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ABSTRACT

Knowledge distillation aims to obtain a small and effective student model by
learning the output from a large knowledgeable teacher model. However, when
the student is distilled by an oversized teacher, a critical performance degradation
problem is exposed. This paper revisits performance degradation problem from the
perspective of model confidence. Specifically, we apply energy-based metrics to
measure the confidence of models, and propose Spherical Knowledge Distillation
(SKD): a more efficient knowledge distillation framework when distilling with
larger teachers. A theoretical analysis is provided to show that SKD can effectively
reduce the confidence gap between the teacher and student, thus alleviating the
performance degradation problem. We demonstrate that SKD is easy to train,
and can significantly outperform several strong baselines on various mainstream
datasets, including CIFAR-100 and ImageNet.

1 INTRODUCTION

Deep neural networks have achieved remarkable success in various fields such as computer vi-
sion (Deng et al., 2009; He et al., 2016; Zagoruyko & Komodakis, 2016), natural language process-
ing (Vaswani et al., 2017; Kenton & Toutanova, 2019), and speech recognition (Ren et al., 2019).
However, these state-of-the-art models have high costs in terms of storage, memory, and computation
time, which hinders their deployment in practice. Therefore, model compression has attracted consid-
erable research attention in recent years (Hinton et al., 2015; Polino et al., 2018; Choudhary et al.,
2020; Kim et al., 2020; Ganesh et al., 2021; Xia et al., 2022).

One of the predominant approaches in model compression is knowledge distillation (KD) (Hinton
et al., 2015; Tian et al., 2019; Guo et al., 2020; Shen et al., 2021; Chen et al., 2022), which trains
a smaller model (i.e., the student) with the output of a larger and well-trained model (i.e., the
teacher). Naturally, one would expect to train a better student with a larger and more accurate teacher.
However, recent research has invalidated this hypothesis and found that knowledge distillation suffers
from a mysterious performance degradation problem (Cho & Hariharan, 2019; Mirzadeh et al.,
2019). Specifically, the student performance degrades with an oversized teacher, indicating that the
knowledge of an oversized teacher cannot be effectively transferred to the student (Table 1).

This work proposes a Spherical Knowledge Distillation (SKD) framework, which examines the per-
formance degradation problem from the perspective of confidence gap. We argue that the performance
degradation problem is caused by the confidence gap between teachers and students. Specifically,
a larger-capacity network is more likely to be overconfident (i.e., produces predicting probabilities
that are close to one-hot distributions). This is because a larger-capacity network manages to further
minimize the negative log likelihood by increasing its confidence, even when it can correctly classify
almost all training samples.

To quantify the confidence of models, SKD applies two energy-based metrics, termed entropy and
Helmholtz free energy. We show that these two energy-based metrics are effective to measure the
confidence gap between the teacher and student. Further, considering the output logits space in a
spherical coordination system, we show that student output logits are distributed in a smaller radius
area with higher entropy and lower free energy, and vice versa for the teacher output logits (Figure 1).
A theoretical analysis is provided to show that projecting the student output to the hyper sphere with
teacher’s radius can reduce the confidence gap, thus alleviating the performance degradation problem.
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Figure 1: The illustration of Spherical Knowledge Distillation (SKD) framework. (a) Compared with
Vanilla KD, SKD effectively reduces the confidence gap between the teacher and student. (b) In
the spherical coordination system, the student’s output logits have lower radius, where the teacher’s
is the contrary. SKD projects the student logits on the hyper sphere with the teacher’s radius, thus
reducing the confidence gap. Different color represents logits of different models, and different shape
represents predictions of different samples.

To verify the effectiveness of our method, we present comprehensive experiments on CIFAR-100
(Krizhevsky et al., 2009) and ImageNet (Deng et al., 2009). The proposed SKD framework achieves
excellent performance on these tasks. The experimental results show that SKD can mitigate the
performance degradation problem and produce competitive students. For example, SKD distills the
ResNet18 student with 73.01% accuracy on ImageNet, which achieves a new state-of-the-art result.

2 METHODOLOGY

2.1 BACKGROUND

Vanilla Knowledge Distillation When training neural networks, we minimize the negative log-
likelihood of the ground truth class to update model parameters. After the model is well-trained, the
probability of the ground truth would be close to 1, while the probabilities of other labels are near 0.
Hinton et al. (2015) noticed that the small wrong probabilities of large models are useful to unveil
“dark knowledge”. For example, given a picture of a “cat”, the model is more likely to output a higher
probability for class “dog” than class “airplane”. These wrong probabilities imply the relationship
between the two classes and unveil how a model tends to generalize. This observation inspired the
usage of large models’ outputs as soft targets to train efficient small models, which is the core idea of
Knowledge Distillation. However, modern deep networks tend to produce peaky probabilities (Guo
et al., 2017; Lee et al., 2018), i.e., the numbers of those wrong classes (near zero values) would be
negligible compared to the ground truth (near one). Thus Hinton et al. (2015) proposed to raise the
temperature of the last softmax layer to soften the output probabilities, which can be used as soft
targets to train student networks.

For vanilla knowledge distillation, the KD loss can be defined as follows:

LKD = −
∑
i

qi log pi

pi =
ezi/τ∑
j e

zj/τ
, qi =

evi/τ∑
j e

vj/τ

(1)

Where we denote logits of the teacher as v, logits of the student as z, student probability as p, teacher
probability as q, temperature as τ , and the i-th and j-th value of logits (i.e. the i-th and j-th category
of K classes) as i and j, respectively. The final loss for the student is then the weighted sum of the
typical cross entropy loss Lcls and the knowledge distillation loss LKD:

L = λLKD + (1− λ)Lcls (2)
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Table 1: The performance degradation problem.

Teacher ResNet20 ResNet32 ResNet44 ResNet56 ResNet110

Teacher Acc 69.57 70.9 71.9 72.8 73.8
Student Acc 67.4 68.2 68 67.5 67.1
KD loss 1.1 1.7 2.1 2.5 3.3

The popular choice of the temperature τ is in {3, 4, 5}, and the weight λ is 0.9 (Hinton et al., 2015;
Cho & Hariharan, 2019; Tian et al., 2020).

Performance Degradation Problem While knowledge distillation achieved success in many fields,
a mysterious performance degradation problem was observed (Cho & Hariharan, 2019; Mirzadeh
et al., 2019). Since the idea of knowledge distillation is transferring teacher knowledge to students,
one natural hypothesis is that a larger and more accurate teacher would capture more knowledge
and thus train better students. However previous studies invalidate this hypothesis by showing that
student performance degenerates unexpectedly with larger teachers. For example, as shown in Table
1, applying a larger teacher model will increase the KD loss and decrease the accuracy of the student
(with ResNet14 as the backbone). Cho & Hariharan (2019) hypothesize that the mismatch of capacity
between the teacher and student causes the performance degradation. We further provide a new
perspective about model confidence to explain and address the performance degradation problem,
which we will discuss in the rest of this section.

2.2 REVISITING PERFORMANCE DEGRADATION PROBLEM VIA CONFIDENCE GAP

There are two main theories explaining why knowledge distillation is effective. The first theory
originated from vanilla Knowledge Distillation (Hinton et al., 2015), which argued that teachers are
more accurate in capturing category similarities thus helping students to generalize better on unseen
data. The second theory (Müller et al., 2019; Yuan et al., 2020) contends that the soft output of the
teacher prevents the student network from overconfidence. However, when the teacher is larger, these
two theories contradict each other. Such contradiction raises because larger models are usually more
accurate and confident (i.e. with larger probability for ground truth) at the same time. While a more
accurate teacher is beneficial to the student model, the output of a more confident teacher is closer to
the one-hot distributions, thus degrading student performance. Therefore, the larger teacher capacity
is a double-edged sword for distillation. We argue that it is crucial to investigate the confidence gap
between the teacher and student, which previous studies have overlooked.

Recent works apply regularization techniques (e.g., label smoothing (Müller et al., 2019)) to prevent
the teacher from overconfidence. From the prospective of confidence gap, such techniques are
equivalent to reducing the confidence gap between the teacher and student on the teacher side.
However, the teacher model trained by label smoothing could result in the loss of information in
the logits about resemblances between instances of different classes Müller et al. (2019). Such
information loss in the logits could degrade the student performance Chandrasegaran et al. (2022).
Therefore, it is important to investigate how to reduce confidence gap without loss of information.

It should be noted that it is non-trivial for students with insufficient parameters to reduce the
confidence gap (i.e., by multiplying a constant factor c (c ≥ 1) to the student’s logits; or by applying
a lower constant temperature value for the student). This is because the predictions of the student
and teacher model are inconsistent (i.e., the predictions of the teacher and student differ) for many
samples. For those samples with inconsistent predictions, multiplying a factor to the student’s output
logits to make its confidence larger will increase the distillation loss. This could happen even if
when students and teachers predict the same because the confidence gaps differ between separate
samples. Consider a bi-classification example where the teacher’s logits for two samples A and B are
(1.0,−1.0) and (0.5,−0.5), respectively; while the student’s logits are (0.5,−0.5) and (0.4,−0.4).
At this time, multiplying the student model by the constant factor c = 2 will make the student’s logits
to be (1.0,−1.0) and (0.8,−0.8), respectively. In this case, although the loss for the first sample
decreases, the loss for the second sample increases. Therefore, a more advanced method need to be
explored to reduce the confidence gap in distillation.
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Table 2: The gap of entropy and Helmholtz free energy using Vanilla KD and SKD.

ResNet20 ResNet32 ResNet44 ResNet56 ResNet110

Entropy 0.74 0.45 0.35 0.22 0.09
Gentropy - Vanilla KD 0.146 0.181 0.222 0.246 0.261
Gentropy - SKD 0.053 0.074 0.081 0.083 0.094
Free Energy 13.11 13.84 14.45 15.37 16.13
Gf - Vanilla KD 0.042 0.053 0.063 0.068 0.074
Gf - SKD 0.029 0.042 0.041 0.045 0.044

In the following subsections, we first propose two energy-based metrics to measure the confidence
gap between the teacher and student. Then we provide a theoretical analysis showing how to reduce
the confidence gap between the teacher and student to alleviate the performance degradation problem.

2.3 MEASURING CONFIDENCE GAP VIA ENERGY-BASED METRICS

Energy-based Metrics To investigate the relationship between model capacity and confidence, we
apply two energy-based metrics termed Entropy and Helmholtz Free Energy, that are commonly used
in quantifying thermal processes in thermodynamics. The concept of Entropy was also introduced
into information science (Shannon, 1948) to measure the uncertainty (i.e., confidence) of a random
variable (Kullback, 1997), and is defined as follows:

S = −
∑
i

pi log(pi) (3)

According to its definition, high-confidence predictions would correspond to low entropy, and vise
versa for low-confidence predictions. Thus entropy can be used to measure the model confidence.
Helmholtz Free Energy is frequently used in energy-based model (LeCun et al., 2006). In thermody-
namics, increasing the entropy of a system at a constant temperature will decrease the Helmholtz
free energy (Lewis & Randall, 1963). Therefore, entropy and Helmholtz free energy has a close
relationship with each other. Helmholtz free energy can be expressed as the log partition function as
follows, where zi is the i-th element of the logits, and τ is the temperature:

F (z) = τ log
∑
i

ezi/τ (4)

It should be noted that when the temperature τ is set to 1, F (z) is equivalent to the RealSoftMax
LSE(x) = log

∑
i e

xi (Nielsen & Sun, 2016). Therefore, F (z) can be regarded as a smooth
approximation to the maximum function, thus can also be used to measure the model confidence.

We measured the entropy and Helmholtz free energy for different models trained on the CIFAR-100
dataset with temperature τ = 1 (with one-hot labels). As shown in Table 2, there exists a large gap in
both entropy and free energy between networks with different sizes. And larger models generally
produce lower entropy and higher free energy. In the following part of this subsection, we will first
define Entropy Gap and Helmholtz Free Energy Gap, and then demonstrate how to reduce the gap.

Glossary

1. zi: the i-th element of logits.

2. ||z||: the norm of the logits, ||z|| =
√∑

i z
2
i

3. pi: the probability of the ith category. pi = − ezi/τ∑
j ezj/τ

4. K: the dimension of the vector z and v (i.e. the number of label categories).
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Entropy Gap Analysis We define the entropy gap as follows:

Gentropy = S(p)− S(q)

=
∑
i

−pi log(pi) +
∑
i

qi log(qi)
(5)

Theorem 1. Let p and q represent the student and the teacher output probability, z and v represent the
student and teacher logits, and τ represents the temperature. The entropy gap Gentropy approximate
to 1

Kτ2 (||v||2 − ||z||2), under the assumption that z and v are zero meaned separately.

Proof.

Gentropy = S(p)− S(q)

=
∑
i

−pi log(pi) +
∑
i

qi log(qi)

=
∑
i

(qivi/τ − pizi/τ) + log
∑
j

ezj/τ − log
∑
j

evj/τ

=
∑
i

(
evi/τvi/τ∑

j e
vj/τ

− ezi/τzi/τ∑
j e

zj/τ
) + log

∑
j

ezj/τ − log
∑
j

evj/τ

(6)

With Taylor expansion ex ≈ 1 + x:

Gentropy ≈
∑
i

(
(1 + vi/τ)vi/τ∑

j(1 + vj/τ)
− (1 + zi/τ)zi/τ∑

j(1 + zj/τ)
)

+ log
∑
j

(1 + zj/τ)− log
∑
j

(1 + vj/τ)
(7)

We follow the assumption from Hinton (Hinton et al., 2015), that the logits have been zero-meaned
separately for each training example so that

∑
j zj =

∑
j vj = 0. We provide experimental validation

to this assumption in Appendix A.2.

Given the above assumption, we can get:

Gentropy ≈
∑
i

(
(vi/τ)

2

K
− (zi/τ)

2

K
) + log(K)− log(K)

=
1

Kτ2
(||v||2 − ||z||2)

(8)

Helmholtz Free Energy Gap Analysis We define the Helmholtz free energy gap as follows:

Gf = F (v)− F (z)

= τ log
∑
i

evi/τ − τ log
∑
i

ezi/τ (9)

Theorem 2. Let z and v represent the student and the teacher output logits, and τ denotes the
temperature. The Helmholtz free energy gap Gf approximate to 1

2Kτ (||v||
2 − ||z||2), under the

assumption that z and v are zero meaned separately and 2τ2K is large compared with the square of
logits norm.
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Proof.

Gf = F (v)− F (z)

= τ log
∑
i

evi/τ − τ log
∑
i

ezi/τ

≈ τ log(K +
∑
i

vi/τ +
1

2

∑
i

v2i /τ
2)

− τ log(K +
∑
i

zi/τ +
1

2

∑
i

z2i /τ
2)

(10)

With Taylor expansion ex ≈ 1 + x+ 1
2x

2:

Gf ≈ τ log(K +
1

2

∑
i

v2i /τ
2)− τ log(K +

1

2

∑
i

z2i /τ
2)

≈ τ log(1 +
1

2τ2K
||v||2)− τ log(1 +

1

2τ2K
||z||2)

(11)

When 2τ2K is large compared with the square of logits norm, with log(1 + x) ≈ x for |x| < 1:

Gf ≈ 1

2Kτ
(||v||2 − ||z||2) (12)

2.4 SPHERICAL KNOWLEDGE DISTILLATION (SKD)

In the previous subsection, we apply Entropy Gap and Helmholtz Free Energy Gap to measure the
confidence gap between two models. We have shown that both Entropy Gap and Helmholtz Free
Energy Gap can be represented as similar forms (i.e., 1

αKτ (||v||
2 − ||z||2)), whose value is controlled

by the norm of the teacher and student logits. Consider logits in a spherical coordination system, the
logits of the student are distributed in a smaller radius area with higher entropy and lower free energy,
and vice versa for the teacher. Therefore, we propose Spherical Knowledge Distillation (SKD), which
projects the student logits onto the hyper-sphere of the teacher. Specifically, the student logits for
each sample would be transformed as follows:

ẑ = z ∗ ||v||
||z|| (13)

After the transformation, the student logits would have the same norm of the teacher logits, which
significantly reduce the gap for both entropy and Helmholtz free energy: Gf ≈ 1

2Kτ (||v||
2−||ẑ||2) =

0, and Gentropy ≈ 1
Kτ2 (||v||2 − ||z||2) = 0. In other words, SKD projects student logits from the

area with high entropy and low free energy to the teacher’s area, which is with low entropy and high
free energy. The rest of SKD follows the standard distillation procedure:

pi =
eẑi/τ∑
j e

ẑj/τ
, qi =

evi/τ∑
j e

vj/τ

LSKD = −
∑
i

qi log pi

L = λLSKD + (1− λ)Lcls

(14)

3 EXPERIMENTS

In this section, we show comprehensive experimental results to validate the effectiveness of SKD
from several perspectives. Specifically, we first conducted experiments on two popular CV datasets to
demonstrate the performance of SKD. Then we focused on evaluating whether SKD could alleviate
the performance degradation problem.
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Table 3: CIFAR-100 experiments.

Teacher
Student

WRN-40-2
WRN-16-2

WRN-40-2
WRN-40-1

ResNet56
ResNet20

ResNet110
ResNet20

ResNet110
ResNet32

ResNet32*4
ResNet8*4

VGG13
VGG8

Teacher 75.61 75.61 72.34 74.31 74.31 79.42 74.64
Student 73.26 71.98 69.06 69.06 71.14 72.50 70.36
KD 74.92 73.54 70.66 70.67 73.08 73.33 72.98
FitNet 73.58 72.24 69.21 68.99 71.06 73.50 71.02
AT 74.08 72.77 70.55 70.22 72.31 73.44 71.43
SP 73.83 72.43 69.67 70.04 72.69 72.94 72.68
CC 73.56 72.21 69.63 69.48 71.48 72.97 70.71
VID 74.11 73.30 70.38 70.16 72.61 73.09 71.23
RKD 73.35 72.22 69.61 69.25 71.82 71.90 71.48
PKT 74.54 73.45 70.34 70.25 72.61 73.64 72.88
AB 72.50 72.38 69.47 69.53 70.98 73.17 70.94
FT 73.25 71.59 69.84 70.22 72.37 72.86 70.58
FSP 72.91 - 69.95 70.11 71.89 72.62 70.23
NST 73.68 72.24 69.60 69.53 71.96 73.30 71.53
CRD 75.48 74.14 71.16 71.46 73.48 75.51 73.94
SKD 75.75 75.06 72.08 72.12 74.09 76.40 74.17

Table 4: ImageNet experiments with Top1 accuracy.

CE KD ES SP CC CRD AT SKD

69.8 69.20 71.40 70.62 69.96 71.38 70.70 72.80

Dataset 1) CIFAR-100 (Krizhevsky et al., 2009) is a relatively small data set and is widely used for
testing various deep learning methods. CIFAR-100 contains 50,000 images in the training set and
10,000 images in the evaluation set, with 100 fine-grained categories. 2) ImageNet (Deng et al., 2009)
is a much larger dataset than CIFAR-100. ImageNet contains 1.2M images for training and 50K for
validation, with 1,000 fine-grained categories.

CIFAR Experimental settings We ran a total of 240 epochs for all methods. The learning rate
was initialized as 0.05, then it decayed by 0.1 every 30 epochs after 150 epochs. For MobileNetV2,
ShuffleNetV1 and ShuffleNetV2, we use a learning rate of 0.01 as this learning rate is optimal for
these models in a grid search, while 0.05 is optimal for other models. For both vanilla KD and SKD,
we set the temperature as 4, weight as 0.9, and cross-entropy as 0.1 for all settings.

ImageNet Experimental settings ResNet18 was used as the student for all methods. We applied
the same training settings (e.g., learning rate, training epochs) as Heo et al. (2019). The teacher
network had been trained in advance of the experiments and was fixed during training. The experiment
requires 2 RTX 3090 GPU resources and takes around 40 hours.

3.1 MAIN RESULTS

Baselines We selected various SOTA KD methods to evaluate the performances of SKD: 1)
Knowledge defined from intermediate layers: FitNet (Romero et al., 2015), AT (Zagoruyko &
Komodakis, 2017), SP (Tung & Mori, 2019), PKT (Passalis & Tefas, 2018), FT (Kim et al., 2020),
and FSP (Yim et al., 2017); 2) Knowledge defined via mutual information: CC (Peng et al., 2019),
VID (Ahn et al., 2019), CRD (Tian et al., 2020); 3) Structured Knowledge: RKD (Park et al., 2019);
and 4) Knowledge from logits: KD (Hinton et al., 2015), NST (Huang & Wang, 2017), ES (Cho &
Hariharan, 2019), and TA (Mirzadeh et al., 2019)
CIFAR-100 Table 3 and 9 shows that SKD always has higher accuracy than all other methods. In
some situations (e.g. those where teacher/student is WRN-40-2/WRN-40-1 or ResNet110/ResNet32),
the performances of SKD were even very close to those of the teacher.

ImageNet All experiments reported in Table 4 used ResNet34 as the teacher and ResNet18 as the
student. Table 4 shows that SKD exceeds all of the previous SOTA by a large margin on ImageNet.
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Table 5: Performance degradation problem on ImageNet.

Teacher Method Accuracy Teacher Method Accuracy

ResNet34 KD 69.43 ResNet101 KD 68.91
ES 70.98 SKD 72.85
SKD 72.80

ResNet50 KD 69.05 ResNet152 KD 68.84
TA 70.65 TA 70.59
ES 70.95 ES 70.74
SKD 73.01 SKD 72.70

Table 6: Performance degradation problem on CIFAR-100. Student is ResNet14. SKD achieves
lower training loss and higher accuracy. The entropy gap between the distilled student and teacher is
also reduced significantly. Temperature is set to 4 in vanilla KD.

ResNet20 ResNet32 ResNet44 ResNet56 ResNet110

Training loss Vanilla KD 1.1 1.7 2.1 2.5 3.3
SKD 0.9 1.2 1.3 1.4 1.6

Test acc Vanilla KD 67.4 68.2 68 67.5 67.1
SKD 68.2 68.7 68.9 68.8 69.2

Gentropy Vanilla KD 0.146 0.181 0.222 0.246 0.261
SKD 0.053 0.074 0.081 0.083 0.094

Gf Vanilla KD 0.042 0.053 0.063 0.068 0.074
SKD 0.029 0.042 0.041 0.045 0.044

Table 7: Performance degradation experiments with various teacher width

WRN-16-2 WRN-16-3 WRN-16-4 WRN-16-5 WRN-16-6

Test acc Vanilla KD 68.22 67.88 68.27 67.80 67.2
SKD 69.39 69.33 69.39 69.40 69.21

Gentropy Vanilla KD 0.063 0.082 0.095 0.115 0.134
SKD 0.045 0.058 0.079 0.083 0.09

Gf Vanilla KD 0.37 0.49 0.59 0.71 0.83
SKD 0.10 0.22 0.34 0.41 0.55

Figure 2 shows the training process of vanilla KD and SKD. It is worth noting that SKD achieves
comparable performance to KD’s final performance after the first 30th epoch training.

3.2 PERFORMANCE DEGRADATION EXPERIMENTS

CFIFAR-100 We trained the ResNet14 with multiple teachers on the CIFAR-100 dataset. As
shown in Table 6, the vanilla KD suffers from the performance degradation problem with oversized
teachers (i.e., student accuracy continued decreasing when using teacher larger than ResNet32); while
SKD continually improves the student performance as the teacher size is larger, which demonstrates
that SKD can effectively alleviate the performance degradation problem. In addition, compared with
vanilla KD, SKD significantly reduces both the entropy gap and free energy gap. We also added
experiments where teacher models vary with width (Table 7, the student is WRN-16-1), which shows
consistent results that the SKD outperformed the vanilla KD by a large margin.

ImageNet We compared SKD with two previous methods that aim to alleviate the degradation
problem, Early Stop (Cho & Hariharan, 2019) (ES) and Teacher Assistant (Mirzadeh et al., 2019)
(TA). Both of these two methods explicitly regularized the teacher capacity: 1) TA proposed to distill
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(a) CIFAR-100 Training Loss. (b) Training Process on ImageNet.

Figure 2: (a) As the teacher size grows, the loss of SKD increases slower than KD, which shows that
SKD alleviates the performance degradation Problem. (b) When trained on ImageNet, SKD achieves
comparable accuracy with KD on ImageNet at the 30th epoch.

the large teacher to an intermediate teacher and then distill to the student, so that each knowledge
distillation step has a better match between student and teacher capacity; 2) ES methods use the
early stopped teacher, the teacher capacity would be regularized by fewer training steps. Table 5
shows the degradation problem in ImageNet with ResNet18 as the student. We can see that SKD
exceeds Early Stop and TA methods by a large margin in all teacher settings (Table 5). For example,
when distilled by ResNet50 and ResNet152, the performance exceeded other methods by 2%. SKD
achieves 73.01% accuracy, which is the best ResNet18 result that we know of.

4 RELATED WORK

Buciluǎ et al. (2006) first proposed to compress a trained cumbersome model into a smaller model
by matching the logits between them. Then Hinton et al. (2015) advanced this idea and formed a
more widely used framework known as knowledge distillation (KD). Knowledge distillation tries to
minimize the KL divergence between the soft output probabilities generated by the logits through
softmax function. Different from Xu et al. (2020) that normalizes the features in the penultimate
layer of the network to perform distillation, our methods perform normalization on the logits layer.
Furthermore, knowledge distillation can also be regarded as a soft label training method. Specifically,
previous studies have found that knowledge distillation helps to regularize the training of network.
The relationship between KD and other regularization techniques (e.g., label smoothing) has been
discussed in various works (Müller et al., 2019; Shen et al., 2021).

Although distillation has shown a great potential in many tasks, researchers found that larger teachers
often unexpectedly harm the distillation performance, despite their more powerful ability (Cho &
Hariharan, 2019; Mirzadeh et al., 2019). The performance degradation problem is particularly severe
on ImageNet, resulting in poor performance of distilled student model. It was widely accepted
that the capacity mismatch between teacher and student causes this problem Zhu & Wang (2021).
Previous research proposed to regularize the teacher capacity to alleviate this problem heuristically.
For example, Cho & Hariharan (2019) proposed to early stop the training of the teacher. Moreover,
Mirzadeh et al. (2019) proposed to use a medium-size teacher assistant (TA) to perform a sort
of sequence distillation. TA first learns from the teacher, then the student can learn from the TA.
However, the accuracy of the early stopped teacher or TA is also lower than the original teacher.

5 CONCLUSION

The vanilla knowledge distillation overlooks the confidence gap between the student and the teacher,
which may cause the performance degradation with oversized teachers. We presents the Spherical
Knowledge Distillation framework, which address the performance degradation problem by reducing
the confidence gap between the teacher and student. We validate the effectiveness of our method
on CIFAR-100 and ImageNet. Experimental results show that SKD can effectively mitigate the
performance degradation problem and produce competitive students.
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Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In Proceedings
of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’06, pp. 535–541, New York, NY, USA, 2006.

Keshigeyan Chandrasegaran, Ngoc-Trung Tran, Yunqing Zhao, and Ngai-Man Cheung. Revisiting
label smoothing and knowledge distillation compatibility: What was missing? In International
Conference on Machine Learning, pp. 2890–2916. PMLR, 2022.

Defang Chen, Jian-Ping Mei, Hailin Zhang, Can Wang, Yan Feng, and Chun Chen. Knowledge
distillation with the reused teacher classifier. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 11933–11942, 2022.

Jang Hyun Cho and Bharath Hariharan. On the efficacy of knowledge distillation. 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 4793–4801, 2019.

Tejalal Choudhary, Vipul Mishra, Anurag Goswami, and Jagannathan Sarangapani. A comprehensive
survey on model compression and acceleration. Artificial Intelligence Review, 53(7):5113–5155,
2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. Imagenet: A large-scale
hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009.

Prakhar Ganesh, Yao Chen, Xin Lou, Mohammad Ali Khan, Yin Yang, Hassan Sajjad, Preslav Nakov,
Deming Chen, and Marianne Winslett. Compressing large-scale transformer-based models: A case
study on bert. Transactions of the Association for Computational Linguistics, 9:1061–1080, 2021.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
networks, 2017.

Qiushan Guo, Xinjiang Wang, Yichao Wu, Zhipeng Yu, Ding Liang, Xiaolin Hu, and Ping Luo. Online
knowledge distillation via collaborative learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 11020–11029, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016.

Byeongho Heo, Jeesoo Kim, Sangdoo Yun, Hyojin Park, Nojun Kwak, and Jin Young Choi. A
comprehensive overhaul of feature distillation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 1921–1930, 2019.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
ArXiv, abs/1503.02531, 2015.

Zehao Huang and Naiyan Wang. Like what you like: Knowledge distill via neuron selectivity transfer.
ArXiv, abs/1707.01219, 2017.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, pp. 4171–
4186, 2019.

Jangho Kim, SeongUk Park, and Nojun Kwak. Paraphrasing complex network: Network compression
via factor transfer, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Solomon Kullback. Information theory and statistics. Courier Corporation, 1997.

10



Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and F Huang. A tutorial on energy-based
learning. Predicting structured data, 1(0), 2006.

Kimin Lee, Honglak Lee, Kibok Lee, and Jinwoo Shin. Training confidence-calibrated classifiers for
detecting out-of-distribution samples, 2018.

Gilbert Newton Lewis and Merle Randall. Thermodynamics. Number 44. Krishna Prakashan Media,
1963.

Seyed-Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, Nir Levine, Akihiro Matsukawa, and Hassan
Ghasemzadeh. Improved knowledge distillation via teacher assistant, 2019.

Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. When does label smoothing help? Advances
in neural information processing systems, 32, 2019.

Frank Nielsen and Ke Sun. Guaranteed bounds on the kullback-leibler divergence of univariate
mixtures using piecewise log-sum-exp inequalities. arXiv preprint arXiv:1606.05850, 2016.

Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Relational knowledge distillation. 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3962–3971,
2019.

Nikolaos Passalis and Anastasios Tefas. Learning deep representations with probabilistic knowledge
transfer. In ECCV, 2018.

Baoyun Peng, Xiao Jin, Jiaheng Liu, Shunfeng Zhou, Yichao Wu, Yu Liu, Dong sheng Li, and
Zhaoning Zhang. Correlation congruence for knowledge distillation. 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), pp. 5006–5015, 2019.

Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model compression via distillation and quantiza-
tion. In International Conference on Learning Representations, 2018.

Yi Ren, Yangjun Ruan, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-Yan Liu. Fastspeech:
Fast, robust and controllable text to speech. Advances in Neural Information Processing Systems,
32, 2019.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. CoRR, abs/1412.6550, 2015.

Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical
journal, 27(3):379–423, 1948.

Zhiqiang Shen, Zechun Liu, Dejia Xu, Zitian Chen, Kwang-Ting Cheng, and Marios Savvides. Is
label smoothing truly incompatible with knowledge distillation: An empirical study. arXiv preprint
arXiv:2104.00676, 2021.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive representation distillation. In Interna-
tional Conference on Learning Representations, 2019.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive representation distillation. ArXiv,
abs/1910.10699, 2020.

Frederick Tung and Greg Mori. Similarity-preserving knowledge distillation. 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 1365–1374, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. Structured pruning learns compact and accu-
rate models. In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1513–1528, 2022.

11



Kunran Xu, Lai Rui, Yishi Li, and Lin Gu. Feature normalized knowledge distillation for image
classification. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part XXV 16, pp. 664–680. Springer, 2020.

Junho Yim, Donggyu Joo, Jihoon Bae, and Junmo Kim. A gift from knowledge distillation: Fast
optimization, network minimization and transfer learning. 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 7130–7138, 2017.

Li Yuan, Francis EH Tay, Guilin Li, Tao Wang, and Jiashi Feng. Revisiting knowledge distillation via
label smoothing regularization. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 3903–3911, 2020.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. ArXiv, abs/1605.07146, 2016.

Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the
performance of convolutional neural networks via attention transfer. ArXiv, abs/1612.03928, 2017.

Yichen Zhu and Yi Wang. Student customized knowledge distillation: Bridging the gap between
student and teacher. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 5057–5066, October 2021.

12



A APPENDIX

A.1 THE SUM OF LOGITS

Hinton et al. (2015) presume that the
∑

j zj equals zero during training without further analysis. We
conducted experiments on the CIFAR-100 dataset to verify this assumption. Table 8 shows that the
logits are close to zero for all models used.

Table 8: The sum of logits

ResNet20 ResNet32 ResNet44 ResNet56 ResNet110

Logits Sum -5e-5 -4.7e-5 -5.7e-5 -7.9e-4 -6.1e-5

WRN-16-1 WRN-16-2 WRN-16-3 WRN-16-4 VGG13

Logits Sum -4.8e-5 -6.1e-6 -5.5e-5 -1.2e-5 -3.1e-5

A.2 MORE EXPERIMENTS ON CIFAR-100

Table 9: CIFAR-100 experiments when the teacher’s architecture is significantly different.

Teacher
Student

vgg13
MobileNetV2

ResNet50
MoblieNetV2

ResNet50
vgg8

ResNet32*4
ShuffleNetV1

ResNet32*4
ShuffleNetV2

WRN-40-2
ShuffleNetV1

Teacher 74.64 79.34 79.34 79.42 79.42 75.81
Student 64.60 64.60 70.36 70.50 71.82 70.50
KD 67.37 67.35 73.81 74.07 74.45 74.83
FitNet 64.14 63.16 70.69 73.59 73.54 73.73
AT 59.40 58.58 71.84 71.73 72.73 73.32
SP 66.30 68.08 73.34 73.48 74.56 74.52
CC 64.86 65.43 70.25 71.14 71.29 71.38
VID 65.56 67.57 70.30 73.38 73.40 73.61
RKD 64.52 64.43 71.50 72.28 73.21 72.21
PKT 67.13 66.52 73.01 74.10 74.69 73.89
AB 66.06 67.20 70.65 73.55 74.31 73.34
FT 61.78 60.99 70.29 71.75 72.50 72.03
NST 58.16 64.96 71.28 74.12 74.68 74.89
CRD 69.73 69.11 74.30 75.11 75.65 76.05
SKD 68.62 69.26 74.41 75.08 76.02 76.42
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