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Abstract

Genomic (DNA) sequences encode an enormous amount of information for gene
regulation, protein synthesis, and numerous other cellular properties. Similar to
natural language models, researchers have proposed foundation models in ge-
nomics to learn generalizable features from unlabeled genome data that can then
be fine-tuned for downstream tasks such as identifying regulatory elements. Due
to the quadratic scaling of attention, previous Transformer-based genomic models
have used 512 to 4k tokens as context (<0.001% of the human genome), signifi-
cantly limiting the modeling of long-range interactions in DNA. In addition, these
methods rely on tokenizers or fixed k-mers to aggregate meaningful DNA units,
losing single nucleotide resolution (i.e. DNA "characters") where subtle genetic
variations can completely alter protein function via single nucleotide polymor-
phisms (SNPs). Recently, Hyena, a large language model based on implicit con-
volutions was shown to match attention in quality while allowing longer context
lengths and lower time complexity. Leveraging Hyena’s new long-range capa-
bilities, we present HyenaDNA, a genomic foundation model pretrained on the
human reference genome with context lengths of up to 1 million tokens at the
single nucleotide-level – an up to 500x increase over previous dense attention-
based models. HyenaDNA scales sub-quadratically in sequence length (training
up to 160x faster than Transformer), uses single nucleotide tokens, and has full
global context at each layer. We explore what longer context enables - including
the first use of in-context learning in genomics for simple adaptation to novel tasks
without updating pretrained model weights. On a long-range species classification
task, HyenaDNA is able to effectively solve the challenge by increasing the con-
text length to 1M without downsampling. On fine-tuned benchmarks from the
Nucleotide Transformer, HyenaDNA reaches state-of-the-art (SotA) on 12 of 18
datasets using a model with orders of magnitude less parameters and pretraining
data.2 On the GenomicBenchmarks, HyenaDNA surpasses SotA on 7 of 8 datasets
on average by +10 accuracy points, and by as much as +20 accuracy points on en-
hancer identification. Code available at https://github.com/HazyResearch/hyena-
dna.

∗Equal contribution. † Equal senior authorship. 1Stanford University. 2Harvard University. 3SynTensor.
4Mila and Université de Montréal.

2On benchmarks from Nucleotide Transformer, HyenaDNA uses a model with 1500x fewer parameters
(2.5B vs 1.6M) and 3200x less pretraining data (3202 vs 1 human reference genome).
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Figure 1.1: HyenaDNA recipe for long-range foundation models in genomics. The HyenaDNA
architecture is a simple stack of Hyena operators [37] trained using next token prediction. (See Fig.
1.3 for block diagram of architecture). We introduce a new sequence length scheduling technique to
stabilize training, and provide a method to leverage the longer context length to adapt to novel tasks
without standard fine-tuning by filling the context window with learnable soft prompt tokens.

1 Introduction

Understanding and learning from DNA sequences has long been a goal of biologists and deep learn-
ing researchers, as its “language” encodes instructions essential for all living things [16]. The map-
ping from DNA instructions, genotypes, to observable function and traits, phenotypes, remains on-
going research effort. Towards this goal, researchers have proposed using foundation models (FMs)
in genomics to learn generalizable features from unstructured whole genome data that can then be
fine-tuned for a number of tasks including predicting the location and function of genes, identifying
regulatory elements, and analyzing the evolution of species [25, 10, 20, 3, 53, 58]. In contrast to
protein sequences, which have had successes in protein language models [29, 31, 32, 17, 5, 41, 14],
DNA sequences are orders of magnitudes longer (e.g. the human genome is 3.2B nucleotides) with
long-range dependencies and interactions that span over 100k+ nucleotides in length [1]. Over-
coming the long-range limitations of current generation models could help drive the next wave of
innovations in AI-powered drug discovery and therapeutics, and enable genomic FMs to understand
and learn in-context whole patient genomes in a personalized way.
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Figure 1.2: Pretraining on the human reference
genome using longer sequences leads to better
perplexity (improved prediction of next token).

Limitations of current models Previous
genomic FM approaches have relied on
attention-based Transformers [25, 10, 53, 58],
but face a number of challenges unique to
DNA sequences. The attention mechanism
scales quadratically in sequence length, with
current genomic FMs pretraining on only 512
to 4,096 tokens as context [25, 58, 10, 55],
<0.001% of the human genome. Also preva-
lent is the reliance on fixed k-mers, akin to
DNA “words”, and tokenizers to aggregate
meaningful DNA units. However, single nu-
cleotide alterations represent physical analogs
where, for example, single nucleotide poly-
morphisms (SNPs) and mutations can have a
profound impact on biological properties in-
cluding regulatory activity [33]. In contrast,
natural language semantics can often be con-
served when single character or word changes occur over very long contexts. Therefore, having
both long-range context and single nucleotide resolution simultaneously is critical, and remains a
particular challenge in genomics.
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Figure 1.3: HyenaDNA block architecture. A Hyena operator is composed of long convolutions and
element-wise gate layers. The gates are fed projections of the input using dense layers and short
convolutions. The long convolutions are parameterized implicitly via an MLP that produces the
convolutional filters. The convolution itself is evaluated using a Fast Fourier Transform convolution
with time complexity O(L log2 L).

Toward longer context models Recently, Hyena [37], a large language model based on implicit
convolutions, was shown to match attention in quality while reducing computational time complex-
ity, thereby allowing a longer context to be processed. Hyena uses a parameter-efficient global con-
volutional filter along with a data-controlled gating mechanism, which enables a context-specific
operation over every token. Indeed, Hyena showed that for simple associative recall tasks using
synthetic data, a shallow 2 layer model could effectively process context lengths at 131k tokens. We
hypothesize that Hyena’s core operations can unlock the potential to capture both the long-range and
single nucleotide resolution of real genomic sequences over attention-based approaches. To test this,
we explore two questions: (i.) Can a convolutional long-context model be used effectively at sin-
gle nucleotide resolution? (ii.) What new capabilities could long-context genomic foundations
models enable?

HyenaDNA The result of our investigation is HyenaDNA, a genomic FM pretrained on the human
reference genome at context lengths up to 1 million tokens at single nucleotide resolution - an
up to 500x increase over existing genomic FMs using dense-attention. HyenaDNA scales sub-
quadratically in sequence length (training up to 160x faster than attention at sequence length 1M),
uses single nucleotide tokens, and has a global receptive field at each layer. Our contributions include
a "full-stack" recipe for building genomic FMs, including architecture design, a warm-up schedule
to speed up training on ultralong sequences, and an efficient downstream adaptation procedure based
on soft prompting and in-context learning.

Full-stack genomics modeling We start with a decoder-only Hyena architecture pretrained us-
ing next nucleotide (token) prediction. We forego standard aggregating tokenizers, using a single-
character tokenizer and a minimal DNA vocabulary of 4 nucleotides (plus special tokens). Training
stability becomes an issue at ultralong sequences (200k+). To overcome this issue, we introduce a
sequence length warm-up scheduler that gradually increases sequence length in stages. At sequence
length 450k, training time is reduced by 40%, while boosting accuracy by 7.5 accuracy points on a
species classification task. Furthermore, we design downstream adaptation procedures to leverage
longer context windows, as simpler and more flexible alternatives to standard fine-tuning in ge-
nomics. This includes a novel soft prompt technique where learnable tokens (up to 32k) are injected
directly into the input sequence itself, enabling competitive downstream results without the need to
update a pretrained model.

Genomic downstream tasks We apply our pretrained HyenaDNA models to 29 diverse down-
stream genomic tasks to showcase its long-range ability as well as fine-grain resolution. On
fine-tuned benchmarks from the Nucleotide Transformer [10], HyenaDNA achieves state-of-the-

3



art (SotA) on 12 of 18 datasets while using a model with orders of magnitude less parameters and
pretraining data (see Tab. 4.2). On the GenomicBenchmarks [23], HyenaDNA surpasses SotA on
7 of 8 datasets on average by +10 accuracy points, and by as much as +20 accuracy points on en-
hancer function identification. On a novel species classification task, HyenaDNA effectively solves
the challenge by increasing the context length to 1 million tokens. In a challenging chromatin profile
experiment, a 919-way multi-task, HyenaDNA performs competitively against a larger SotA sparse-
attention BigBird Transformer [55]. Finally, we analyze the learned embeddings of a pretrained
HyenaDNA model by clustering sequences by biotype (gene or transcription type) and compare the
results with existing genomic FMs, showing that HyenaDNA can serve as an effective universal
featurizer in genomics.

2 Preliminaries and Related Work

2.1 Transformers and Attention

Powering many recent foundation models is the attention mechanism. Given a length-L sequence
x ∈ RL×D, a (single-headed) layer of scaled self-attention [2, 51] is a map from RL×D to RL×D

which performs the following operations:

A(x) = σ(xWqW
⊤
k x

⊤), y = A(x)xWv (2.1)

where D is the embedding dimension, Wq,Wk,Wv ∈ RD×D are learnable linear maps and σ
indicated row-wise softmax (and optional scaling). Attention computes all pair-wise comparison for
every token, and scales asO(L2) in sequence length. This allows a global context at high resolution,
but limits the size of the context on current hardware.

Previous methods to reduce the quadratic cost of attention have used specialized methods to ap-
proximate full dense attention [18]. In sparse attention, elements attend only to a subset of all other
positions. Alternatively, linear attention methods construct approximations to A(u) that can be eval-
uated in subquadratic time. Both of these classes of methods, however, trade lower time complexity
(allowing longer sequences) for loss in expressivity.

2.2 Long Context Strategies in Genomics

To achieve longer context, genomic models have relied on two strategies: i. tokenization and ii.
dilation and downsampling. Tokenization is a necessary step in masked language modeling (MLM)
with bidirectional Transformer architectures (BERT) [13], a common model in genomics. These
tokenizers use fixed k-mers (short overlapping sequences of length k) or frequency-based byte pair
encoding (BPE), that attempt to aggregate DNA into meaningful units [25, 55]. Consequently,
these aggregation techniques create large new vocabularies (compared to the natural vocabulary
of 4 nucleotides) that are less generalizable [49]. The second strategy uses dilated convolutions
and downsampling, both of which essentially average or skip elements between weights [18]. A
canonical example is the Enformer, which uses dilation and downsampling to reach context lengths
of 100k nucleotides to predict gene expression tracks [1]. Common across tokenization, dilation,
and downsampling is the sacrifice of single nucleotide resolution to reach longer context.

2.3 Large Convolutional Models

A discrete convolution between an input x of length L and a (learnable) filter h is given by:

yt = (h ∗ x)t =
L−1∑
t′=0

ht−t′xt′ or equivalently y = Tx. (2.2)

where T ∈ RL×L is the Toeplitz matrix corresponding to the convolution. Historically, convolutions
have played an important role in deep learning and more broadly signal processing. More recently,
it has been shown that by stacking k long convolution layers, where k is parametrized through a
function γθ i.e. k := γθ(L), one can achieve state-of-the-art performance on a variety of benchmarks
involving long sequences, for example the Long Range Arena (LRA) [48, 24, 47, 19]. Different γθ
have been proposed in the literature: state-space models [24, 19], and implicit parametrizations via
neural fields [45, 44, 37]. On language, the H-family of implicit convolution language models,
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H3 and Hyena, [12, 37] used long convolutions and gating to match Transformer performance in
O(L log2 L) time, notably lower than the O(L2) of attention-based models.

HyenaDNA takes inspiration from these approaches, showing that attention-free, long-context causal
models can achieve high performance on downstream genomic tasks. These extended long-range
capabilities enable us to explore new paradigms in genomics, such as in-context learning to easily
adapt to new tasks without updating pretrained models.

3 HyenaDNA Long-Range Genomic Foundation Models

In this section, we introduce the HyenaDNA approach to long-range genomic sequence modeling.
We start with a description of the model architecture, then discuss sequence length warm-up and
soft prompting techniques for downstream adaptation.

3.1 The HyenaDNA Model

The HyenaDNA model is a decoder-only, sequence-to-sequence architecture defined by a stack of
blocks consisting of a Hyena operator [37], followed by a feed-forward neural network (see Fig.
1.3).

x

Wv Tv

Wx1
Tx1

Wx2 Tx2

Dx1 Th Dx2

x1

x2

v

Figure 3.1: The Hyena operator is a com-
bination of long convolutions T and data-
controlled gating D, and can be a drop-in re-
placement for attention.

Given an input x ∈ RL (L denotes sequence
length), a Hyena3 operator can be defined as:

(x1, x2, v) 7→ H(x1, x2)v

H(x1, x2) = Dx2
ThDx1

(3.1)

where x1, x2, v are projections of the input, and
Th ∈ RL×L is the Toeplitz matrix constructed
from a learnable long convolution filter produced as
the output of a neural network, (Th)ij = hi−j . The
convolution filter values themselves are obtained
through a small neural network γθ taking as input
the time (position) index and optionally positional encodings, ht = γθ(t), which enable the operator
to process very long sequences without growing linearly in the number of parameters. Further, the
matrices Dx1

,Dx2
∈ RL×L are constructed with x1, x2 on the diagonals, and evaluated as element-

wise gating. The projections are obtained by applying a dense linear layer and short convolution to
the input sequence, as shown in Figure 3.1.
Proposition 3.1. A Hyena operator can be evaluated in O(L log2 L) time.

Efficient evaluation is crucial on settings involving extremely long sequences such as genomics. In
the general case where the embedding dimension D > 1 and x ∈ RL×D, the linear projections
Wx1

,Wx2
,Wv ∈ RD×D are right multiplied to x, and D independent Hyena operators are then

applied to each dimension.

3.2 Training Long Sequence Models

Tokenization The subquadratic cost of HyenaDNA in sequence length allows the model to process
ultralong sequences directly at the single nucleotide level without the need for frequency-based
aggregation tokenizers. This enables fine-grain resolution for both short and long sequences, critical
for detecting single nucleotide polymorphisms or mutations and modeling long-range dependencies
in gene expression.

We use the natural DNA vocabulary and refer to each nucleotide as a token. The tokens include
"A", "G", "C", "T", and "N" (a non-specific nucleotide) and special character tokens for padding,
separation, and unknown characters. Tokens are mapped to embedding dimension D.

Sequence length warm-up for ultralong sequences Directly training on long sequences can af-
fect training stability as the variance in gradient increases [28]. Training on shorter sequences ini-
tially (followed by longer sequences) was used by [38] to train small scale Transformers and reduce
training time, while [28] used sequence length warm-up to address stability on up to 2k tokens.

3We discuss D = 1 and order 2 Hyena operators for simplicity.
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Figure 3.2: Sequence length warm-up re-
duces the training time of HyenaDNA at se-
quence length 450k by 40% and boosts accu-
racy by 7.5 points on species classification.

For ultralong sequences (200k+), we develop a new
warm-up schedule that gradually increases the se-
quence length in stages to improve both stability
and decrease training time.

Our sequence length schedule starts at L1 = 64,
then doubles the window at each stage while keep-
ing the global batch size constant. By doing so,
iterations at each consecutive stage will include
more tokens, ensuring the scheduler can also act
as a form of batch size warm-up. In Fig. 3.2, we
observe sequence length scheduling to be partic-
ularly important at sequence lengths greater than
450k, where at this length training time is reduced
by 40% and improving ultimate accuracy by 7.5%
points for a species classification task described
later in section 4.4.3.

3.3 Downstream Adaptation

Tuneable prompting for long-context models
Prompts have been traditionally used to guide the output of a FM [30] by prepending additional
context to an input. Expanding on this approach, soft tuneable prompting was introduced to inject
learnable tokens (as weights) into the input directly [27] as an alternative to model fine-tuning.

With an extended context length (L), we’re able to explore new paradigms in adapting FMs after
pretraining. Given a downstream task with prompts xp ∈ RT and corresponding labels yp, we
prepend N ≤ L− T trainable parameters θ of dimension D after the embedding step:

x← concat[embed(xp), θ], x ∈ RL×(T+N) (3.2)

The resulting sequences x are then processed by the model, and θ is optimized on a loss function
involving the input sequence’s label yp. Crucially, soft prompting requires utilization of a small
subset of prompt and label pairs to optimize θ.

During soft prompting, HyenaDNA only optimizes the parameters of the prompt in the input se-
quence while keeping all other model parameters fixed. Soft prompting thereby provides a flexible
and computationally efficient approach to adapting genomic FMs to new downstream tasks.

4 Experiments

In 4.1, we start with pretraining HyenaDNA on the human reference genome [22]. We then evaluate
HyenaDNA on existing short-range (<5k nucleotides) downstream benchmarks in 4.2 to assess the
performance of single nucleotide resolution. In 4.3, we explore what new capabilities emerge with
longer range genomic modeling in the form of in-context learning. Finally, we push the limits of
ultralong context performance in 4.4.

4.1 Pretraining on the Human Genome

We pretrain HyenaDNA on the human reference genome [22] using next nucleotide (token) predic-
tion. Starting with a stack of decoder-only Transformer blocks, we swap attention for the Hyena
operator, and compare against a baseline Transformer (GPT) with Flash Attention [11]. We add
gradient checkpointing to HyenaDNA to decrease the memory footprint by 3x on longer sequences
( > 160k). We then scale HyenaDNA along dimensions of model depth (2 to 8 layers), width (128
to 256 dimensions), and sequence length (1024 to 1M). At sequence length 1M, HyenaDNA is 160x
faster than its Transformer counterpart as shown in Fig. 4.1.

As shown in Fig. 1.2, we observe that as context length increases, perplexity improves during
pretraining. However, this improvement comes at the expense of more training time and tokens. For
models too shallow to effectively process longer context, perplexity can begin to degrade (increase),
observing inflection points with longer sequences. In this way, increasing context can serve as a
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novel regularization dimension. For genomic pretraining, we provide the following guidelines. 1.
In optimizing for faster training time, shorter context enable lower perplexity to be reached faster.
2. In optimizing for best overall perplexity, longer context allows for lower perplexity at the cost of
training on more tokens. See A.1 for experiment details.

4.2 Single Nucleotide Resolution
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Figure 4.1: Runtime (forward & backward
pass) for Transformer & HyenaDNA: 2 layers,
width=128, gradient checkpoint, batch size=1,
A100 80GB. At 1M tokens HyenaDNA is 160x
faster than Transformer.

Our first downstream tasks use short-range
genomic sequences (<5k) aimed at evaluat-
ing single nucleotide resolution performance
on sequence-level classification using stan-
dard fine-tuning.

GenomicBenchmarks We start with the
newly released GenomicBenchmarks [23],
which is comprised of 8 regulatory element
classification datasets with sequence lengths
of 200-500, and one up to 4,776. The original
baseline model uses a short-range CNN. We
fine-tune the pretrained Transformer (GPT)
and HyenaDNA from 4.1, both having sin-
gle nucleotide resolution, as well as the
DNABERT model [25]. HyenaDNA sets a
new SotA on 7 of 8 datasets and by up to 20%
points on the human enhancer identification
task, as shown in Tab. 4.1. See A.2 for additional experiment details and ablations.

Table 4.1: GenomicBenchmarks Top-1 accuracy (%) for pretrained
HyenaDNA, DNABERT and Transformer (GPT from 4.1), and the
previous SotA baseline CNN (scratch).

DATASET CNN DNABERT GPT HYENADNA

Mouse Enhancers 69.0 66.9 80.1 85.1
Coding vs Intergenomic 87.6 92.5 88.8 91.3
Human vs Worm 93.0 96.5 95.6 96.6
Human Enhancers Cohn 69.5 74.0 70.5 74.2
Human Enhancers Ensembl 68.9 85.7 83.5 89.2
Human Regulatory 93.3 88.1 91.5 93.8
Human Nontata Promoters 84.6 85.6 87.7 96.6
Human OCR Ensembl 68.0 75.1 73.0 80.9

Nucleotide Transformer
Next, we benchmark
against 18 datasets from
the Nucleotide Trans-
former (NT) [10], which
includes predicting reg-
ulatory elements for
enhancers, promoters,
epigenetic marks, and
splice sites from DNA se-
quences of length 200-600
nucleotides. We compare
against 3 NT base models,
which were pretrained
using masked language
modeling (BERT) and then fine-tuned. The NT models ranged from 500M to 2.5B parameters, and
pretrained on up to 3202 genomes. All NT models use 6-mer sequences of 1000 tokens long. For
HyenaDNA, we attach a linear decoder head and fine-tune a pretrained model, surpassing SotA
on 12 of 18 datasets using a model with orders of magnitude less parameters and pretraining data,
shown in Tab. 4.2. See A.2 for additional experiment details and ablations.

4.3 In-context Learning for Genomic Sequences

Compared to natural language FMs, which have shown strong success with in-context learning,
HyenaDNA’s vocabulary is very small. DNA sequences are also less diverse in structure, e.g. there’s
no concept of labels or descriptions that follow a DNA sequence. This makes it challenging to per-
form "pure" in-context learning (relying only on inference), since new concepts such as classifica-
tion labels would require new symbols. To overcome this limitation and explore the potential for
in-context learning in genomics, we make use of two variants of in-context learning: soft prompting
and instruction fine-tuning. Each involve a brief tuning phase to introduce the concept of classifica-
tion using only the existing vocabulary.

7



Table 4.2: Nucleotide Transformer (NT) Benchmarks
The Matthews correlation coefficient (MCC) is used as
the performance metric for the enhancer and epigenetic
marks dataset, and the F1-score is used for the promoter
and splice site dataset.

MODEL NT NT NT HyenaDNA
PARAMS 500M 2.5B 2.5B 1.6M
# OF GENOMES 1 3,202 850 1

Enhancer 53.5 59.3 58.0 62.6
Enhancer types 48.5 50.0 47.4 55.7
H3 73.7 77.6 81.4 81.7
H3K4me1 35.8 44.5 55.9 57.1
H3K4me2 28.1 30.0 32.6 53.9
H3K4me3 26.3 28.1 42.1 61.2
H3K9ac 46.2 50.8 57.5 65.1
H3K14ac 37.7 47.1 55.0 66.3
H3K36me3 46.7 53.3 63.2 65.3
H3K79me3 57.7 59.2 64.2 71.6
H4 76.2 78.9 82.2 79.6
H4ac 34.4 42.3 50.1 63.7
Promoter all 95.4 96.6 97.4 96.5
Promoter non-TATA 95.6 96.9 97.7 96.6
Promoter TATA 94.8 95.8 96.4 96.7
Splice acceptor 96.5 98.5 99.0 96.6
Splice donor 97.2 98.2 98.4 97.3
Splice all 97.2 97.8 98.3 97.9

Procedure In both variants, we use
the GenomicBenchmarks in 4.2, and
a HyenaDNA model pretrained on se-
quence length 160k from 4.1.

In the first experiment, we evaluate a
soft prompting approach by prepend-
ing a sequence of soft tuneable to-
kens (2 to 32k) directly in the input
sequences. We include a brief tuning
phase (< 20 epochs), updating the soft
tokens only, to provide HyenaDNA
with the ability to indicate the target
classes. To denote classes, we repur-
pose HyenaDNA’s fixed vocabulary:
for binary classification, for example,
we indicate the two classes with the
letters "A" and "N".

In the second experiment, we evalu-
ate a few-shot learning approach to
in-context learning [6] by prepending,
consecutively, k (2 to 32) demonstra-
tions of each class and its sequence
into the prompt. As before, we en-
code class labels by the use of indi-
vidual letters of HyenaDNA’s existing
vocabulary. We additionally perform
a brief instruction-tuning period [52]
for each dataset to familiarize HyenaDNA with this task structure by tuning the pretrained model on
a small subset of the dataset.

Figure 4.2: Filling long-context with soft tuneable tokens. HyenaDNA is able to learn new tasks
in-context when adding a sequence of tuneable tokens to the input sequences. Longer sequences of
tuneable tokens lead to better performance.

Results In Fig. 4.2, HyenaDNA’s performance on novel tasks improves as more tuneable tokens
are added into the input sequences, and saturates close to baseline performance (Tab. 4.1; with the
exception of the Human Regulatory dataset). By contrast, we find that increasing k-shot demonstra-
tions to the input does not necessarily improve performance. A higher number of tuning samples
is needed before k-shot demonstrations start to boost accuracy as shown in Tab. A.1. See A.3 for
experiment details.

4.4 Ultralong-Range Genomics

In our final experimental section, we focus on pushing the limits of using long context effectively in
genomics. In 4.4.1, we tackle a challenging 919 binary multi-task against a sparse-attention baseline.
In 4.4.2 we analyze the learned embeddings HyenaDNA and its use in clustering long sequences by
functional annotation, and in 4.4.3 we showcase a novel ultralong-range species classification task.

4.4.1 Chromatin Profile Prediction
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Table 4.3: Chromatin profile prediction Median
AUROC computed over three categories: Tran-
scription factor binding profiles (TF), DNase I-
hypersensitive sites (DHS) and histone marks (HM).

MODEL PARAMS LEN
AUROC

TF DHS HM

DeepSEA 40 M 1k 95.8 92.3 85.6
BigBird 110 M 8k 96.1 92.1 88.7

HyenaDNA
7 M 1k 96.4 93.0 86.3

3.5 M 8k 95.5 91.7 89.3

The prediction of chromatin profiles and
epigenetic markers from DNA sequences is
an important and challenging task to quan-
tify the functional effects of non-coding
variants. These variants include single nu-
cleotide changes in DNA that can affect the
downstream expression of genes [56]. The
DeepSEA dataset [57] is compiled from
919 chromatin features including transcrip-
tion factor (TF) binding profiles, DNase
I-hypersensitive sites (DHS) and histone
mark (HM) profiles. For a given sequence,
the task is to jointly predict 919 labels cor-
responding to the chromatin profile (similar to peak detection) of a central region of the sequence,
indicating the presence of such functional effects. The input also includes flanking regions that pro-
vide broader contextual information needed to incorporate long-range interactions. We fine-tune our
pretrained HyenaDNA models from 4.1 and perform competitively against a DeepSea CNN and the
SotA sparse attention BigBird [55] baselines using 5-30× fewer parameters. See A.4 for experiment
details.

4.4.2 Biotype Embeddings

Figure 4.3: Embedding visualisation. t-SNE of the embeddings generated by DNABERT, Nu-
cleotide Transformer and HyenaDNA coloured by Ensembl biotype annotations.

Next, we analyze the pretrained embeddings from HyenaDNA and compare them with DNABERT
[25] and the Nucleotide Transformer [10]. We encode sequences of human genes corresponding to
different biological function annotations obtained from the Ensembl dataset known as biotypes [9].
In cases where the length of the input exceeds the context window of the encoder, the sequence is
chunked (by the max length of the encoder) and averaged.

Table 4.4: Embedding quality Weighted
F1 classification score on 10 biotypes.

MODEL PARAMS LEN F1

DNABERT 110 M 512 64.6
NT 500 M 6k 66.5

HyenaDNA 7 M 160k 72.0

We fit the embeddings using an XGBoost [7] classi-
fier on the 10 most frequent biotypes, and apply t-
SNE [50] for visualization. As shown in 4.3, dis-
tinct clusterings emerge visually, while quantitatively,
HyenaDNA produces the highest F1 score in biotype
classification (with a much smaller model), indicating
that during pretraining, HyenaDNA learns informative
features related to biological function.
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4.4.3 Species Classification

The majority of the genome is conserved across species – humans and non-human primates, for
example, have <10% sequence divergence [43], making them difficult to discriminate. This allows
us to to design an ultralong-range sequence modeling task to test whether a model can determine
the source species of a random genetic sequence. To train, we randomly sample DNA sequences
from 5 different species, and fine-tune pretrained HyenaDNA and Transformer models from 4.1 to
predict the species label. We observe in Tab. 4.5 that both models struggle on shorter sequences
of length 1024, but performance improves with longer contexts as the distinct mutational profile of
each species becomes more evident. HyenaDNA effectively solves the task by using a context length
of 450k to 1 million, where Transformer cannot due to infeasible training time limitations. See A.6
for experiment details.

5 Conclusion

Table 4.5: Species classification Top-
1 accuracy (%) for 5-way classifi-
cation (human, lemur, mouse, pig,
hippo). The ✗ symbol indicates in-
feasible training time.

MODEL LEN ACC

Transformer 1k 55.4
HyenaDNA 1k 61.1

Transformer 32k 88.9
HyenaDNA 32k 93.4

Transformer 250k ✗
HyenaDNA 250k 97.9

Transformer 450k ✗
HyenaDNA 450k 99.4

Transformer 1M ✗
HyenaDNA 1M 99.5

Summary We presented HyenaDNA, a genomic foun-
dation model pretrained on the human reference genome
with context lengths up to 1 million tokens at single nu-
cleotide resolution - an up to 500x increase over previ-
ous genomic FMs using dense-attention. HyenaDNA is
able to learn generalizable features that can then be fine-
tuned for tasks including identifying regulatory elements
and on a 919-way chromatin profile prediction task. We
also explored the first use of in-context learning in ge-
nomics to enable simpler adaptation to downstream tasks
without any updates to pretrained weights.

Limitations and Future Work While demonstrating
competitive results and introducing novel capabilities, it
is worth noting that HyenaDNA was pretrained on only
one human reference genome. Incorporating genomes of
multiple humans and species could increase generalizabil-
ity in learned features and reduce bias. Furthermore, our
current focus in this study was exclusively on DNA se-
quences. Extending our framework to incorporate other
biological or chemical sequences, such as proteins and drug molecules, has the potential to unlock
multi-modal capabilities similar to those observed in natural language and vision FMs [39, 40, 54].

With respect to model size, HyenaDNA is significantly smaller than previous genomic FMs and was
pretrained using up to 8 Nvidia A100 (80GB) GPUs. We expect increasing model size, and compute,
may lead to additional long-range capabilities. Notably, with model parallelism, it becomes feasible
to extend the context length by orders of magnitude beyond this current work, and leave that open
to future research.

Furthermore, beyond discriminative applications, the use of long context models in generative tasks
unlocks exciting prospects for the design of synthetic regulatory elements, genes and protein com-
plexes. In conclusion, the continued advancements of long-range sequence models with single nu-
cleotide resolution hold great promise in driving innovation in genomic research and unraveling the
complexities of biological systems.
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A Appendix: Experimental Details

In the following sections we provide further details for each experiment. Across all experiments,
we use Pytorch and Pytorch Lightning. We train on a mix of Nvidia GPUs with A100s, V100s, and
T4s. Unless otherwise stated, we use a cross entropy loss for our objective. Our repository is made
public here: https://github.com/HazyResearch/hyena-dna.

A.1 Pretraining Details

Table A.1: Hyperparameter settings for HyenaDNA pretraining (select models).

Layers 2 2 4 4 8
Width 128 256 128 256 256
Params (M) 0.44 1.6 0.87 3.3 6.6
Max seq. len. 64k 64k 64k 64k 1M

Optimizer AdamW
Optimizer momentum β1, β2 = 0.9, 0.999
Learning rate 1.5 - 6e-4
LR Scheduler Cosine decay
Batch size 64 - 256
Global steps 10 - 20k
Weight decay (model) 0.1
Weight decay (Hyena layers) 0
Embed dropout 0.1
Residual dropout 0

Data For pretraining, we use a single human reference genome [22], and leverage the training and
validation intervals (start and end) from [1]. During training, we sample an interval and obtain a
sequence of length L by adjusting the intervals on both ends. For the test set, we use chromosomes
14 and X, exclusively, and sample non-overlapping sequences of length L.

Model We design a suite of parameter efficient architectures with depths between 2 and 8 layers,
Hyena blocks of Order-N = 2, and width 128 to 256. The MLP expansion factor (reverse bottleneck)
is 4x the width. See Fig. 1.3 for the block architecture of HyenaDNA. The parameter counts
range from 400k to 6.6M, trained on sequence lengths between 1,024 and 1M. Tab. A.1 highlights
a representative subset of the models we trained. Note: we use different pretrained model sizes
depending on the downstream task to prevent overfitting. When selecting which pretrained model
to use for a downstream task, we found that a pretrained sequence length of 2 to 4x the downstream
max sequence length results in the best performance.

Training We pretrain each model for 10-20k global steps. For models trained on longer sequences,
this translates to more tokens being used, as each sample contains more tokens. For example, the
largest model with context length 1M was trained on 2T tokens over 4 weeks. We adjust the "accu-
mulate_grad_batches" argument in Pytorch Lightning to keep the global batch size consistent across
models and sequence lengths. See Tab. A.1 for hyperparameter details.

Training efficiency We compare pretraining compute resources and GPU-hours to reach compet-
itive performance on the short-range tasks for several baselines and HyenaDNA models, shown in
Tab. A.2.

Table A.2: Pretraining GPU & runtime comparison for short-range models.

DNABERT NUCLEOTIDE TRANSFORMER HyenaDNA HyenaDNA

Params 110M 2.5B 436K 1.6M
GPUs 8-2080 TI 128-A100-80GB 1-A100-40GB 1-A100-40GB
Wall clock 25 days 28 days 80 mins 80 mins
GPU-hrs 12,000 215,000 1.3 1.3
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A.2 Short-Range Genomics Details

A.2.1 GenomicBenchmarks experiment

Data The GenomicBenchmarks [23] includes 8 datasets designed for sequence-level classification
tasks that involve predicting regulatory elements, along with one binary species task. The bench-
marks provided for the baseline model include two sets of results: one obtained with Pytorch and
the other with TensorFlow. Since our code base is implemented in Pytorch, we compare our results
with the Pytorch-based benchmarks.

Model Our backbone is a pretrained 2 layer HyenaDNA model with width 128, trained on se-
quence length 1024. We pool along the sequence dimension to obtain a classification token, and
attach a simple linear decoder head. The baseline CNN, as described by [23], uses uses an embed-
ding layer, 3 convolutional layers with number of filters: 16, 8, and 4. It uses batch norm and max
pooling after each convolutional layer, followed by 2 dense layers. It is trained for 10 epochs with
batch size 64. The mode sizes range from 120k to 520k, depending on sequence length chosen.

Table A.3: GenomicBenchmarks hyperparameters for HyenaDNA and the baseline Transformer
(GPT from 4.1), which uses FlashAttention [11].

TRANSFORMER HyenaDNA

Layers 2 2
Width 128 128
Parameters 529k 436k
Learning rate 1-6e−4 1-6e−4

Weight decay (model) 0-0.2 0-0.2
Weight decay (Hyena layers) - 0
Embed dropout 0-0.2 0.0-0.3
Resid dropout 0-0.2 0-0.3
Num heads 8 -

Optimizer AdamW
Optimizer momentum β1, β2 = 0.9, 0.999
LR scheduler Cosine decay
Batch size 128-1024
Training epoch 100
Reverse complement aug. true/false
Sequence lengths 200-4800

Training The primary hyperparameters we sweep across include: learning rate, global batch size,
dropout, weight decay, and a reverse complement augmentation. See Tab. A.3 for ranges of hyper-
paramters used.

A.2.2 Ablations on the GenomicBenchmarks

To better understand how specific design choices in the HyenaDNA model effect performance, we
perform a series of ablation experiments on the GenomicBenchmarks.

Pretraining: We train HyenaDNA from scratch and compare with the pretrained version. The pre-
trained models provide mild to moderate gains - likely due to the benchmarks being near saturation
already.

Tokenization: We train HyenaDNA using a k-mer tokenizer (k=6) to isolate the effect of the single
nucleotide tokenizer. The k-mer tokenizer drops performance significantly across on a majority of
the datasets (by as much as 10 accuracy points), while boosting one dataset (Human Enhancer
Ensembl). Therefore, the single nucleotide tokenization appears to be a significant component of
the HyenaDNA model.

Bidirectional: To ablate the impact of using a causal model, we implemented a bidirectional ver-
sion of HyenaDNA and trained from scratch on the GenomicBenchmarks (i.e. without masked
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Table A.4: GenomicBenchmarks Top-1 accuracy (%) GPT is the causal Transformer from 4.1,
HyenaDNA k-mer uses a 6-mer tokenizer, and HyenaDNA bidirection is a bidirectional version of
the Hyena operator.

MODEL GPT GPT HyenaDNA HyenaDNA
HyenaDNA HyenaDNA DNABERTk-mer bidirection

Pretrained no yes no yes no no yes

Mouse Enhancers 79.3 79.3 84.7 85.1 81.8 80.6 66.9
Coding vs Intergenomic 89.3 91.2 90.9 91.3 86.7 90.3 92.5
Human vs Worm 94.8 96.6 96.4 96.6 92.9 95.9 96.5
Human Enhancers Cohn 67.7 72.9 72.9 74.2 69.8 72.1 74.0
Human Enhancers Ensembl 79.0 88.3 85.7 89.2 88.0 85.9 85.7
Human Regulatory 90.2 91.8 90.4 93.8 90.2 89.1 88.1
Human Nontata Promoters 85.2 90.1 93.3 96.6 83.5 88.5 85.6
Human OCR Ensembl 68.3 79.9 78.8 80.9 70.2 75.3 75.1

language model pretraining). The bidirectional version degraded performance on 7 of 8 datasets
compared to the standard causal HyenaDNA (also from scratch), on average by 3.8 accuracy points.

The bidirectional HyenaDNA was implemented by using a circular FFT convolution. This involved
manipulating the padding on the input sequence before performing the FFT convolution. Previously,
we zero padded the input on the right side by length L (the sequence length). For bidirectionality,
we pad by 1/2 L on the left and right side of the input, effectively providing a bidirectional re-
ceptive field (due to the circular convolution). This is one of many possible ways to implement a
bidirectional version of Hyena.

A.2.3 Downstream prediction tasks for Nucleotide Transformer benchmark

Following the Nucleotide Transformer [10], we collected datasets from four different sources [21,
35, 34, 46].

Promoter The promoter dataset included TATA-box-containing and TATA-box-lacking promot-
ers. Tasks involved predicting promoters with a TATA-box, identifying promoters lacking a TATA-
box, and distinguishing between both promoter categories and non-promoter sequences. The pro-
moter datasets were obtained from the Eukaryotic Promoter Database (EPDnew)4 for human and
mouse genomes. Promoter sequences were extracted from regions 249 nucleotides upstream and 50
nucleotides downstream of the transcription start sites.

Enhancer For the enhancer prediction task, we used the dataset from [21] containing DNA se-
quences classified into strong enhancers, weak enhancers, and non-enhancers. The tasks involved
binary classification to distinguish enhancer sequences from non-enhancer sequences and identify
specific enhancer types.

Epigenetic Marks In the epigenetic marks prediction task, we used the dataset from [35, 36] to
predict nucleosome occupancy and modification states in the yeast genome. In 10 binary classifica-
tion tasks, the model had to discriminate between DNA regions that were occupied by histones or
not. The 10 tasks varied based on the types of histones investigated, including unmodified histones
H3 and H4, as well as histones modified by either acetylation (H3K9ac, H3K14ac) or methylation
(H3K4me1, H3K4me2, H3K4me3, H3K36me3, H3K79me3).

Splice Site For the splice site prediction task, DNA sequences from over 100 organisms were
used to predict whether the sequences contain donor or acceptor splice sites [46]. Donor splice
sites denote the beginning of an intron and acceptor splice sites the end of an intron. During RNA
splicing, these sites are recognized by the spliceosome, a complex molecular machine that enables
the removal of introns from the gene.

4https://epd.epfl.ch//index.php
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Table A.5: Hyperparameter ranges used to fine-tune HyenaDNA for all Nucleotide transformer
datasets. Exact hyperparameters per dataset can be found in our code repository.

HyenaDNA

Layers 2
Width 256
Parameters 1.6M
Optimizer AdamW
Optimizer momentum β1, β2 = 0.9, 0.999
Training epoch 100
Batch size 256-1024
Learning rate 2e-4 to 1e-3
LR scheduler Cosine decay
Weight decay (model) 0-0.2
Weight decay (Hyena layers) 0
Embed dropout 0-0.2
Resid dropout 0-0.2
Reverse complement aug. true/false
Sequence lengths 200-600

Preprocessing The Nucleotide Transformer study did not provide their exact train-test splits, ex-
cept for the enhancer dataset. Therefore, we generated our own train-test splits using a 90:10 ratio.
For the promoter dataset, negative samples were not available, and had to be generated following
the procedure described by [34].

Model & Training For the architecture, we use a HyenaDNA model with 2 layers and width
256, and trained on sequences of length 1024. We average across the tokens to obtain a single
classification token. For each task, we replaced the model head and fine-tuned the weights of the
entire model (1.6M parameters). In contrast, the Nucleotide Transformer uses a parameter-efficient
fine-tuning technique that introduces new weights and fine-tunes only the newly added weights,
while keeping the initial model weights frozen, presumably due to its large size of 500M to 2.5B
parameters. The corresponding HyenaDNA hyperparameter ranges used for training each task are
reported in Table A.5.

A.2.4 Ablations on the Nucleotide Transformer benchmarks

We perform additional ablations on the Nucleotide Transformer benchmarks to assess the impact
of pretraining, as well as attention vs. HyenaDNA, as shown in shown in Table A.6. We observed
that pretraining has a greater effect on the more challenging tasks (and as sequences become longer,
shown in A.11). On the more challenging tasks (histone marks, datasets starting with “H”), pre-
training boosts HyenaDNA metrics by up to 21 MCC points on H3K4me3. For simpler tasks (with
higher baseline scores) such as the splice sites and promoter tasks, the gain was lower (0 to 1 accu-
racy points), as these were already near saturation in performance.

A.3 In-Context Learning Details

Background A key premise of foundation models is that they are able to learn new tasks with little
to no new training data [4]. Recent advances in language modeling have demonstrated that language
foundation models can often adopt the behaviors necessary to perform new tasks in-context [6].
Here, information about the task that is to be performed, such as examples of respective inputs
and targets, are added to the input of the model. By conditioning their prediction on the provided
context, language foundation models are generally able to perform the task without any changes to
their parameters.

A key challenge for in-context learning with HyenaDNA is its limited vocabulary, which is com-
posed of only a few nucleotides, and does not provide any vocabulary for novel downstream tasks,
such as class labels. To explore the potential for in-context learning in genomics, we use two vari-
ants of in-context learning, both using a brief tuning phase to introduce HyenaDNA to the concept of
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Table A.6: Pretraining & Attention ablations on the Nucleotide Transformer (NT) bench-
marks. The Matthews correlation coefficient (MCC) is used as the performance metric for the
enhancer and epigenetic marks dataset, and the F1-score is used for the promoter and splice site
dataset.

MODEL NT GPT HyenaDNA HyenaDNA
PARAMS 2.5B 1.6M 1.6M 1.6M
PRETRAIN yes yes yes no

Enhancer 58.0 59.3 62.6 58.6
Enhancer types 47.4 51.9 55.7 48.4
H3 81.4 75.8 81.7 79.9
H3K4me1 55.9 38.7 57.1 43.4
H3K4me2 32.6 28.8 53.9 34.5
H3K4me3 42.1 28.3 61.2 40.2
H3K9ac 57.5 49.2 65.1 52.6
H3K14ac 55.0 41.6 66.3 48.0
H3K36me3 63.2 47.8 65.3 53.4
H3K79me3 64.2 58.9 71.6 59.7
H4 82.2 77.7 79.6 79.1
H4ac 50.1 36.4 63.7 43.5
Promoter all 97.4 96.3 96.5 96.1
Promoter non-TATA 97.7 96.6 96.6 96.5
Promoter TATA 96.4 96.6 96.7 96.1
Splice acceptor 99.0 97.6 96.6 96.6
Splice donor 98.4 98.1 97.3 96.5
Splice all 98.3 98.0 97.9 97.3

classification with its existing vocabulary. As a test bed for this exploration, we use 5 datasets from
the GenomicBenchmarks and a HyenaDNA pretrained on sequences of 160k length sequences.

In the first experiment, we apply a soft prompting approach [27] by adding a sequence of tuneable
tokens to the input inself. In the second experiment, we explore a few-shot learning approach [6]
to in-context learning by adding k demonstrations (DNA sequence and its label) for each class of a
dataset as input to the model. To indicate classes, we make use of HyenaDNA’s existing vocabulary
by indicating classes with specific nucleotides. For binary classification, we indicate classes with
the nucleotides "A" and "N", while additionally utilising nucleotide "G" for three-way classification.
During model tuning, we thereby optimise the same next-nucleotide prediction loss as used during
pretraining. See Table A.7 for an overview of the optimisation settings.

Figure A.1: Few-shot prompting: HyenaDNA’s performance on new tasks generally improves with
the number of tuning samples, but is less clear when isolating the number of k-shot demonstrations.
With less tuning samples, the number of k-shot demonstrations do not improve performance. As
tuning samples increase, the number of k-shot demonstrations start to improve performance.

Soft prompting details For each dataset, we prepend a sequence of n (2 to 32k) learnable tokens
Te ∈ Rn×d, each of dimension d, to the input sequences X of the model: {Te, X, SEP}, where
"SEP" indicates the separation token. We optimise these tuneable tokens for a maximum of 20
training epochs on the dataset’s training data while keeping all other model parameters fixed. We
stop training early if the model’s validation loss does not improve for two epochs. After this tuning
phase, we evaluate the model’s performance on the dataset’s full validation data. For an overview of
the results of this experiment, see Fig. 4.2 of the main text.
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Few-shot prompting details For each dataset, we prepend a set of k (0 to 32, 0 indicates regular
fine-tuning) examples of each class of a dataset (so-called "shots") to an input sequence:

X: {X1,SEP, Y1,SEP, X2,SEP, Y2,SEP, X,SEP},

where Xi indicates an example sequence of class i with label Yi (exemplified for a two-way clas-
sification task). We tune the model on n (2 to 256) such k-shot samples before evaluating its per-
formance on the dataset’s full validation data. For an overview of the results of this experiment, see
Fig. A.1.

Table A.7: Optimization settings for in-context learning.

SOFT PROMPTING FEW-SHOT PROMPTING

Optimizer AdamW AdamW
Optimizer momentum (β1, β2) 0.9, 0.999 0.9, 0.999
Learning Rate 0.001 0.0001
Batch Size 16 2
Weight Decay (model) 0 0
Weight Decay (Hyena layers) 0 0
Resid dropout 0 0
Embed dropout 0.1 0.1
Reverse complement aug. true false
LR-schedule Plateau -

A.4 Chromatin Profile Details

Background Variations in non-coding regions of the genome account for the majority of disease
and other trait-associated single-nucleotide polymorphisms (SNPs). For example, whilst not directly
altering the sequence of an encoded protein, a SNP in a non-coding region can affect the expression
of downstream genes by inducing a change in the epigenetic state [56]. Therefore predicting epige-
netic markers from a given sequence is an important task in the context of quantifying the functional
effects of non-coding variants. Previously DeepSEA [57], a deep convolutional sequence model,
has been introduced to predict chromatin features directly from non-coding sequences.

Data The authors of DeepSEA [57] compiled a dataset of 919 chromatin features from [15] and
[42] including 690 TF binding profiles for 160 different TFs, 125 DHS and 104 HM profiles. The
original DeepSEA dataset consists of 1000 base pair (bp) sequences from the hg19 human reference
genome [8] with corresponding 919-dimension multi-label target vectors. Each label corresponds
to the presence/absence of a peak in a given chromatin feature within the central 200 bp region of
the sequence. The 400 bp flanking regions of the sequence provide broader contextual information
which is beneficial to the task. Training and testing sets are split by chromosome and are strictly
non-overlapping. In total, there are 2.2 M training samples and 227,512 samples from chromosomes
8 and 9 are held-out for testing. We use the DeepSEA chromatin profile prediction task to evaluate
HyenaDNA models with varying context window. We use LiftOver [26] to convert the original
DeepSEA dataset to hg38 coordinates and expand flanking regions about the central 200 bp bin
symmetrically up to 8000 bp. Approximately 0.5% of samples are filtered in cases where LiftOver
fails or the resulting translated sequence has a different length.

Model We fine-tune several models consisting of a pretrained HyenaDNA encoder, a sequence-
level pooling layer and a fully-connected decoder to perform multilabel sequence classification.
We compare HyenaDNA against benchmarks set by DeepSEA, a convolutional sequence model,
and BigBird [55], a sparse attention based language model. The authors of BigBird fine-tune on
the DeepSEA dataset with input sequences extended to 8000 bp (asymmetrically about the center-
point by -5000 and +3000 bp). Notably BigBird utilizes a byte-pair encoding tokenization scheme
whereas HyenaDNA uses a single-character tokenizer and DeepSEA uses one-hot encodings. For
the shortest range model (1k), we average across all tokens to perform sequence-level pooling.
Whereas in the longer context model (8k) we find that extracting the last token in the sequence
as the input to the fully-connected decoder performs better. We also find that for the longer context
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model using an encoder pretrained on sequences larger than those used in fine-tuning was beneficial.
The hyperparameters of the models used in these experiments are shown in Table A.8. Note that we
reduced the depth and of models with increasing context window due to limitations on compute
cost/time.

Results The performance of the fine-tuned HyenaDNA models are summarised in Table 4.3. We
find that the smallest sequence length model (1024 bp) outperforms both DeepSEA and BigBird on
TF and DHS prediction. We find that the model pretrained on 32k sequences with only 4 layers
and fine-tuned on 8k sequences outperforms BigBird on the long range HM task but suffers from
degraded performance on the short range tasks. However, we postulate that this performance loss
may be recovered by increasing the depth of the model. We also remark that our models contain
5-30× fewer parameters compared to DeepSEA and BigBird.

Table A.8: Chromatin profile model settings. HyenaDNA hyperparameter settings used in the
chromatin profile prediction experiments (fine-tuning).

HyenaDNA

Sequence length 1024 8k

Context window 1024 32770
Width 256 256
Layers 8 4
Pooling method Average Last token
Parameters (M) 6.6 3.5

Optimizer AdamW AdamW
Optimizer momentum β1, β2 = 0.9, 0.999 β1, β2 = 0.9, 0.999
Weight decay (model) 0.1 0.1
Weight decay (Hyena layers) 0 0
Embed dropout 0.1 0.1
Learning rate 6e-4 6e-4
Batch size 64 64
Epochs 50 50

A.5 Biotype Embeddings Analysis Details

Background Sequence embeddings are useful in reducing dimensionality and capturing semantic
relationships into fixed length vectors. We analyze pretrained embedding quality from HyenaDNA
and show that it learns biologically informed features. We utilize linear probing, freezing the weights
on a pretrained model and attaching a linear classification head to predict biotype sequences. We
also use t-SNE to visualize clusterings that emerge from the embeddings.

Data The Ensembl database [9] is a comprehensive resource for gene and transcript annotations
such as biotypes. Ensembl biotypes are a classification system, based on a combination of experi-
mental evidence and computational predictions, that summarises the high-level functional properties
of genes and transcripts. For example, biotype classes may annotate whether a gene is protein-coding
or encodes a long non-coding RNA; if a gene is a disrupted homologue of a known protein coding
gene (pseudogene) and by what mechanism it is produced; or the role of a small non-coding RNA
such as post-transcriptional modification of other RNAs in the cell nucleus. We use biotype anno-
tations to qualitatively visualize the clustering of gene embeddings into functional groups. We con-
struct a multi-classification task using the top 10 most frequent biotype annotations as multi-class
target labels which we predict from the unsupervised embeddings to assess how well biological
function is encoded in the embedding space.

Model & Training We use a frozen pretrained HyenaDNA model consisting of 8 layers and width
256 pretrained on sequences of length 160k. To extract sequence-level embeddings, we average
along the sequence dimension in the final encoder layer. For comparison we also construct embed-
dings using DNABERT (5-mer) and Nucleotide Transformer. We construct embeddings for genes in
the Ensembl dataset up to a length of 160k. For genes with sequence lengths exceeding the context
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window of the encoder, we chunk the sequence and average the embeddings over the chunks. We
utilize an XGBoost [7] classifier to perform the supervised multi-classification task on the embed-
dings. The hyperparameters used are shown in Table A.9.

Table A.9: Hyperparameters. Overview of XGBoost hyperparameters used in biotype multi-
classifier.

Estimators 1000
Max depth 3
Learning rate 0.1
Objective softmax

Results As shown in 4.4, HyenaDNA achieves the highest F1 score on the biotype classification
task indicating that its embeddings contain features that are informative of biological function. No-
tably, HyenaDNA achieves this using the much smaller embedding space dimension of 256, com-
pared to DNABERT and Nucleotide Transformer, which produce embeddings of dimension 1029
and 1280, respectively.

A.6 Long-range Species Classification Details

Table A.10: Hyperparameter ranges for ultra-long range species classification task. Transformer
uses FlashAttention [11].

TRANSFORMER HyenaDNA

Layers 2 2 2 2 8 8
Sequence length 1024 32768 1024 32768 250000 450000
Width 128 128 128 128 256 256
Parameters (M) 0.5 4.5 0.4 0.4 6.6 6.6
Num heads 8 8 - - - -
Learning rate 6e−5 6e−4 6e−5 3e−4 6e−5 6e−4

Optimizer AdamW
Optimizer momentum β1, β2 = 0.9, 0.999
LR scheduler Cosine decay
Weight decay (model) 0.1
Weight decay (Hyena layers) 0
Embed dropout 0.1
Resid dropout 0
Batch size 128 - 256
Training epoch 200
Reverse complement aug. False

Background Given a genetic sequence randomly sampled from a set of different species, success-
ful identification of the source species requires a model to learn a distinct mutational profile for each
species. The more locations for discriminative mutations a model can consider, the more successful
it should be at this task. We can arbitrarily tune this task’s difficulty by including a higher number
of species or increasing the evolutionary similarity of the included species, and thus it represents a
helpful setting for measuring long context reasoning abilities for DNA sequence models.

Data We select five species for this task: human (homo sapien), lemur (lemur catta), mouse (mus
musculus), pig (sus scrofa), and hippo (hippopotamus amphibius). We hold out four chromosomes
from each species (chromosome numbers 1, 3, 12, and 13) for evaluation, and use the rest of each
species’ chromosomes for training.

Model We compare HyenaDNA against a baseline Transformer, which uses Flash Attention [11]
in the mixing layer instead of a Hyena operator. We use 2 and 8 layer models, depending on se-
quence length. For HyenaDNA, we train on sequence lengths of 1k, 32k, 250k, 450k and 1M. For
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Transformer, we limit sequence lengths to 1k and 32k due to the quadratic increase in training time,
making training infeasible on our hardware. See Table A.10 for model sizes and hyperparamters.

Training We use pretrained models from 4.1, trained on various lengths between 1k to 1M nu-
cleotides, and fine-tune them using a linear decoder head. We either pool across all tokens (1k
and 32k models) or use the last token for classification (250k - 1M models). We randomly sample
a (species, chromosome, sequence start, sequence end) tuple at each training step, with uniform
probability across all species and non-held-out chromosomes. If a sequence’s starting location on
a chromosome is such that the end of that sequence would exceed the length of the chromosome,
then we pad the sequence with N’s to its full intended length. For evaluation, we randomly sample
a (species, chromosome, sequence start, sequence end) tuple from our held-out evaluation set of
chromosomes, and record the overall Top-1 5-way accuracy of our model (i.e. fraction of sequences
correctly classified).

At sequence length 450k, we use the sequence length warm-up scheduler described in 3.2 on
HyenaDNA. This involves gradually increasing the length of sequences fed to the model during
fine-tuning from 1k to 450k. We observe better convergence and higher overall peak accuracy with
this strategy, as shown in 3.2.

Table A.11: Pretraining vs scratch on 5-way species classification. Top 1% accuracy for
HyenaDNA by sequence length.

HyenaDNA

LENGTH SCRATCH PRETRAINED
1k 53.9 61.1
32k 70.7 93.4
250k 65.7 97.9
450k 71.4 99.4

Pretraining ablation For species classification, pretraining becomes more important for longer
sequences. This is in-line with our observation that for harder tasks (including longer sequences),
pretraining becomes more important. At sequence length 250k and 450k, the scratch vs. pretraining
gap is 30+ accuracy points.
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