
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TSTTC: A LARGE-SCALE DATASET FOR TIME-TO-
CONTACT ESTIMATION IN DRIVING SCENARIOS

Anonymous authors
Paper under double-blind review

ABSTRACT

Time-to-Contact (TTC) estimation is a critical task for assessing collision risk and is
widely used in various driver assistance and autonomous driving systems. The past
few decades have witnessed development of related theories and algorithms. The
prevalent learning-based methods call for a large-scale TTC dataset in real-world
scenarios. In this work, we present a large-scale object oriented TTC dataset in the
driving scene for promoting the TTC estimation by a monocular camera. To collect
valuable samples and make data with different TTC values relatively balanced, we
go through thousands of hours of driving data and select over 200K sequences
with a preset data distribution. To augment the quantity of small TTC cases, we
also generate clips using the latest Neural rendering methods. Additionally, we
provide several simple yet effective TTC estimation baselines and evaluate them
extensively on the proposed dataset to demonstrate their effectiveness.

1 INTRODUCTION

In recent years, there has been a growing trend towards equipping vehicles with Advanced Driver
Assistance System (ADAS), which consists of several subsystems such as Adaptive Cruise Control
(ACC), Automated Emergency Braking (AEB) and Forward Collision Warning (FCW). ADAS
aims to detect potential hazards as quickly as possible and alert the driver, or take corrective action
to improve driving safety. AEB and FCW are critical features of ADAS that protect drivers and
passengers and prevent traffic accidents. They both rely on the estimation of Time-to-Contact (TTC)
which is defined as the time for an object to collide with the observer’s plane. Although TTC can be
predicted using data from various sensors, such as LiDAR, radar or camera. Vision-based methods are
particularly attractive due to their low-cost and have been a popular choice among ADAS designers
and manufacturers. Even in high-level (L3+) autonomous driving system, direct TTC estimation
could also serve as an redundant observation when other distance measuring sensors fail.

NeRF Scenes

…

𝜏𝑖−5 = 2.3

…

𝜏𝑖 = 1.9

Real Scenes

𝜏𝑖−3 = 2.1

…

𝜏𝑖−5 = 3.1 𝜏𝑖−7 = 3.1 𝜏𝑖 = 2.4𝜏𝑖−3 = 2.7

… ……

𝜏𝑖−3 = 2.9

Figure 1: Example sequences and annotations from our dataset. The τ denotes the TTC ground-truth
while the subscript denotes the frame index. We could observe that, the scale of the object increases
as the TTC decreases.

Prior to the widespread adoption of deep learning, numerous vision-based theories and algo-
rithms LOURAKIS (1999); Meyer & Bouthemy (1992); Dagan et al. (2004); Camus (1995); Byrne &
Taylor (2009) for estimating TTC had been proposed. These algorithms are not data-driven, and usu-
ally rely on hand-crafted cues. Recently, several deep learning based TTC estimation algorithms have

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

emerged Badki et al. (2021); Yang & Ramanan (2020) and demonstrate promising results in driving
scenarios. The emergence of deep learning has brought more powerful tools to computer vision and
also brought higher demands for large-scale datasets. However, due to the lack of large-scale TTC
datasets that capture real-world driving scenarios, these methods have to pre-train their model on
synthetic flow datasets Mayer et al. (2016); Dosovitskiy et al. (2015); Ilg et al. (2018).

In this paper, we primarily address the challenge of TTC estimation in highway scenarios. Com-
pared to urban scenarios, high speed driving in highway exhibits longer braking distances, thereby
necessitating a broader range of perception capabilities. In order to facilitate the development of
vision-based TTC estimation algorithms, we propose a large-scale monocular TTC dataset in this
paper, using a class 8 heavy truck as the data collection platform. From raw data collected in urban
and highway scenarios, we identify over 200K sequences covering a depth range of 400 meters. Each
sequence contains six consecutive frames captured at a rate of 10Hz, with 2D, 3D bounding box and
TTC ground-truth provided for a single object in each frame. Additionally, to address the limited
availability of samples in rare scenarios, such as sudden braking (e.g. small TTC cases), we utilize
Neural Radiance Fields (NeRF) Mildenhall et al. (2020) to generate additional data. These artificially
generated data can be seamlessly integrated into our dataset, thereby increasing the quantity and di-
versity of data available for training. Fig.1 illustrates two typical examples from our dataset: vehicles
are gradually approaching in real scenes and NeRF scenes, respectively. Besides the proposed dataset,
we focus on object level TTC estimation rather than pixel level TTC estimation in Badki et al. (2021).
Specifically, we provide a sequence of images for a certain object and ask for estimating the TTC
value of it in the last frame. 2D Bounding boxes are available as optional inputs. Then we provide
simple yet effective baselines based on the relationship between the scale ratio of objects in adjacent
frames and TTC. We reformulate the problem as choosing the scale with the highest similarity in
adjacent frames. Inspired by recent studies Badki et al. (2021; 2020), we further transform scale
estimation from a regression problem into a set of binary classification tasks. A series of quantitative
experiments are conducted to demonstrate the effectiveness and feasibility of our proposed techniques.
Our main contribution can be summarized as follows:

• We propose a large-scale monocular TTC dataset for driving scenarios and will make it
publicly available along with relevant toolkits to facilitate the development of TTC estimation
algorithms for driving scenes.

• We propose two simple yet effective TTC estimation algorithms and extensively test them
on the dataset to validate their effectiveness, which could serve as baseline methods for
future study.

2 RELATED WORK

Task and Methods. In the scheme of monocular TTC estimation, TTC describes the time that an
object will cross the camera plane under concurrent relative velocity. Denote the depth of an object
in the camera coordinate as y, the time for the object under the current velocity to cross the camera
plane could be calculated by:

τ = −y/dy
dt = −y/ẏ, (1)

where ẏ is the relative velocity between the object and the camera. Though estimating either velocity
or depth is an ill-posed problem, TTC can be estimated from images directly because it only depends
on the ratio of them. Researchers have proposed various approaches to accomplish TTC estimation.

A viable approach is to utilize hand-crafted features such as closed contours, optical flow, brightness,
or intensity from images Dagan et al. (2004); Cipolla & Blake (1992); Horn et al. (2007); Meyer &
Bouthemy (1992); Subbarao (1990); Watanabe et al. (2015); Horn et al. (2009). Mobileye Dagan et al.
(2004) adopted geometric information of the vehicles in image to estimate TTC by establishing the
relationship between TTC and the width of vehicle. In addition to geometric-based methods, several
studies have been proposed to address the task of TTC estimation using photometric-based features,
without relying on geometric features or high-level processing. For instance, Horn et al. (2007)
adopted accumulated sums of suitable products of image brightness derivatives from time varying
images to determine the TTC value. Furthermore, Watanabe et al. (2015) elucidates the relationship
between TTC and the changes in intensity in images. However, these hand-crafted features need
carefully tuned parameters or strong priors, such as constant brightness Horn et al. (2007) or static
scene Horn et al. (2009), which restricts their practical applicability.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Besides to hand-crafted methods, deep-learning approaches can also be employed for TTC estimation.
One alternative approach is to use scene flow estimation methods Menze & Geiger (2015); Vedula
et al. (1999); Schuster et al. (2018); Hur & Roth (2020); Yang & Ramanan (2020) that predict both
depth and velocity simultaneously, enabling the generation of pixel-level TTC estimation maps.
However, these methods depend on accurate optical flow information, which can result in significant
computational overhead. Recently, Badki et al. (2021) proposed Binary TTC that bypasses optical
flow computation and directly computes TTC via estimating scale ratio between consecutive images.
While these learning-based methods may produce more promising results, they require a larger
amount of data with annotated scene flow ground-truth. Due to the expensive labeling cost, scene flow
datasets are mostly obtained through synthesis, leading to a domain gap for real-world applications.

In addition to the aforementioned literature, single object tracking (SOT) Bertinetto et al. (2016); Li
et al. (2018); Voigtlaender et al. (2020); Cui et al. (2022); Ye et al. (2022) can also infer the scale ratio
between the template and the tracked object, serving as an alternative approach to estimating TTC.
However, these methods often rely on large downsampling rates, which may lead to the bounding box
estimation not accurate enough to meet the requirements of TTC estimation. The baseline method
which utilized SOT models in our experiment validates the similar effect.

Table 1: Comparison with several autonomous vehicle
(AV) datasets. ”2D-to-3D” indicates the presence of
tightly bounded 2D box annotations with corresponding
3D bounding boxes, which is crucial for TTC estima-
tion.U and H in scenes indicate Urban and Highway
respectively. And we report the average velocity of the
recording platform in the training set for comparison.

KITTI NuScenes Waymo Ours

Scenes U U U U+H
Frequency (hz) 10 2 10 10
Range (m) [0,125] [-80,80] [-75,75] [-160,400]
2D-to-3D ✔ ✖ ✖ ✔
Avg Speed (m/s) - 5.1 6.9 19.1
Ann. Frames 15K 40K 200K 1M
Boxes 200K 1.4M 12M 1M

Datasets. Contrary to previous TTC esti-
mation studies, our proposed dataset facil-
itates the expansion of hand-craft features
from solely relying on RGB images to uti-
lizing the features extracted by neural net-
works. Moreover, we propose a method to
address the problem of estimating the TTC
by classifying the scale ratio. And we ex-
tend the implementation on RGB images to
feature maps extracted using deep learning
models, thereby significantly enhancing the
accuracy of TTC estimation.

For TTC estimation, several datasets col-
lected in real scenes are available. For ex-
ample, Ess et al. (2009) proposed a multi-
person tracking dataset with stereo depth
details, and Manglik et al. (2019) pre-
sented a large-scale dataset for TTC estimation in indoor scenes. However, these datasets mainly
focus on low speed scenarios and are not suitable for direct application to TTC estimation in driving
scenarios. In addition to datasets specifically designed for TTC estimation, some datasets have been
synthesized for scene flow tasks and can provide detailed depth information, which are suitable for
TTC estimation. For example, KITTI scene flow Menze & Geiger (2015) proposed an outdoor scene
flow dataset containing 400 dynamic scenes collected from KITTI Geiger et al. (2012). These scenes
are annotated using 3D CAD models for vehicles in motion and manually mask non-rigid moving
objects. The Driving Mayer et al. (2016) dataset proposed a synthetic stereo video dataset rendering
in realistic style. However, these datasets are constrained by synthetic and limited scenes, which result
in domain gaps with real scenes. Except to the scene flow datasets, some RGBD datasets Saxena et al.
(2008); Schops et al. (2017); Vasiljevic et al. (2019), equipped with comprehensive depth annotations,
can be utilized to train depth estimation models, which in turn can be used for TTC estimation. How-
ever, the majority depth annotations in these datasets are typically confined to a relatively small range
(less than 50 meters) and the number of scenes available is limited. In addition to the aforementioned
datasets, several large-scale datasets proposed for autonomous driving, such as Caesar et al. (2020);
Chang et al. (2019); Manglik et al. (2019); Sun et al. (2020), offering comprehensive annotations
like 3D LiDAR bounding boxes that can be used to generate TTC ground-truth. Nevertheless, these
datasets were not specifically tailored for TTC estimation and presented issues like unbalanced TTC
distribution. Furthermore, these datasets were mainly collected from urban areas, lacking data for
highway scenarios where the estimation of TTC is particularly important. Please refer to Table 1 for
a comparison of various datasets. Compared to the aforementioned datasets, our proposed dataset
holds the distinct advantage of being large-scale and recorded in real scenarios, encompassing both
urban and highway scenes.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 DISCUSSION

A common question related to TTC is that is TTC only applicable for low level assistant driving
system? Why do we need TTC when we have distance and velocity measurement in advanced
assistant or autonomous driving system? We argue that there are two main reasons for the essence
of TTC: First, among all the three physical properties of one object (distance, velocity and time to
contact), TTC is the only direct observation from monocular image. Monocular depth estimations are
mostly from fully data-driven aspect, which highly relies on the recognition of the objects and scenes,
which suffers from out of domain issue seriously Dijk & Croon (2019). For velocity, the situation
is similar to that of depth estimation. However, TTC estimation does not require the recognition of
semantic of objects (can even be achieved by pixel photometric loss), thus has better generalization in
corner cases. Second, for a high level autonomous driving system, redundancy design is indispensable.
Even though we have distance and velocity observation, TTC can also be fused into these observations
in subsequent perception fusion modules, which serves as another independent safety guarantee.

4 TTC DATASET

4.1 DATA COLLECTION

The dataset consists of two parts, including a majority of data from real scenes and a minority of data
from NeRF virtual rendering. After obtaining raw sensor data, we consider a sequence that contains a
number of consecutive frames of a vehicle as a sample. To gather valuable data, we discard truncated
objects within the camera plane and filter out 2D boxes smaller than 15 × 15 pixels.

Real Scenes. For real-world scenarios, raw data was collected by our commercial trucks. We capture
image data using three frontal and two backwards cameras with same 1024 × 576 resolution. We
adopt 2D object detection and tracking algorithms on the images to obtain 2D bounding boxes and
corresponding track ID for other vehicles. And the LiDAR and Radar data are adopted to generate
accurate depth and velocity of them. The sampling rate is 10Hz. Detailed sensor specification can be
found in the appendix. After applying these rules to filter the raw data, we observe that the resulting
data distribution is highly imbalanced across different TTC ranges. For example, vehicles with
small TTC are extremely rare in driving scenes, especially for vehicles lie in the same lanes as ego
vehicle. However these are the cases which FCW and AEB should focus on. In such conditions,
data collection without rebalancing may result in lack of these valuable scenarios. To overcome this
challenge, we pre-define a data distribution and sample the data accordingly. The sampling weights
for the TTC intervals, specifically (0,3], (3,6], (6,10], (10,15], and (15,20], is set to 14%. For the
TTC range of [-20,0), the sampling weight is designated at 30%.

NeRF Scenes. Despite thorough data collection efforts, we discover samples with small TTC values
within the same lane are still extremely scarce, which is a crucial scenario in automated driving and
ADAS. To supplement the absence of data in particular conditions, we adopt an internal undisclosed
project which is developed based on Instant-NGP Müller et al. (2022) to render novel scenes. Briefly
speaking, the background models and object models are firstly extracted and trained separately. And
then we can form a new scene and render them together. Given a specific object, we pre-define some
scripts in which the TTC of the object is distributed between 0 and 6. The preset script can be found
in our appendix. After obtaining NeRF rendered images, we organize them with the same format as
real scenes data, which serves as an optional component within the training set.

4.2 ANNOTATION

In each sequence, we provide the TTC ground-truth for every frame as the annotation. In the
following, we will describe how we generate the TTC annotation. Given a frame, we first run 2D
detection on the image and 3D detection on LiDAR. The long range LiDAR detection algorithm
which reliably covers [-160, 400] meter range. Then, we could obtain its corresponding 2D detection
box by projecting the 3D box to the image plane then picking the 2D detection box which has highest
IoU between the projected box. In the vehicle coordinate system, one corner of the 3D bounding
box could be denoted as xj , yj , zj where j ∈ {1, 2, ..., 8} is the corner index. Here, we take the

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(𝒙𝒋∗
𝒊 , 𝒚𝒋∗

𝒊 , 𝒛𝒋∗
𝒊 )

𝑡𝑖

𝑡𝑖−1

𝑡𝑖−2

𝑡𝑖

𝑡𝑖−1

𝑡𝑖−2

𝑌

X⊙Z ⊙: upwards

𝒅𝒎𝒊𝒏

Figure 2: Relative position between ego ve-
hicle and an object in bird-eye-view. Only
three frames are plotted for brevity.

Figure 3: Histogram of TTC GT and relative depth
of the training set.

y-coordinate of the corner point which is the closest to ego as the depth of this object:

j∗ = argmin
j∈{1,2,...,8}

(
√

(xi
j − 0)2 + (yij − 0)2 + (zij − 0)2), where yi = yij∗ , (2)

where yi is the depth of the vehicle in i-th frame. Here, we assume the relative velocity between the
vehicle and ego is constant in a short time interval (e.g. q frames) to acquire a stable estimation of the
velocity. Given the depth of the vehicle in the past q frames, we fit the depth to obtain the relative
velocity vi by RANSAC Fischler & Bolles (1981) algorithm. We set the value of q to 10 by default.
It is worth noting that the velocity is acquired prior to sequence splitting, thereby q may be greater
than the sequence length. After obtaining the depth and relative velocity of current frame, the TTC
ground-truth could be obtained by τ i = yi/vi.

Since the camera planes are almost parallel to the XZ plane in the vehicle coordinate and the origins
of these coordinate systems are highly aligned, we regard the TTC value calculated in the vehicle
coordinate system as the TTC ground-truth for camera planes. The annotation process is illustrated in
Fig 2. One may challenge that using past 10 frames to fit the velocity may result in latency in velocity
estimation especially for sudden break. To remedy this issue, we first generate TTC ground-truth
with different q (e.g. 3, 5 and 10) and consider the vehicle with varied TTC values as an accelerating
or decelerating object. For object with varied TTC values, we select the one closest to the TTC
computed by the velocity of radar sensor as the ground truth. Note that we do not directly utilize
radar sensors for all objects since they could not cover too distant objects. The data annotations are
then manually checked by our annotation team to ensure the quality

4.3 DATASET STATISTICS

We construct the dataset following the pre-defined rules and annotation pipeline, resulting in 206K
sequences comprising over 1M frames from real scenes, as well as 1K sequences from 6.0K NeRF
rendered images. We split the sequences from the real scenes based on their recorded date to training,
validation and test sets, yielding 149.1K, 28.8K, and 28.6K sequences respectively. For better
understanding the data distribution, we plot the histogram of the TTC ground-truth and depth in the
training set in Fig. 3. The distribution in validation and test set is similar. Note that the far away
samples are rare because we set a minimum 2D bounding box size. More detailed information about
the dataset statistics is provided in our appendix.

4.4 TASK DEFINITION

As the tracklet of a vehicle is collected in the format of fixed length sequences, we formulate the TTC
estimation task in sequence level. For a sequence of a specific vehicle, we provide six consecutive
frames and their corresponding 2D bounding boxes as input. The last frame in the sequence is
considered as the target frame while the rest of the frames serve as references. With all frames and
boxes available in the sequence, the objective is to predict the TTC value of the object in the target
frame or equivalently relative scale ratio between the target box and the referenced one.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

5 METRICS & METHOD

In this section, we first review the relationship between TTC estimation and scale ratio briefly. Then,
we explicate the evaluation metrics for our TTC estimation task. Subsequently, we introduce our
approach, which comprises two variants: the pixel MSE approach and its deep learning counterpart.

5.1 ESTIMATE TTC VIA SCALE RATIO

As shown in Sec. 4, TTC could be obtained by depth and its rate of change. However, estimating the
depth and relative velocity of an object directly with only a monocular camera is very challenging. To
address this issue, researchers proposed to estimate the TTC of frontal-parallel, planar non-deformable
objects according to the change of object scales. As described in Horn et al. (2007), we can obtain
the image size of a frontal-parallel, non-deformable object of size S at distance y as:

s = fS/y, (3)

where f is the focal length of the camera. For an object without rotation, TTC can be formulated as a
function of object size in image space by combining Eq. equation 1 and equation 3:

τ =
t1 − t0

1− s(t0)
s(t1)

=
t1 − t0
1− α

, (4)

where s(t0) and s(t1) are the sizes of image of an object in frame t0 and t1 correspondingly. Thus,
the estimation of TTC can be simplified as a scale ratio estimation problem which can be done with
only observations in image space. With the development of deep learning, modern object detectors or
tackers could produce relatively accurate 2D bounding boxes for vehicles. Given the detection or
tracking bounding box in consecutive frames of a vehicle, one intuitive idea is that we can use the
ratio of the box or mask area to accomplish the scale ratio estimation. However, are these bounding
boxes accurate enough for the TTC estimation task and does there exist more accurate scale ratio
estimation algorithms under such conditions? We try to answer these questions via experimental
validation on the proposed dataset.

5.2 EVALUATION METRICS

Before introducing the detailed design, we need to design the metrics for evaluation. Here, we adopt
Motion-in-Depth (MiD) error and Relative TTC Error (RTE) as performance indicators, which could
be denoted as:

MiD = || log(α)− log(α̂)||1 × 104,

RTE = ||τ − τ̂

τ
||1 × 100%,

(5)

where α and α̂ mean the ground-truth and predicted scale ratios while the τ̂ denotes predicted TTC
value. The scale ratio ground-truth α is obtained by Eq. equation 4. MiD is utilized in previous
works Yang & Ramanan (2020); Badki et al. (2021) to describe the TTC error indirectly from the
perspective of scale ratio. Due to the instability of TTC at larger values, we prioritize the MiD as
the primary metric. With the purpose of revealing more information from the evaluation metrics, we
partition several TTC intervals, namely crucial(c) / small(s) / large(l) / negative(n)1, which correspond
to TTC values of 0∼3, 3∼6, 6∼20, and -20∼0, respectively. We mark them on the indices of the RTE
and MiD. The threshold for crucial cases is determined by rounding the typical TTC threshold of 2.7
seconds used in FCW systems Seyedi et al. (2021); Zhu et al. (2020). This division allows a more
detailed analysis of the performance for the TTC estimation algorithms in different TTC intervals,
providing a better understanding of their limitations and strengths. During the prediction, TTC values
that exceed the predefined range will be truncated to the boundary value.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

t1

𝑡0

Crop

Resize

Pixel MSE

Similarity

Measurement

{𝒢(𝑭0, 𝒃0
𝒊 )}

𝒢(𝑭1, 𝒃1)

Backbone

𝒃1

𝓑
Conv Pred

Deep Scale

GT

 ✓

FC

{𝒢(𝑭0, 𝒃0
𝒊 )}

𝒢(𝑭1, 𝒃1)

Similarity

Measurement





✓

Average

Similarity Measurement

⊗

Figure 4: Framework of our proposed methods. After aligning the size between contents in b1 and B,
an operator

⊗
is applied to measure their similarity. For simplicity, we only illustrate three scale

rates of B. Some operations such as center shift are omitted for brevity. The green dashed box and
the orange dashed box represent Pixel MSE and Deep Scale, respectively.

5.3 OUR DESIGN

Formulation. We denote the 2D bounding box as b = [x, y, w, h] where x, y represent the center
coordinate and w, h denote the width and height. Given a reference frame F0 and a target frame
F1, b0 = [x0, y0, w0, h0] and b1 = [x1, y1, w1, h1] are bounding boxes of a specific object in these
two frames. The core idea of our methods is to estimate the relative scale ratio of this vehicle
between the reference frame and the target frame. A straightforward approach is simply adopting
the scale ratio between b0 and b1 as the result. However, this strategy is largely influenced by the
precision of detection algorithms. In our methods, we estimate the scale ratio change in these two
frames in pixel space or feature space, yielding two kinds of implementation: Pixel MSE and Deep
Scale. For the reference frame, we enumerate n different scale ratios to obtain a series of scaled
boxes B = [bα1

0 ,bα2
0 , ...,bαi

0 , ...,bαn
0 ] where bαi

0 = [x0, y0, αiw1, αih1]. Then, we crop F0 via B
and resize them to a target size of W,H , which could be denoted as G(F0,b

αi
0 ) for the i-th scale

ratio, where G(F,b) denotes the crop b on F and resize it. Similarly, we could get G(F1,b1) for
the target frame. Finally, we use an operator to measure the similarity between G(F0,b

αi
0 ) and

G(F1,b1), yielding n similarity scores. With five frames free to reference, taking different frames
as the reference will produce different scale ratios. To address this issue, we convert scale ratio to
corresponding TTC value via Eq. equation 4 and convert it to the scale ratio under the setting of
10Hz when computing MiD. We list the relationship between different scale ratios of same τ in the
appendix.

Pixel MSE. We can measure the similarity between G(F0,b
αi
0 ) and G(F1,b1) in image space with

Mean Squared Error (MSE). The weighted sum of the top k similar scale ratios is adopted as the final
estimation and the weight is normalized by the reciprocal of MSE. The top of Fig. 4 illustrates the
pipeline of Pixel MSE.

Deep Scale. For the deep version, we first input two images into a backbone network for feature
extraction. Afterwards, the grid sampling operation is used to align the features of different box sizes
into one fixed size. Then, we calculate the similarity of each position in the two feature maps via
cosine similarity, yielding a similarity map Si. Afterwards, the similarity score of scale αi is obtained
by adopting a Global Average Pooling (GAP) operation to Si. Then we concatenate the similarity
scores of different scale ratios and use a Fully-Connected (FC) layer to obtain the final prediction.
During training, binary cross-entropy (BCE) loss is used and we adopt the strategy proposed in Li
& Wang (2020); Yin et al. (2019) to convert the scale ratio ground-truth to a size n vector as soft
label. Similar to Pixel MSE, we apply a top k weighted sum operation to get the final results and the
weight is defined as the sigmoid of the FC output. For fast inference, we adopt a convolutional layer
followed by a stage of modified CSPNet Wang et al. (2020) used in Ge et al. (2021) as our backbone.
After obtaining backbone features, we fed them into one transposed convolutional layer and two
convolutional layers before similarity measurement. To capture subtle details, all the stride in the

1Negative TTC indicates away from the observer.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

network is set to 1 except the first and the transposed convoultional layer which are set to 2 yielding a
feature map with the same size of input. The framework is illustrated at the bottom of Fig. 4.

Center Shift. The boxes predicted by the object detection model may be inaccurate, which will
bring misalignment between the centers of reference and target boxes. To address this problem, we
introduce a center shift operation. Specifically, we enumerate an offset of [−c, c] along height and
width direction, respectively, which yields a total of (2c+ 1)× (2c+ 1) candidates. After obtaining
(2c+ 1)× (2c+ 1) similarity scores for a single scale, we adopt the highest score as the final score
for both Pixel MSE and Deep Scale. Our experiments show that this operation will bring significant
improvement in terms of MiD and RTE with little time cost.

6 EXPERIMENTAL VALIDATION

6.1 IMPLEMENTATION DETAILS

Pixel MSE. For Pixel MSE, we validate its performance on validation, and test set. The target size
W,H after interpolation is set to the size of b1. The scale ratio is set to the range of [0.65, 1.5] to
cover samples with different scale ratios in the training set. The number of scale bins n is 125, the
top k for the weighted sum and the c for center shift are 3. Besides, the detection boxes are manually
expanded with a maximum ratio of 1.1 (if the expanded boxes do not exceed the image boundary) to
reduce the influence of inaccurate detection results.

Deep Scale. In terms of Deep Scale, we train it for 36 epochs on the train/train+val set dataset
for evaluation on val/test respectively with a batch size of 16 using SGD Goyal et al. (2017). The
image is resized to 1024× 576 for both training and test phases. We adopt random color on HSV
space as data augmentation during training. The weight decay and SGD momentum parameters are
set to 0.0005 and 0.9, respectively. We start from a learning rate of 10−4× BatchSize and adopt
cosine learning rate schedule. The target size is set to 50× 50 for grid sample as larger size does not
bring more benefits. The input channel for the backbone is set to 12, while the channel for the three
followed convolutional layers is set to 24. The kernel size of the convolutional layers is 7 while the
transposed one is 3. For the scale range and box expansion, we keep them the same as Pixel MSE.
Besides, the number of scale bins n, the top k for the weighted sum and the c for center shift are set
to 20, 4 and 1 respectively. We test the latency of all models with FP16 and batch size of 1 on a 3090
GPU.

Table 2: Main results of different methods on the validation
set. The † means the result is obtained under padding NeRF
data. The % after RTE is omitted for brevity.

Methods MiD MiDc MiDs MiDl MiDn RTE

Detection 213.9 675.4 305.1 112.4 115.3 58.1
SOT Ye et al. (2022) 200.8 641.1 261.1 77.4 158.8 57.1
Pixel MSE 41.0 57.4 36.5 32.5 48.4 29.9
Depth 62.3 111.9 74.6 36.1 68.4 47.3
LiDAR 6.4 12.5 6.0 5.3 3.3 -
Deep Scale 14.4 27.1 16.4 10.9 13.5 12.1
Deep Scale† 14.3 26.5 15.2 10.8 13.5 12.0

Besides the aforementioned methods,
we further propose two baselines
termed as Detection and SOT in Ta-
ble 2. For Detection, the scale ratio
is obtained by simply computing the
ratio between the area of the target
box and the reference box. As for
SOT, given a target box, we adopt a
state-of-the-art (SOTA) SOT tracker
Ye et al. (2022) to obtain a reference
box and then estimate the scale ratio
as the same as in Detection. For the
Depth method, we first estimate the
depth using a mono depth estimation model and then utilize RANSAC to fit the TTC value. Our
experiments on the validation set demonstrate that the relative error of the depth estimation is only
10.7%. However, the relative TTC error and MiD error are significantly worse than our proposed
method, reaching 47.3% and 62.3 respectively. The primary reason for such large errors is the
inherent noise present in the depth estimation. For the LiDAR model, it is a internal sparse detector
like SECOND Yan et al. (2018) and FSDv2 Fan et al. (2023). The 3D bboxes in the training set were
generated by an internal algorithm. The tracker we used is Simple Track Pang et al. (2021). The
average BEV IoU between the 3D bboxes generated by internal algorithm and the manual annotations
on the validation and test sets is 83.1%. Details of these algorithms are provided in our appendix.
Although there are other methods available, such as Yang & Ramanan (2020); Badki et al. (2021),

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

the models released by the authors achieve poor results in our dataset due to the domain gap, and no
training codes are provided.

6.2 MAIN RESULTS

The detailed comparison between various methods is presented in Tab. 2. Due to page constraints, we
report only their performance on the MiD metric and overall RTE. As observed, the RTE predicted
by box detection or tracking methods is approximately 50%, which is inadequate for practical
applications. In contrast, our Pixel MSE method demonstrates significantly lower MiD errors,
indicating more accurate scale ratio estimations and consequently, lower RTEs. Among learning-
based methods, our Deep Scale significantly outperforms the depth estimation method, although
it remains inferior to the LiDAR detection + tracking algorithm. Nevertheless, it achieves the best
performance among methods that utilize images.

Target Box Reference Box GT & Predictions

Figure 5: Case study for our Pixel MSE and
Deep Scale, best viewed in color. For the last
column, box with green, red and blue color
denote the scaled box obtained by GT, Pixel
MSE and Deep Scale.

In addition to quantitative results, we also illustrate
several cases in Fig. 5 for intuitive understanding.
In the last column, we draw the scaled target box
in the reference frame which is obtained by utiliz-
ing the center of the reference box and the scale ra-
tio obtained from various methods and ground truth.
From the first and second cases, we can observe that
the Deep Scale is more robust to the illumination
changes and inaccurate detection boxes compared to
Pixel MSE. In the last row, we showcase a failure
case caused by a severely inaccurate detection box.
As described before, our methods are sensitive to
the alignment between the box center of the target
and reference frame, which is also a limitation of
our methods. These cases also reveal the key dif-
ference between TTC estimation and tracking task:
TTC estimation requires far more accurate estima-
tion than tracking, while tracking usually focuses on
complicated appearance change.

7 LIMITATIONS

Our work is a large-scale benchmark for Time-To-Contact estimation, but there are still some
limitations that need to be addressed in future works. In regard to our dataset, the collected data
primarily focuses on trucks and cars in highway and urban scenarios, lacking more diverse categories
that are commonly found in autonomous driving datasets, such as cyclists and pedestrians. Besides,
we have to acknowledge that due to the inherent differences in distribution between our dataset and
real-world scenarios, there may be potential challenges when directly applying the model trained on
our dataset to real-world contexts.

Furthermore, the baseline methods proposed in this study operate under the assumption that objects
exhibit frontal-parallel characteristics and are non-deformable. However, it is essential to acknowledge
that real-world conditions are considerably more intricate, and these methods may yield suboptimal
performance when the underlying assumption is not met. Additionally, as we mentioned earlier, our
methods are sensitive to the alignment between the box center of the target and reference frame,
which poses another limitation.

8 CONCLUSION

In this work, we built a large-scale TTC dataset and provided a simple yet effective TTC estimation
algorithm as baselines for the community. Our dataset is characterized by its focus on objects in
driving scenes, which contains both urban and highway scenarios and covers a wider range of depth.
We hope that our proposed dataset could facilitate the development of TTC estimation algorithms.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Abhishek Badki, Alejandro Troccoli, Kihwan Kim, Jan Kautz, Pradeep Sen, and Orazio Gallo. Bi3D:
Stereo depth estimation via binary classifications. In CVPR, 2020.

Abhishek Badki, Orazio Gallo, Jan Kautz, and Pradeep Sen. Binary TTC: A temporal geofence for
autonomous navigation. In CVPR, 2021.

Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea Vedaldi, and Philip HS Torr. Fully-
convolutional siamese networks for object tracking. In ECCV, 2016.

Jeffrey Byrne and Camillo J Taylor. Expansion segmentation for visual collision detection and
estimation. In ICRA, 2009.

Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush
Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuScenes: A multimodal dataset for
autonomous driving. In CVPR, 2020.

TA Camus. Calculating Time-to-Contact using real-time quantized optical flow. 1995.

Junyi Cao, Zhichao Li, Naiyan Wang, and Chao Ma. Lightning nerf: Efficient hybrid scene represen-
tation for autonomous driving. arXiv preprint arXiv:2403.05907, 2024.

Ming-Fang Chang, John Lambert, Patsorn Sangkloy, Jagjeet Singh, Slawomir Bak, Andrew Hartnett,
De Wang, Peter Carr, Simon Lucey, Deva Ramanan, et al. Argoverse: 3d tracking and forecasting
with rich maps. In CVPR, 2019.

Roberto Cipolla and Andrew Blake. Surface orientation and time to contact from image divergence
and deformation. In ECCV, 1992.

Yutao Cui, Cheng Jiang, Limin Wang, and Gangshan Wu.
MixFormer: End-to-End tracking with iterative mixed attention. In CVPR, 2022.

Erez Dagan, Ofer Mano, Gideon P Stein, and Amnon Shashua. Forward collision warning with a
single camera. In IV, 2004.

Tom van Dijk and Guido de Croon. How do neural networks see depth in single images? In CVPR,
2019.

Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas, Vladimir Golkov,
Patrick Van Der Smagt, Daniel Cremers, and Thomas Brox. FlowNet: Learning optical flow with
convolutional networks. In ICCV, 2015.

Andreas Ess, Bastian Leibe, Konrad Schindler, and Luc Van Gool. Robust multiperson tracking from
a mobile platform. PAMI, 2009.

Lue Fan, Feng Wang, Naiyan Wang, and Zhaoxiang Zhang. Fsd v2: Improving fully sparse 3d object
detection with virtual voxels. arXiv preprint arXiv:2308.03755, 2023.

Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for model fitting with
applications to image analysis and automated cartography. Communications of the ACM, 1981.

Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian Sun.
YOLOX: Exceeding yolo series in 2021. arXiv preprint arXiv:2107.08430, 2021.

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for Autonomous Driving? the
KITTI vision benchmark suite. In CVPR, 2012.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz
Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He.
Accurate, large minibatch SGD: Training ImageNet in 1 hour. arXiv preprint arXiv:1706.02677,
2017.

Berthold KP Horn, Yajun Fang, and Ichiro Masaki. Time to Contact relative to a planar surface. In
IV, 2007.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Berthold KP Horn, Yajun Fang, and Ichiro Masaki. Hierarchical framework for direct gradient-based
Time-to-Contact estimation. In IV, 2009.

Junhwa Hur and Stefan Roth. Self-supervised monocular scene flow estimation. In CVPR, 2020.

Eddy Ilg, Tonmoy Saikia, Margret Keuper, and Thomas Brox. Occlusions, motion and depth
boundaries with a generic network for disparity, optical flow or scene flow estimation. In ECCV,
2018.

Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu. High performance visual tracking with
siamese region proposal network. In CVPR, 2018.

Zhichao Li and Naiyan Wang. DMLO: Deep matching lidar odometry. In IROS, 2020.

MIA LOURAKIS. Using planar parallax to estimate the Time-to-Contact. In CVPR, 1999.

Aashi Manglik, Xinshuo Weng, Eshed Ohn-Bar, and Kris Kitani. Future near-collision prediction
from monocular video: Feasibility, dataset, and challenges. In IROS, 2019.

Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cremers, Alexey Dosovitskiy, and
Thomas Brox. A large dataset to train convolutional networks for disparity, optical flow, and scene
flow estimation. In CVPR, 2016.

Moritz Menze and Andreas Geiger. Object scene flow for Autonomous vehicles. In CVPR, 2015.

F. Meyer and P. Bouthemy. Estimation of Time-to-Collision maps from first order motion models
and normal flows. In ICPR, 1992.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. NeRF: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics
primitives with a multiresolution hash encoding. ToG, 2022.

Ziqi Pang, Zhichao Li, and Naiyan Wang. Simpletrack: Understanding and rethinking 3d multi-object
tracking. arXiv preprint arXiv:2111.09621, 2021.

Ashutosh Saxena, Min Sun, and Andrew Y Ng. Make3d: Depth perception from a single still image.
In AAAI, 2008.

Thomas Schops, Johannes L Schonberger, Silvano Galliani, Torsten Sattler, Konrad Schindler, Marc
Pollefeys, and Andreas Geiger. A multi-view stereo benchmark with high-resolution images and
multi-camera videos. In CVPR, 2017.

René Schuster, Oliver Wasenmüller, and Didier Stricker. Dense scene flow from stereo disparity and
optical flow. arXiv preprint arXiv:1808.10146, 2018.

MohammadReza Seyedi, MohammadReza Koloushani, Sungmoon Jung, and Arda Vanli. Safety
assessment and a parametric study of forward collision-avoidance assist based on real-world crash
simulations. Journal of Advanced Transportation, 2021.

Muralidhara Subbarao. Bounds on Time-to-Collision and rotational component from first-order
derivatives of image flow. Computer Vision, Graphics, and Image Processing, 1990.

Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui, James
Guo, Yin Zhou, Yuning Chai, Benjamin Caine, et al. Scalability in perception for autonomous
driving: Waymo open dataset. In CVPR, 2020.

Igor Vasiljevic, Nick Kolkin, Shanyi Zhang, Ruotian Luo, Haochen Wang, Falcon Z Dai, Andrea F
Daniele, Mohammadreza Mostajabi, Steven Basart, Matthew R Walter, et al. Diode: A dense
indoor and outdoor depth dataset. arXiv preprint arXiv:1908.00463, 2019.

Sundar Vedula, Simon Baker, Peter Rander, Robert Collins, and Takeo Kanade.
Three-Dimensional scene flow. In ICCV, 1999.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Paul Voigtlaender, Jonathon Luiten, Philip HS Torr, and Bastian Leibe.
Siam R-CNN: Visual tracking by re-detection. In CVPR, 2020.

Chien-Yao Wang, Hong-Yuan Mark Liao, Yueh-Hua Wu, Ping-Yang Chen, Jun-Wei Hsieh, and I-Hau
Yeh. CSPNet: A new backbone that can enhance learning capability of cnn. In CVPR workshops,
2020.

Yukitoshi Watanabe, Fumihiko Sakaue, and Jun Sato. Time-to-Contact from image intensity. In
CVPR, 2015.

Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embedded convolutional detection. Sensors,
2018.

Gengshan Yang and Deva Ramanan. Upgrading optical flow to 3D scene flow through optical
expansion. In CVPR, 2020.

Botao Ye, Hong Chang, Bingpeng Ma, Shiguang Shan, and Xilin Chen. Joint feature learning and
relation modeling for tracking: A one-stream framework. In ECCV, 2022.

Zhichao Yin, Trevor Darrell, and Fisher Yu. Hierarchical discrete distribution decomposition for
match density estimation. In CVPR, 2019.

Meixin Zhu, Xuesong Wang, and Jingyun Hu. Impact on car following behavior of a forward collision
warning system with headway monitoring. Transportation research part C: emerging technologies,
2020.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

9 APPENDIX

SENSOR SPECIFICATION

GNSS

cam1cam3 cam4 cam8

cam9

radar2

radar3 radar1

radar4radar5

Lidar2 Lidar1

𝑌

X⊙Z ⊙: upwards

Lidar4

Figure 6: Sensor layout and coordinate system. The coordinate system of radars and Lidars are
omitted for brevity. And GNSS means the Global Navigation Satellite System.

In our research, we conducted a comprehensive data collection process utilizing five cameras with
varying focal lengths, five radar sensors, and three Lidar sensors. The spatial arrangement of these
sensors is visually depicted in Fig. 6. Furthermore, we provide detailed specifications of the cameras
in Tab. 3.

MORE DETAILS ABOUT DATA STATISTIC

Figure 7: Distribution of object sizes and time-of-day.

Real scenes comprise 10.8% ur-
ban/suburban and 89.2% highway
data. However, rare cases with small
TTC on the same lane ([0,6]) make up
only 0.02% of real scenes. To address
this, we have supplemented these rare
cases using data synthesized by NeRF.
The synthesized data, constituting 5K
sequences, represents highway scenes and
is exclusively used for the training set. The
data distribution of training set for object
sizes and time-of-day are shown in Fig 7.
As data in training, validation, and test sets
are randomly split, their distributions are
consistent, so we’ve omitted the latter two.

Table 3: Camera specification. all images captured by the cameras are subjected to downsampling
and cropping, resulting in a size of 1024x576 pixels. The camera’s horizontal field of view (HFOV)
refers to the angular range covered by the camera along the y-axis in the x-y plane of the camera
sensor frame.

Camera 1 3 4 8 9

HFOV ±63.2◦ ±40.4◦ ±18.4◦ ±63.2◦ ±63.2◦

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Besides, the geographical distribution of
the dataset spans two cities: Shanghai and Hebei in China.

MORE EXPLANATION ON MID COMPUTING

In the Sec 5.3 of our main paper, we first convert the predicted scale ratio under different FPS settings
to corresponding TTC value and then convert the TTC value to the scale ratio under the setting of
10Hz. Actually, the scale ratios computed under different FPS settings could convert to each other.
Since the TTC ground-truth for the target frame is specific, we could get the relationship between the
scale ratios (e.g. αm, αn) under different FPS settings (e.g. FPSm, FPSn) by Eq.(5) in our paper:

αm =
1

FPSn

FPSm
(1/αn − 1) + 1

. (6)

In practice, the scale ratios obtained under different FPS settings are converted to the 10Hz setting
via Eq equation 6 directly.

DETAILED RESULTS

Table 4: Detailed results of different methods. The † means the result is obtained under padding
NeRF data. The % after RTE is omitted.

Methods Validation Set
MiD MiDc MiDs MiDl MiDn RTE RTEc RTEs RTEl RTEn

Detection 213.9 675.4 305.1 112.4 115.3 54.2 58.1 56.3 55.0 50.2
SOT Ye et al. (2022) 200.8 641.1 261.1 77.4 158.8 52.8 57.1 50.9 48.1 58.4
Pixel MSE 41.0 57.4 36.5 32.5 48.4 29.9 11.3 13.0 31.0 44.3
Depth 62.3 111.9 74.6 36.1 68.4 47.3 - - - -
LiDAR 6.4 12.5 6.0 5.3 3.3 - - - - -
Deep Scale 14.4 27.1 16.4 10.9 13.5 12.1 6.3 8.7 13.0 14.8
Deep Scale† 14.3 26.5 15.2 10.8 13.5 12.0 6.2 8.4 12.9 14.6

We report detailed results of different methods on validation set in Tab. 4 of both MiD and RTE.
Furthermore, we have included visualizations in GIF format in the supplementary material located
at ./Vis/monoDepth visualization to compare our proposed method and TTC estimation
via depth estimation. These visualizations provide a more intuitive understanding of the noise in the
depth estimation.

ABLATION STUDY

To validate the contribution of different components and hyper-parameters, we perform extensive
experiments and report the results on the validation set unless otherwise specified. Default hyper-
parameters are denoted in bold.

Number of Scale Bin. To probe the suitable scale bins for our Pixel MSE, we conduct ablation
experiments, as shown in Table 5. The performance continues to boost until scale bin number reaches
125 and then becomes stable. Thus, we take the 125 bins as the default setting. To determine the
optimal scale bin number n for Deep Scale, we vary the value of n from 10 to 30. As shown in
Table 6, the MiD and RTE continuously decrease until n = 20, after which they tend to be stable.
However, an increase in scale bins results in a larger computation cost. As a consequence, we set n to
20 by default.

Center Shift. In this experiment, we present a comparison between the results obtained with and
without center shift operation. We list the results for both pixel MSE and Deep scale, as shown in
Table 7. The center shift operation is effective in reducing the estimation error.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 5: Influence of scale bins n in Pixel MSE

n 50 75 100 125 150
MiD 42.5 41.8 41.3 41.0 41.0
RTE(%) 31.9 31.9 30.8 29.9 30.0
Time(ms) 10.0 13.6 15.5 18.5 21.2

Table 6: Influence of scale bins n in Deep Scale.

n 10 15 20 25 30
MiD 16.8 14.9 14.4 14.4 14.4
RTE(%) 13.5 12.7 12.1 12.4 12.2
Time(ms) 11.7 11.9 12.0 12.2 12.4

Table 7: Ablation on the center shift operation
for Pixel MSE and Deep Scale

Pixel MSE Deep Scale
w/ S w/o S w/ S w/o S

MiD 41.0 73.3 14.4 17.2
RTE(%) 29.9 37.6 12.1 14.6
Time(ms) 18.5 17.4 12.0 10.8

Table 8: Ablation on padding different amounts of
NeRF rendered sequences.

Seqs MiD MiDc MiDs MiDl MiDn

0 K 14.4 27.1 15.5 10.9 13.5
3 K 14.5 27.1 15.4 10.8 13.6
5 K 14.3 26.5 15.2 10.8 13.7
7 K 14.6 26.7 15.4 11.2 13.8

NeRF Augmentation. To investigate the impact of supplementing NeRF data on the training process
for the Deep Scale, we conducted ablation experiments by adding different numbers of NeRF
sequences. The added NeRF sequences were randomly selected from the NeRF data we rendered.
To avoid the potential impact of data randomness on the experimental results, we report the average
results of five runs with different random seeds in Table 8. The results show that padding NeRF
sequences can effectively reduce the MiD error in crucial scenes. However, too many NeRF sequences
lead to a slight decrease in overall performance. Therefore, we use 5K rendered NeRF sequences in
our experiments.

On Target Size. In this experiment, we ablate the target size W,H for grid sample in Deep Scale
and we keep W = H when conducting ablation for convenience. Table 9 lists the result for different
settings and we can observe that the performance continuously to boost until 50 and then becomes
stable. As a consequence, we set the default target size to 50.

Table 9: Influence of the target size for grid sam-
pling.

Size 10 25 50 75 100
MiD 20.0 14.9 14.4 14.8 14.9
RTE(%) 16.3 12.4 12.1 12.3 12.7

Table 10: Influence of the kernel size.

K 1 3 5 7 9
MiD 18.5 15.1 14.8 14.4 14.0
RTE(%) 15.2 12.3 12.3 12.1 11.8

On Kernel Size. Without large downsampling rate in our Deep Scale, the receptive field is mainly
decided by the kernel size of the convolutional layers. To find the optimal kernel size, we train our
model with the kernel size ranging from 1 to 9 and report the results in Table 10. Although increasing
the kernel size can improve the performance, it comes at the cost of longer inference latency. As a
trade off, we set the default kernel size to 7.

On Plate Blur. To verify whether the plate blur will influence the scale ratio estimation, we conduct
ablation experiments. We test the MiD and RTE on the validation, and test set in w/ and w/o blur
settings for the Pixel MSE. For the Deep Scale, we train the model on the blurred train/train+val
set and report the result of val/test set in w/ and w/o blur settings. As shown in Table 11, for both
methods, the plate blur operation brings negligible differences. As a conclusion, we take the dataset
with blurred license plates as the release version.

Number of Frame Gap. In this experiment, we validate the influence of frame gap for both Pixel
MSE and Deep Scale. The minimum and maximum scale ratio for different frame gaps are adjusted
according to Eq. equation 6. For the Deep Scale, we train our model in different frame gaps. As
for testing, we maintain the frame gap consistent with the training settings to ensure optimal results.
We list detailed results in Table 12. Larger frame gap brings more obvious scale changes and thus
benefits the classification process. As a result, we set the default frame gap to 5.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 11: Ablation on plate blur for our methods

Pixel MSE Deep Scale
w/ blur w/o blur w/ blur w/o blur

Val MiD 41.0 41.0 14.4 14.4
RTE(%) 29.9 30.0 12.1 12.1

Test MiD 40.3 40.3 14.8 14.8
RTE(%) 28.7 28.7 12.3 12.3

Table 12: Ablation on the frame gap for Pixel MSE and Deep Scale.

Gap 1 2 3 4 5

PixelMSE MiD 102.1 61.2 46.4 41.2 41.0
RTE(%) 95.7 59.0 42.8 35.1 29.9

DeepScale MiD 31.5 22.7 18.1 15.8 14.4
RTE(%) 29.5 20.1 15.9 13.5 12.1

MORE VISUALIZATION

In Fig. 8, we present more samples from our dataset, covering different ranges of TTC, meteorological
fluctuations, and models rendered using NeRF. To get more intuitive understanding for different
methods, we present more cases for visualization in Fig. 9. In the first column of Fig. 9, we plot
the detection boxes of the target frames. In the second column, we show the boxes generated from
detection and tracking model. For the last column, we show the scaled boxes obtained by GT,
Pixel MSE and Deep Scale. As we can observe, the Pixel MSE produces unsatisfactory outcomes
when object images encounter significant illumination changes or low quality, as exemplified in the
first, second, and fourth cases. In contrast, the Deep Scale metric continues to perform robustly.
Nonetheless, severe occlusion remains a challenge that adversely affects the performance of both
Pixel MSE and Deep Scale, as demonstrated in the third case.

Additionally, we have included enhanced visualizations in GIF format within our supplementary ma-
terial. These visualizations, which can be found in the ./Vis/prediction visualization
and ./Vis/scene visualization directories, separately showcase qualitative results and
various scene representations.

NERF RELATED

Scene Generation. The overview of the NeRF scene pipeline is as follows:

1. Object and scene segmentation: We apply object detection and segmentation methods to the
collected data.

2. Rendering: Both object and scene rendering are based on Instant-NGP, but with independent
pipelines and models.

3. Acceleration and database creation: We use LiDAR point clouds to accelerate the rendering
process, based on Cao et al. (2024). This allows us to construct an object bank and a scene
library.

4. Object-scene integration: When rendering, we select a scene and choose objects from our
bank that best match the scripted object trajectories. As the object positions are already
known, their pixels are rendered using object NeRF, while the rest use scene NeRF.

5. Shadow rendering: We calculate shadow areas based on preset sun angles and 3D object
bounding boxes, then render these areas using Blender.

To assess the quality of these generated images, we calculated the Fréchet Inception Distance (FID)
between the generated NeRF images and the images in the validation set. The corresponding FID
score is 12.1, indicating a good level of similarity between the generated and real images.

NeRF Scipt. For the scripts used for NeRF rendering, we list them in Table 13. vego and vvehicle
denote the initial speed of ego and the target vehicle respectively. The y denotes the relative distance

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

NeRF Scenes

…

𝜏𝑖−5 = −2.8

…

𝜏𝑖 = −3.2

Real Scenes

𝜏𝑖−3 = −3.0

…

…

𝜏𝑖−5 = 3.2

…

𝜏𝑖 = 2.7𝜏𝑖−3 = 2.9

…

…

𝜏𝑖−5 = 3.1 𝜏𝑖 = 2.5𝜏𝑖−3 = 2.7

……

𝜏𝑖−3 = 2.9

…

𝜏𝑖−5 = 2.7 𝜏𝑖 = 2.3

……

𝜏𝑖−3 = 2.5

Figure 8: More visualization for samples in real and NeRF scenes.

Target Box GT & Prediction 

Boxes

Det & Tracked

Boxes
Target Box GT & Prediction 

Boxes

Det & Tracked

Boxes

(1) (3)

(2) (4)

Figure 9: More visual comparison of the detection, tracking, and proposed methods, best viewed in
color. In the second column, we use the blue and red color to distinguish the box from detection and
tracking. For the last column, box with green, red and blue color denote the scaled box obtained by
GT, Pixel MSE and Deep Scale.

in depth direction and we only consider the straight lane when setting the scripts. We permute and
combine the speed of ego and vehicle to get more scenarios. For the rendered images, we also adopt
the detection model to generate 2D bounding boxes and the truncated objects will be discarded to
ensure the completeness.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 13: Script for NeRF rendering.

No. Initial Status Script
vego(km/h) vvehicle(km/h) y(m)

1
40
60
80

vego 50 1. Ego drives at vego while the target vehicle de-
celerates at a speed of -3m/s2.
2. After 3 seconds, ego decelerates with an accel-
eration of -4m/s2 until its velocity matches that of
the target vehicle.

2
40
60
80

vego−20 65 1. Ego drives at vego.
2. At a distance range of (10, 50, 5)m to the target
vehicle, ego performs a lane change at a constant
lateral relative speed of 2m/s, until it is completely
in a different lane from the target vehicle.

3 60
80

20
40 65 1. Ego gradually accelerates towards the tar-

get vehicle with an acceleration of range(0.5, 3,
0.5)m/s2.
2. When the distance between ego and the target
vehicle is within the range of (10, 50, 5)m, the
target vehicle changes lanes with a constant lateral
relative speed of 2m/s from a adjacent lane, until
ego and the target vehicle are completely in same
lane. At the same time, ego decelerates at -4m/s2

within the same distance range of (10, 50, 5)m.

4 60
80 60 65 1. Ego drives at vego while the target vehicle de-

celerates at a speed of -3m/s2.
2. After 3 seconds, ego decelerates with an accel-
eration of -4m/s2 until its velocity matches that of
the target vehicle.

5 40
60

20
30 65 1. Ego drives at vego while the target vehicle grad-

ually accelerates with an acceleration range of (0.5,
3, 0.5)m/s2.
2. At a distance range of (20, 60, 4)m to the target
vehicle, ego smoothly changes lanes with a lateral
velocity range of (0.5, 1.5, 0.2)m/s, until ego and
the target vehicle are completely in different lanes
or the distance between them is less than 5m.

6
40
60
80

vego−30 65 1. Ego drives at vego while the target vehicle
gradually accelerates with an acceleration range of
(0.5,3,0.5)m/s2.
2. When the distance to the target vehicle is in the
range of (10, 50, 4)m, ego gradually decelerates
with an acceleration of -(1, 4, 0.5)m/s2 until ego’s
velocity matches the target vehicle’s velocity or the
distance between them is less than 5m.

18


	Introduction
	Related work
	Discussion
	TTC Dataset
	Data Collection
	Annotation
	Dataset Statistics
	Task Definition

	Metrics & Method
	Estimate TTC via Scale Ratio
	Evaluation Metrics
	Our Design

	Experimental Validation
	Implementation Details
	Main Results

	Limitations
	Conclusion
	Appendix

