating the implicit
reasoning processes of text generation models.

Query-Focused Summarization Initially formu-
lated as a document summarization task, QFS aims

to generate summaries from documents that are tai-
lored to specific user queries (Dang, 2006). Despite
its potential real-world applications, QFS remains a
challenging task due to the lack of large-scale train-
ing data. Existing works have attempted to address
this issue by leveraging distant NLP resources, in-
cluding question answering (Xu and Lapata, 2020)
and paraphrase identification (Su et al., 2020), and
generic summarization (Xu and Lapata, 2022; Zhou
et al., 2023). Recently, Zhong et al. (2021) adopted
QFS for meeting summarization and proposed a
human-annotated benchmark over meeting tran-
scripts. Similar to text, effectively accessing and
comprehending the information contained within
a large and complex table can be time-consuming
for users, while QFS remains unexplored in table-
to-text generation. In this work, we extend QFS to
this new modality for more effective information-
seeking and decision-making purposes.

3 Query-Focused Table Summarization

3.1 Problem Formulation

We formally define the proposed query-focused
table summarization task as follows. The input is
a user query Q, and a table T . The table T =
W ∪ {Ti,j |i ≤ RT , j ≤ CT } has RT rows and CT

columns, with W being the table title and Ti,j being
the textual content in the (i, j)-th cell. The task
objective of QTSUMM is to generate a paragraph-
long textual summary Y = (y1, y2, . . . , yn) given
the user query Q and source table T :

Y = argmax
n∏

i=1

P (yi|y<i,Q,T ; θ), (1)



where θ denotes the parameters of a neural text
generation model, and yi denotes the i-th tokens in
the generated summary.

3.2 Data Collection Principles

At a high level, the goal of the data collection pro-
cess is to obtain high-quality user queries and cor-
responding paragraph-long summaries grounded
on the tabular data. We outline our key criteria for
designing a benchmark to thoroughly evaluate the
table-to-text summarization capabilities of models.
To achieve this, we first design three principles for
annotating a good query-summary pair:

• Comprehensiveness: The tailored summary
should provide enough details and analysis of
the source table to respond to the user query, ful-
filling user’s information need.

• Attributablity & Faithfulness: The query
should be answerable using only information
from the source table. The summary should be
grounded on the source table, and not contain
any unfaithful or nonsensical text.

• Fluency: Both the user query and its correspond-
ing table summary should be coherent and fluent.

3.3 QTSUMM Annotation Pipeline

To ensure that QTSUMM annotation fulfills the
aforementioned principles, we carefully design an
annotation pipeline consisting of following steps:

Source Table Collection QTSUMM uses ta-
bles from LOGICNLG (Chen et al., 2020a) and
TOTTO (Parikh et al., 2020) datasets as source ta-
bles, as these tables are crwaled from Wikipedia
and covers diverse domains and topics. We fil-
ter out tables that are 1) too large or too small, 2)
with only string-type columns, or 3) with hierar-
chical structures (e.g., containing more than one
table header). Then we randomly sample 2,000
candidate tables from LOGICNLG and TOTTO,
respectively, for the query-summary annotation.

User Query Annotation Given a table, the an-
notators are required to read its content, and deter-
mine whether the table is informative and intelligi-
ble to common web users. Then they were asked
to come up with two or three queries, assuming
they are users seeking certain information from the
table. We require each query to be answerable us-
ing information only from the table. Moreover, as
this work focuses on paragraph-long summaries

Property Value

Unique Tables 2,934
Query-Summary Pairs 7,111

Rows per Table (Median/Avg) 10 / 11.8
Columns per Table (Median/Avg) 6 / 6.6
Table Title Length (Median/Avg) 7 / 7.6

Query Length (Median/Avg) 22 / 22.3
Relevant Rows (Median/Avg) 4 / 3.8
Summary Length (Median/Avg) 63 / 68.0

Training Set Size (Table/Summary) 2,055 / 4,981 (70%)
Development Set Size (Table/Summary) 439 / 1,052 (15%)
Test Set Size (Table/Summary) 440 / 1,078 (15%)

Table 2: Basic statistics of QTSUMM dataset.

as query responses, we avoid queries that can be
answered in a short sentence (e.g., “Which country
held the 2022 FIFA World Cup?”).

Query-Focused Summary Annotation Given
a table and user query, we ask another annotator
to use only information from the source table to
write a paragraph-long summary that satisfies the
user’s information need. We encourage annotators
to produce sophisticated summaries that 1) contain
as much information from the table as possible, and
2) involve more types of reasoning over multiple
relevant table regions. To further encourage high
quality annotations, we adopt the "two channel col-
lection" design (Chen et al., 2020b), in which the
annotators would be paid 60% more if their sum-
maries are manually verified to exhibit adequate
complexity. We also require the annotators to anno-
tate the row indices of relevant table regions that are
referenced in the written summary, allowing future
researchers to quantify how well the summaries are
grounded in the table in their work.

Multi-Round Validation We conduct a multi-
round validation protocol to ensure that the anno-
tated data fulfills the aforementioned annotation
principles. We first assign query annotators to val-
idate each summary against their corresponding
queries, and fix the mistakes if there are any. Then
we check 1) whether a query-summary pair con-
tain adequate information and complex aggregation
by examining the length of the summary, and 2)
whether the information in summary is essential in
responding to the user query. We manually revise
pairs that do not meet the above standard.

3.4 Annotation Quality Control
Table 2 describes the basic statistics of QTSUMM.
In addition to the multi-round validation, we care-
fully design several quality control approaches,



comprising expert annotation and numerous anno-
tation de-biasing designs, to ensure the high quality
of QTSUMM annotations.

Expert Annotators To help improve the annota-
tion process, five experts with professional expe-
rience in the text summarization tasks are invited
to conduct the internal annotation. They are asked
to provide feedback regarding the task instructions
and the user experience of the annotation interface,
based on which we iteratively modify the annota-
tion guideline and interface design. In the stage of
external annotation, we enroll 17 graduate students
majoring in STEM fields (10 females, and 7 males).
We do not use the crowd-source annotation plat-
form such as Mechanical Turk as our preliminary
study indicates that annotators on MTurk fail to
annotate high-quality query-summary data. Before
starting the official annotation process, each anno-
tator is given a two-hour training session to learn
the annotation requirements and interface.

Annotation De-biasing We observed several
kinds of annotation bias during our internal annota-
tion, and we proposed countermeasures as follows
for annotation de-biasing:

Source Table Diversity: During internal annota-
tion, we found that many tables in LOGICNLG
have similar content. For example, there are around
200 tables describing the results of football games,
with identical table headers. To ensure the diversity
of source tables, we keep only one table for each
unique table header.

Query Diversity: When annotating queries, an-
notators may prefer simpler ones, resulting in low
query diversity. Therefore, we frequently monitor
the diversity of queries for each annotator. An-
notators are also encouraged to craft queries that
are either creative or require complex reasoning in
summarization, resulting in a doubled payment to
compensate them for the extra time.

Supporting Fact Position: We found that annota-
tors prefer to raise queries regarding the first few
rows of each table. To deal with such bias regarding
supporting fact positions, we randomly highlight
certain rows for each table in the annotation inter-
face. We require the annotators to write queries
whose summaries should cover at least two rows
of the highlighted regions.

We also report the human evaluation scores and
inter-evaluator agreements over 200 sampled query-
summary pairs. QTSUMM has a high annotation

Others
9.5%
Education
2.5%
Science
4.0%
Economics
4.5%

Literature
6.0%

Entertainmen
8.0%

Politics
9.0%

Sports
27.0%

Statistics
16.0%

Celebrity
13.5%

Figure 2: Domain distribution of QTSUMM tables.

Annotation Quality %S ≥ 4 Agree Kappa
/ 95% CI

Table Informativeness 84.9 0.81 0.77 / [0.72, 0.82]

Query Meaningfulness 93.2 0.89 0.84 / [0.79, 0.89]
Query Complexity 91.4 0.87 0.81 / [0.75, 0.87]
Query Fluency 97.2 0.94 0.92 / [0.90, 0.94]

Relevant Rows Correctness 89.7 0.85 0.83 / [0.79, 0.88]

Summary Comprehensiveness 97.5 0.97 0.93 / [0.90, 0.96]
Summary Faithfulness 91.6 0.90 0.88 / [0.84, 0.92]
Summary Fluency 96.1 0.93 0.89 / [0.86, 0.92]

Table 3: Human evaluation over 200 samples of QT-
SUMM. Three internal evaluators were asked to rate
the samples on a scale of 1 to 5. We report 1) percent
of samples that have an average score ≥ 4 to indicate
the annotation quality of QTSUMM; and 2) percent of
agreement and Randolph’s Kappa with 95% CI (Ran-
dolph, 2005) to show the inter-annotator agreement.

quality and inter-annotator agreement (Table 3).

3.5 QTSUMM Evaluation

We develop a comprehensive approach for evaluat-
ing QTSumm, incorporating both automated and
human evaluation. We adopt following popular
automated evaluation metrics:

BLEU (Papineni et al., 2002) computes the geo-
metric average of the precision over output text’s n-
grams. We used SacreBLEU (Post, 2018) that pro-
duces comparable and reproducible BLEU scores.

ROUGE (Lin and Hovy, 2003) measures the word
overlap between the candidate and reference sum-
maries. We reported F1 score for ROUGE-L
(longest common subsequences).

METEOR (Banerjee and Lavie, 2005) is based
on a generalized concept of unigram matching
between the machine-produced translation and
human-produced reference translations.

BERTScore (Zhang et al., 2020) computes the sim-



ilarity between the reference and generated sum-
mary using contextual word embeddings.

TAPAS-Acc (Herzig et al., 2020; Liu et al.,
2022a) is a reference-free metric that uses
TAPAS (Herzig et al., 2020) fine-tuned on the Tab-
Fact dataset (Chen et al., 2020b) as the backbone
to evaluate the faithfulness of generation.

AutoACU (Liu et al., 2023a) is an interpretable and
reference-based summarization evaluation system
that exhibits better alignment with human judge-
ments. The A2CU first extracts atomic content
units (ACUs) from the generated summary and then
evaluates them against reference. A3CU is an ac-
celerated version of A2CU that directly computes
the similarity between two text without extracting
ACUs, but with the similar evaluation target. We
use F1 score of A3CU for evaluation.

For human evaluation, the summaries from dif-
ferent models were evaluated by experts from three
criteria (i.e., comprehensiveness, faithfulness, and
fluency) that have been discussed in Section 3.2.
Each summary was scored from 1 (worst) to 5
(best) for each criteria, with the final score averaged
across different evaluators.

4 REFACTOR

QTSUMM requires models to perform human-like
reasoning in generating summaries that provide
comprehensive and precise analysis of the source
table to fulfill the user’s information need. How-
ever, existing end-to-end text generation models
rely on error-prone implicit reasoning processes for
generating text, leading to diminished explainabil-
ity and challenges in addressing user queries that
necessitate complex human-like reasoning (Zhou
et al., 2022; Zhao et al., 2023b). To address this,
we present REFACTOR, to retrieve and reason over
query-relevant information from tabular data to
generate several NL data insights (i.e., facts) as
explicit reasoning results. As shown in Figure 3,
the generated facts is concatenated to the model
input to mitigate the implicit reasoning issues, en-
hancing the comprehensiveness and faithfulness of
generated summary. We next discuss the imple-
mentation of REFACTOR.

4.1 Fact Generation

Given the user query and source table, REFACTOR

will generate several candidate facts by executing
various forms of human-like reasoning over the ta-

1 Walmart Retail 559,151$     13,510$     2,300,000    United States
2 State Grid Electricity 386,618$     5,580$       896,360       China
3 Amazon Retail 386,064$     21,331$     1,298,000    United States
4 National Petroleum Oil and gas 283,958$     4,575$       1,242,245    China
5 Sinopec Group Oil and gas 283,728$     6,205$       553,833       China
6 Apple Electronics 274,515$     57,511$     147,000       United States
7 CVS Health Healthcare 268,706$     7,179$       256,500       United States
8 UnitedHealth Healthcare 257,141$     15,403$     330,000       United States
9 Toyota Automotive 256,722$     21,180$     366,283       Japan
10 Volkswagen Automotive 253,965$     10,104$     662,575       Germany

Employees HeadquartersRank Company Name Industry Revenue
($ Million)

Profit
($ Million)

Query: Which company earns the highest 
profit in the Oil and Gas industry, and how 
does it compare to the most profitable 
company overall?

National Petroleum earns the highest profit in the Oil and Gas 
industry, amounting to $4,575 million dollars. However, the most 
profitable company overall, Walmart, earns $7,306 million more 
profit than Sinopec Group.

Error-prone implicit reasoning

Within the Oil and Gas industry, Sinopec Group earns the highest profit - $6,205 
million. However, compared to the most profitable company overall, Apple, the 
profit earned by Sinopec Group is much lower. In fact, Apple earns $51,306 
million more profit than Sinopec Group.

Explicit and faithful reasoning by REFACTOR

Baseline Models (e.g., Flan-T5, PLOG)

Input data serialization

REFACTOR

Fact Generation

Fact Ranking

1. The Company Name ordered by Profit 
($ Million) is Apple, Amazon, ...
2. The Company Name, with Industry is 
Oil and gas, ordered by Profit ($ Million) 
is Sinopec Group, National Petroleum.
3. The sum of Profit with Industry is Oil 
and gas is 10780.
4. The difference between Apple and 
Sinopec Group in Profit is 51306.
5. ....

Models wo. REFACTOR input

Models w. REFACTOR input

Table Title: Top 10 Company in 2012

Figure 3: Enhancing fine-tuned models with the pro-
posed REFACTOR. After generating and selecting the
top-n query-relevant facts obtained through various rea-
soning operations (e.g., numerical comparison, count-
ing), these facts are concatenated with query and table
data as the model input in both fine-tuning and inference
stage. REFACTOR can mitigate the error-prone implicit
reasoning issues of end-to-end text generation systems.
For LLM in zero- or few-shot setting, we provide gener-
ated facts within the prompts (Figure 5 in Appendix A).

ble. Specifically, we define 6 types of table reason-
ing operations (e.g., numerical operation, counting,
and conjunction) that are necessary for the QT-
SUMM task, as shown in Table 7 in the Appendix.
For each reasoning operation, the fact generator
(adopted from Zhao et al. (2022b)) takes a table
and a query as input. It produces multiple facts
based on the fact template. Each fact template in-
cludes several placeholders that need to be filled
with information retrieved from the table. Specifi-
cally, column col and cell value val are indexed
to specify the column and cell name, respectively.
Some templates also regulate that the selected col-
umn and cell value must be date or number type.
OPERATOR corresponds to operators that are in-
stantiated according to the specific reasoning rea-
soning. And CONDITION:i can be 1) a cell value
from the i-th column; or 2) a number/temporal
comparison statement if the i-th column is date or
number type. After substituting all the placeholders
in the provided template, the fact generator will pro-
grammatically return the executed_results
and form one fact. Once facts for a {table, query}
pair are collected from different fact generators, we
pass them to the Fact Ranking process.



4.2 Fact Ranking

Given the query and source table, each fact gen-
erator will be utilized to generate several query-
relevant facts, resulting in a large number of candi-
date facts in total. Therefore, we need to rank the
generated facts to select the most relevant ones.
We use the QA encoding model (Reimers and
Gurevych, 2019) to obtain the embedding of the
query and each generated fact. Then, we select
the top-n generated facts with the highest cosine
similarity to the query embedding. In practice, we

assign n as max(

√
rownum × columnnum

2
, 5),

and ensure that the number of selected facts from
each type of reasoning operation does not exceed
3. The selected facts, which are handy and readily
available for end-to-end text generation systems,
are then concatenated into the model input.

5 QTSUMM Experiments

5.1 Baseline Systems

We evaluate the following three types of state-of-
the-art baseline systems2 on QTSUMM:

5.1.1 Text Generation Models

BART (Lewis et al., 2020) is a pre-trained denois-
ing autoencoder with transformer-based architec-
ture and shows effectiveness in NLG tasks.

T5 (Raffel et al., 2020) demonstrates effectiveness
in NLG tasks by treating all NL problems as text-
to-text tasks during pre-training stage.

Flan-T5 (Chung et al., 2022) enhances T5 by scal-
ing instruction fine-tuning and demonstrates better
human-like reasoning abilities than the T5.

5.1.2 Table-to-Text Generation Models

TAPEX (Liu et al., 2022b) continues pre-training
the BART model by using a large-scale corpus of
synthetic SQL query execution data. It shows better
table understanding and reasoning abilities.

ReasTAP (Zhao et al., 2022b) enhances the table
understanding and reasoning abilities of BART by
pre-training on a synthetic Table QA corpus.

OmniTab (Jiang et al., 2022) uses the same back-
bone as TAPEX, and is further pre-trained on col-
lected natural and synthetic Table QA examples.

2We released the model weights of evaluated fine-tuned
models at HuggingFace (https://huggingface.co/
yale-nlp/{model_name}-finetuned-qtsumm).

5.1.3 Large Language Models
Llama-23 (Touvron et al., 2023a,b) is an open-
source large language model trained on large-scale
and publicly available datasets.

Vicuna4 (Zheng et al., 2023) is tuned from Llama-1
with instruction-following data, exhibiting better
instruction-following capabilities.

Mistral5 (Jiang et al., 2023a) is a 7–billion-
parameter LLM that outperforms Llama-2-13B
across most of popular evaluated benchmarks.

Lemur6 (Xu et al., 2023) is tuned from Llama-2
with instruction-following data, exhibiting compet-
itive natural language and coding capabilities.

GPT (Brown et al., 2020; OpenAI, 2023) is a pow-
erful large language model which is capable of
generating human-like text and performing a wide
range of NLP tasks in a few-shot setting.

5.2 Experimental Setup
The specifics of input data serialization and LLM
prompting examples are discussed in Appendix A.
All experiments were conducted on an 8 NVIDIA
RTX A6000 48GB cluster. We selected the large
version for all fine-tuned baseline models, whose
weights are publicly available at HuggingFace. For
each fine-tuning experiment, we ran 15 epochs with
a batch size of 128. The best fine-tuning check-
points were selected according to the validation
loss. The experiments for open-sourced LLMs
were conducted using vLLM framework (Kwon
et al., 2023). We used gpt-3.5-turbo-0613
for GPT-3.5 and gpt-4-0613 for GPT-4 via the
OpenAI APIs7. For LLM hyperparameter settings,
we set temperature as 1.0, Top P as 1.0, and maxi-
mum output length as 256.

5.3 Main Results
We draw following conclusions based on the auto-
mated and human evaluation results (Table 4 & 6).

Importance of table structure understanding
Table-to-text generation models achieve better per-
formance than their corresponding text-generation

3https://huggingface.co/meta-llama/
llama-2-{size}b-chat-hf

4We only evaluate Vicuna (https://huggingface.
co/lmsys/vicuna-33b-v1.3) under zero- and one-
shot settings, as some examples under the two-shot setting
might exceeds its maximum length limit.

5mistralai/Mistral-7B-Instruct-v0.1
6https://huggingface.co/OpenLemur/

lemur-70b-chat-v1
7https://openai.com/api/

https://huggingface.co/yale-nlp/{model_name}-finetuned-qtsumm
https://huggingface.co/yale-nlp/{model_name}-finetuned-qtsumm
https://huggingface.co/meta-llama/llama-2-{size}b-chat-hf
https://huggingface.co/meta-llama/llama-2-{size}b-chat-hf
https://huggingface.co/lmsys/vicuna-33b-v1.3
https://huggingface.co/lmsys/vicuna-33b-v1.3
mistralai/Mistral-7B-Instruct-v0.1
https://huggingface.co/OpenLemur/lemur-70b-chat-v1
https://huggingface.co/OpenLemur/lemur-70b-chat-v1
https://openai.com/api/


Type Model Backbone Avg Len BLEU ROUGE-L METEOR BERTScore TAPAS-Acc A3CU

Ground Truth 67.8

Text Generation
fine-tuning

T5-large – 61.8 20.3 38.7 40.2 89.6 75.1 43.5
Flan-T5-large T5 74.1 19.9 39.8 42.5 89.8 83.9 46.3
BART-large – 60.1 21.2 40.6 43.0 90.6 77.1 48.0
w. REFACTOR – 61.4 21.5 (+0.3) 41.0 (+0.4) 43.1 (+0.1) 90.1 (-0.5) 79.4 (+2.3) 48.6 (+0.6)

Table-to-Text
fine-tuning

ReasTAP BART 61.4 22.5 41.9 44.3 90.8 80.6 51.9
TAPEX BART 70.1 23.1 42.1 45.6 90.6 87.8 52.0
OmniTab BART 59.5 22.4 42.4 44.7 91.0 80.2 53.1
w. REFACTOR BART 58.3 22.5 (+0.1) 42.2 (-0.2) 44.8 (+0.1) 90.7 (-0.3) 80.3 (+0.1) 54.0 (+0.9)

LLM zero-shot

Llama-2-13B – 64.3 14.6 25.5 30.9 86.8 76.6 28.6
Llama-2-7B – 110.3 13.3 31.3 42.5 88.8 78.1 37.3
Mistral-7B Llama-2 98.4 13.8 31.7 41.4 89.1 73.0 37.5
w. REFACTOR Llama-2 99.0 13.8 (+0.0) 31.4 (-0.3) 41.5 (+0.1) 88.7 (-0.4) 74.5 (+1.5) 37.7 (+0.2)

Vicuna-33b Llama-1 93.8 15.1 32.6 42.2 89.2 82.0 40.0
Lemur-70B Llama-2 102.3 13.3 30.9 39.9 87.8 82.8 40.8
Llama-2-70B – 91.5 17.2 35.2 44.1 89.8 85.7 45.7
w. REFACTOR – 98.1 17.0 (-0.2) 34.7 (-0.5) 44.6 (+0.5) 90.0 (+0.2) 82.3 (-3.4) 46.3 (+0.6)

GPT-3.5 – 82.5 21.1 40.7 49.1 91.1 89.7 55.5
w. REFACTOR – 85.4 20.6 (-0.5) 39.8 (-0.9) 49.2 (+0.1) 90.5 (-0.6) 89.9 (+0.2) 55.9 (+0.4)

GPT-4 – 86.9 19.8 38.4 48.4 85.8 92.3 57.5
w. REFACTOR – 88.2 19.6 (-0.2) 37.9 (-0.5) 48.1 (-0.3) 87.1 (+1.3) 92.3 (+0.0) 57.5 (+0.0)

LLM 1-shot

Llama-2-13B – 61.5 13.8 23.9 28.1 86.6 81.4 26.5
Mistral-7B Llama-2 96.6 13.7 31.5 40.9 88.9 71.7 36.7
w. REFACTOR Llama-2 94.2 14.1 (+0.4) 31.8 (+0.3) 40.7 (-0.2) 88.9 (+0.0) 72.2 (+0.5) 38.2 (+1.5)

Llama-2-7B – 105.0 13.6 32.3 42.5 89.1 75.3 38.5
Lemur-70B Llama-2 86.5 14.3 31.5 38.3 88.1 81.3 39.8
Vicuna-33b Llama-1 75.0 19.3 37.0 43.8 90.1 78.4 45.3
Llama-2-70B – 92.8 18.2 37.3 46.2 90.2 86.5 48.1
w. REFACTOR – 92.0 18.1 (-0.1) 37.0 (-0.3) 46.2 (+0.0) 90.3 (+0.1) 86.7 (+0.2) 48.3 (+0.2)

GPT-3.5 – 88.0 20.2 40.0 49.7 90.9 91.7 55.6
w. REFACTOR – 85.2 20.3 (+0.1) 39.8 (-0.2) 50.0 (+0.3) 91.2 (+0.3) 92.2 (+0.5) 57.0 (+1.4)

GPT-4 – 92.1 19.0 39.9 51.2 91.0 94.3 60.1
w. REFACTOR – 89.4 19.5 (+0.5) 40.0 (+0.1) 51.4 (+0.2) 91.3 (+0.3) 93.7 (-0.6) 61.3 (+1.2)

LLM 2-shot

Llama-2-13B – 72.6 17.5 31.2 37.3 88.6 81.2 37.1
Mistral-7B Llama-2 86.0 14.9 32.7 40.7 89.1 72.8 38.4
Llama-2-7B – 99.3 14.0 33.2 42.3 89.0 77.9 39.6
Lemur-70B Llama-2 82.7 15.0 32.0 38.5 88.4 81.6 40.6
Llama-2-70B Llama-2 87.3 19.0 38.0 46.4 90.4 87.3 49.1
GPT-3.5 – 89.8 20.0 39.9 50.0 90.9 93.2 56.2
GPT-4 – 90.1 19.5 40.5 51.1 91.1 93.3 61.0

Table 4: Automated evaluation results on the QTSUMM test set, involving three types of baseline systems with
and without REFACTOR. We used chat or instruct version for each type of LLMs. Within each experimental
setting, we used A3CU (F-score) as the ranking indicator of model performance. Due to the budget constraints, for
all LLM w. REFACTOR experiments, we randomly selected 200 samples.

# Examples Error Types Representative Question Explanation

24 / 200 Difficulty in parsing
cell values via rule-
based methods

The relevant numeric- or time-type columns are hard
to parse (e.g., multiple numbers and text within one
cell), thus REFACTOR fail to generate related facts.

17 / 200 Complex user query
causes difficulty in
ranking related facts

Analyze the correlation between
the size of the geographical area
of a Gmina type and its popula-
tion?

REFACTOR employs the QA encoding model for
fact ranking. However, it struggles to understand
complex information needs from users, such as the
“correlation between A and B”, and might conse-
quently rank irrelevant facts higher.

13 / 200 Unsupported rea-
soning operations

Who are the top three coaches
with the highest win percent-
ages? Analyze their perfor-
mance in the 2019-2020 season.

The table only contains “wins” and “overall games”
columns. Models must compute the winning per-
centages independently. However, REFACTOR does
not support such rate calculations

5 / 200 Other errors

141 / 200 Successful cases

Table 5: Case study on REFACTOR’s failure cases.



Model Faithfulness Compre. Fluency

BART 3.26 3.67 4.56
w. REFACTOR 3.37 (+0.11) 3.72 (+0.05) 4.59 (+0.03)

OmniTab 3.30 3.58 4.52
w. REFACTOR 3.45 (+0.15) 3.69 (+0.11) 4.52 (+0.0)

1-shot Mistral-7B 2.98 3.77 4.65
w. REFACTOR 3.12 (+0.14) 3.82 (+0.05) 4.52 (-0.13)

1-shot Llama-2-70B 3.08 3.82 4.69
w. REFACTOR 3.36 (+0.28) 3.99 (+0.17) 4.66 (-0.03)

0-shot GPT-3.5 3.65 3.94 4.66
w. REFACTOR 3.84 (+0.19) 4.03 (+0.09) 4.74 (+0.08)

0-shot GPT-4 3.92 4.12 4.84
w. REFACTOR 4.08 (+0.16) 4.15 (+0.03) 4.70 (-0.14)

1-shot GPT-3.5 3.84 4.20 4.86
w. REFACTOR 3.95 (+0.11) 4.27 (+0.07) 4.84 (-0.02)

1-shot GPT-4 4.11 4.32 4.88
w. REFACTOR 4.08 (-0.03) 4.35 (+0.03) 4.76 (-0.12)

Table 6: Human evaluation results (Likert Scale Scor-
ing) of selected baselines on the test set. Five experts
are enrolled to evaluate 50 predictions for each model.

backbones, demonstrating the importance of con-
sidering table structure for the QTSUMM task.

Importance of reasoning and analysis Among
text generation models, Flan-T5, which enhances
T5 through scaled instruction fine-tuning, outper-
forms T5. Moreover, LLMs with improved reason-
ing capabilities (i.e., Llama-2-70B and GPT-4) also
achieve better performance. These findings indi-
cate the significance of reasoning and analytical
skills in handling the QTSUMM task.

Mismatch between automated and human eval-
uation Despite receiving low scores in popular
automated evaluation metrics such as BLEU and
ROUGE, GPT-* exhibit better performance than
state-of-the-art fine-tuned models in human evalua-
tion. This finding underscores the need for future
research to investigate the development of auto-
mated evaluation metrics for the QTSUMM task
that better align with human judgments (Zhang and
Bansal, 2021; Liu et al., 2023a; Jiang et al., 2023b).

Effectiveness of REFACTOR As assessed by
human evaluation, baseline systems employing
REFACTOR typically yield better performance, es-
pecially in faithfulness-level. This suggests the
efficacy of REFACTOR in enhancing the reasoning
process in text generation.

5.4 Error Analysis

For a deeper understanding of the query-focused ta-
ble summarization task on QTSUMM, we conduct
an error analysis to illustrate existing challenges.

We identify four common mistakes that current text
generation models are likely to make (i.e., halluci-
nation, factual incorrectness, user intent misun-
derstanding, and repetition), providing detailed
examples and explanations for each type of com-
mon mistake in Table 8 in the Appendix.

5.5 REFACTOR Analysis

We also undertake a human evaluation to examine
the efficacy of REFACTOR in generating query-
relevant facts from tabular data. Specifically, we
randomly sample 200 examples from QTSUMM

validation set, and ask two human evaluators to
evaluate each fact generated by REFACTOR, deter-
mining its relevance to the query. 56.4% generated
facts (528 out of 937) are labeled as “relevant”, sug-
gesting an adequate coverage of REFACTOR. To
delve deeper into this, we also conduct a case study
examining the failure cases, specifically those ex-
amples where less than two facts were annotated as
“relevant”. We identified three kinds of common
failure cases: (1) difficulty in parsing cell values via
rule-based methods, (2) complex user query causes
difficulty in ranking related facts, and (3) unsup-
ported reasoning operations. We provide detailed
examples and explanations in Table 5.

6 Conclusion

This paper defines a new query-focused table sum-
marization task, and constructs a large-scale bench-
mark, QTSUMM. We investigate a set of strong
baselines, including text generation, table-to-text
generation, and large language models. Experi-
mental results and manual analysis reveal that the
new task presents significant challenges in table-
to-text generation. Moreover, we propose a novel
approach named REFACTOR, to retrieve and rea-
son over query-relevant information from tables,
improving the faithfulness of generated summary.
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Limitations and Future Work

The baseline systems provided have a restricted
maximum number of tokens they can accommo-
date (e.g., 1024 for all examined fine-tuned mod-
els), which prevents them from generating sum-
maries for large tables that, when converted into
a sequence, exceed the maximum number of to-
kens. To handle large tables (e.g., with more than
300 table cells), future work can apply neural mod-
els (Herzig et al., 2020; Liu et al., 2022b) to first
filter out those query-irrelevant rows or columns.

Moreover, this paper demonstrates the effective-
ness of using intermediate results obtained from ex-
plicit reasoning operations to mitigate the implicit
reasoning issues. However, the proposed REFAC-
TOR utilizes template-based method to generate
facts. Although such template-based approach can
ensure the factual correctness of generated facts,
as discussed in Section 5.5, it might not cover all
crucial facts for some complex user query. We
believe following directions warrant further explo-
ration: (1) Complex query decomposition. Our
case study reveals that the TAPEX-based fact rank-
ing module struggles with comprehending complex
questions. To address this, future research could in-
vestigate LLM chain-of-thought methods to break
down complex questions into more understandable
and actionable sub-questions. (2) Tool usage. The
predefined and template-based execution modules
in the REFACTOR fact generation phase have their
limitations. Recent studies (Schick et al., 2023;
Lu et al., 2023; Paranjape et al., 2023; Gou et al.,
2023; Qiao et al., 2023) highlight the impressive
abilities of LLMs in making and utilizing tools for
problem-solving. It would be intriguing to explore
if LLMs can produce executable programs from
scratch to derive query-relevant insights. (3) Ex-
plainable automated evaluation. In Section 5.3, a
discrepancy between automated and human eval-
uation results is observed. Such discrepancies are
concerning, as developers might opt for suboptimal
systems for real-world applications if they solely
rely on automatic metrics for comparing and rank-
ing different text generation systems. Therefore,
a more reliable and explainable automated evalua-
tion system is required (Zhang and Bansal, 2021;
Liu et al., 2023a,b; Jiang et al., 2023b).

Ethical Consideration

The source tables in QTSUMM were collected
from LOGICNLG (Chen et al., 2020a) and

TOTTO (Parikh et al., 2020) datasets, which are
publicly available under the MIT license8 and CC
BY-SA 3.0 license9, respectively. They both per-
mit us to compose, modify, publish, and distribute
additional annotations upon the original dataset.

For the external annotation of QTSUMM, we
hired 17 graduate students majoring in STEM ma-
jors. We regard 1) creating three queries for one
table, and validating the corresponding summaries
annotated by others, and 2) composing a query-
focused summary response as a unit task. And
we paid around $1.5 for each unit task. For cre-
ative annotation rewards, we paid additional $0.5
for a query, and $1.5 for a summary. Averagely,
an annotator can finish 7 unit tasks per hour after
training and practicing. And the hourly rates are
in the range of $9 and $13 based on the different
working speed (above the local average wage of
similar jobs). We recommended that annotators
complete a maximum of 30 unit tasks per day in or-
der to reduce pressure and maintain a comfortable
pace. In total, the approximate working hours to
annotate QTSUMM dataset was 1,400 hours. The
whole annotation work lasted about 40 days.
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A Implementation Details

Input Data Serialization The input contains
a user query, and corresponding table data.
For text generation and large language mod-
els (Section 5.1.1 & 5.1.3), we followed re-
cent works on table-to-text generation (Liu et al.,
2022b; Xie et al., 2022; Zhao et al., 2023c,a)
to flatten the table data as T=[HEADER]:h,
[ROW]1:r1,...,[ROW]n:rn, where h is table
header, ri is the i-th table row. For text gener-
ation models, [HEADER] and [ROW] are special
tokens indicating the region of table headers and
rows respectively; while for LLMs, we set them as
empty strings. We also separated headers or cells
in different columns using a vertical bar |. In this
way, the flattened table input can be fed directly
into text generation models. For table-to-text gen-
eration models (Section 5.1.2), we followed their
original data processing methods to input the query
and table data.
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Reasoning Example of Fact Templates Example of Fact

Conjunction The col that have CONDTION are
executed_results.

The Player Name that have Country is Canada
are Corey Conners, Nick Taylor,
Adam Svensson.

Counting executed_results col:1 have col:2
CONDITION:2.

2 Game have Attendance greater than 10,235.

Temporal or
Numerical
Order

The col:1 ordered by col:3 are
executed_results.
The col:1, with col:2 CONDITION:2,
ordered by col:3 are executed_results.

The Company ordered by Sales are Apple,
Nvidia, Google, (...abbreviate...)

Temporal or
Numerical
Comparison

The col:1 that col:2 CONDITION:2 are
executed_results.

The institutions that Founded year is ear-
lier than 1860 are Adrian College,
Michigan State University.

Numerical
Operation
(Sum, Avg)

The OPERATOR of col:1 with col:2
CONDITION:2 is executed_results.

The sum of Earning with Point is greater than
140 is 430,027.

Numerical
Operation
(Diff)

The difference between val:1 and val:2 in
col is executed_results.

The difference between China and Canada in
Gold is 16.

Table 7: 6 reasoning operations, along with fact template and examples, defined for the fact generation process
of REFACTOR. Variable names indicate permissible instantiations. col denotes a column name, val denotes a
cell value, and executed_results denotes the execution results of the function. OPERATOR is instantiated
according to the specific reasoning operation, e.g., for “Numerical Operation”, OPERATOR is replaced with “sum” or
“average”; CONDITION can be 1) a cell value from the i-th column, or 2) number/temporal comparison statement
(e.g. "later than 1967") if the i-th column is of number or date type.

Figure 4: An example of LLM zero-shot prompt prefix
wo. REFACTOR for the QTSUMM task.

Figure 5: An example of LLM zero-shot prompt prefix
w. REFACTOR for the QTSUMM task.



Query System output Reference Error analysis

Q: Which driver per-
formed better, Tracy or
Haberfeld, and why is
that?

Paul Tracy performed better
than Mario Haberfeld, as ev-
idenced in their results from
the 2004 Centrix Financial
Grand Prix of Denver. In the
race, Tracy finished in second
place, while Haberfeld placed in
eighth. Additionally, Tracy be-
longs to Forsythe Racing, which
has had a more successful track
record compared to Haberfeld’s
Walker Racing. Additionally,
Tracy was able to maintain his
position in the race for the full
90 laps, whereas Haberfeld was
only able to make it to 86 laps.
Based on these results, it is clear
that Tracy was more competitive
compared to Mario Haberfeld.

Paul Tracy is more competitive.
Tracy finished the race in sec-
ond place with a time of +7.446
seconds, whereas Haberfeld fin-
ished in eighth place with a
time of +24.141 seconds. This
demonstrates that Tracy was
able to navigate the track much
faster than Haberfeld and place
higher in the race. Additionally,
Tracy earned 28 points while
Haberfeld earned only 15 points,
which confirms that Tracy is
stronger competitor. In conclu-
sion, Tracy is the more competi-
tive driver.

Error Type:
Hallucination

Explanation:
Mention facts that are not
shown in the table.

Analysis:
There is no information indicat-
ing that Forsythe Racing has a
more successful track record
compared to Walker Racing,
and the model incorrectly states
that Haberfeld completed only
86 laps instead of the correct
90.

Q: According to the vot-
ing result, which rep-
resentative election in
North Carolina districts
was the most competi-
tive, and why?

The most competitive represen-
tative election in North Carolina
districts was the one for the
8th district, in which incumbent
Larry Kissell (D) lost re-election
to Richard Hudson (R). This
was the only race which was de-
cided by less than 10 percentage
points, with Hudson winning
54.1% of the vote to Kissell’s
45.9%. The close margin of the
race demonstrates that both can-
didates were competitive, and it
was an intense contest until the
very end.

The race in the North Carolina
7th district was the most com-
petitive, as the Democratic in-
cumbent Mike McIntyre won
by a slim margin, with only a
0.2% difference between him
and his Republican challenger
David Rouzer. Furthermore, this
election was the only one among
all North Carolina districts in
2012 that resulted in a margin
of victory within less than 1%.

Error Type:
Factual Incorrectness

Explanation:
Present information that contra-
dicts the source table.

Analysis:
The most competitive repre-
sentative election should be
the North Carolina 7th district,
rather than the 8th district, in
which the difference between
the two rivals was only 0.2

Q: Analyse the coun-
tries in East Asia with
Human Development In-
dex (HDI) higher than
0.8.

The countries in East Asia
with Human Development Index
(HDI) higher than 0.8 are Hong
Kong, Japan, Macau, Mongolia,
and South Korea. Hong Kong
has the highest HDI at 0.898, fol-
lowed by Japan at 0.901. Macau
has the lowest HDI at 0.653, and
North Korea has the highest at
0.897. All of these countries
have populations greater than
1.8 million, with the highest pop-
ulation density being in Japan at
337 people per km square.

The countries in East Asia with
an HDI higher than 0.8 are
Hong Kong (PRC), Japan, and
South Korea. Hong Kong has
an HDI of 0.898 and a popu-
lation density per square kilo-
meter of 6390. Japan has an
HDI of 0.901 and a population
density per square kilometer of
337. South Korea has an HDI of
0.897 and a population density
per square kilometer of 500. All
three countries have a compar-
atively high population density
which is likely to be a factor in
their high HDI.

Error Type:
User Intent Misunderstanding

Explanation:
Include information that is
irrelevant to the user question.

Analysis:
The query does not ask for
country with lowest HDI, or
any country with HDI lower
than 0.8. The system output
also displays many other errors
such as hallucination (confusing
South Korea with North Korea)
and factual incorrectness (Japan
has highest HDI).

Q: What are the build-
ings that have been
the tallest in Portland,
Oregon between 1927
and 1965? Summarize
the basic information of
these buildings.

The buildings that have been
the tallest in Portland, Ore-
gon between 1927 and 1965
are the Public Service Build-
ing, the Hilton Portland Hotel,
and the Harrison West Condo-
minium Tower. The Public Ser-
vice Building is located at 920
Sw Sixth Avenue and has been
the tallest building in Portland,
Oregon. It stands at a height of
220 feet (67 meters) and has 16
floors. The Hilton Portland Ho-
tel is located at 921 Sw Sixth
Avenue and has been the tallest
building in Portland, Oregon.

Between 1927 and 1965, the
tallest buildings in Portland,
Oregon were Public Service
Building, Hilton Portland Ho-
tel, and Harrison West Condo-
minium Tower. Specifically,
Public Service Building was
built in 1927, was 220 feet / 67
meters tall, had 16 floors, and
held the title of tallest building
until 1962. Hilton Portland Ho-
tel was built in 1963, was 241
feet / 73 meters tall, had 22
floors, and held the title of tallest
building until 1965. Harrison
West Condominium Tower was
built in 1965, was 256 feet / 78
meters tall, had 25 floors, and
held the title of tallest building
until 1969.

Error Type:
Repetition

Explanation:
Generate repetitive information.

Analysis:
The information of these build-
ings being the tallest in Portland,
Oregon has been mentioned
repetitively throughout the
system output, while the system
fail to also distinguish them
(until which year each of them
was the tallest respectively).

Table 8: Case study for common errors made by Flan-T5-large wo. REFACTOR. The colored text highlights
problematic parts of the system output.


