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Abstract

Standard adversarial training approaches suffer from robust overfitting where the
robust accuracy decreases when models are adversarially trained for too long. The
origin of this problem is still unclear and conflicting explanations have been re-
ported, i.e., memorization effects induced by large loss data or because of small
loss data and growing differences in loss distribution of training samples as the
adversarial training progresses. Consequently, several mitigation approaches in-
cluding early stopping, temporal ensembling and weight perturbations on small
loss data have been proposed to mitigate the effect of robust overfitting. However,
a side effect of these strategies is a larger reduction in clean accuracy compared
to standard adversarial training. In this paper, we investigate if these mitigation
approaches are complimentary to each other in improving adversarial training
performance. We further propose the use of helper adversarial examples that can
be obtained with minimal cost in the adversarial example generation, and show how
they increase the clean accuracy in the existing approaches without compromising
the robust accuracy.

1 Introduction

Adversarial examples have gained great attention in ML research [1, 2, 3] and building models
with increased robustness against such examples is still an open challenge [4, 5, 6, 7, 8, 9, 10, 11].
Adversarial training (AT) [4] is the most successful approach against adversarial examples where
approximate worst-case adversarial examples are used to train the model.
The success of AT is impeded by high computational costs compared to standard training and gaps
between robust and clean accuracy [4, 5, 12, 13]. It has been shown that AT reduces the clean
accuracy [5] and mitigation techniques based on label smoothing and stochastic weight averaging
[11] or use of additional unlabeled data [14] have been proposed, which solve the problem only
partially.
Recently, another phenomenon associated with adversarial training has been discovered and coined
robust overfitting [15, 11, 16, 17], which occurs when models are adversarially trained for too long.
Especially after the first learning rate decay, the robust accuracy tends to decrease with additional
training. Even though overfitting to training data results in increased clean accuracy, the robust
accuracy is negatively impacted by this additional training. The exact causes of robust overfitting
are still unclear and most explanations are conflicting. For example, memorization effects induced
by large loss data, which give rise to high confidence predictions, have been shown to be a driving
force behind robust overfitting [16]. On the other hand, small loss data and large differences in
loss distribution across training samples, tend to amplify as AT progresses, and have been shown
to enhance robust overfitting [17]. Reported mitigation approaches like temporal ensembling (TE)
[16] and model weight perturbation (WP) [17] alleviate robust overfitting, but tend to trade off more
clean accuracy when compared to standard adversarial training (AT) [4]. This shows that increased

ML Safety Workshop, 36th Conference on Neural Information Processing Systems (NeurIPS 2022).



regularization induced by these schemes negatively impact the generalization performance on clean
data.
Here, we analyze how these two seemingly conflicting approaches, TE and WP, which attribute
robust overfitting to training with samples with large and small loss data, respectively, mitigate
robust overfitting and if they can be combined to create a compounding mitigation effect. First,
we investigate how TE and WP behave during AT and find that they induce different types of
regularization on adversarial examples during overfitting. Second, we evaluate a combination of TE
and WP and find that there is no compounding improvement in robust accuracy. Third, we minimize
loss on clean input data along-with these robust overfitting mitigation approaches which results in
increased clean accuracy at the expense of robust accuracy. Thus, we find that the negative impacts
on clean accuracy induced by TE and WP can be prevented without affecting the robust accuracy
with appropriate regularization.
We propose to employ TE/WP based robust overfitting mitigation with the additional use of helper
adversarial examples along-with a TE-based regularization term and demonstrate improvement in
clean accuracy over the existing AT approaches. The helper examples can be created during the
adversarial example generation in AT with a minimal computational overhead of just one extra
forward pass. Our idea is to use perturbed samples close to decision boundaries as helper examples
with their property of increasing clean accuracy with only a small degradation in robust accuracy
compared to using clean data only.

2 Preliminaries
Adversarial training (AT) has empirically proved to be the most effective defense strategy against
adversarial evasion attacks [4, 5, 6, 10, 11]. In the following we will briefly describe the mechanics
of AT [4] and two robust mitigation schemes [16, 17].

2.1 Adversarial Training (AT) [4]
We consider a classification problem where an input sample x 2 Rn belongs to a true class y among
a set of classes Y = {1, 2, . . . , Y }. A DNN-based classifier F✓ : Rn ⇥ Y ! R, assigns a label
ŷ 2 argmaxy2Y F✓(x, y) to x, where ✓ 2 ⇥ denotes the parameters of DNN. With a slight abuse
of notation, we also use F to denote the classifier, F (x) to denote the class label assigned to x, and
F (x, y) to denote the score of class y for input x and p(x) denotes the DNN prediction probability
vector. For a correctly classified input x i.e., y = F (x) is the true label, an adversarial attack aims to
find a sample x̃ in the ✏-neighborhood of x in norm p denoted by B✏(x) = {x̃ : kx̃� xkp  ✏}, such
that F (x̃) 6= F (x). In practice, these adversarial examples are generated by modifying the input x
through optimizing a loss function L on the classifier [3, 18, 19, 20, 4]. Finally, AT can be considered
as a robust optimization problem:

min
✓

max
x̃2B✏(x)

L(F (x̃, y), y), (1)

where x̃ is the adversarial example. Hence, during training, adversarial attacks first generate adver-
sarial examples in the neighborhood B✏(x) of input x to approximately maximize the loss L (e.g.,
cross-entropy loss), followed by training on the examples to update the network parameters and
achieving robustness against adversarial examples.
2.2 Adversarial Training with Temporal Ensembling (AT-TE) [16]
Robust overfitting is attributed to neural networks training on high loss input data and over-confident
predictions (memorization) by the model during AT [11, 16]. To prevent this, a regularization
based on temporal ensembling (TE) has been proposed in [16] which penalizes over-confident
predictions. Let z(x) denote the ensemble prediction by a model on input x which is updated as
z(x) = ⌘ · z(x) + (1� ⌘) · p(x) in each epoch and the AT objective becomes

min
✓

max
x̃2B✏(x)

{L(F (x̃, y), y) + w · kp(x̃)� ẑ(x)k22}, (2)

where ẑ(x) is obtained by normalizing z(x) and w is regularization weight. In this AT, the regulariza-
tion term is activated close to the first learning rate decay, and prevents the network from assigning
high confidence to samples with large loss.
2.3 Minimum Loss Constrained Adversarial Training (MLCAT-WP) [17]
Training samples with small loss and large differences in loss distribution among samples are shown
to cause robust overfitting in [17] and adversarial weight perturbation [9] is employed to increase the
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loss on such samples, which helps to mitigate robust overfitting. The training objective becomes

min
✓

max
v2V

max
x̃2B✏(x)

L(F✓+v(x̃, y), y), (3)

where v 2 V is an adversarial weight perturbation and is generated by maxv2V
P

i {LiLmin} · Li,
where Li = L(F✓+v(x̃i, yi), yi), Lmin is threshold for minimum adversarial loss and c is an
indicator function which is 1 only when condition c is true.

3 Comparison of AT, AT-TE and MLCAT-WP
In order to investigate how standard AT and robust overfitting mitigation approaches AT-TE and
MLCAT-WP behave as training progresses, we consider image classification on CIFAR-10 [21] with
a ResNet-18 model [22]. For all approaches, we use a Projected Gradient Descent (PGD) attack
[4] for 10 steps denoted by PGD10 in training and PGD20 for evaluation; see Appendix A for full
details. We observe from Figure 1(b)-(d) that as the training progresses, an AT model starts to classify
training data with high true class probability (TCP) (Average TCP � 0.5) after the first learning rate
decay at epoch 100 and proportion of training samples with very small loss value (in range [0, 0.5))
and high TCP also grows (� 40% of all training samples). On the other hand, an MLCAT-WP trained
model’s average TCP on training data increases gradually and stays small (⇡ 0.4) at epoch 200 and
the proportion of samples in the loss range [0, 0.5) amounts to only 20% of all training data which
shows weight perturbation prevents the model from assigning very high TCP to training data and
fitting samples with small loss. In case of AT-TE the average TCP for samples with loss in range
[0, 0.5) starts to decrease when temporal ensembling is activated (epoch � 90) and even though the
proportion of samples increase, it lies between AT and MLCAT-WP. Finally, we can also make this
observation from Figure 1(a) that combining weight perturbation and temporal ensembling (MLCAT-
WP+TE) does not result in any improvement in robust accuracy and its behavior closely resembles
MLCAT-WP. Moreover, modifying AT-TE and MLCAT-WP to AT-TE+XEC and MLCAT-WP+XEC
by including cross entropy loss on clean data results in higher clean accuracy at the cost of reduced
robust accuracy and results in increase in TCP and proportions of samples with small loss.

(a) Test Data Accuracy (b) TCP (c) TCP, loss 2 [0, 0.5) (d) Sample Proportion, loss
2 [0, 0.5)

Figure 1: CIFAR-10 training for ResNet-18. (a) Test accuracy against clean data (dark solid lines) and PGD20

attack (dim solid lines) are plotted.

4 Boundary Adversarial Examples for Improving Adversarial Training
To counter the negative effect of regularization in AT-TE and MLCAT-WP on clean accuracy and
negative effect of using clean sample on robust accuracy, we propose to extract additional useful
information from the adversarial examples generation process in adversarial training. More specifi-
cally, we extract intermediate adversarial examples that are close to a decision boundary as soon as
the perturbed sample is misclassified. Our underlying idea is that using boundary (intermediate and
weak) adversarial examples in place of clean samples will guide the network to attain better clean
accuracy without affecting robust accuracy too much. Thus, using this intermediate perturbed sample
x0 2 B✏(x) and a regularization based on its prediction p(x0) and ensemble prediction z(x0), the
AT-TE objective becomes

min
✓

{L(F (x0, y), y)+w · kp(x0)� ẑ(x0)k22 + max
x̃2B✏(x)

{L(F (x̃, y), y)+w · kp(x̃)� ẑ(x)k22}}, (4)

where ẑ(x0) is normalized z(x0), and z(x0) is updated as z(x0) = ⌘ · z(x0) + (1 � ⌘) · p(x0) in
each epoch. We denote this modified AT-TE as AT-TEBS. Similarly, MLCAT-WP objective becomes
MLCAT-WP+TEBS by including TE and boundary sample as

min
✓

{L(F✓+v(x
0, y), y)+w·kp(x0)�ẑ(x0)k22 +max

v2V
max

x̃2B✏(x)
{L(F✓+v(x̃, y), y)+w·kp(x̃)�ẑ(x)k22}}

(5)
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Table 1: Test accuracy (mean and standard deviation of 5 runs). “Last" and “Best" refer to test accuracy at the
end of training, and end of epoch that gives the highest accuracy w.r.t. test data respectively.

Dataset Name Clean(Best) Clean(Last) Robust(Best) Robust(Last) AA(Best) AA(Last)

CIFAR-10

AT 82.03±0.42 84.37±0.30 52.64±0.13 45.06±0.70 48.04±0.15 42.64±0.62
AT-TE 82.11±0.14 82.73±0.22 55.69±0.11 54.15±0.42 49.99±0.16 48.95±0.37
MLCAT-WP 82.05±0.31 81.78 ±0.26 58.16±0.13 57.46±0.45 50.43±0.07 49.96±0.31
MLCAT-WP+TE 81.06±0.49 80.74±0.24 58.48±0.08 57.71±0.22 50.67±0.10 50.46±0.20
AT-TEBS 83.99±0.14 84.46±0.36 55.26±0.07 53.58±0.74 50.17±0.09 48.80±0.70
MLCAT-WP+TEBS 83.712±0.51 83.75±0.41 59.20±0.21 58.53±0.52 50.38±0.07 50.30±0.26

CIFAR-100

AT 55.49±0.60 56.93±0.15 29.50±0.22 22.11±0.25 25.05±0.44 19.97±0.19
AT-TE 56.43±0.25 56.94±0.44 32.07±0.06 30.67±0.18 26.19±0.18 25.1±0.09
MLCAT-WP 57.65±0.41 57.96±0.30 32.73±0.11 31.68±0.61 27.14±0.14 26.48±0.41
MLCAT-WP+TE 56.60±0.56 57.44±0.33 33.02±0.16 32.02±0.56 27.08±0.16 26.58±0.54
AT-TEBS 58.78±0.23 58.82±0.29 31.59±0.09 30.40±0.16 25.99±0.18 24.98±0.23
MLCAT-WP+TEBS 62.50±0.28 62.45±0.42 31.95±0.06 30.72±0.65 26.57±0.14 25.74±0.48

SVHN

AT 89.08±0.47 89.91±0.30 53.21±0.32 44.70±0.60 45.59±0.61 39.97±0.63
AT-TE 89.17±0.58 89.83±0.34 53.21±0.18 44.24±0.71 45.81±0.43 39.65±0.81
MLCAT-WP 91.45±0.26 91.91±0.21 60.25±0.28 56.98±0.62 51.60±0.37 49.20±0.30
MLCAT-WP+TE 91.53±0.46 91.67±0.30 60.33±0.30 57.71± 0.84 51.57±0.31 49.89±0.54
AT-TEBS 91.58±0.32 90.43±0.46 50.94±0.16 44.43±0.66 45.37±0.29 39.43±0.70
MLCAT-WP+TEBS 92.43±0.46 92.53±0.35 60.07±0.31 57.61± 0.94 51.27±0.49 49.42±0.54

5 Experimental Evaluation
We train a ResNet-18 model using AT, AT-TE, MLCAT-WP, MLCAT-WP+TE, AT-TEBS and MLCAT-
WP+TEBS for CIFAR-10 [21], CIFAR-100 [21] and SVHN [23]; see Appendix A for details. We use
PGD10 attack (✏ = 8/255, L1 norm) during training and PGD20 at inference. In addition, we also
run AutoAttack (AA) [24] which is an ensemble of different attacks for a more reliable evaluation.
Table 1 shows that both AT-TEBS and MLCAT-WP+TEBS attain significant increase in clean accuracy
over their counterparts AT-TE and MLCAT-WP/MLCAT-WP+TE (⇡2%-3% in CIFAR-10, 2%-5% in
CIFAR-100, and 1%-2% in SVHN). AT-TE and AT-TEBS do not prevent overfitting in the SVHN
dataset because the training data fits very early in training with high confidence, whereas temporal
ensembling activates closer to first learning rate decay and thus, regularization based on ensemble
prediction is ineffective. On the other hand, weight perturbation based approaches MLCAT-WP and
MLCAT-WP+TEBS result in superior performance across all datasets compared to AT-TE and AT-
TEBS in terms of clean and robust accuracy; and use of adversarial boundary examples significantly
boosts the clean accuracy especially for CIFAR-100 and SVHN datasets in MLCAT-WP+TEBS. From
Figure 2, we observe that for all three datasets, AT-TEBS and MLCAT-WP+TEBSapproximately retain
the robust accuracy of AT-TE and MLCAT-WP, but increase the clean accuracy to match and even
surpass AT in case of the CIFAR-100 and SVHN datasets.

(a) CIFAR-10 Accuracy (b) CIFAR-100 (c) SVHN
Figure 2: Accuracy results for AT using ResNet-18. Clean test accuracy (dark solid lines) and PGD20 attack
test accuracy (dim solid lines) are plotted.

6 Conclusion
We investigate temporal ensembling and weight perturbation for mitigating robust overfitting and
discover that temporal ensembling mainly influences high confidence predictions whereas weight
perturbation affects both confidence in predictions and small loss data samples. Overall, adversarial
weight perturbation, which directly prevents the model from fitting low loss data samples, achieves
better clean and robust accuracy compared to temporal ensembling. Furthermore, we propose to use
samples close to decision boundary for improving clean accuracy. These can be directly obtained
from the adversarial examples generation process during adversarial training with minimal additional
cost. Together with ensemble prediction regularization, this helps in retaining the robust accuracy of
both robust overfitting mitigation approaches but significantly increases the clean accuracy.
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A Experimental Setup

For all experiments, we use ResNet-18 models [22] which are trained using SGD with momentum
value of 0.9 and weight decay of 5 × 10�4. Initial learning rate is set to 0.1 for CIFAR-10 and
CIFAR-100 datasets and 0.01 for SVHN dataset, which is divided by 10 at the 100th and 150th

epochs with a total training of 200 epochs. Data augmentation consisting of horizontal flip and
random crop is used for CIFAR-10 and CIFAR-100 datasets, while no data augmentation is used for
SVHN datatset.

For PGD attack parameters for training, we set the ✏ = 8
255 in L1 norm (maximum perturbation)

and 10 attack steps for all datasets where step size of 2
255 is used for CIFAR-10 and CIFAR-100

datatsets and step size of 1
255 for SVHN. For evaluation we consider PGD attack with 20 steps with

✏ = 8
255 in L1 norm and step size of 2

255 for all datasets.

For temporal ensembling based approaches, the value of temporal ensembling weight parameter w
is adjusted experimentally and is set to 300 in AT-TE, AT-TEBS and AT-TECS for CIFAR-10 and
SVHN datasets and 3000 for CIFAR-100 datatset along a Gaussian ramp-up curve [16]. Similarly,
for MLCAT-WP+TE, MLCAT-WP+TEBS and MLCAT-WP+TECS w = 30 is used in training with
CIFAR-10 and SVHN datasets and w = 300 is used for CIFAR-100 dataset along a Gaussian
ramp-up curve. The momentum term ⌘ in ensemble prediction update is set to 0.9 and temporal
ensembling activates at 90th epoch [16] for all experiments involving temporal ensembling. For
all experiments with MLCAT-WP, MLCAT-WP+TE, MLCAT-WP+TEBS and MLCAT-WP+TECS,
Lmin = 1.5 for CIFAR-10 and SVHN datasets and Lmin = 4.0 for CIFAR-100 dataset and other
parameters are set as per the original work [17].

Furthermore all experiments are run on a single NVIDIA A100 Tensor Core GPU using PyTorch
version 1.11.0 on Red Hat Enterprise Linux release 8.5 operating system.

B Additional Results for CIFAR-10, CIFAR-100 and SVHN Datasets

This section contains additional results for CIFAR-10, CIFAR-100 and SVHN datasets. We consider
the case when instead of boundary sample x0 we use clean input sample x and a regularization on
network’s current prediction on this clean sample p(x) and ensemble prediction z(x). Thus AT-TEBS
modifies to

min
✓

{L(F (x, y), y) + w · kp(x)� ẑ(x)k22 + max
x̃2B✏(x)

{L(F (x̃, y), y) + w · kp(x̃)� ẑ(x)k22}} (6)

which we denote as AT-TECS. Similarly, MLCAT-WP+TEBS objective becomes MLCAT-WP+TECS
by including TE and clean input sample as

min
✓

{L(F✓+v(x, y), y)+w·kp(x)�ẑ(x)k22 +max
v2V

max
x̃2B✏(x)

{L(F✓+v(x̃, y), y)+w·kp(x̃)�ẑ(x)k22}}

(7)

We also consider the case when MLCAT-WP objective is modified to include cross entropy loss on
boundary sample x0 but no temporal ensembling is employed. We denote this scheme as MLCAT-
WP+XEBS which is given by

min
✓

{L(F✓+v(x
0, y), y) + max

v2V
max

x̃2B✏(x)
{L(F✓+v(x̃, y), y)}} (8)

Table 2 shows the inherent trade off between robust accuracy and clean accuracy when clean input
sample is used in place of boundary sample. Adversarial weight perturbation based approaches
MLCAT-WP+TEBS and MLCAT-WP+TECS seem to be more sensitive to the choice of sample as
boundary sample clearly leads to significantly higher robust accuracy whereas clean input sample
leads to significantly higher clean accuracy. In addition, robust overfitting occurs more severely
for MLCAT-WP+TECS compared to MLCAT-WP+TEBS. MLCAT-WP+XEBS that does not employ
temporal ensembling attains clean and robust accuracy that lie in between MLCAT-WP+TEBS and
MLCAT-WP+TECS. On the other hand, AT-TECS with clean input sample has increased clean
accuracy and comparable robust accuracy to AT-TEBS for CIFAR-10 and CIFAR-100 datasets. Both
AT-TEBS and AT-TECS suffer from robust overfitting for SVHN dataset training and the reason
is that the networks learn data in few epochs and start to assign high confidence predictions to
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input samples as shown in Figure 5(b). Since regularization based on network current prediction
and ensemble prediction activates at a later stage close to first learning rate decay at epoch 100,
it becomes ineffective as the ensemble prediction is also very high similar to current prediction.
Figure 3-Figure 5 show how accuracy, average TCP and proportion of small loss samples evolve with
time for CIFAR-10, CIFAR-100 and SVHN datasets, respectively.

Table 2: Test accuracy (mean and standard deviation of 5 runs). “Last" and “Best" refer to test accuracy at the
end of training, and end of epoch that gives the highest accuracy w.r.t. test data respectively.

Dataset Name Clean(Best) Clean(Last) Robust(Best) Robust(Last) AA(Best) AA(Last)

CIFAR-10

AT-TEBS 83.99±0.14 84.46±0.36 55.26±0.07 53.58±0.74 50.17±0.09 48.80±0.70
AT-TECS 85.62±0.23 85.76±0.18 54.83±0.23 53.21±0.91 50.09±0.21 48.81±0.61
MLCAT-WP+TEBS 83.712±0.51 83.75±0.41 59.20±0.21 58.53±0.52 50.38±0.07 50.30±0.26
MLCAT-WP+TECS 86.17±0.37 88.47±0.67 55.37±0.28 51.68±1.18 48.13±0.40 46.84±0.23
MLCAT-WP+XEBS 84.81±0.3 84.91±0.33 58.76±0.16 57.8±0.61 50.09±0.09 49.75±0.32

CIFAR-100

AT-TEBS 58.78±0.23 58.82±0.29 31.59±0.09 30.40±0.16 25.99±0.18 24.98±0.23
AT-TECS 60.71±0.37 60.52±0.41 31.08±0.22 29.72±0.19 25.72±0.23 24.77±0.15
MLCAT-WP+TEBS 62.50±0.28 62.45±0.42 31.95±0.06 30.72±0.65 26.57±0.14 25.74±0.48
MLCAT-WP+TECS 66.38±0.82 67.25±0.38 28.87±0.25 26.96±0.53 24.00±0.26 22.59±0.62
MLCAT-WP+XEBS 62.67±0.3 63.1±0.37 31.19±0.15 29.95±0.51 26.29±0.14 25.46±0.49

SVHN

AT-TEBS 91.58±0.32 90.43±0.46 50.94±0.16 44.43±0.66 45.37±0.29 39.43±0.70
AT-TECS 91.75±0.69 90.24±0.43 48.72±0.45 43.02±0.79 42.42±0.27 38.22±0.68
MLCAT-WP+TEBS 92.43±0.46 92.53±0.35 60.07±0.31 57.61± 0.94 51.27±0.49 49.42±0.54
MLCAT-WP+TECS 93.18±0.69 93.57±0.41 56.22±1.17 52.05± 1.78 48.71±1.02 45.19±1.01
MLCAT-WP+XEBS 92.47±0.44 93.4±0.82 59.78±0.04 55.21± 1.2 51.29±0.24 46.73±1.81

(a) Test Data Accuracy (b) TCP

(c) TCP, loss 2 [0, 0.5) (d) Sample Proportion, loss 2 [0, 0.5)
Figure 3: CIFAR-10 training for ResNet-18. (a) Test accuracy against clean data (dark solid lines) and PGD20

attack (dim solid lines) are plotted.
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(a) Test Data Accuracy (b) TCP

(c) TCP, loss 2 [0, 1.0) (d) Sample Proportion, loss 2 [0, 1.0)
Figure 4: CIFAR-100 training for ResNet-18. (a) Test accuracy against clean data (dark solid lines) and PGD20

attack (dim solid lines) are plotted.
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(a) Test Data Accuracy (b) TCP

(c) TCP, loss 2 [0, 0.5) (d) Sample Proportion, loss 2 [0, 0.5)
Figure 5: SVHN training for ResNet-18. (a) Test accuracy against clean data (dark solid lines) and PGD20

attack (dim solid lines) are plotted.
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