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Abstract

Learn to Optimize (L2O) trains deep neural network-based solvers for optimiza-
tion, achieving success in accelerating convex problems and improving non-convex
solutions. However, L2O lacks rigorous theoretical backing for its own train-
ing convergence, as existing analyses often use unrealistic assumptions—a gap
this work highlights empirically. We bridge this gap by proving the training
convergence of L2O models that learn Gradient Descent (GD) hyperparame-
ters for quadratic programming, leveraging the Neural Tangent Kernel (NTK)
theory. We propose a deterministic initialization strategy to support our theo-
retical results and promote stable training over extended optimization horizons
by mitigating gradient explosion. Our L2O framework demonstrates over 50%
better optimality than GD and superior robustness over state-of-the-art L2O
methods on synthetic datasets. The code of our method can be found from
https://github.com/NetX-lab/MathL2OProof-Official.

1 Introduction

Learn to optimize (L2O) represents an increasingly influential paradigm for tackling optimization
problems [6]. Numerous studies have demonstrated the efficacy of employing learning-based models
to achieve superior performance across a spectrum of optimization tasks. These encompass convex
problems, exemplified by LASSO [7, 8, 22] and logistic regression [23, 34], and non-convex scenarios
such as MIMO sum-rate maximization [35] and network resource allocation [33].

Distinct from black-box approaches [5, 36, 41], which directly derive solutions to optimization
problems from a neural network (NN), the so-called “white-box” methodologies are garnering
increased attention. This heightened interest stems from their inherent advantages, such as enhanced
trustworthiness [14] and theoretical guarantees [34]. A key characteristic of these white-box strategies
is the integration of mechanisms to ensure the “controllability” of the generated solutions. For
instance, Lv et al. [25] employ a NN to predict the step size for the gradient descent (GD) algorithm,
where the inherent structure of GD stabilizes the optimization trajectory. Similarly, Heaton et al. [14]
integrate a conventional solver within an L2O framework to act as a safeguard, thereby preventing
the learning-based model from producing solutions with extreme violations. This principle of guided
or constrained learning has also been extended to the training phase of L2O models [39].

Further, “unrolling” has emerged as a prominent technique within L2O [6], characterized by the
strategic replacement of components of conventional optimization algorithms with neural network
(NN) blocks [12, 15, 20]. For instance, Liu et al. [23] introduce Math-L2O that imposes architectural
constraints on unrolled L2O models by deriving necessary conditions for their convergence. Their
analysis revealed that for a L2O model to achieve optimality, its embedded NN must effectively
perform a linear combination of input feature vectors, weighted by learnable parameter matrices.
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Empirical validation demonstrates that the proposed methods exhibit strong generalization capabilities
when trained using a coordinate-wise input-to-output strategy. Subsequent research by Song et al.
[34] further enhance this generalization performance by reducing the magnitude of input features.

Despite these advancements, to the best of our knowledge, a formal demonstration of the convergence
for unrolling-based L2O methods in solving general optimization problems remains elusive. While
LISTA-CPSS [7] establishes convergence for the well-known LISTA framework [12], its analysis
is based on the assumption that neural network (NN) outputs are confined to a specific subspace,
a condition that is often not met in practical implementations. Similarly, while Math-L2O [23]
derives necessary conditions for convergence, the mechanisms by which the training process itself can
guarantee such convergence are not elucidated. Subsequent analysis by Song et al. [34] investigates
the inference-time convergence of Math-L2O. However, this work relies on a stringent training
assumption, effectively constraining the L2O model to emulate the behavior of a conventional
Gradient Descent (GD) algorithm.

This apparent deficiency in comprehensively demonstrating L2O convergence stems from two
fundamental, unresolved technical challenges. First, unrolling-based L2O models [8, 12, 22] represent
a specialized class of NN architectures. Despite much progress in understanding the training
convergence of general neural networks (NNs), notably through the Neural Tangent Kernel (NTK)
theory since 2019 [2, 3, 11, 24, 29, 30], a formal proof of training convergence remains conspicuously
absent. Such a proof is an essential precursor to establishing the convergence of the L2O model in its
primary task of solving optimization problems. Second, the precise relationship between the training
convergence achieved during the L2O model’s training phase (i.e., optimizing the NN parameters)
and the convergence of the L2O model when applied to the target optimization problem (i.e., finding
the optimal solution) is not well understood. For instance, Math-L2O [23] is designed to learn the step
size for an underlying GD algorithm. While the problem-solving efficacy of Math-L2O is naturally
evaluated based on the progression of GD iterations, its training convergence is measured in terms of
training steps (e.g., epochs). These two notions of convergence: one on model parameter optimization
and the other on problem-solving iterations, are largely decoupled and operate on fundamentally
different scales.

In this work, we present the first rigorous demonstration that an unrolling framework can achieve
theoretical convergence in solving optimization problems. Our analysis focuses on the state-of-
the-art (SOTA) Math-L2O framework, wherein a NN functions as a recurrent block, iteratively
generating hyperparameters for an underlying optimization algorithm. The solution obtained at
each iteration, which utilizes these generated hyperparameters, is then incorporated as an input
feature for the subsequent iteration [23]. This inherent recurrence imparts RNN-like characteristics
to Math-L2O, significantly complicating the analysis of its training convergence. Specifically, the
recurrent structure causes the NN to manifest as a high-order polynomial function with respect to
(w.r.t.) its input features [3]. This characteristic poses challenges for establishing tight analytical
bounds, potentially leading to looser convergence rates compared to non-recurrent architectures, as
highlighted in related NTK analyses for RNNs [3]. Moreover, the Math-L2O architecture introduces
an additional layer of complexity: the emergence of high-order polynomial dependencies not only on
the input features but also on the learnable parameters themselves. This distinct feature renders the
convergence proof for Math-L2O arguably more intricate than those for conventional RNNs, where
such parameter-dependent high-order terms are typically less pronounced.

We address the pivotal connection between the NN’s training convergence and the ultimate problem-
solving convergence of the L2O model. Within the Math-L2O framework, we establish this critical
linkage by explicitly demonstrating an alignment between the convergence dynamics exhibited during
the NN’s training phase and the convergence characteristics of its underlying backbone optimization
algorithm. This alignment provides a novel theoretical bridge, ensuring that a successfully trained
L2O model translates to effective convergence when applied to optimization tasks. Our contributions
are summarized as follows:

1. We provide a formal proof that the Math-L2O training framework substantially enhances
the convergence performance of its underlying backbone algorithms. This is achieved by
rigorously establishing an explicit alignment between the convergence rates of the training
process and the iterative steps of the backbone algorithm.
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2. We establish the first linear convergence rate for Math-L2O training. Inspired by [29], we
employ a NN architecture with a single wide layer and utilize NTK to prove the boundedness
of NN outputs, gradients, and the training loss function within the Math-L2O framework.

3. We introduce a novel deterministic parameter initialization scheme, coupled with a specific
learning rate configuration strategy. This combined approach is proven to guarantee the
training convergence of the Math-L2O model across all iterations.

4. We empirically validate our theoretical findings through comprehensive experiments. The
results showcase significant performance advantages, including up to a 50% improvement
in solution optimality over the standard GD algorithm post-training, and superior robustness
compared to SOTA L2O models and the Adam optimizer [10]. Furthermore, ablation studies
empirically confirm the practical efficacy and individual contributions of our proposed
theorems.

2 Preliminary

This section first defines the optimization problem objective and the L2O framework. The L2O
training loss is then formulated based on these definitions. Then, the NN’s computational graph is
employed to detail the forward pass and the derivation of parameter gradients.

2.1 Definitions

Let d > b, suppose x ∈ Rd×1, y ∈ Rb×1, and M ∈ Rb×d, we define the optimization objective as:

min
x∈Rd

f(x) = 1
2∥Mx− y∥22. (1)

This objective function is commonly selected for convergence analysis [4]. The least-squares
problem, a frequent subject in NN convergence studies [2, 3, 11, 21, 29], is a specific instance of the
minimization in Equation (1) where d = b and M = I.

We assume f to be β-smooth, such that ∥M⊤M∥2 ≤ β, and M to possess full row rank, with
λmin(MM⊤) = β0 > 0. This setting often favors numerical algorithms (e.g., GD) over analytical
solutions due to computational complexity. GD’s O(bd) complexity is typically lower than the O(b3)
of analytical methods involving costly matrix inversions. The loss function is then defined as the sum
of N objectives specified in Equation (1):

F (X) = 1
2∥MX − Y ∥22, (2)

where F , M ∈ RNb×Nd, X ∈ RNd×1, and Y ∈ RNb×1 represent the concatenated objectives,
parameters, variables, and labels, respectively, from N optimization problems (see Appendix A.1 for
details). F is also β-smooth, given that ∥MTM∥2 ≤ maxi=1,...,N{∥MT

i Mi∥2} = β.

Learn to Optimize (L2O). Given an initial point X0, L2O takes X0 as the input and generates a
solution, denoted as Xt, with a machine learning model. Typically, let gW denote an L-layer NN
with parameters W = {W1, . . . ,WL},Wℓ ∈ Rnℓ×nℓ−1 , n1, . . . , nL ∈ R. Math-L2O [23] takes an
iterative workflow to generate solutions. For each step t ∈ [T ] in solving the problem in Equation (1),
the NN model in Math-L2O is defined as gW (Xt−1,∇F (Xt−1)). The NN receives the current state
variable Xt−1 and its gradient ∇F (Xt−1) as input. The update rule at step t, which employs the
Hadamard product (denoted by ⊙), is formulated as:

Xt = Xt−1 − 1
βPt ⊙∇F (Xt−1), Pt = gW (Xt−1,∇F (Xt−1)). (3)

Pt represents a vector whose entries are learned step sizes. The NN gW takes structured layer-
wise architecture. It employs a coordinate-wise architecture, processing each input dimension
independently, recognized for its robustness in L2O applications [23, 34]. Thus, output dimension
of the NN is one, i.e., nL = 1. Denote [L] := {1, . . . , L}, for layer ℓ ∈ [L], we denote Gℓ,t as the
(inner) output of layer ℓ at step t. Utilizing ReLU (ReLU) [1] and Sigmoid (σ) [27] activations, Gℓ,t

is defined as:

Gℓ,t =


[Xt−1,∇F (Xt−1)]

⊤ ℓ = 0,

ReLU(WℓGℓ−1,t) ℓ ∈ [L− 1],

Pt = 2σ(WLGL−1,t)
⊤ ℓ = L.

(4)

3



The L2O training problem is defined by:

F (W ) = 1
2∥MXT − Y ∥22, XT = L2OW (X0,∇F (X0)). (5)

2.2 Layer-Wise Derivative of NN’s Parameters

Let k denote a training iteration for loss Equation (5) minimization, which is distinct from an
optimization step t for solving objective Equation (2). The computational graph in Figure 1 illustrates
the Math-L2O forward and backward operations, which parallel those of Recurrent Neural Networks
(RNNs) [13]. Figure 1a details the NN block (see Equation (4)). Figure 1b depicts the overall process:
the block takes an input solution, performs T internal optimization steps to produce an updated
solution (red dashed arrows), and each training iteration k triggers a full backward pass (blue bold
lines). As per [23], the gradient flow from the input features to the NN block is detached.

... GD

(a) NN Block

... ...

Detach: Forward: Backward:Gradient Term:

(b) Forward and Backward Processes
Figure 1: Computational Graph of Math-L2O

The derivative of an objective F w.r.t. the parameters Wℓ of layer ℓ is determined via the computational
graph, paralleling Back-Propagation-Through-Time (BPTT) for RNNs [26]:

∂F
∂Wℓ

= ∂F (XT )
∂XT

(∑T
t=1

(∏t+1
j=T

∂Xj

∂Xj−1

)
∂Xt

∂Pt

∂Pt

∂Wℓ

)
. (6)

The summation aggregates gradients across T optimization steps. ∏t+1
j=T

(∂Xj/∂Xj−1) represents
the chain rule application from the final output XT to an intermediate state Xt.

Moreover, we derive two key gradients, instrumental for establishing the theoretical results in the
ensuing section. Following Definition 2.2 in [2], the gradient of the ReLU is represented by a
diagonal matrix Dt

ℓ, where its i-th diagonal element is [Dt
ℓ]i,i := 1(WℓGℓ−1,t)i≥0 for i ∈ [nℓ]. Let

Γt := M⊤(MXt − Y ) and Ξℓ := (Id ⊗ WL)(
∏ℓ+1

j=L−1
Dj,t(Id ⊗ Wj))Inℓ

. Defining D(·) as the
operator that constructs a diagonal matrix from a vector, the gradients for an inner layer Wℓ (ℓ < L)
and the final layer WL are given by:

∂F
∂Wℓ

= − 1
βΓ

⊤
T

∑T
t=1

(∏t+1
j=T (Id −

1
βM

⊤MD(Pj))
)
D(Γt)D

(
Pt ⊙ (1− Pt/2)

)
Ξℓ ⊗G⊤

ℓ−1,t, (7)
∂F
∂WL

=− 1
βΓ

⊤
T

∑T
t=1

(∏t+1
j=T (Id −

1
βD(Pj)M

⊤M)
)
D(ΓT )D

(
Pt ⊙ (1− Pt/2)

)
G⊤

L−1,t, (8)

where ⊗ denotes the Kronecker product. Equation (8) (for WL) differs from Equation (7) (for Wℓ) in
its final terms: G⊤

L−1,t replaces ΞL ⊗G⊤
ℓ−1,t. This simplification arises as WL is the terminal layer,

and GL−1,t is its direct input from layer L − 1. Thus, its gradient calculation does not involve a
subsequent layer propagation factor analogous to ΞL.

3 L2O Convergence Demonstration Framework

This section rigorously substantiates the convergence of the L2O framework, Math-L2O. We first
expose theoretical and numerical instabilities prevalent in current SOTA L2O methods. Then, we
demonstrate Math-L2O’s accelerated training convergence compared to GD and then present a formal
methodology to establish its convergence.

3.1 Limitations Analysis of Existing SOTA L2O Frameworks

We analyze limitations in the convergence guarantees of two SOTA L2O frameworks: LISTA-
CPSS [7] and Math-L2O [23]. LISTA-CPSS [7] constructively proves that its predecessor,
LISTA [12], can attain a linear convergence rate. However, this theoretical guarantee is contin-
gent upon several stringent conditions. Math-L2O [23] proposes an L2O framework derived from
the GD algorithm, incorporating necessary conditions for convergence. Both frameworks employ
sequential solution updates and utilize BPTT for parameter optimization.

Initially, we assess training loss across varying optimization steps. This is pertinent due to the well-
documented issue of gradient explosion of BPTT arising from long-term gradient accumulation [19].
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Both models are trained on 10 randomly sampled optimization problems for 400 epochs. Figure 2
depicts training losses (y-axis) against optimization steps (x-axis) for several learning rates (distin-
guished by line color). Data points exhibiting numerical overflow (indicative of gradient explosion
at the first training iteration) are excluded, resulting in plot lines terminating before 100 steps for
affected configurations. The results demonstrate that both frameworks suffer from poor convergence
at low learning rates (LRs) and training instability at high LRs.
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(b) Math-L2O [23]
Figure 2: Training Loss of SOTA L2O Frameworks

Further, we examine the convergence conditions outlined for LISTA-CPSS [7], illustrating their
propensity for violation during typical training procedures. The first condition mandates asymptotic
sign consistency between iterates Xt and the solution X∗, requiring sign(Xt) = sign(X∗) for all t.
The second condition imposes constraints on the columns of the learned parameter matrix W relative
to the columns of the objective coefficient matrix M. Specifically, denoting column indices by i and
j, it necessitates that W⊤

i Mi = 1 and W⊤
i Mj > 1 for all j ̸= i.

Following the experimental design in [23], we quantify the violation percentage of the aforementioned
conditions during inference. The results are presented in Figure 3. We consider two settings: (i) shared
parameters W across iterations (Figure 3a), and (ii) unique parameters Wt per step t (Figure 3b).
Both scenarios reveal that the specified conditions are frequently violated post-training. For instance,
in the shared W case (Figure 3a), while the conditions hold in later steps, substantial violations occur
in early steps. The divergence contradicts the convergence rate analysis presented in [7].
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(b) Unique Wt per Step
Figure 3: Violation Ratio of LISTA-CPSS Conditions During Inference

The preceding observations highlight that training is indispensable for L2O convergence analysis.
Three fundamental questions arise in L2O: (i) What is the impact of training on convergence? (ii) How
can training be incorporated into the convergence analysis framework? (iii) What mechanisms ensure
a stable training process? We propose a concise approach to address these questions, establishing a
direct alignment between the training’s convergence rate and an existing algorithm’s rate.

3.2 L2O Convergence Demonstration: Aligning L2O to An Algorithm

First, we introduce a general convergence analysis framework. Let X∗ be the optimal solution, rt
represents an iteration-dependent rate term, and C(X0) be a constant that dependent on the initial
point X0 (and X∗), the convergence rate of an algorithm (either learned or classical) for minimizing
an objective F (X) (e.g., the objective in Equation (1) or the loss in Equation (2)) is often formulated
as: F (Xt) ≤ rtC(X0). For example, standard GD has a rate of F (Xt) ≤ β

t ∥X0 −X∗∥22 [4].

The performance of L2O models, stabilized via training, is typically assessed after T iterations [23,
34]. We formulate the L2O training convergence rate w.r.t. training iteration k as:

F (Xk
T ) ≤ rkC(X0

T ), where X0
T = L2OWk(X0

0 ), (9)
with X0

T being the initial solution from the L2O model and a constant mapping C. Based on the
proof in [38], non-learning GD algorithm’s convergence rate corresponding to the initial L2O state is:

F (X0
T ) ≤

β
T ∥X

0
0 −X∗∥22. (10)
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Given the independence of training iteration k and optimization step T , we align the LHS of
Equation (9) with the RHS of Equation (10) by setting C(X0

T ) = F (X0
T ). Given initial point is

constant that X0
T = Xk

T , this yields the combined training convergence rate:

F (Xk
T ) ≤ rk

β
T ∥X

k
0 −X∗∥22. (11)

Here, the LHS represents the objective value after k training iterations, while the RHS is a constant
term dependent on the initial point X0. W.r.t. T , Equation (11) demonstrates a sub-linear convergence
rate of at least O(1/T ). The rate indicates that integrating L2O with an existing algorithm via training
can enhance its convergence. Such integration is achieved by the Math-L2O framework [23], which
utilizes a NN to learn hyperparameters for non-learning algorithms (e.g., step size for GD, step size
and momentum for Nesterov Accelerated Gradient [4]).

Further, we construct the Math-L2O training rate rk (see Equation (9)). Section 4 establishes its
linear convergence. Subsequently, Section 5 proposes a deterministic initialization strategy to ensure
the alignment (C(X0

T ) = F (X0
T )) and uphold the theoretical conditions for this linear rate.

4 Linear Convergence of L2O Training

In this section, we establish the linear convergence rate for training a Math-L2O model employing an
over-parameterized NN, w.r.t. the loss defined in Equation (2). By training the NN (Equation (4))
using GD, we establish its linear convergence rate via NTK theory. Classical NTK theory [16]
requires infinite NN width to maintain a non-singular kernel matrix, which facilitates a gradient lower
bound akin to the Polyak-Lojasiewicz condition [29, 32]. Applying the relaxation from [29] and the
rigorous NN formalizations (Section 2), we demonstrate that an NN width of O(Nd) is sufficient.

To derive the rate, we first introduce a lemma to bound Math-L2O’s gradients. We then prove that
appropriate initialization leads to deterministic loss minimization in the initial training iteration.
After that, we develop a strategy to maintain this property throughout training, thereby ensuring
convergence. This approach culminates in a linear convergence rate for an O(Nd)-width NN. The
main results are summarized herein, with detailed proofs deferred to Appendix A.5 and Appendix A.6.

4.1 Bound Outputs of Math-L2O

We define α0 := σmin(G
0
L−1,T ) and let Cℓ > 0 for ℓ ∈ [L] be any sequence of positive numbers.

Moreover, for t, j ∈ [T ], we define the following quantities:
λ̄ℓ = ∥W 0

ℓ ∥2 + Cℓ,ΘL =
∏L

ℓ=1 λ̄ℓ,Φj = ∥X0∥2 + 2j−1
β ∥M⊤Y ∥2,

Λj = (1 + β)∥X0∥22 +
(4j−3)(1+β)+β

β ∥X0∥2∥M⊤Y ∥2 + (2j−1)(β(2j−1)+(2j−2))
β2 ∥M⊤Y ∥22,

SΛ,T =
∑T

t=1 Λt, δt1 =
∑t

s=1

(∏t
j=s+1(1 +

1+β
2 ΘLΦj)

)
Λs,

Sλ̄,L =
∑L

ℓ=1 λ̄
−2
ℓ , δ2 =

∑T−1
s=1

(∏T−1
j=s+1(1 +

1+β
2 ΘLΦj)

)
Λs,

ζ1 =
√

β∥X0∥2 + (2T + 1)∥Y ∥2, δ3 = (1 + β)∥X0∥2 +
(
2T − 1 + 2T−2

β

)
∥M⊤Y ∥2,

ζ2 = ∥X0∥2 + 2T−2
β ∥M⊤Y ∥2, δ4 = σ(δ3ΘL)(1− σ(δ3ΘL)),

(12)

where X0 denotes the initial point, and M (parameter matrix) and Y (labels) are input features from
Equation (2). The defined quantities are positive under the conditions j ≥ 1 and λ̄ℓ > 0.

First, we derive a bound for the training gradients by considering them as perturbations from
initialization. This bound relates the gradient magnitude to the objective function in Equation (2), as
detailed in the following lemma. Despite the derivative for inner layers (Equation (7)) containing an
additional term compared to that of the last layer (Equation (8)), a uniform bound as stated applies.
The proof is provided in Appendix A.5.4.

Lemma 4.1. Assuming max(∥W k+1
ℓ ∥2, ∥W k

ℓ ∥2) ≤ λ̄ℓ for ℓ ∈ [L], for any training iteration k, the

gradient of the ℓ-th layer parameters W k
ℓ is bounded by:

∥∥ ∂F
∂Wk

ℓ

∥∥
2
≤

√
βΘLSΛ,T

2λ̄ℓ
∥MXk

T − Y ∥2.

Building upon Lemmas 4.1 and A.6 and auxiliary results (see Appendix A.5), we analyze the
dynamics of the final solution XT w.r.t. parameter updates during training. The subsequent lemma
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establishes a rigorous formulation for the fluctuation of XT in response to changes in parameters
between adjacent training iterations. This result demonstrates that Math-L2O, viewed as a function
of its learnable parameters, exhibits semi-smoothness, aligning with findings for ReLU-Nets in [29].
The proof is provided in Appendix A.5.3.

The semi-smoothness of the Math-L2O NN is preserved despite its recurrent operations. The
coefficient associated with ∥W k+1

ℓ − W k
ℓ ∥2 exhibits O(eLT ) scaling, where e is an initialization

parameter detailed in Section 5. This represents a looser bound compared to that for ReLU-Nets [29],
which is a consequence of Math-L2O’s greater architectural complexity, specifically the T -fold
execution of an L-layer NN block (see Equation (8)). However, this scaling behavior is consistent
with observations for other deep architectures [2].
Lemma 4.2. For any training iteration k, assume there exist constants λ̄ℓ ∈ R+ for ℓ ∈ [L] such
that maxk′∈{k,k+1} ∥W k′

ℓ ∥2 ≤ λ̄ℓ. Let Xk+1
t and Xk

t be outputs of the Math-L2O (defined in
Equations (3) and (4)) corresponding to parameters W k+1 = {W k+1

ℓ }Lℓ=1 and W k = {W k
ℓ }Lℓ=1,

respectively. Then, Math-L2O exhibits the following semi-smoothness property:

∥Xk+1
t −Xk

t ∥2 ≤ 1
2

∑t−1
s=1

(∏t
j=s+1(1 + (1 + β)/2ΘLΦj)

)
ΛsΘL

(∑L
ℓ=1λ̄

−1
ℓ ∥W k+1

ℓ −W k
ℓ ∥2
)
.

Lemma 4.2 demonstrates that Math-L2O solutions exhibit a bounded response to perturbations in its
NN parameters. This finding, in conjunction with Lemma 4.1, facilitates a more nuanced analysis of
the loss dynamics. Further, judicious selection of learning rates enables control over the evolution of
NN parameters. Such control is instrumental in bounding the constant quantities from these lemmas,
thereby establishing the desired convergence rate presented in the subsequent theorem.

4.2 Linear Training Convergence Rate of Math-L2O

Leveraging the bounds on Math-L2O’s output (Lemma A.6) and its gradient (Lemma 4.1), the
following theorem establishes the linear convergence rate for training the Math-L2O model. The
proof is provided in Appendix A.6.
Theorem 4.3. Consider the NN defined in Equation (4), using quantities
from Equation (12), suppose the following conditions hold at initialization:
α0 ≥ 8(1 + β)ζ2, (13a) α2

0 ≥ β3

4β2
0
δ−2
4

(
− 1

2Θ
2
L−1ΛTSΛ,T−1+Θ2

L(ΛT +δ2)Sλ̄,LSΛ,T

)
. (13b)

α2
0 ≥ max

ℓ∈[L]

ΘL

Cℓλ̄ℓ

β2√β
8β2

0
δ−2
4 ζ1SΛ,T , (13c) α3

0 ≥ (1+β)β2√β
2β2

0
δ−2
4 ΘLΘL−1ζ1ζ2Sλ̄,LSΛ,T , (13d)

Let the learning rate η satisfy:
η < 8

β (δ2 + ΛT )
(
δ2 +ΘLSΛ,TSλ̄,L

)−1
S−2
Λ,T , (14a) η < 1

4
β2

β2
0
δ−2
4 α−2

0 . (14b)

Then, for weights W k = {W k
ℓ }Lℓ=1 at training iteration k, the loss function F (W k) converges

linearly to a global minimum:

F (W k) ≤
(
1− 4η

β2
0

β2 δ4α
2
0

)k
F (W 0).

Remark 1. (1 − 4η
β2
0

β2 δ4α
2
0)

k is rk in Equation (11), which is a less than one term since δ4 =

σ(δ3ΘL)(1−σ(δ3ΘL)) > 0 and α0 := σmin(G
0
L−1,T ) > 0 (G0

L−1,T is a thin matrix), which ensure
that the L2O converges at least as fast as GD.

Equations (14a) and (14b) are based on the quantities defined in Equation (12). Each quantity
represents an inner formulation in the demonstration of lemmas and theorems. We use these quantities
to simplify the formulations. The conditions specified in Equation (13) impose additional lower
bounds on α0, the minimal singular value of the (L−1)-th layer’s inner output. The bounds stipulated
in Equations (13b) to (13d) are influenced by both the network depth L and the number of gradient
descent (GD) iterations T . In contrast, the constraint in Equation (13a) primarily depends on T .
An initialization strategy ensuring these conditions are met is proposed in Section 5. We provide a
detailed interpretation in Appendix A.2.

4.3 Analysis of Learning Rate Magnitude

The bounds in Equations (14a) and (14b) indicate that the learning rate η diminishes as L and T
increase. We argue that this requirement for a small η is not a significant limitation; it is consistent
with the NTK framework, which does not rely on large learning rates for convergence. To quantify
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this, we examine the scaling of η relative to T, L, and λ̄max. Here, λ̄max = max{λ̄ℓ}, ℓ ∈ [L] is
the maximum constant upper bound on the singular values of the NN layers (Equation (12)). These
bounds are parameters that can be directly influenced by the choice of initialization method.

First, analyzing Equation (14a), we derive the scaling of η as O(
T λ̄LT

max+T 2

((T λ̄LT
max)+λ̄L

maxT
3Lλ̄−2

max)T 6
), where

constant factors independent of T and L are omitted. This expression highlights that the magnitude
of η is strongly dependent on the bound λ̄max. This dependence implies that the learning rate can
be prevented from becoming extremely small by using a proper initialization method (such as our
proposed method in Section 5) to control λ̄max.

Moreover, Equation (14b) shows that η’s magnitude is highly correlated with the lower bound of α0

(the penultimate layer’s singular value, per Section 4.1). Given the four distinct lower bounds for
α0 derived in Equation (13), we now formulate the magnitude of η for each respective case. First, if
Equation (13c) holds, η = O(exp(2T λ̄L

max)T
−2), which is a non-restrictive bound due to the expo-

nential term. Second, if Equation (13d) holds, η = O((λ̄2L
maxT

4 + λ̄2L
max(T + T λ̄LT

max)Lλ̄
−2
maxT

3)−1).
This scales inversely with λ̄max and exponentially with L and T . Third, if Equation (13b) holds,
η = O(λ̄−L

maxT
−3), which also scales inversely with λ̄max and exponentially with L. Finally, if

Equation (13a) holds, η = O(exp( 23T λ̄
L
max)(λ̄

2L
maxT

2Lλ̄−2
max)

− 2
3 ), which, similar to the first case, is

a non-restrictive bound due to the exponential term.

The foregoing results indicate that a larger λ̄max correlates with a smaller learning rate η. Nevertheless,
this does not result in a degradation of convergence speed. This conclusion is supported by two
observations: Theoretical Consistency: The requirement for a small η is permissible under NTK
theory [16]. The NTK regime assumes infinitely wide networks, where convergence is achieved
within a compact space around the initialization, thus obviating the need for large learning steps.
Empirical Insensitivity: Our experimental results demonstrate that the convergence speed is robust
to the learning rate. As depicted in Figure 4a, our method achieves similar convergence rates for η
across a wide range (e.g., 10−3 to 10−7).

Adopting a small learning rate is a pragmatic trade-off to avoid the requirement for an extremely wide
NN. Existing analyses [3, 29] that remove the infinite-width assumption often impose a polynomial
width dependency (e.g., O(N3)) on the sample size N . In our framework (Section 2), the coordinate-
wise L2O treats d-dimensional features as independent inputs, leading to an effective sample size of
Nd. A polynomial dependency on Nd would be impractical. Therefore, we opt for the alternative
constraint of a smaller learning rate, which permits a feasible network width.

5 Deterministic Initialization

This section introduces an initialization strategy ensuring the alignment between Math-L2O and GD
(see Section 3) while also satisfying the conditions presented in Section 4. The proposed initialization
strategy first establishes Math-L2O to operate as a standard GD algorithm, and then guarantees the
uniform convergence of Math-L2O throughout subsequent training iterations.

5.1 Initialization for Alignment

Following methodology in [29], we let Cℓ = 1 for ℓ ∈ [L]. For parameter matrices initialization W
(see Section 2), we randomly initialize parameter matrices of first L−1 layers, i.e, {W 0

1 , . . . ,W
0
L−1}

from a standard Gaussian distribution and set the last layer’s parameter matrix W 0
L = 0. Through the

2σ activation detailed in Equation (4), it outputs a constant step size, i.e., PT = I. Consequently, the
learning proceeds with a uniform step size of 1/β after initialization, emulating standard GD and
its typical sub-linear convergence rate [38]. Moreover, this zero-initialization of W 0

L ensures that
initial gradients for the inner layers are all zero (as shown in Equation (7)), which serves to mitigate
gradient explosion.

The condition α0 > 0 (see Theorem 4.3) is fulfilled by randomly sampling the initial weight matrices
{W 0

k }
L−1
k=1 from a standard Gaussian distribution. This approach generally ensures full row rank for

fat matrices (more columns than rows) [37]. Each matrix W 0
k then undergoes QR decomposition.

Non-negativity is subsequently enforced upon the elements of the resulting upper triangular factor
(e.g., via its element-wise absolute value, achieved in PyTorch using its sign function).
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5.2 Enhancing Singular Values for Linear Convergence of Training

Motivated by properties of minimal singular values in ReLU-Nets identified in [29], we analyze the
order-gap for α0 between the left-hand side (LHS) and right-hand side (RHS) of the inequalities in
Equation (13). To satisfy these inequalities, we propose increasing α0. This is achieved by applying
a constant expansion coefficient e ≥ 1 to the initial NN parameters {W 0

1 , . . . ,W
0
L−1}, transforming

them to {eW 0
1 , . . . , eW

0
L−1}. This parameter expansion scales the minimal singular value α0 to

eL−1α0, reflecting the cumulative impact across L− 1 layers. However, other terms on the RHS of
Equation (13) also depend on e. We then establish four lemmas to demonstrate that the conditions for
linear convergence, as specified in Theorem 4.3, are met for an appropriately chosen value of e.

First, we set the initial point to the origin, X0 = 0, a choice commonly adopted in L2O literature [23,
34]. Then, with Cℓ = 1 for ℓ ∈ [L], we present four lemmas demonstrating that the conditions for
linear convergence (see Theorem 4.3) are satisfied for an appropriately chosen constant e. The lemmas
indicate that a larger e is required as the number of optimization steps (T ) increases. Specifically,
Lemma 5.2 establishes that e scales exponentially with T . Conversely, increasing the network depth
(L) alleviates the need for a large e. The proofs are provided in Appendix B.

Lemma 5.1. Assuming X0 = 0, if e = Ω(T
1

L−1 ), then the inequality Equation (13a) holds.

Lemma 5.2. If e = Ω(T
3T+6

TL−T−4L+6 ), then the inequality Equation (13b) holds.

Lemma 5.3. Assuming X0 = 0, if e = Ω(T
4

L−1 ), then the inequality Equation (13c) holds.

Lemma 5.4. Assuming X0 = 0, if e = Ω(T
5

L−1L
1

L−1 ), then the inequality Equation (13d) holds.

6 Empirical Evaluation

This section presents an empirical evaluation of the framework proposed in Section 3 and the
theoretical results from Section 4. Experiments are conducted using Python 3.9 and PyTorch 1.12.0
on an Ubuntu 20.04 system equipped with 128GB of RAM and two NVIDIA RTX 3090 GPUs.

Data Generation. Due to GPU memory constraints, vectors X ∈ R5120×1 and Y ∈ R4000×1 for
Equation (2) are generated by sampling from a standard Gaussian distribution. These represent
ten problem instances with respective dimensional components of 512 (for X) and 400 (for Y ).
Following the coordinate-wise approach in [23], we formed an input feature matrix of 5120× 2. This
setup is equivalent to a training batch of 5120 two-feature samples.

Math-L2O Model Architecture. The Math-L2O model is configured with T = 100 optimization
steps (Equation (2)). Its architecture comprises a L = 3-layer DNN, as formulated in Equation (4).
The first layer has an output dimension of 2. To ensure over-parameterization, the (L− 1)-th (i.e.,
second) layer’s output dimension is set to 512× 10 = 5120. The final layer produces a scalar output
(dimension 1). Three specific model configurations are designed for ablation studies, foundational
experiments, and robustness evaluations. These are detailed in Appendix C.1.

Training and Initialization Configurations. L2O models are trained using the Stochastic Gradient
Descent (SGD) optimizer. For the L = 3-layer network configuration, parameters for the initial
two layers (l = 1, 2) are initialized according to the methodology presented in Section 5.1, while
parameters for the final layer (l = 3) are zero-initialized.

6.1 Training Performance

We evaluated the mean training loss in Equation (2) across all samples. Figure 4a illustrates this loss
at T = 100, benchmarked against the standard GD objective (black dashed line). The results demon-
strate that Math-L2O consistently achieves fast training convergence, corroborating the theoretical
linear convergence established in Theorem 4.3.

Further, we investigated the robustness of our proposed L2O method to variations in optimization
steps and learning rates (LRs). Models corresponding to different step/LR configurations are trained
for 400 epochs. Figure 4b presents the training objectives for these configurations, benchmarked
against standard GD (black dashed line). In contrast to the instability observed for Math-L2O [23]
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and LISTA-CPSS [7] under certain settings (Figure 2), the consistent convergence across all tested
configurations in Figure 4b demonstrates the robustness of our proposed L2O approach.
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Figure 4: Training Loss of Our L2O

Moreover, we evaluate the inference performance of our framework against baseline methods.
Experimental results (in Appendix C.4) demonstrate the framework’s robustness to hyperparameters.

6.2 Ablation Studies for Learning Rate η and Expansion Coefficient e

We conduct ablation studies to assess the impact of the LR η, theoretically bounded in Equations (14a)
and (14b) (Theorem 4.3), and the initialization coefficient e, defined in Section 5. The experimental
configuration employs T = 20, input X ∈ R32×32, output Y ∈ R32×20, and a neural network
width of 1024. Performance is measured by the relative improvement of the proposed L2O method
over standard GD at iteration T = 20, calculated as objGD−objL2O

objGD
. These studies further validate

Corollary C.1, which establishes an inverse relationship between the viable LR η and the coefficient
e, implying that a larger e necessitates a smaller η to ensure convergence.

With the initialization coefficient fixed at e = 50, we evaluate the impact of varying the LR η on the
relative objective improvement. The results in Figure 5a demonstrate that while LRs such as 10−4

and smaller achieve convergence, η = 10−3 leads to unstable behavior or divergence. This finding
empirically supports the existence of an operational upper bound on the LR, consistent with the
theoretical constraints outlined in Equations (14a) and (14b). Moreover, reducing the LR below this
stability threshold results in slower convergence rates. This observation aligns with the implication of
Theorem 4.3 that, under the specified conditions, larger permissible LRs yield faster convergence.

Fixing the LR at η = 10−7, we examine the influence of the initialization coefficient e on performance.
The results, presented in Figure 5b, demonstrate that the relative objective improvement consistently
increases with larger values of e. Additional results exploring different e and LR combinations are
deferred to Appendix C owing to space constraints. These findings validate the proposed strategies
for selecting the initialization coefficient and learning rate.
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7 Conclusion

This work analyzes a Learning-to-Optimize (L2O) framework that accelerates Gradient Descent
(GD) through adaptive step-size learning. We theoretically prove that the L2O training enhances
GD’s convergence rate by linking network training bounds to GD’s performance. Leveraging
Neural Tangent Kernel (NTK) theory and the over-parameterization scheme via wide layers, we
establish convergence guarantees for the complete L2O system. A principled initialization strategy
is introduced to satisfy the theoretical requirements for these guarantees. Empirical results across
various optimization problems validate our theory and demonstrate substantial practical efficacy.
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A Appendix

A.1 Details for Definitions

General L2O. Given X0, we have the following L2O update with NN g to generate XT :

Xt = Xt−1 + g(W1,W2, . . . ,WL, Xt−1,∇F (Xt−1)), t ∈ [T ]. (15)

Concatenation of N Problems. For t ∈ [T ], we make the following denotations to represent the
concatenation of N samples (each is a unique optimization problem):

M :=

[
M1

. . .
MN

]
, Xt := [x⊤

1,t|x⊤
2,t| . . . |x⊤

N,t]
⊤, Y := [y⊤1 |y⊤2 | . . . |y⊤N ]⊤.

Xt and Y are still column vectors since we take the coordinate-wise setting from [23].

A.2 Detailed Interpretation of Quantities in Theorem 4.3

We elaborate on the quantities introduced in Theorem 4.3. Our notational convention is as follows:
subscripts T and k identify constant terms that are dependent on the total steps T and the training
iteration k. Conversely, indices j and t (appearing as superscripts or subscripts) are used to reference
scalar-valued functions at a specific step t or index j.

• λ̄ℓ is a positive constant upper bound for each ℓ-th layer in NN gW (see Section 2), which is
constructed in the proof of Theorem 4.3.

• ΘL is a positive constant w.r.t. λ̄ℓ.
• Denote λ̄min, λ̄max := min{λ̄ℓ},max{λ̄ℓ}, ℓ ∈ [L], ΘL is lower and upper bounded by
Ω(λ̄L

min) and O(λ̄L
max), respectively. Moreover, Θ−1

L is Ω(λ̄−L
max) and O(λ̄−L

min).
• Φj is a scalar-valued function w.r.t. step j. The constant coefficients are given by initial point
X0, coefficient matrix M, and coefficient vector Y from problem defined in Equation (2). β
is the smoothness extent of objective. We use two denotations, j and t, for step, which are
used to formulate different computations in formulations. This formulation is derived by the
upper bound relaxation of L2-norm of gradient at X0. Φj is O(j) and Ω(j).

• Λj is a scalar-valued function w.r.t. step j, which is identical to those in Φj . Λj is O(j2)
and Ω(j2).

• SΛ,T and Sλ̄,L are positive constants, which represents the summation of Λ of T steps and
summation of λ̄ of L-th NN layers, respectively.

• SΛ,T is used in the demonstration for Lemma 4.1 (bound of gradient of NN training), line
625, page 22. The proof is achieved by upper bound relaxation of L2-norm. Sλ̄,L is used
in Theorem 4.3 and related auxiliary lemmas. SΛ,T is O(T 3) and Ω(T 3). S−1

Λ,T is O(T−3)

and Ω(T−3). Denote λ̄min, λ̄max = min{λ̄ℓ},max{λ̄ℓ}, ℓ ∈ [L], Sλ̄,L is Ω(Lλ̄−2
max) and

O(Lλ̄−2
min). Moreover, S−1

λ̄,L
is Ω(L−1λ̄2

max) and O(L−1λ̄2
min).

• ζ1 and ζ2 are two positive constants scale linearly w.r.t., X0, M, Y , T , and β. ζ1 and ζ2 are
both Ω(T ) and O(T ).

• ζ1 and ζ2: Two positive constants scale linearly w.r.t., X0, M, Y , T , and β. ζ1 and ζ2 are
both Ω(T ) and O(T ).

• δt1: A scalar-valued function w.r.t. step t. The constant coefficients are ΘL, Φj , and Λs,
where s denotes an step. Denote λ̄min, λ̄max = min{λ̄ℓ},max{λ̄ℓ}, ℓ ∈ [L], δt1 is Ω(tλ̄Lt

min)
and O(tλ̄Lt

max).
• δ2: Positive constant scales with T . Denote λ̄min, λ̄max = min{λ̄ℓ},max{λ̄ℓ}, ℓ ∈ [L], δ2

is Ω(T λ̄LT
min) and O(T λ̄LT

max). Moreover, δ−1
2 is Ω(T λ̄−LT

max ) and O(T λ̄−LT
min ).

• δ3: Positive constant scales linearly w.r.t., X0, M, Y , T , and β. δ3 is both Ω(T ) and O(T ).
• δ4: Denote λ̄min, λ̄max = min{λ̄ℓ},max{λ̄ℓ}, ℓ ∈ [L], δ4 is Ω(exp(−T λ̄L

max)) and
O(exp(−T λ̄L

min)). Moreover, δ−1
4 is O(exp(T λ̄L

max)) and Ω(exp(T λ̄L
min)).

14



A.3 Derivative of General L2O

In this section, we derive a general framework for any L2O models by the chain rule, which gives us
a complete workflow of each component in the derivatives within the chain. Then, we apply it to the
Math-L2O framework [23] to get the formulation for the L2O model defined in Equation (4).

Due to the chain rule, we derive the following general formulation of the derivative in L2O model:

∂F (XT )
∂Wℓ

= ∂F (XT )
∂XT

(
∂XT

∂XT−1

∂XT−1

∂Wℓ
+ ∂XT

∂GL,t

∂GL,t

∂Wℓ

)
.

We then calculate each term in the right-hand side (RHS) in the above formulation. First, we calculate
∂XT−1

∂Wℓ
as:

∂XT−1

∂Wℓ
= ∂XT−1

∂XT−2

∂XT−2

∂Wℓ
+ ∂XT−1

∂GL,T−1

∂GL,T−1

∂Wℓ
.

Thus, we can iteratively derive the gradient until X1. After rearranging terms, we have the following
complete formulation of ∂F

∂Wℓ
:

∂F (XT )
∂Wℓ

= ∂F (XT )
∂XT

(∑T
t=1(

∏t+1
j=T

∂Xj

∂Xj−1
) ∂Xt

∂GL,t

∂GL,t

∂Wℓ

)
. (16)

We note that ∂Xj

∂Xj−1
relies on different implementations. For example, for general L2O model that the

update in each step is directly the output of neural networks (NNs), we have ∂Xj

∂Xj−1
:= I+

∂GL,j

∂Xj−1
.

Then, Equation (16) is derived by:

∂F
∂Wℓ

= ∂F (XT )
∂XT

(∑T
t=1

(∏t+1
j=T (I+

∂GL,j

∂Xj−1
)
)

∂XT

∂GL,t

∂GL,t

∂Wℓ

)
. (17)

∂GL,j

∂Xj−1
depends on specific implementation of NNs. Liu et al. [23] simplify ∂GL,j

∂Xj−1
by detaching input

tensor from the back-propagation process, which truncate the branches in the chain from F (XT ) to
Wℓ. The detaching operation yields simpler ∂Xj

∂Xj−1
. As will be introduced in the following sections,

∂Xj

∂Xj−1
depends only on NN’s output.

Further, the definition of ∂XT

∂GL,t
is framework-dependent. In the general L2O model, ∂XT

∂GL,t
:= I,

whereas in Math-L2O [23], it is defined based on the FISTA algorithm [4]. Subsequently, we perform
a layer-by-layer computation for each derivative ∂GL,j

∂Xt−1
and ∂GL,t

∂Wℓ
.

First, we derive ∂GL,t

∂GL−1,t
by:

∂GL,t

∂GL−1,t
=

{
∇ReLU(GL−1,t)Wℓ ℓ ∈ [L− 1],

∇2σ(Gℓ,t)Wℓ ℓ = L.

For simplification, we use ∇ReLU and ∇2σ to represent derivatives ∇ReLU(GL−1,t) and
∇2σ(Gℓ,t), respectively, which are corresponding diagonal matrices of coordinate-wise activation
function’s derivatives. Next, ∂GL,t

∂Xt−1
is given by:

∂GL,j

∂XT−1
= (
∏2

ℓ=L
∂Gl,j

∂Gl,j−1
)
∂G1,j−1

∂XT−1
= ∇2σwL(

∏2
ℓ=L−1∇ReLUWℓ)[I,H

⊤], (18)

where H := M⊤M denotes the Hessian matrix of the loss function in Equation (2).

Second, ∂GL,t

∂Wℓ
is given by:

∂Gl,t

∂Wℓ
=
(∏ℓ+1

j=L
∂Gj,t

∂Gj−1,t

)∂Gl,t

∂Wℓ

=

{
∇2σwL(

∏ℓ+1
j=L−1

∇ReLUWj)∇ReLU(Inℓ
⊗Gℓ−1,t

⊤) ℓ ∈ [L− 1],

∇2σ(Inℓ
⊗GL−1,t

⊤) ℓ = L,

(19)

where Inℓ
∈ Rnℓ×nℓ , ⊗ denotes Kronecker Product, and Inℓ

⊗Gℓ−1,t
⊤ ∈ Rnℓ×nℓnℓ−1 .
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Substituting Equation (18) and Equation (19) into Equation (17) yields following final derivative
formulation of general L2O model:

∂F
∂Wℓ

=∂F (XT )
∂XT

(∑T
t=1

(∏t+1
j=T (I+

∂GL,j

∂Xj−1
)
)

∂XT

∂GL,t

∂GL,t

∂Wℓ

)
,

=



Knℓ,nℓ−1

(
(Xk

T

⊤
M⊤ − Y ⊤)M(∑T

t=1

(
I+∇2σwL(

∏2
ℓ=L−1∇ReLUWℓ)[I,H

⊤]
)T−t

∇2σw⊤
L

(∏ℓ+1
j=L−1∇ReLUWj

)
∇ReLU(Inℓ

⊗Gℓ−1,t
⊤)
))⊤

ℓ ∈ [L− 1],

Knℓ,nℓ−1

(
(Xk

T

⊤
M⊤ − Y ⊤)M(∑T

t=1

(
I+∇2σwL(

∏2
ℓ=L−1∇ReLUWℓ)[I,H

⊤]
)T−t

∇2σ(Inℓ
⊗GL−1,t

⊤)
))⊤

l = L,

(20)
where Knℓ,nℓ−1

denotes a commutation matrix, which is a nℓ ∗ nℓ−1 × nℓ ∗ nℓ−1 permutation matrix
that swaps rows and columns in the vectorization process.

A.4 Derivative of Coordinate-Wise Math-L2O

Based on the results in Appendix A.3, in this section, we construct the gradient formulations for
Math-L2O model. We present the results in Equation (7) and Equation (8).

As defined in Equations (3) and (4), Math-L2O [23] learns to choose hyperparameters of existing
non-learning algorithms [23, 34]. Suppose Pi ∈ RN∗d, i ∈ [0, . . . , T ] is the hyperparameter vector
generated by NNs. Suppose X−1 := X0, based on Equation 3, the solution update process from the
initial step is defined by:

X1 = X0 − 1
βP1 ⊙∇F (X0),

X2 = X1 − 1
βP2 ⊙∇F (X1),

. . . ,

XT = XT−1 − 1
βPT ⊙∇F (XT−1),

(21)

We re-use the definition in Section 2 that defines D(·) as the operator that constructs a diagonal matrix
from a vector, we calculate the following one-line and linear-like formulation of XT with X0:

XT =
∏1

t=T (I−
1
βD(Pt)M

⊤M)X0 +
1
β

∑T
t=1

∏t+1
s=T (I−

1
βD(Ps)M

⊤M)D(Pt)M
⊤Y. (22)

Given that Pt is generated by a non-linear neural network with Xt−1 as input, the resulting system
dynamics are inherently non-linear. Consequently, this system cannot be formulated as the afore-
mentioned linear dynamic system. Moreover, we note that for non-smooth problems, the uncertain
sub-gradient can be replaced by the gradient map to obtain analogous formulations [34].

Due to the above computational graph in Figure 1, the gradient of Xt comes from Xt−1 and Pt,
which yields the following framework of each layer’s derivative (Equation (6)):

∂F
∂Wℓ

= ∂F (XT )
∂XT

(∑T
t=1

(∏t+1
j=T

∂Xj

∂Xj−1

)
∂Xt

∂Pt

∂Pt

∂Wℓ

)
. (23)

We obtain the above equation by counting the number of formulations from F to Wℓ. From the
Figure 1, we conclude that each timestamp t leads to the gradient of ∂XT

∂XT−1
. Thus, there are∏t+1

j=T

∂Xj

∂Xj−1
blocks of formulation in total.
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We start with deriving the formulation of gradient w.r.t. the GD algorithm, which yields the gradient
of ∂XT

∂PT
. Due to the GD formulation in Equation (21), we derive ∂Xt

∂Xt−1
as:

∂Xt

∂Xt−1
=Id − 1

β

∂

(
Pt⊙∇F (Xt−1)

)
∂Xt−1

=Id − 1
β

∂Pt⊙
(
M⊤(MXt−1−Y )

)
∂Xt−1

,

=Id − 1
βD(Pt)M

⊤M− 1
β

∂Pt⊙
(
M⊤(MXt−1−Y )

)
∂Pt

∂Pt

∂Xt−1
,

=Id − 1
βD(Pt)M

⊤M− 1
βD
(
M⊤(MXt−1 − Y )

)
∂Pt

∂Xt−1
.

(24)

Next, we calculate ∂Pt

∂Xt−1
. Similarly, we derive ∂vec(GL,t)

∂Wℓ
and each ∂vec(GL,j)

∂Xj−1
of Math-L2O layer-

by-layer. ∂vec(GL,t)
∂vec(GL−1,t)

in Math-L2O is similar to Equation (19). We calculate:{
∂Pt

∂Wℓ
= D

(
Pt ⊙ (1− Pt/2)

)
(Id ⊗WL)

∏ℓ+1
j=L−1Dj,tId ⊗WjInℓ

⊗Gℓ−1,t
⊤ ℓ ∈ [L− 1],

∂Pt

∂WL
= D

(
Pt ⊙ (1− Pt/2)

)
GL−1,t

⊤ ℓ = L.

(25)

Similarly, we calculate the following derivative of output of Math-L2O w.r.t. it input at step t:

∂Pt

∂Xt−1
= D

(
Pt ⊙ (1− Pt/2)

)
WL(

∏2
ℓ=L−1Dℓ,tWℓ)[I,H

⊤]⊤. (26)

Substituting Equation (26) into Equation (24) yields ∂Xt

∂Xt−1
:

∂Xt

∂Xt−1
=Id − 1

βD(Pt)M
⊤M

− 1
βD
(
M⊤(MXt−1 − Y )

)
D
(
Pt ⊙ (1− Pt/2)

)
WL(

∏2
ℓ=L−1Dℓ,tWℓ)[I,H

⊤]⊤.
(27)

We note that in [23], the gradient formulations are simplified in the implementation by detaching the
input feature from the computational graph. Thus, we can eliminate the complicated last term in the
above formulation, which leads to the following compact version:

∂Xt

∂Xt−1
= Id − 1

βD(Pt)M
⊤M. (28)

In this paper, we take the gradient formulation in Equation (28).

Next, we calculate the ∂Xt

∂Pt
component in Equation (23). We calculate the derivative of GD’s output

w.r.t. its input hyperparameter P (generated by NNs) as:

∂Xt

∂Pt
= − 1

βD(∇F (Xt−1)) = − 1
βD
(
M⊤(MXt−1 − Y )

)
, (29)

where ∇F (Xt−1) := M⊤(MXt−1 − Y ) is the first-order derivative of the objective in Equation 1.

Substituting Equation (25), Equation (28), and Equation (29) into Equation (23) yields the final
derivative of all layers’ parameters.

First, for ℓ = L, since there is no cumulative gradients of later layers, Equation 8 is directly calculated
by:

∂F
∂WL

=− 1
β

∑T
t=1

(
M⊤(MXT − Y )

)⊤(∏t+1
j=T I−

1
βD(Pj)M

⊤M
)

D
(
(M⊤(MXt−1 − Y ))

)
D
(
Pt ⊙ (1− Pt/2)

)
GL−1,t

⊤.

And its transpose is given by:

∂F
∂WL

⊤
=− 1

β

∑T
t=1GL−1,tD

(
Pt ⊙ (1− Pt/2)

)
D
(
(M⊤(MXt−1 − Y ))

)(∏T
j=t+1I−

1
βM

⊤MD(Pj)
)
M⊤(MXT − Y ).

(30)
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When ℓ ∈ [L− 1], the derivative is calculated by:

∂F
∂Wℓ

=∂F (XT )
∂XT

(∑T
t=1

(∏t+1
j=T

∂Xj

∂Xj−1

)
∂Xt

∂Pt

∂Pt

∂Wℓ

)
,

=− 1
β

∑T
t=1(M

⊤(MXT − Y ))⊤
(∏t+1

j=T Id −
1
βM

⊤MD(Pj)
)

D
(
(M⊤(MXt−1 − Y ))

)
D
(
Pt ⊙ (1− Pt/2)

)
(Id ⊗WL)

∏ℓ+1
j=L−1Dj,tId ⊗WjInℓ

⊗Gℓ−1,t
⊤.

Remark 2. The only difference between Equation (8) and Equation (7) lies in the last term, where
Equation (7) is more complicated due to the accumulated gradients from later layers.

The above two formulations are used in the next section to derive the gradient bound for each layer.

A.5 Tools

In this section, prior to constructing the convergence bounds, we first derive several analytical tools.
These tools are foundational for the convergence rate analysis and also establish key properties of the
L2O models. We use superscript k to denote parameters and variables at training iteration k, and
subscript t to denote the optimization step.

A.5.1 NN’s Outputs are Bounded

First, we demonstrate that the outputs and inner outputs of NN layers within the L2O model are
bounded.

Bound
∥∥I− 1

βD(P k
t )M

⊤M
∥∥
2
,∀k, t.

Lemma A.1. Suppose ∥M⊤M∥2 ≤ β and 0 < P k
t < 2, we have the following bound:∥∥I− 1

βD(P k
t )M

⊤M
∥∥
2
< 1. (31)

Proof. Suppose eigenvalues and eigenvectors of M⊤M are σi and vi, i ∈ [1, . . . , N ∗d] respectively,
we calculate:

1
βD(P k

t )M
⊤Mvi =

σi

β D(P k
t )vi.

Due to 0 < P k
t < 2, we have following spectral norm definition:

∥∥I− 1
βD(P k

t )M
⊤M

∥∥
2
= max

x∈Rd

x⊤(I− 1
βD(P k

t )M
⊤M)x

x⊤x

Then, by taking x = vi, we calculate:

v⊤i (I− 1
βD(P k

t )M
⊤M)vi = 1− 1

β v
⊤
i D(P k

t )M
⊤Mvi = 1− σi

β v⊤i D(P k
t )vi

1⃝
≤ 1,

where 1⃝ is due to 0 < P k
t < 2.

Remark 3. In our design, we ensure 0 < P k
t < 2 by an activation function 2σ at the output layer.

Bound ∥D(P k
t )∥2,∀k, t. Similar to the bound of

∥∥I− 1
βD(P k

t )M
⊤M

∥∥
2
,∀k, t, due to the Sigmoid

function, we directly have:

Lemma A.2. Suppose 0 < P k
t < 2, we have the following bound:

∥D(P k
t )∥2 < 2. (32)

Proof. Since D is the diagonalization operation and 0 < P k
t < 2, we directly have ∥D(P k

t )∥2 <
2.
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Besides, we can derive another bound from the Lipschitz property for the Sigmoid activation function:

∥D(P k
t )∥2 =∥2σ(ReLU(ReLU([Xk

t−1,M
⊤(MXk

t−1 − Y )]W k
1

⊤
) · · ·W k

L−1

⊤
)W k

L

⊤
)∥∞,

1⃝
≤ 1

2∥[X
k
t−1,M

⊤(MXk
t−1 − Y )]∥2

∏L−1
s=1 ∥W

k
s ∥2 + 1,

2⃝
≤ 1

2 (∥X
k
t ∥2 + ∥M⊤(MXk

t − Y )∥2)
∏L−1

s=1 ∥W
k
s ∥2 + 1.

(33)

1⃝ is from equation (17), Lemma 4.2 of [30]. 2⃝ is from triangle inequality.

Remark 4. In contrast to the Lipschitz continuous property of ReLU, the aforementioned bound
associated with the Sigmoid function prevents the derivation of meaningful numerical results. To
analyze the convergence rate of Gradient Descent (GD), a tighter bound on the neural network’s
output is required. One potential alternative is the convex cone defined by W k

L for the last hidden
layer. However, such a cone spans an unbounded space for the set of learnable parameters.

Bound Semi-Smoothness of NN’s Output, i.e., ∥D(P k+1
t ) − D(P k

t )∥2, ∀k, t. Since our L2O
model is a coordinate-wise model [23], suppose Pi = αi(P

k+1
t )i+(1−αi)(P

k
t )i, αp ∈ [0, 1], based

on Mean Value Theorem, we have (D(P k+1
t )−D(P k

t ))i =
∂F
Pi

((P k+1
t )i − (P k

t )i). Thus, we bound
∥D(P k+1

t )−D(P k
t )∥2 by the following lemma:

Lemma A.3. Denote j ∈ [L], for some λ̄j ∈ R, we assume ∥W k+1
j ∥2 ≤ λ̄j . Using quantities from

Equation (12), we have:

∥D(P k+1
t )−D(P k

t )∥2
≤ 1

2 (1 + β)∥Xk+1
t−1 −Xk

t−1∥2ΘL

+ 1
2 (∥X

k
t−1∥2 + ∥M⊤(MXk

t−1 − Y )∥2)ΘL

∑L
ℓ=1λ̄

−1
ℓ ∥W k+1

ℓ −W k
ℓ ∥2.

(34)

Remark 5. The above lemma shows the output of NN is a “mixed” Lipschitz continuous on input
feature and learnable parameters. The first term illustrates the Lipschitz property on input feature.
The second term can be regarded as a Lipschitz property on learnable parameters with a stable input
feature.
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Proof. Due to Mean Value Theorem, we have:

∥D(P k+1
t )−D(P k

t )∥2

=∥D(2σ(ReLU(· · ·ReLU([Xk+1
t−1 ,M

⊤(MXk+1
t−1 − Y )]W k+1

1

⊤
) · · ·W k+1

L−1

⊤
)W k+1

L ))

−D(2σ(ReLU(· · ·ReLU([Xk
t−1,M

⊤(MXk
t−1 − Y )]W k

1

⊤
) · · ·W k

L−1

⊤
)W k

L))∥2,
≤(2σ(Pi)(1− σ(Pi)))max

∥ReLU(· · ·ReLU([Xk+1
t−1 ,M

⊤(MXk+1
t−1 − Y )]W k+1

1

⊤
) · · ·W k+1

L−1

⊤
)W k+1

L

− ReLU(· · ·ReLU([Xk
t−1,M

⊤(MXk
t−1 − Y )]W k

1

⊤
) · · ·W k

L−1

⊤
)W k

L∥∞,

≤ 1
2∥ReLU(ReLU([Xk+1

t−1 ,M
⊤(MXk+1

t−1 − Y )]W k+1
1

⊤
) · · ·W k+1

L−1

⊤
)W k+1

L

− ReLU(ReLU([Xk
t−1,M

⊤(MXk
t−1 − Y )]W k

1

⊤
) · · ·W k

L−1

⊤
)W k

L∥∞,

1⃝
≤ 1

2∥ReLU(· · ·ReLU([Xk+1
t−1 ,M

⊤(MXk+1
t−1 − Y )]W k+1

1

⊤
) · · ·W k+1

L−1

⊤
)

− ReLU(· · ·ReLU([Xk
t−1,M

⊤(MXk
t−1 − Y )]W k

1

⊤
) · · ·W k

L−1

⊤
)∥∞∥W k+1

L ∥2

+ 1
2∥ReLU(· · ·ReLU([Xk

t−1,M
⊤(MXk

t−1 − Y )])W k
L−1

⊤
)∥2∥W k+1

L −W k
L∥2,

2⃝
≤ 1

2∥ReLU(· · ·ReLU([Xk+1
t−1 ,M

⊤(MXk+1
t−1 − Y )]W k+1

1

⊤
) · · ·W k+1

L−2

⊤
)W k+1

L−1

⊤

− ReLU(· · ·ReLU([Xk
t−1,M

⊤(MXk
t−1 − Y )]W k

1

⊤
) · · ·W k

L−2

⊤
)W k

L−1

⊤∥∞λ̄L

+ 1
2∥[X

k
t−1,M

⊤(MXk
t−1 − Y )]∥2

∏L−1
j=1 λ̄j∥W k+1

L −W k
L∥2,

3⃝
≤ 1

2∥ReLU(· · ·ReLU([Xk+1
t−1 ,M

⊤(MXk+1
t−1 − Y )]W k+1

1

⊤
) · · ·W k+1

L−2

⊤
)

− ReLU(· · ·ReLU([Xk
t−1,M

⊤(MXk
t−1 − Y )]W k

1

⊤
) · · ·W k

L−2

⊤
)∥∞λ̄L−1λ̄L

+ 1
2∥[X

k
t−1,M

⊤(MXk
t−1 − Y )]∥2

∏L−1
j=1 λ̄j∥W k+1

L −W k
L∥2,

+ 1
2∥[X

k
t−1,M

⊤(MXk
t−1 − Y )]∥2

∏L−2
j=1 λ̄j λ̄L∥W k+1

L−1 −W k
L−1∥2,

4⃝
= 1

2∥ReLU(· · ·ReLU([Xk+1
t−1 ,M

⊤(MXk+1
t−1 − Y )]W k+1

1

⊤
) · · ·W k+1

L−2

⊤
)

− ReLU(· · ·ReLU([Xk
t−1,M

⊤(MXk
t−1 − Y )]W k

1

⊤
) · · ·W k

L−2

⊤
)∥∞λ̄L−1λ̄L

+ 1
2∥[X

k
t−1,M

⊤(MXk
t−1 − Y )]∥2ΘL(λ̄

−1
L ∥W k+1

L −W k
L∥2 + λ̄−1

L−1∥W
k+1
L−1 −W k

L−1∥2),
· · · ,

5⃝
≤ 1

2∥[X
k+1
t−1 ,M

⊤(MXk+1
t−1 − Y )]− [Xk

t−1,M
⊤(MXk

t−1 − Y )]∥2ΘL

+ 1
2∥[X

k
t−1,M

⊤(MXk
t−1 − Y )]∥2ΘL

(∑L
ℓ=1λ̄

−1
ℓ ∥W k+1

ℓ −W k
ℓ ∥2
)
,

6⃝
≤ 1

2 (1 + β)∥Xk+1
t−1 −Xk

t−1∥2ΘL

+ 1
2 (∥X

k
t−1∥2 + ∥M⊤(MXk

t−1 − Y )∥2)ΘL

(∑L
ℓ=1λ̄

−1
ℓ ∥W k+1

ℓ −W k
ℓ ∥2
)
.

1⃝ is due to triangle and Cauchy Schwarz inequalities, where we make a upper bound relaxation from
∞-norm to 2-norm. 2⃝ is due to 1-Lipschitz property of ReLU and max(∥W k+1

L ∥2, ∥W k
L∥2) ≤ λ̄L

in the definition. It is note-worthy that any activations with constant-Lipchitz properties can be
applied. 3⃝ is due to triangle and Cauchy Schwarz inequalities as well. We make a arrangement in 4⃝
and eliminate inductions in · · · . In 5⃝. we make another upper bound relaxation from ∞-norm to
2-norm. 6⃝ is due to triangle inequality, the definition of Frobenius norm, and ∥M⊤M∥2 ≤ L of
objective’s L-smooth property.

Semi-Smoothness of Inner Output of NN, i.e., Bound ∥Ga
ℓ,t −Gb

ℓ,t∥2, ℓ ∈ [L− 1],∀a, b, t.
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Lemma A.4. Denote ℓ ∈ [L− 1], for some λ̄ℓ ∈ R, we assume max(∥W a
ℓ ∥2, ∥W b

ℓ ∥2) ≤ λ̄ℓ. Using
quantities from Equation (12), we have:

∥Ga
ℓ,t −Gb

ℓ,t∥2 ≤(1 + β)∥Xa
t−1 −Xb

t−1∥2
∏ℓ

j=1λ̄j

+ (∥Xb
t−1∥2 + ∥M⊤(MXb

t−1 − Y )∥2)
∏ℓ

j=1λ̄j

∑ℓ
s=1λ̄

−1
s ∥W a

s −W b
s ∥2.

Proof. Since the bounding target in Lemma A.4 is a degenerated version of that in Lemma A.3.
Similar to the proof of Lemma A.3, we calculate:

∥Ga
ℓ,t −Gb

ℓ,t∥2
=∥ReLU(ReLU([Xa

t−1,M
⊤(MXa

t−1 − Y )]W a
1
⊤) · · ·W a

ℓ
⊤)

− ReLU(ReLU([Xb
t−1,M

⊤(MXb
t−1 − Y )]W b

1

⊤
) · · ·W b

ℓ

⊤
)∥2,

≤∥[Xa
t−1,M

⊤(MXa
t−1 − Y )]− [Xb

t−1,M
⊤(MXb

t−1 − Y )]∥2
∏ℓ

j=1λ̄j

+ ∥[Xb
t−1,M

⊤(MXb
t−1 − Y )]∥2

∏ℓ
j=1λ̄j

∑ℓ
s=1λ̄

−1
s ∥W a

s −W b
s ∥2,

≤(1 + β)∥Xa
t−1 −Xb

t−1∥2
∏ℓ

j=1λ̄j

+ (∥Xb
t−1∥2 + ∥M⊤(MXb

t−1 − Y )∥2)
∏ℓ

j=1λ̄j

∑ℓ
s=1λ̄

−1
s ∥W a

s −W b
s ∥2.

Bound NN’s Inner Output Gk
l,t, l = [L− 1], ∀k, t.

Lemma A.5. Denote ℓ ∈ [L− 1], for some λ̄ℓ ∈ R, we assume ∥W k
ℓ ∥2 ≤ λ̄ℓ. Using quantities from

Equation (12), we have:

∥Gk
ℓ,t∥2 ≤

(
(1 + β)∥X0∥2 +

(
2t− 1 + 2t−2

β

)
∥M⊤Y ∥2

)∏ℓ
s=1λ̄s.

Proof.

∥Gk
ℓ,t∥2 =∥ReLU(ReLU([Xk

t−1,M
⊤(MXk

t−1 − Y )]W k
1

⊤
) · · ·W k

ℓ

⊤
)∥2,

1⃝
≤∥[Xk

t−1,M
⊤(MXk

t−1 − Y )]∥2
∏ℓ

s=1∥W
k
s ∥2,

2⃝
≤(∥Xk

t−1∥2 + ∥M⊤(MXk
t−1 − Y )∥2)

∏ℓ
s=1∥W

k
s ∥2,

3⃝
≤
(
(1 + β)∥X0∥2 +

(
(1+β)2(t−1)

β + 1
)
∥M⊤Y ∥2

)∏ℓ
s=1∥W

k
s ∥2,

≤
(
(1 + β)∥X0∥2 +

(
2t− 1 + 2t−2

β

)
∥M⊤Y ∥2

)∏ℓ
s=1λ̄s.

1⃝ is from equation (17), Lemma 4.2 of [30]. 2⃝ is from triangle inequality. 3⃝ is due to definition of
β-smoothness of objective and upper bound of ∥Xt∥2 in Lemma A.6.

A.5.2 Outputs of L2O are Bounded

Next, we establish bounds for the Math-L2O’s outputs. Leveraging the momentum-free setting,
we formulate the dynamics from X0 to Xt as a semi-linear system, where parameters are non-
linearly generated by the NN block (see Figure 1a). Application of the Cauchy-Schwarz and triangle
inequalities to this system yields the following explicit bound.

Lemma A.6 (Bound on Math-L2O Output). For any training iteration k, the t-th output Xk
t of

Math-L2O (as per Equation (3)) is bounded by: ∥Xk
t ∥2 ≤ ∥X0∥2 + 2t

β ∥M⊤Y ∥2.
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Proof. We calculate the upper bound based on the one-line formulation from X0 in Equation (22).

∥Xk
t ∥2

=
∥∥∥∏1

s=t(I−
1
βD(P k

s )M
⊤M)X0 +

1
β

∑t
s=1

∏s+1
j=t (I−

1
βD(P k

s )M
⊤M)D(P k

s )M
⊤Y
∥∥∥
2

1⃝
≤
∥∥∥∏t

s=1(I−
1
βD(P k

s )M
⊤M)X0

∥∥∥
2
+
∥∥∥ 1
β

∑t
s=1

∏s+1
j=t (I−

1
βD(P k

s )M
⊤M)D(P k

s )M
⊤Y
∥∥∥
2

2⃝
≤
∏t

s=1

∥∥∥I− 1
βD(P k

s )M
⊤M

∥∥∥
2
∥X0∥2

+ 1
β

∑t
s=1

∏s+1
j=t

∥∥∥I− 1
βD(P k

s )M
⊤M

∥∥∥
2
∥D(P k

s )∥2∥M⊤Y ∥2,
3⃝
≤∥X0∥2 + 2

β

∑t
s=1∥M

⊤Y ∥2 = ∥X0∥2 + 2t
β ∥M⊤Y ∥2,

where 1⃝ is from the triangle inequality, 2⃝ is due to Cauchy Schwarz inequalities, and 3⃝ is due to
Lemma A.1 and Lemma A.2.

This lemma demonstrates that Math-L2O outputs remain bounded independently of the training
iteration k and the specific learnable parameters.

A.5.3 L2O is Semi-Smooth to Its Parameters

In this section, we treat the L2O model defined in Equation (21) and its corresponding neural network
as functions of their learnable parameters. We then prove that these functions are semi-smooth with
respect to these parameters. This property is foundational for establishing the convergence of the
gradient descent algorithm, as its analysis inherently involves the relationship between parameters at
adjacent iterations.

First, we give the following explicit formulation of P :

P k
t = 2σ(W k

L ReLU(W k
L−1(· · ·ReLU(W k

1 [X
k
t−1,M

⊤(MXk
t−1 − Y )]⊤) · · · )))⊤,

= 2σ(ReLU(· · ·ReLU([Xk
t−1,M

⊤(MXk
t−1 − Y )]W⊤

1 ) · · ·W k
L−1

⊤
)W k

L).

Moreover, we present ReLU activation function with signal matrices defined in Section 2. We denote
·K as the entry-wise product to the matrices, which is also equivalent to reshape a matrix to a vector
then product a diagonal signal matrix and reshape back afterward.

P k
t = 2σ(W k

LDL−1 ·K W k
L−1(· · ·D1 ·K (W k

1 [X
k
t−1,M

⊤(MXk
t−1 − Y )]⊤) · · · ))⊤,

= 2σ((· · · · · · ([Xk
t−1,M

⊤(MXk
t−1 − Y )]W⊤

1 ) ·K D1 · · · )W k
L−1

⊤ ·K DL−1W
k
L).

Proof for Lemma 4.2. We demonstrate the semi-smoothness of Math-L2O’s output, i.e., bound
∥Xk+1

t −Xk
t ∥2, ∀k, t

Proof. Diverging from the approach in [30], Xk+1
T and Xk

T are the outputs of a non-linear neural
network corresponding to different inputs. A direct subtraction between these terms, as would be
feasible in a linear-like system, is therefore intractable. Consequently, we must construct an upper
bound for this difference. By applying a norm-based relaxation and utilizing the quantities defined in
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Equation (12), we proceed with the following calculation:

∥Xk+1
t −Xk

t ∥2
=
∥∥Xk+1

t−1 − 1
βD(P k+1

t )
(
M⊤(MXk+1

t−1 − Y )
)
−
(
Xk

t−1 − 1
βD(P k

t )(M
⊤(MXk

t−1 − Y ))
)∥∥

2
,

=
∥∥∥(I− 1

βD(P k+1
t )M⊤M

)
Xk+1

t−1 −
(
I− 1

βD(P k
t )M

⊤M
)
Xk

t−1

+ 1
β (D(P k+1

t )−D(P k
t ))M

⊤Y
∥∥∥
2

1⃝
≤
∥∥∥(I− 1

βD(P k+1
t )M⊤M

)
−
(
I− 1

βD(P k
t )M

⊤M
)∥∥∥

2
∥Xk+1

t−1 ∥2

+
∥∥∥I− 1

βD(P k
t )M

⊤M
∥∥∥
2
∥Xk+1

t−1 −Xk
t−1∥2 + 1

β ∥M
⊤Y ∥2∥D(P k+1

t )−D(P k
t )∥2,

2⃝
≤∥D(P k+1

t )−D(P k
t )∥2∥Xk+1

t−1 ∥2 + ∥Xk+1
t−1 −Xk

t−1∥2 + 1
β ∥M

⊤Y ∥2∥D(P k+1
t )−D(P k

t )∥2,
3⃝
≤∥D(P k+1

t )−D(P k
t )∥2(∥X0∥2 + 2t−2

β ∥M⊤Y ∥2) + ∥Xk+1
t−1 −Xk

t−1∥2
+ 1

β ∥M
⊤Y ∥2∥D(P k+1

t )−D(P k
t )∥2,

=(∥X0∥2 + 2t−1
β ∥M⊤Y ∥2)∥D(P k+1

t )−D(P k
t )∥2 + ∥Xk+1

t−1 −Xk
t−1∥2,

4⃝
≤(∥X0∥2 + 2t−1

β ∥M⊤Y ∥2)(
1
2 (1 + β)∥Xk+1

t−1 −Xk
t−1∥2ΘL

+ 1
2 (∥X

k
t−1∥2 + ∥M⊤(MXk

t−1 − Y )∥2)ΘL

∑L
ℓ=1λ̄

−1
ℓ ∥W k+1

ℓ −W k
ℓ ∥2
)

+ ∥Xk+1
t−1 −Xk

t−1∥2,

=
(
1 + (∥X0∥2 + 2t−1

β ∥M⊤Y ∥2) 1+β
2 ΘL

)
∥Xk+1

t−1 −Xk
t−1∥2,

+ 1
2 (∥X0∥2 + 2t−1

β ∥M⊤Y ∥2)

(∥Xk
t−1∥2 + ∥M⊤(MXk

t−1 − Y )∥2)ΘL

∑L
ℓ=1λ̄

−1
ℓ ∥W k+1

ℓ −W k
ℓ ∥2,

5⃝
≤ 1

2

∑t
s=1

(∏t
j=s+1

(
1 + (∥X0∥2 + 2j−1

β ∥M⊤Y ∥2) 1+β
2 ΘL

))
(∥X0∥2 + 2s−1

β ∥M⊤Y ∥2)
(
(1 + β)∥X0∥2 + (2s− 1 + 2s−2

β )∥M⊤Y ∥2
)︸ ︷︷ ︸

Λs

ΘL

∑L
ℓ=1λ̄

−1
ℓ ∥W k+1

ℓ −W k
ℓ ∥2,

where 1⃝ is from triangle inequality. 2⃝ is from Lemma A.6. 3⃝ is due to inductive summation to
t = 1. 4⃝ is due to the semi-smoothness of NN’s output in Lemma A.3. 5⃝ is from induction.

Remark 6. We note that the above upper bound relaxation is non-loose. Current existing approaches
derive semi-smoothness in terms of NN functions, where parameters matrices are linearly applied
and activation functions are Lipschitz continuous. However, in our setting under [23], the sigmoid
activation is not Lipschitz continuous. Moreover, the input that is utilized to generate Xk+1

t is from
Xk+1

t−1 , which is not identical to the Xk
t−1 for generating Xk

t−1.

A.5.4 Gradients are Bounded

In this section, we derive bound for the gradient of each layer’s parameter at the given iteration k.

Proof for Lemma 4.1 We demonstrate that the gradients of Math-L2O’s each layer are bounded.
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Proof. For ℓ = L, we calculate the gradient on W k
L (Equation (8)):∥∥ ∂F

∂Wk
L

∥∥
2

= 1
β

∥∥∥∑T
t=1

(
M⊤(MXk

T − Y )
)⊤

(∏t+1
j=T I−

1
βD(P k

j )M
⊤M

)
D
(
M⊤(MXk

t−1 − Y )
)
D
(
P k
t ⊙ (1− P k

t /2)
)
Gk

L−1,t

⊤
∥∥∥
2
,

1⃝
≤ 1

β

∑T
t=1∥M

⊤(MXk
T − Y )∥2

∏t+1
j=T

∥∥∥(Id − 1
βD(P k

j )M
⊤M)

∥∥∥
2

∥D
(
M⊤(MXk

t−1 − Y )
)
∥2∥D

(
P k
t ⊙ (1− P k

t /2)
)
∥2∥Gk

L−1,t∥2,
2⃝
≤ 1

2
√
β
∥MXk

T − Y ∥2
∑T

t=1(∥M
⊤MXk

t−1∥2 + ∥M⊤Y ∥2)∥Gk
L−1,t∥2,

3⃝
≤

√
β
2 ∥MXk

T − Y ∥2
∏L−1

ℓ=1 λ̄ℓ

∑T
t=1

(
(1 + β)∥X0∥2 +

(
2t− 1 + 2t−2

β

)
∥M⊤Y ∥2

)
(∥X0∥2 + 2t−1

β ∥M⊤Y ∥2),

=
√
β
2 ∥MXk

T − Y ∥2
∏L−1

ℓ=1 λ̄ℓ

∑T
t=1

(1 + β)∥X0∥22 +
(
(4t− 3)(1 + 1

β ) + 1
)
∥X0∥2∥M⊤Y ∥2 + (2T−1)(β(2T−1)+(2T−2))

β2 ∥M⊤Y ∥22︸ ︷︷ ︸
Λt

,

=
√
βΘLSΛ,T

2λ̄L
∥MXk

T − Y ∥2,
where 1⃝ is from triangle and Cauchy-Schwarz inequalities. 2⃝ is from the bound of “p” in
Lemma A.1. 3⃝ is from the bound of L2O model’s output in Lemma A.6 and inner outputs in
Lemma A.5.

For ℓ ∈ [L− 1], we calculate gradient on W k
ℓ (Equation (7)) at iteration k by:∥∥∥ ∂F

∂Wk
ℓ

∥∥∥
2

=
∥∥∥− 1

β

∑T
t=1(M

⊤(MXk
T − Y ))⊤

(∏t+1
j=T Id −

1
βM

⊤MD(P k
j )
)

D
(
M⊤(MXk

t−1 − Y )
)
D
(
P k
t ⊙ (1− P k

t /2)
)
(Id ⊗W k

L)∏ℓ+1
j=L−1D

k
j,tId ⊗W k

j Inℓ
⊗Gk

ℓ−1,t

⊤
∥∥∥
2
,

1⃝
≤ 1

β

∑T
t=1∥M

⊤(MXk
T − Y )∥2

∏t+1
j=T ∥Id −

1
βM

⊤MD(P k
j )∥2∥D

(
M⊤(MXk

t−1 − Y )
)
∥2

∥D
(
P k
t ⊙ (1− P k

t /2)
)
(Id ⊗W k

L)∥2
∥∥∥∏ℓ+1

j=L−1D
k
j,tId ⊗W k

j Inℓ
⊗Gk

ℓ−1,t

⊤
∥∥∥
2
,

2⃝
≤

√
β
2 ∥MXk

T − Y ∥2
∏L

j=ℓ+1∥W
k
j ∥2
∑T

t=1(∥M
⊤MXk

t−1∥2 + ∥M⊤Y ∥2)∥Gk
ℓ−1,t∥2,

2⃝
=

√
β
2 ∥MXk

T − Y ∥2
∏L

j=1,j ̸=ℓλ̄j

∑T
t=1

(1 + β)∥X0∥22 +
(
(4t− 3)(1 + 1

β ) + 1
)
∥X0∥2∥M⊤Y ∥2 + (2T−1)(β(2T−1)+(2T−2))

β2 ∥M⊤Y ∥22︸ ︷︷ ︸
Λt

,

=
√
βΘL

2λ̄ℓ
SΛ,T ∥MXk

T − Y ∥2,
1⃝ is from triangle and Cauchy-Schwarz inequalities. Inequality 2⃝ is from bounds of “p” in
Lemma A.1 and we make a rearrangement in it. In inequality 2⃝, we use norm’s triangle inequality
of dot product and Kronecker product, bounds of NN’s inner output in Lemma A.5, and we calculate∏L

j=1,j ̸=ℓ∥W
k
j ∥2 =

∏L
j=ℓ+1∥W

k
j ∥2 ∗ ∏ℓ−1

s=1∥W
k
j ∥2. We reuse the result in the proof for the last

layer’s gradient upper bound for case ℓ = L in equality 3⃝ to get the final result.

A.6 Bound Linear Convergence Rate

Now we are able to substitute the above formulation into three bounding targets in Equation (44) and
bound them one-by-one by the NTK theorem. We summarize the main idea of NTK theory before
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the proof. The main technique of NTK theory is the establishment of non-singularity of the kernel
matrix by a wide-NN layer, where kernel matrix is for the gradient of loss to learnable parameters.
This invokes the Polyak-Lojasiewicz condition (a more relaxed condition than strongly convex) for
linear convergence. Due to the page limit, we eliminate the explicit formulation of kernel matrix in
main page. Following the methodology in [29], the non-singularity of kernel matrix is established
by σmin(G

0
L−1,T ) > 0. It is guaranteed by the conditions in Theorem 4.3 and implemented by the

initialization strategy in Section 5.

Proof. We start to prove the Theorem 4.3 by proving the following lemma.

Lemma A.7. { ∥W r
ℓ ∥2 ≤ λ̄ℓ, ℓ ∈ [L], r ∈ [0, k],

σmin(G
r
L−1,T ) ≥ 1

2α0, r ∈ [0, k],

F ([W ]r) ≤ (1− η4η
β2
0

β2 δ4)
rF ([W ]0), r ∈ [0, k].

(35)

Remark 7. The first inequality means that there exists a scalar λ̄ℓ that bounds each layer’s learnable
parameter. The second inequality means that the last inner output is lower bounded. The last
inequality is the linear rate of training.

A.6.1 Induction Part 1: NN’s Parameter and the Last Inner Output are Bounded

For k = 0, Equation (35) degenerates and holds trivially. Assume Equation (35) holds up to iteration
k, we aim to prove it still holds for iteration k + 1. First, we calculate the following term:

∥W k+1
ℓ −W 0

ℓ ∥2
1⃝
≤
∑k

s=0∥W
s+1
ℓ −W s

ℓ ∥2
2⃝
=η
∑k

s=0

∥∥∥ ∂F
W s

ℓ

∥∥∥
2

3⃝
≤η
∑k

s=0

√
βΘL

2λ̄ℓ
SΛ,T ∥MXs

T − Y ∥2,
4⃝
≤η

√
βΘL

2λ̄ℓ
SΛ,T

∑k
s=0(1− η4η

β2
0

β2 δ4)
s/2∥MX0

T − Y ∥2,

where 1⃝ is due to triangle inequality. 2⃝ is due to the definition of gradient descent. 3⃝ is due
the gradient is being upper-bounded in Lemma 4.1 and our assumption that ∥W r

ℓ ∥2 ≤ λ̄ℓ, ℓ ∈
[L],∀r ∈ [0, k]. 4⃝ is due to the linear rate in our induction assumption.

Define u :=
√

1− η4η
β2
0

β2 δ4, we calculate the summation of geometric sequence by:

η
√
βΘL

2λ̄ℓ
SΛ,T

∑k
s=0u

s∥MX0
T − Y ∥2 =η

√
βΘL

2λ̄ℓ
SΛ,T

1−uk+1

1−u ∥MX0
T − Y ∥2,

1⃝
= 1

4η
β2
0

β2 δ4

√
βΘL

2λ̄ℓ
SΛ,T (1− u2) 1−uk+1

1−u ∥MX0
T − Y ∥2,

2⃝
≤ 1

4η
β2
0

β2 δ4

√
βΘL

2λ̄ℓ
SΛ,T ∥MX0

T − Y ∥2,

3⃝
≤ 1

4η
β2
0

β2 δ4

√
βΘL

2λ̄ℓ
SΛ,T

(√
β∥X0∥2 + (2T + 1)∥Y ∥2

)
,

4⃝
≤Cℓ,

where 1⃝ is due to 1 − u2 = η4η
β2
0

β2 δ4. 2⃝ is due to 0 ≤ u ≤ 1. 3⃝ is due to NN’s output’s bound
in Lemma A.6. 4⃝ is due to the lower bound on the singular value of last inner output layer in
Equation (13c).

Thus, we have:
∥W k+1

ℓ −W 0
ℓ ∥2 ≤ Cℓ. (36)
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Denote σ1(·) as calculating the smallest singular value of any matrices, due to Weyl’s inequality [28],
we have: ∣∣∥W k+1

ℓ ∥2 − ∥W 0
ℓ ∥2
∣∣ ≤ σ1(W

k+1
ℓ −W 0

ℓ ),

≤ ∥W k+1
ℓ −W 0

ℓ ∥2,
≤ Cℓ.

where the first inequality is from Weyl’s inequality and the last inequality is due to Equation (36).
Then, we directly have ∥W k+1

ℓ ∥2 − ∥W 0
ℓ ∥2 ≤ Cℓ and ∥W k+1

ℓ ∥2 ≤ ∥W 0
ℓ ∥2 + Cℓ = λ̄ℓ.

Next, we bound Gk+1
L−1,T by calculating:

∥Gk+1
L−1,T −G0

L−1,T ∥2
1⃝
≤(1 + β)∥Xk+1

T−1 −X0
T−1∥2

∏L−1
j=1 λ̄j

+ (∥X0
T−1∥2 + ∥M⊤(MX0

T−1 − Y )∥2)
∏L−1

j=1 λ̄j

∑L−1
ℓ=1 λ̄

−1
ℓ ∥W k+1

ℓ −W 0
ℓ ∥2,

2⃝
≤(1 + β)2(∥X0∥2 + 2T−2

β ∥M⊤Y ∥2)
∏L−1

j=1 λ̄j

+ (∥X0
T−1∥2 + ∥M⊤(MX0

T−1 − Y )∥2)
∏L−1

j=1 λ̄j

∑L−1
ℓ=1 λ̄

−1
ℓ ∥W k+1

ℓ −W 0
ℓ ∥2,

3⃝
≤(1 + β)

∑k
i=0

1
2ΘL

∑T−1
s=1

(∏T−1
j=s+1

(
1 + 1+β

2 ΘLΦj

))
Λs︸ ︷︷ ︸

δT−1
1

∑L
ℓ=1λ̄

−1
ℓ ∥W i+1

ℓ −W i
ℓ∥2
∏L−1

j=1 λ̄j

+ (∥X0
T−1∥2 + ∥M⊤(MX0

T−1 − Y )∥2)
∏L−1

j=1 λ̄j

∑L
ℓ=1λ̄

−1
ℓ ∥W k+1

ℓ −W 0
ℓ ∥2,

(37)
where 1⃝ is due to the semi-smoothness of NN’s inner output in Lemma A.4. 2⃝ is due to the triangle
inequality. 3⃝ is due to semi-smoothness of L2O in Lemma 4.2.

Further, based on the inner results in the former demonstration for ∥W k+1
ℓ −W 0

ℓ ∥2, we have:∑k
i=0∥W

i+1
ℓ −W i

ℓ∥2 ≤ 1

4η
β2
0

β2 δ4

√
βΘL

2λ̄ℓ
SΛ,T ∥MX0

T − Y ∥2.

Substituting above result back into Equation (37) yields:

∥Gk+1
L−1,T −G0

L−1,T ∥2
≤(1 + β)2(∥X0∥2 + 2T−2

β ∥M⊤Y ∥2)
∏L−1

j=1 λ̄j

+ (∥X0
T−1∥2 + ∥M⊤(MX0

T−1 − Y )∥2)
∏L−1

j=1 λ̄j

∑L−1
ℓ=1 λ̄

−1
ℓ

1

4η
β2
0

β2 δ4

√
βΘL

2λ̄ℓ
SΛ,T ∥MX0

T − Y ∥2,

1⃝
≤ 1

4η
β2
0

β2 δ4

(1 + β)ζ2
(√

β∥X0∥2 + (2T + 1)∥Y ∥2
)
SΛ,T

∏L−1
j=1 λ̄j

∑L
ℓ=1λ̄

−1
ℓ

√
βΘL

2λ̄ℓ

+ 2(1 + β)(∥X0∥2 + 2T−2
β ∥M⊤Y ∥2)

∏L−1
j=1 λ̄j ,

2⃝
≤ 1

4η
β2
0

β2 δ4

(1 + β)ζ2
(√

β∥X0∥2 + (2T + 1)∥Y ∥2
)
SΛ,T

∏L−1
j=1 λ̄j

∑L
ℓ=1λ̄

−1
ℓ

√
βΘL

2λ̄ℓ

+ 1
4α0,

3⃝
≤ 1

2α0,
(38)

where 1⃝ is due to NN’s output’s bound in Lemma A.6 and 2⃝ and 3⃝ are due to the other lower
bound for minimal singular value of NN’s inner output in Equation (13a) and Equation (13d). The
inequality in Equation (38) implies σmin(G

k+1
L−1) ≥

1
2α0 since σmin(G

0
L−1) = α0.

Based on the above two inequalities, we prove the linear rate in Theorem 4.3 step-by-step in the
following sub-section.
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A.6.2 Induction Part 2: Linear Convergence

In this section, we aim to prove that F ([W ]k+1) ≤ (1− η4η
β2
0

β2 δ4)
k+1F ([W ]0).

Step 1: Split Perfect Square By leveraging term MXk
T , we can split the perfect square in objective

F ([W ]k+1) as:

F ([W ]k+1) = F ([W ]k) + 1
2∥MXk+1

T −MXk
T ∥22 + (MXk+1

T −MXk
T )

⊤(MXk
T − Y ). (39)

Based on [29], we aim to demonstrate that F ([W ]k+1) can be upper-bounded by ckF ([W ]k), where
ck < 1 is a coefficient related to training iteration k.

Step 2: Bound Term-by-Term We aim to upperly bound all terms in Equation (39) by F ([W ]k).

Bound the first term 1
2∥MXk+1

T −MXk
T ∥22. First, based on the β-smoothness of objective F , we

calculate
1
2∥MXk+1

T −MXk
T ∥22 = 1

2 (X
k+1
T −Xk

T )
⊤M⊤M(Xk+1

T −Xk
T ),

≤ 1
2∥X

k+1
T −Xk

T ∥22∥M⊤M∥2,
≤β

2 ∥X
k+1
T −Xk

T ∥22.

The above inequality shows that we need to bound the distance between outputs of two iterations.
Moreover, since our target is to construct linear convergence rate, we need to find the upper bound of
above inequality w.r.t. the objective F ([W ]k), i.e., 1

2∥MXk
T − Y ∥22. We apply Lemma 4.2 to derive

the following lemma.

Lemma A.8. Denote ℓ ∈ [L], for some λ̄ℓ ∈ R, we assume max(∥W k+1
ℓ ∥2, ∥W k

ℓ ∥2) ≤ λ̄ℓ,∀k.
Using quantities from Equation (12), we further define the following quantities with i, j ∈ [T ]:

Λi =(1 + β)∥X0∥22 +
(
(4i− 3)(1 + 1

β ) + 1
)
∥X0∥2∥M⊤Y ∥2

+ (2i−1)(β(2i−1)+(2i−2))
β2 ∥M⊤Y ∥22,

Φj =∥X0∥2 + 2j−1
β ∥M⊤Y ∥2,

δ1
T =

(∑T
s=1

(∏T
j=s+1(1 +

1+β
2 ΘLΦj)

)(∑s
j=1Λj

))
.

We have the following upperly bounding property:

1
2∥MXk+1

T −MXk
T ∥22 ≤ β2η2

16 (δ1
T )2
(
SΛ,T

)2(
Θ2

L

∑L
ℓ=1λ̄

−2
ℓ

)2
1
2∥MXk

T − Y ∥2. (40)

Proof. We calculate:
1
2∥MXk+1

T −MXk
T ∥22 ≤ β

2 ∥X
k+1
T −Xk

T ∥22,
1⃝
≤β

2

(∑T
s=1

(∏T
j=s+1

(
1 + 1+β

2 ΘLΦj

))
1
2ΛsΘL

∑L
ℓ=1λ̄

−1
ℓ ∥W k+1

ℓ −W k
ℓ ∥2
)2

,

2⃝
=βη2

2

(∑T
s=1

(∏T
j=s+1

(
1 + 1+β

2 ΘLΦj

))
1
2ΛsΘL

∑L
ℓ=1λ̄

−1
ℓ

∥∥∥ ∂F
∂Wk

ℓ

∥∥∥
2

)2

,

3⃝
≤βη2

2

(∑T
s=1

(∏T
j=s+1

(
1 + 1+β

2 ΘLΦj

))
1
2ΛsΘL

∑L
ℓ=1λ̄

−1
ℓ

√
βΘL

2λ̄ℓ

(
SΛ,T

)
∥MXk

T − Y ∥2

)2

,

=β2η2

32

((∑T
s=1

(∏T
j=s+1(1 +

1+β
2 ΘLΦj)

)
Λs

)(
SΛ,T

)
Θ2

L

∑L
ℓ=1λ̄

−2
ℓ︸ ︷︷ ︸

δ1T

∥MXk
T − Y ∥2

)2

,

=β2η2

16 (δ1
T )2
(
SΛ,T

)2(
Θ2

L

∑L
ℓ=1λ̄

−2
ℓ

)2
1
2∥MXk

T − Y ∥2,
(41)

1⃝ is from semi-smoothness of L2O’s output in Lemma 4.2, Appendix A.5.3. 2⃝ is due to gradient
descent with learning rate η. 3⃝ is from gradient bounds in Lemma 4.1.
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Bound the second term (MXk+1
T −MXk

T )
⊤(MXk

T − Y ). We calculate:

(MXk+1
T −MXk

T )
⊤(MXk

T − Y )

=(Xk+1
T −Xk

T )
⊤M⊤(MXk

T − Y ),

=(Xk+1
T −Xk

T )
⊤M⊤(MXk

T − Y ).

(42)

Following the methodology in [29], we hold all other learnable parameters fixed and focus the
analysis on the gradient with respect to the last layer, WL. This approach facilitates the construction
of a non-singular NTK, which in turn establishes the PL condition, thereby guaranteeing a linear
convergence rate.

Given last NN layer’s learnable parameter W k+1
L at iteration k + 1, due to the GD formulation in

Equation (21), we define the following quantity:

Z = Xk
T−1 − 1

βD(2σ(W k+1
L Gk

L−1,T )
⊤)M⊤(MXk

T−1 − Y ), (43)

where Gk
L−1,T represents inner output of layer L− 1 at training iteration k.

With Z, we reformulate Equation (42) as:

(Xk+1
T −Xk

T )
⊤M⊤(MXk

T − Y ),

=(Xk+1
T − Z + Z −Xk

T )
⊤M⊤(MXk

T − Y ),

=(Xk+1
T − Z)⊤M⊤(MXk

T − Y ) + (Z −Xk
T )

⊤M⊤(MXk
T − Y ),

(44)

where Xk+1
T at training iteration k + 1 with W k+1

L and solution Xk
T at training iteration k with W k

L
are defined as:

Xk+1
T = Xk+1

T−1 −
1
βD(2σ(W k+1

L Gk+1
L−1,T )

⊤)M⊤(MXk+1
T−1 − Y ).

Xk
T = Xk

T−1 − 1
βD(2σ(W k

LG
k
L−1,T )

⊤)M⊤(MXk
T−1 − Y ).

Then, we have the following lemmas to bound the two terms, respectively:

Lemma A.9. Denote ℓ ∈ [L], for some λ̄ℓ,∈ R with j ∈ [T ], we assume max(∥W k+1
ℓ ∥2, ∥W k

ℓ ∥2) ≤
λ̄ℓ. Define the following quantities with t ∈ [T ]:

Λt =(1 + β)∥X0∥22 +
(
(4t− 3)(1 + 1

β ) + 1
)
∥X0∥2∥M⊤Y ∥2

+ (2T−1)(β(2T−1)+(2T−2))
β2 ∥M⊤Y ∥22,

Φj =∥X0∥2 + 2j−1
β M⊤Y ∥2,

ΘL =ΘL,

δ2 =
∑T−1

s=1

(∏T
j=s+1

(
1 + 1+β

2 ΘLΦj

))
Λs.

We have the following upperly bounding property:

(Xk+1
T − Z)⊤M⊤(MXk

T − Y ) ≤ βη
2 (ΛT + δ2)Θ

2
LSλ̄,LSΛ,T

1
2∥MXk

T − Y ∥22.

Proof. We straightforwardly apply upper bound relaxation in this part, where we reuse the results of
the first term 1

2∥MXk+1
T −MXk

T ∥22’s upper bound in Lemma A.8.

To reuse the results, we would like to construct the Xk+1
T−1 −Xk

T−1 term. We substitute Equation (46)
into above equation and use the Cauchy-Schwarz inequality for vectors to split our bounding targets
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into two parts and relax the L2-norm of vector summations into each element by triangle inequalities:

(Xk+1
T − Z)⊤M⊤(MXk

T − Y )

=
(
Xk+1

T−1 −
1
βD(2σ(W k+1

L Gk+1
L−1,T )

⊤)M⊤(MXk+1
T−1 − Y )

−
(
Xk

T−1 − 1
βD(2σ(W k+1

L Gk
L−1,T )

⊤)M⊤(MXk
T−1 − Y )

))⊤
M⊤(MXk

T − Y ),

1⃝
≤
(∥∥∥(Id − 1

βD(2σ(W k+1
L Gk+1

L−1,T )
⊤)M⊤M

)
Xk+1

T−1

−
(
Id − 1

βD(2σ(W k+1
L Gk

L−1,T )
⊤)M⊤M

)
Xk

T−1

∥∥∥
2

+ 1
β

∥∥∥(D(2σ(W k+1
L Gk+1

L−1,T )
⊤)−D(2σ(W k+1

L Gk
L−1,T )

⊤)︸ ︷︷ ︸
Ck+1

)
M⊤Y

∥∥∥
2

)

∥M⊤(MXk
T − Y )∥2,

2⃝
≤
(∥∥∥(Id − 1

βD(2σ(W k+1
L Gk+1

L−1,T )
⊤)M⊤M

)
(Xk+1

T−1 −Xk
T−1)

∥∥∥
2

+
∥∥∥((Id − 1

βD(2σ(W k+1
L Gk+1

L−1,T )
⊤)M⊤M

)
−
(
Id − 1

βD(2σ(W k+1
L Gk

L−1,T )
⊤)M⊤M

))
Xk

T−1

∥∥∥
2

+ 1
β ∥Ck+1M

⊤Y ∥2
)
∥M⊤(MXk

T − Y )∥2,

3⃝
≤
(∥∥∥(Id − 1

βD(2σ(W k+1
L Gk+1

L−1,T )
⊤)M⊤M

)∥∥∥
2
∥Xk+1

T−1 −Xk
T−1∥2

+ ∥ 1
βCk+1M

⊤M∥2∥Xk
T−1∥2 + 1

β ∥Ck+1∥2∥M⊤Y ∥2
)
∥M⊤(MXk

T − Y )∥2,
4⃝
≤
(
∥Xk+1

T−1 −Xk
T−1∥2 + ∥Xk

T−1∥2∥Ck+1∥2 + 1
β ∥M

⊤Y ∥2∥Ck+1∥2
)
∥M⊤(MXk

T − Y )∥2,
5⃝
≤
(
∥Xk+1

T−1 −Xk
T−1∥2 +

(
∥X0∥2 + 2T−1

β ∥M⊤Y ∥2
)
∥Ck+1∥2

)
∥M⊤(MXk

T − Y )∥2,

(45)

where 1⃝ is due to triangle and Cauchy-Schwarz inequalities. 2⃝ is due to triangle inequality.
3⃝ is due to Cauchy-Schwarz inequality. 4⃝ is due to β-smooth definition that M⊤M ≤ β and
∥Id − 1

βD(2σ(W k+1
L Gk+1

L−1,T )
⊤)M⊤M∥2 ≤ 1 in Lemma A.1. 4⃝ is due to the upper bound of

XT−1 in Lemma A.6.

Further, we bound Ck+1 := D(2σ(W k+1
L Gk+1

L−1,T )
⊤) − D(2σ(W k+1

L Gk
L−1,T )

⊤). We apply the
Mean Value Theorem and assume a point vk1 . For vk1 ’s each entry (vk1 )i, for some αk

1 i ∈ [0, 1], we
calculate (vk1 )i as:

(vk1 )i =αk
1 i((W

k+1
L Gk+1

L−1,T )
⊤)i + (1− αk

1 i)((W
k+1
L Gk

L−1,T )
⊤)i.

Then, we can represent quantity ∥Ck+1∥2 by:

∥D(2σ(W k+1
L Gk+1

L−1,T )
⊤)−D(2σ(W k+1

L Gk
L−1,T )

⊤)∥2
1⃝
≤
∥∥∥∂2σ
∂vk

1
⊙ (W k+1

L Gk+1
L−1,T −W k+1

L Gk
L−1,T )

⊤
∥∥∥
∞
,

2⃝
≤ 1

2

∥∥∥(W k+1
L Gk+1

L−1,T −W k+1
L Gk

L−1,T )
⊤
∥∥∥
∞
,

3⃝
≤ 1

2∥W
k+1
L ∥2∥Gk+1

L−1,T −Gk
L−1,T ∥2 ≤ 1

2 λ̄L∥Gk+1
L−1,T −Gk

L−1,T ∥2,

where 1⃝ is from the Mean Value Theorem. 2⃝ is from the gradient upper bound of Sigmoid function.
3⃝ is from triangle inequality and definition of learnable parameter WL.

29



We further substitute the upper bound of ∥Gk+1
L−1,T −Gk

L−1,T ∥2 in Lemma A.4 and calculate:

1
2 λ̄L∥Gk+1

L−1,T −Gk
L−1,T ∥2

≤ 1
2 λ̄L

(
(1 + β)∥Xk+1

T−1 −Xk
T−1∥2

∏L−1
j=1 λ̄j

+ (∥Xk
T−1∥2 + ∥M⊤(MXk

T−1 − Y )∥2)
∏L−1

j=1 λ̄j

∑L−1
ℓ=1 λ̄

−1
ℓ ∥W k+1

ℓ −W k
ℓ ∥2
)

1⃝
≤ 1

2 (1 + β)ΘL∥Xk+1
T−1 −Xk

T−1∥2

+ 1
2

(
(1 + β)∥X0∥2 + (2T − 1 + 2T−2

β )∥M⊤Y ∥2
)
ΘL

∑L−1
ℓ=1 λ̄

−1
ℓ ∥W k+1

ℓ −W k
ℓ ∥2.

where 1⃝ is due to upper bound of XT−1 in Lemma A.6.

Substituting the above inequality back into Equation (45) yields:

(Xk+1
T − Z)⊤M⊤(MXk

T − Y )

≤
(
∥Xk+1

T−1 −Xk
T−1∥2 +

(
∥X0∥2 + 2T−1

β ∥M⊤Y ∥2
)
∥Ck+1∥2

)
∥M⊤(MXk

T − Y )∥2,

≤
(
∥Xk+1

T−1 −Xk
T−1∥2

+
(
∥X0∥2 + 2T−1

β ∥M⊤Y ∥2
)(

1
2 (1 + β)ΘL∥Xk+1

T−1 −Xk
T−1∥2

+ 1
2

(
(1 + β)∥X0∥2 + (2T − 1 + 2T−2

β )∥M⊤Y ∥2
)
ΘL

∑L−1
ℓ=1 λ̄

−1
ℓ ∥W k+1

ℓ −W k
ℓ ∥2
))

∥M⊤(MXk
T − Y )∥2,

=

((
1 + 1+β

2 ΘL(∥X0∥2 + 2T−1
β ∥M⊤Y ∥2)

)
∥Xk+1

T−1 −Xk
T−1∥2

+
(

1
2

(
(1 + β)∥X0∥2 + (2T − 1 + 2T−2

β )∥M⊤Y ∥2
)

(∥X0∥2 + 2T−1
β ∥M⊤Y ∥2)ΘL

∑L−1
ℓ=1 λ̄

−1
ℓ ∥W k+1

ℓ −W k
ℓ ∥2
))

∥M⊤(MXk
T − Y )∥2,

=

((
1 + 1+β

2 ΘL(∥X0∥2 + 2T−1
β ∥M⊤Y ∥2︸ ︷︷ ︸
ΦT

)
)
∥Xk+1

T−1 −Xk
T−1∥2+

(
1
2 (1 + β)∥X0∥22 +

(
(4T − 3)(1 + 1

β ) + 1
)
∥X0∥2∥M⊤Y ∥2 + (2T−1)(β(2T−1)+(2T−2))

β2 ∥M⊤Y ∥22︸ ︷︷ ︸
ΛT

)

ΘL

∑L−1
ℓ=1 λ̄

−1
ℓ ∥W k+1

ℓ −W k
ℓ ∥2
)
∥M⊤(MXk

T − Y )∥2,

=
((

1 + 1+β
2 ΘLΦT

)
∥Xk+1

T−1 −Xk
T−1∥2 + 1

2ΛTΘL

∑L−1
ℓ=1 λ̄

−1
ℓ ∥W k+1

ℓ −W k
ℓ ∥2
)

∥M⊤(MXk
T − Y )∥2,
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Further, we apply semi-smoothness of L2O model in Lemma 4.2 and upper bound of gradient in
Lemma 4.1 to derive the upper bound. We calculate:

(Xk+1
T − Z)⊤M⊤(MXk

T − Y )

≤
((

1 + 1+β
2 ΘLΦT

)
∥Xk+1

T−1 −Xk
T−1∥2 + 1

2ΛTΘL

∑L−1
ℓ=1 λ̄

−1
ℓ ∥W k+1

ℓ −W k
ℓ ∥2
)

∥M⊤(MXk
T − Y )∥2,

1⃝
≤
((

1 + 1+β
2 ΘLΦT

)
1
2ΘL

∑T−1
s=1

(∏T−1
j=s+1

(
1 + 1+β

2 ΘLΦj

))
Λs

∑L
ℓ=1λ̄

−1
ℓ ∥W k+1

ℓ −W k
ℓ ∥2

+ 1
2ΛTΘL

∑L−1
ℓ=1 λ̄

−1
ℓ ∥W k+1

ℓ −W k
ℓ ∥2
)
∥M⊤(MXk

T − Y )∥2,

≤
(

1
2ΘL

∑T−1
s=1

(∏T
j=s+1

(
1 + 1+β

2 ΘLΦj

))
Λs︸ ︷︷ ︸

δ2

∑L
ℓ=1λ̄

−1
ℓ ∥W k+1

ℓ −W k
ℓ ∥2

+ 1
2ΛTΘL

∑L−1
ℓ=1 λ̄

−1
ℓ ∥W k+1

ℓ −W k
ℓ ∥2
)
∥M⊤(MXk

T − Y )∥2,

= 1
2ΘL

(
δ2λ̄

−1
L ∥W k+1

L −W k
L∥2 + (ΛT + δ2)

∑L−1
ℓ=1 λ̄

−1
ℓ ∥W k+1

ℓ −W k
ℓ ∥2
)
∥M⊤(MXk

T − Y )∥2,
2⃝
≤ 1

2ΘL(ΛT + δ2)
∑L

ℓ=1λ̄
−1
ℓ ∥W k+1

ℓ −W k
ℓ ∥2∥M⊤(MXk

T − Y )∥2,

where 1⃝ is due to Lemma 4.2. 2⃝ is due to ΛT ≥ 0.

Further, based on the gradient descent, i.e., W k+1
ℓ = W k

ℓ − η ∂F
∂Wk

ℓ

, we substitute the bound of
gradient in Lemma 4.1 and calculate:

(Xk+1
T − Z)⊤M⊤(MXk

T − Y )

≤ 1
2ΘL(ΛT + δ2)

∑L
ℓ=1λ̄

−1
ℓ ∥W k+1

ℓ −W k
ℓ ∥2∥M⊤(MXk

T − Y )∥2,

≤η
2ΘL(ΛT + δ2)

∑L
ℓ=1λ̄

−1
ℓ

∥∥∥ ∂F
∂Wk

ℓ

∥∥∥
2
∥M⊤(MXk

T − Y )∥2,
1⃝
≤ η

2ΘL(ΛT + δ2)
∑L

ℓ=1λ̄
−1
ℓ

√
βΘL

2λ̄ℓ
SΛ,T ∥MXk

T − Y ∥2∥M⊤(MXk
T − Y )∥2,

2⃝
≤βη

2 (ΛT + δ2)Θ
2
LSλ̄,LSΛ,T

1
2∥MXk

T − Y ∥22,

where 1⃝ is due to Lemma 4.1 and 2⃝ is due to ∥M∥2 ≤
√
β.

Lemma A.10. Define the following quantities with t ∈ [T ]:

Λt =(1 + β)∥X0∥22 +
(
(4t− 3)(1 + 1

β ) + 1
)
∥X0∥2∥M⊤Y ∥2

+ (2T−1)(β(2T−1)+(2T−2))
β2 ∥M⊤Y ∥22,

Φj =∥X0∥2 + 2j−1
β M⊤Y ∥2,

ΘL =ΘL,

δ3 =
(
(1 + β)∥X0∥2 +

(
2T − 1 + 2T−2

β

)
∥M⊤Y ∥2

)
.

We have the following upperly bounding property:

(Z −Xk
T )

⊤M⊤(MXk
T − Y )

≤
(
− η8σ(δ3ΘL)

2(1− σ(δ3ΘL))
2 β2

0

β2α
2
0 +

ηβ
2 Θ2

L−1ΛT

∑T−1
t=1 Λt

)
1
2∥MXk

T − Y ∥22.

Proof. In our above demonstrations, we have constructed a non-negative coefficient of the upper
bound w.r.t. the objective 1

2∥MXk
T − Y ∥22. To achieve the requirement of the linear convergence
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rate, we would like a negative one from our remaining bounding target. We calculate:

(Z −Xk
T )

⊤M⊤(MXk
T − Y )

=
(
Xk

T−1 − 1
βD(2σ(W k+1

L Gk
L−1,T )

⊤)
(
M⊤(MXk

T−1 − Y )
)

−
(
Xk

T−1 − 1
βD(2σ(W k

LG
k
L−1,T )

⊤)
(
M⊤(MXk

T−1 − Y )
)))⊤

M⊤(MXk
T − Y ),

=− 1
β

(
M⊤(MXk

T−1 − Y )
)⊤D(2σ(W k+1

L Gk
L−1,T )

⊤ − 2σ(W k
LG

k
L−1,T )

⊤)(
M⊤(MXk

T−1 − Y )
)
.

(46)

Similarly, due to Mean Value Theorem, suppose vk2,i = αi(W
k+1
L Gk

L−1,T )i+(1−αi)(W
k
LG

k
L−1,T )i,

vk2,i ∈ [0, 1], based on Mean Value Theorem, we calculate:

2σ(W k+1
L Gk

L−1,T )
⊤
i − 2σ(W k

LG
k
L−1,T )

⊤
i =

∂(2σ(vk
2,i))

∂(vk
2,i)i

(W k+1
L Gk

L−1,T )i − (W k
LG

k
L−1,T )i.

Denote vk2,i := [
∂(2σ(vk

2,i))

∂(vk
2,i)i

], we calculate:

D
(
2σ(W k+1

L Gk
L−1,T )

⊤ − 2σ(W k
LG

k
L−1,T )

⊤)
=D
([

∂2σ(vk
2,i)

∂vk
2,i

((W k+1
L Gk

L−1,T )i − (W k
LG

k
L−1,T )i)

]⊤)
,

=D
([

2σ(vk2,i)(1− σ(vk2,i))((W
k+1
L −W k

L)G
k
L−1,T )i

]⊤)
,

=D
(
[2σ(vk2,i)(1− σ(vk2,i))]

⊤)D(((W k+1
L −W k

L)G
k
L−1,T

)⊤)
,

1⃝
=− ηD

(
[2σ(vk2,i)(1− σ(vk2,i))]

⊤)D( ∂F
∂Wk

L

Gk
L−1,T

⊤)
,

where vk2 i := αi(W
k+1
L Gk

L−1,T )i + (1− α)i(W
k
LG

k
L−1,T )i is an interior point between the corre-

sponding entries of W k+1
L Gk

L−1,T and W k
LG

k
L−1,T . 1⃝ is from gradient descent formulation of W k

L
in Equation (8).

Substituting above into Equation (46) yields:

(Z −Xk
T )

⊤M⊤(MXk
T − Y )

= η
β

(
M⊤(MXk

T−1 − Y )
)⊤D([2σ(vk2,i)(1− σ(vk2,i))]

⊤)D( ∂F
∂Wk

L

Gk
L−1,T )

⊤(M⊤(MXk
T − Y )

)
,

= η
β

∂F
∂Wk

L

Gk
L−1,TD

(
[2σ(vk2,i)(1− σ(vk2,i))]

⊤)D(M⊤(MXk
T−1 − Y )

)(
M⊤(MXk

T − Y )
)
,

Further, we substitute the gradient formulation in Equation (8) and calculate:

(Z −Xk
T )

⊤M⊤(MXk
T − Y )

=− η
β2

∑T
t=1

(
M⊤(MXT − Y )

)⊤(∏t+1
j=T I−

1
βD(Pj)M

⊤M
)

D
(
(M⊤(MXt−1 − Y ))

)
D
(
Pt ⊙ (1− Pt/2)

)
GL−1,t

⊤Gk
L−1,T

D
(
[2σ(vk2,i)(1− σ(vk2,i))]

⊤)D(M⊤(MXk
T−1 − Y )

)(
M⊤(MXk

T − Y )
)
,

=− η
β2 (MXk

T − Y )⊤MBk
TM

⊤(MXk
T − Y ),

(47)

where Bk
T is defined by:

Bk
T

=
∑T

t=1

(∏t+1
j=T I−

1
βD(P k

j )M
⊤M

)
D
(
M⊤(MXk

t−1 − Y )
)
D
(
P k
t ⊙ (1− P k

t /2)
)
Gk

L−1,t

⊤

Gk
L−1,TD

(
[2σ(vk2,i)(1− σ(vk2,i))]

⊤)D(M⊤(MXk
T−1 − Y )

)
.

We discuss the definite property of Bk
T case-by-case.
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Case 1: t = T . ∏T+1
j=T

I− 1
βD(Pj)M

⊤M degenerates to be 1. The Equation (47) becomes:

[(Z −Xk
T )

⊤M⊤(MXk
T − Y )]Part 1

=− η
β2 (MXk

T − Y )⊤M

D
(
M⊤(MXk

T−1 − Y )
)

D
(
P k
T ⊙ (1− P k

T /2)
)

Gk
L−1,T

⊤
Gk

L−1,T

D
(
[2σ(vk2,i)(1− σ(vk2,i))]

⊤)
D
(
M⊤(MXk

T−1 − Y )
)
M⊤(MXk

T − Y ),

(48)

We first present the following corollary to show that there exists a negative upper bound of [(Z −
Xk

T )
⊤M⊤(MXk

T − Y )]Part 1:

Corollary A.11. RHS of Equation (48) < 0 if λmin(G
k
L−1,T

⊤
Gk

L−1,T ) > 0.

Proof. Due to definition of eigenvalue and Cauchy-Schwarz inequality, we calculate:

(MXk
T − Y )⊤M

D
(
M⊤(MXk

T−1 − Y )
)

D
(
P k
T ⊙ (1− P k

T /2)
)
Gk

L−1,T

⊤
Gk

L−1,TD
(
[2σ(vk2,i)(1− σ(vk2,i))]

⊤)
D
(
M⊤(MXk

T−1 − Y )
)
M⊤(MXk

T − Y ),

≥
(
P k
T ⊙ (1− P k

T /2)
)
min

(
[2σ(vk2,i)(1− σ(vk2,i))]

⊤)
min

λmin(G
k
L−1,T

⊤
Gk

L−1,T )λmin(MM⊤)∥M⊤(MXk
T − Y )∥22,

1⃝
>0,

where 1⃝ is due to Sigmoid function is non-negative, λmin(G
k
L−1,T

⊤
Gk

L−1,T ) > 0, and
λmin(MM⊤) > 0 by definition. Thus, (Z −Xk

T )
⊤M⊤(MXk

T − Y ) < 0 by nature. ()min means
the minimal value among all entries.

To get an upper bound, we expect Gk
L−1,T

⊤
Gk

L−1,T to be positive definition, in which we require
nL−1 ≥ N . Thus, we can easily get the upper bound from its minimal eigenvalue.

Based on Corollary A.11, we calculate the negative lower bound of Equation (48) by:

(Z −Xk
T )

⊤M⊤(MXk
T − Y )

≤− η
β2

(
P k
T ⊙ (1− P k

T /2)
)
min

(
[2σ(vk2,i)(1− σ(vk2,i))]

⊤)
min

λmin(G
k
L−1,T

⊤
Gk

L−1,T )λmin(MM⊤)∥M⊤(MXk
T − Y )∥22,

(49)

The remaining task is to calculate
(
P k
T ⊙ (1− P k

T /2)
)
min

and
(
[2σ(vk2,i)(1− σ(vk2,i))]

⊤)
min

. We
achieve that by calculating the values on the boundary of closed sets.

First, denote vk3 := W k
LG

k
L−1,T , we represent P k

T ⊙ (1− P k
T /2) by:

P k
T ⊙ (1− P k

T /2) = 2σ(vk3 )
⊤ ⊙ (1− σ(vk3 ))

⊤.

Since the Sigmoid function is a coordinate-wise non-decreasing function, we can straightforwardly
find

(
[2σ(vk2,i)(1− σ(vk2,i))]

⊤)
min

and (2σ(vk3 )
⊤ ⊙ (1− σ(vk3 ))

⊤)min by on the closed sets of vk2
and vk3 , respectively, which is achieved by the following lemma.
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Lemma A.12. For some b, B ∈ Rk2, ∀vk, b ≤ vk ≤ B, we calculate (2σ(vk)⊤⊙ (1−σ(vk))⊤)min

by:

(2σ(vk)⊤ ⊙ (1− σ(vk))⊤)min =

{
min

(
2σ(b)(1− σ(b))⊤, 2σ(B)(1− σ(B))⊤

)
−b ̸= B,

2σ(B)(1− σ(B)) −b = B.

Proof. Since σ(x) ∈ (0, 1)∀x, D(2σ(x) ⊙ (1 − σ(x))) is a quadratic function w.r.t. x. Since
σ(x) ∈ (0, 1)∀x, D(2σ(x)⊙ (1− σ(x))) > 0. Since the coefficient before the x2 term is negative,
its lower bound is either the value on the boundary or 0.

Since σ(b), σ(B) ∈ (0, 1), if −b ̸= B, the lower bound is the smaller one, i.e., min(2σ(b) ⊙ (1 −
σ(b)), 2σ(B)⊙ (1−σ(B))). Otherwise, since both σ(x) and D(2σ(x)⊙ (1−σ(x))) are symmetric
around 1

2 , we have 2σ(B)⊙ (1− σ(B)) = 2σ(b)⊙ (1− σ(b)).

Further, we calculate the bounds of vk2 and vk3 and invoke Lemma A.12 to get
(
[2σ(vk2,i)(1 −

σ(vk2,i))]
⊤)

min
and (2σ(vk3 )

⊤ ⊙ (1− σ(vk3 ))
⊤)min.

We present the following two lemmas to show the closed sets that vk2 and vk3 belong to.

Lemma A.13. Denote ℓ ∈ [L], for some λ̄ℓ ∈ R, we assume ∥W k
ℓ ∥2 ≤ λ̄ℓ. We define the following

quantity:
δ3 =

(
(1 + β)∥X0∥2 +

(
2T − 1 + 2T−2

β

)
∥M⊤Y ∥2

)
,

ΘL =
∏L

ℓ=1λ̄ℓ.

For vk2 i := αi(W
k+1
L Gk

L−1,T )i + (1 − αi)(W
k
LG

k
L−1,T )i, αi ∈ [0, 1], vk2 belongs to the following

closed set:
vk2 ∈ [−δ3ΘL, δ3ΘL].

Proof. We calculate vk2 ’s upper bound by:

∥vk2∥∞ =∥α⊙ (W k+1
L Gk

L−1,T ) + (1− α)⊙ (W k
LG

k
L−1,T )∥∞,

=max
i

∥αi(W
k+1
L Gk

L−1,T )i + (1− αi)(W
k
LG

k
L−1,T )i∥∞,

1⃝
≤max

i
αi∥(W k+1

L Gk
L−1,T )i∥∞ + (1− αi)∥(W k

LG
k
L−1,T )i∥∞,

2⃝
≤max

i
max(∥(W k+1

L Gk
L−1,T )i∥∞, ∥(W k

LG
k
L−1,T )i∥∞),

=max(max
i

∥(W k+1
L Gk

L−1,T )i∥∞,max
i

∥(W k
LG

k
L−1,T )i∥∞),

≤max(∥W k+1
L Gk

L−1,T ∥∞, ∥W k
LG

k
L−1,T ∥∞),

(50)

where 1⃝ is due to triangle inequality and 2⃝ is due to αi ∈ [0, 1] and upper bound of NN’s inner
output in Lemma A.5.

We calculate the bound of ∥W k+1
L Gk

L−1,T ∥2 by:

∥W k+1
L Gk

L−1,T ∥∞
1⃝
≤∥W k+1

L ∥2∥Gk
L−1,T ∥2,

2⃝
≤λ̄L

(
(1 + β)∥X0∥2 +

(
2T − 1 + 2T−2

β

)
∥M⊤Y ∥2

)∏L−1
ℓ=1 λ̄ℓ,

=
(
(1 + β)∥X0∥2 +

(
2T − 1 + 2T−2

β

)
∥M⊤Y ∥2

)︸ ︷︷ ︸
δ3

∏L
ℓ=1λ̄ℓ︸ ︷︷ ︸
ΘL

,

where 1⃝ is due to Cauchy-Schwarz inequality and 2⃝ is due to definition and upper bound of NN’s
inner output in Lemma A.5. Similarly, we can get ∥W k+1

L Gk
L−1,T ∥2 ≤ δ3ΘL.

2Rk means the space at training iteration k.
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Substituting back to Equation (50) yields:

∥vk2∥∞ ≤ δ3ΘL.

Thus, we have the following bound for vector vk2 by nature:

−δ3ΘL ≤ vk2 ≤ δ3ΘL.

It is worth noting that the above lower bound is non-trivial since we cannot have vk2 ≥ 0, which can
be easily violated by a little perturbation from gradient descent.

Lemma A.14. Denote ℓ ∈ [L], for some λ̄ℓ ∈ R, we assume ∥W k
ℓ ∥2 ≤ λ̄ℓ. We define the following

quantity:
δ3 =

(
(1 + β)∥X0∥2 +

(
2T − 1 + 2T−2

β

)
∥M⊤Y ∥2

)
,

ΘL =
∏L

ℓ=1λ̄ℓ.

For vk3 := W k
LG

k
L−1,T ,∀k, vk3 belongs to the following closed set:

vk3 ∈ [−δ3ΘL, δ3ΘL].

Proof. We prove the lemma by a similar method. We calculate the bound of ∥W k
LG

k
L−1,T ∥2 by:

∥vk3∥∞ =∥W k
LG

k
L−1,T ∥∞

1⃝
≤∥W k

L∥2∥Gk
L−1,T ∥2,

2⃝
≤λ̄L

(
(1 + β)∥X0∥2 +

(
2T − 1 + 2T−2

β

)
∥M⊤Y ∥2

)∏L−1
ℓ=1 λ̄ℓ,

=
(
(1 + β)∥X0∥2 +

(
2T − 1 + 2T−2

β

)
∥M⊤Y ∥2

)︸ ︷︷ ︸
δ3

∏L
ℓ=1λ̄ℓ︸ ︷︷ ︸
ΘL

,

where 1⃝ is due to Cauchy-Schwarz inequality and 2⃝ is due to definition and upper bound of NN’s
inner output in Lemma A.5.

We have the following bound for vk3 by nature:

−δ3ΘL ≤ vk3 ≤ δ3ΘL.

We calculate
(
[2σ(vk2,i)(1− σ(vk2,i))]

⊤)
min

by substituting Lemma A.13 into Lemma A.12:(
[2σ(vk2,i)(1− σ(vk2,i))]

⊤)
min

= 2σ(δ3ΘL)(1− σ(δ3ΘL)).

Similarly, we get
(
P k
T ⊙ (1− P k

T /2)
)

by substituting Lemma A.14 into Lemma A.12:(
P k
T ⊙ (1− P k

T /2)
)
min

= 2σ(δ3ΘL)(1− σ(δ3ΘL)).

Substituting the above results into Equation (49) and Equation (48) yields:

[(Z −Xk
T )

⊤M⊤(MXk
T − Y )]Part 1

≤− η
β2

(
P k
T ⊙ (1− P k

T /2)
)
min

(
[2σ(vk2,i)(1− σ(vk2,i))]

⊤)
min

λmin(G
k
L−1,T

⊤
Gk

L−1,T )λmin(MM⊤)∥M⊤(MXk
T − Y )∥22,

≤− η
β2 4σ(δ3ΘL)

2(1− σ(δ3ΘL))
2λmin(G

k
L−1,T

⊤
Gk

L−1,T )λmin(MM⊤)∥M⊤(MXk
T − Y )∥22,

1⃝
≤− η8σ(δ3ΘL)

2(1− σ(δ3ΘL))
2 β2

0

β2α
2
0
1
2∥MXk

T − Y ∥22,
(51)

where 1⃝ is from definition.
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Case 2: t < T . We derive the upper bound of above term by Cauchy-Schwarz inequality:

[(Z −Xk
T )

⊤M⊤(MXk
T − Y )]Part 2

=− η
β2 (MXk

T − Y )⊤M
(∑T−1

t=1

(∏t+1
j=T I−

1
βD(P k

j )M
⊤M

)
D
(
M⊤(MXk

t−1 − Y )
)
D
(
P k
t ⊙ (1− P k

t /2)
)
Gk

L−1,t

⊤
Gk

L−1,T

D
(
[2σ(vk2,i)(1− σ(vk2,i))]

⊤)D(M⊤(MXk
T−1 − Y )

))
M⊤(MXk

T − Y ),

1⃝
≤ η

β2

∥∥∥∑T−1
t=1

(∏t+1
j=T I−

1
βD(P k

j )M
⊤M

)
D
(
M⊤(MXk

t−1 − Y )
)
D
(
P k
t ⊙ (1− P k

t /2)
)
Gk

L−1,t

⊤
Gk

L−1,T

D
(
[2σ(vk2,i)(1− σ(vk2,i))]

⊤)D(M⊤(MXk
T−1 − Y )

)∥∥∥
2
∥MM⊤∥2∥MXk

T − Y ∥22,

≤ η
β2

∑T−1
t=1

∥∥∥(∏t+1
j=T I−

1
βD(P k

j )M
⊤M

)∥∥∥
2

∥D
(
P k
t ⊙ (1− P k

t /2)
)
∥2∥Gk

L−1,t∥2∥Gk
L−1,T ∥2∥D

(
[2σ(vk2,i)(1− σ(vk2,i))]

⊤)∥2
∥D
(
M⊤(MXk

t−1 − Y )
)
∥2∥D

(
M⊤(MXk

T−1 − Y )
)
∥2∥MM⊤∥2∥MXk

T − Y ∥22,
2⃝
≤ η

β

∑T−1
t=1 ∥D

(
P k
t ⊙ (1− P k

t /2)
)
∥2∥Gk

L−1,t∥2∥Gk
L−1,T ∥2∥D

(
[2σ(vk2,i)(1− σ(vk2,i))]

⊤)∥2
∥D
(
M⊤(MXk

t−1 − Y )
)
∥2∥D

(
M⊤(MXk

T−1 − Y )
)
∥2∥MXk

T − Y ∥22,
3⃝
≤ η

4β

∑T−1
t=1 ∥Gk

L−1,t∥2∥Gk
L−1,T ∥2∥D

(
M⊤(MXk

t−1 − Y )
)
∥2∥D

(
M⊤(MXk

T−1 − Y )
)
∥2

∥MXk
T − Y ∥22,

≤ η
4β (β(∥X0∥2 + 2T

β ∥M⊤Y ∥2) + ∥M⊤Y ∥2)∥Gk
L−1,T ∥2∑T−1

t=1 ∥Gk
L−1,t∥2(β(∥X0∥2 + 2t

β ∥M⊤Y ∥2) + ∥M⊤Y ∥2)∥MXk
T − Y ∥22,

≤ η
4β (β(∥X0∥2 + 2T−2

β ∥M⊤Y ∥2) + ∥M⊤Y ∥2)
(
(1 + β)∥X0∥2 +

(
2T − 1 + 2T−2

β

)
∥M⊤Y ∥2

)
∏L−1

s=1 λ̄s

∑T−1
t=1

(
(1 + β)∥X0∥2 +

(
2t− 1 + 2t−2

β

)
∥M⊤Y ∥2

)
∏L−1

s=1 λ̄s(β(∥X0∥2 + 2t−2
β ∥M⊤Y ∥2) + ∥M⊤Y ∥2)∥MXk

T − Y ∥22,

where 1⃝ is due to Cauchy-Schwarz inequality. It is worth noting that 1⃝ is non-trivial since Bk
T−1 is

non-necessarily to be positive definite. 2⃝ is due to upper bound of NN’s output in Lemma A.1. 3⃝ is
based on the Sigmoid function is bounded.

Further, due to the definition of the quantities, we calculate:

[(Z −Xk
T )

⊤M⊤(MXk
T − Y )]Part 2

≤ηβ
4(
(1 + β)∥X0∥22 +

(
(4T − 3)(1 + 1

β ) + 1
)
∥X0∥2∥M⊤Y ∥2 + (2T−1)(β(2T−1)+(2T−2))

β2 ∥M⊤Y ∥22︸ ︷︷ ︸
ΛT

)
∑T−1

t=1(
(1 + β)∥X0∥22 +

(
(4t− 3)(1 + 1

β ) + 1
)
∥X0∥2∥M⊤Y ∥2 + (2T−1)(β(2T−1)+(2T−2))

β2 ∥M⊤Y ∥22︸ ︷︷ ︸
Λt

)
Θ2

L−1∥MXk
T − Y ∥22,

=ηβ
2 Θ2

L−1ΛT

∑T−1
t=1 Λt

1
2∥MXk

T − Y ∥22.
(52)

Combining the two parts in Equation (51) and Equation (52) yields:

(Z −Xk
T )

⊤M⊤(MXk
T − Y )

≤
(

ηβ
2 Θ2

L−1ΛT

∑T−1
t=1 Λt − η8σ(δ3ΘL)

2(1− σ(δ3ΘL))
2 β2

0

β2α
2
0

)
1
2∥MXk

T − Y ∥22.
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Using quantities from Equation (12), substituting the upper bounds in Lemma A.8, Lemma A.9, and
Lemma A.10 into Equation (39), we calculate:

F ([W ]k+1)

=F ([W ]k) + 1
2∥MXk+1

T −MXk
T ∥22 + (MXk+1

T −MXk
T )

⊤(MXk
T − Y ),

≤F ([W ]k) + β2η2

16 (δ1
T )2
(
SΛ,T

)2(
Θ2

L

∑L
ℓ=1λ̄

−2
ℓ

)2
1
2∥MXk

T − Y ∥2

+ βη
2 (ΛT + δ2)Θ

2
LSλ̄,LSΛ,T

1
2∥MXk

T − Y ∥22
+
(
− η8σ(δ3ΘL)

2(1− σ(δ3ΘL))
2 β2

0

β2α
2
0 +

ηβ
2 Θ2

L−1ΛT

∑T−1
t=1 Λt

)
1
2∥MXk

T − Y ∥22,

1⃝
=F ([W ]k) + β2η2

16 (δ1
T )2
(
SΛ,T

)2(
Θ2

L

∑L
ℓ=1λ̄

−2
ℓ

)2
F ([W ]k)

+ βη
2 (ΛT + δ2)Θ

2
LSλ̄,LSΛ,TF ([W ]k)

+
(
− η8σ(δ3ΘL)

2(1− σ(δ3ΘL))
2 β2

0

β2α
2
0 +

ηβ
2 Θ2

L−1ΛT

∑T−1
t=1 Λt

)
F ([W ]k),

=

(
1 + η2β2

16 (δ1
T )2
(
SΛ,T

)2(
Θ2

L

∑L
ℓ=1λ̄

−2
ℓ

)2
+ ηβ

2 (ΛT + δ2)SΛ,TΘ
2
LSλ̄,L

+ ηβ
2 Θ2

L−1ΛT

∑T−1
t=1 Λt − η8σ(δ3ΘL)

2(1− σ(δ3ΘL))
2 β2

0

β2α
2
0

)
F ([W ]k),

2⃝
≤
(
1 + ηβ(ΛT + δ2)SΛ,TΘ

2
LSλ̄,L + ηβ

2 Θ2
L−1ΛT

∑T−1
t=1 Λt − η8σ(δ3ΘL)

2(1− σ(δ3ΘL))
2 β2

0

β2α
2
0

)
F ([W ]k),

=
(
1− η

(
8σ(δ3ΘL)

2(1− σ(δ3ΘL))
2 β2

0

β2α
2
0 − β(ΛT + δ2)SΛ,TΘ

2
LSλ̄,L − β

2Θ
2
L−1ΛT

∑T−1
t=1 Λt

))
F ([W ]k),

3⃝
≤
(
1− η 4σ(δ3ΘL)

2(1− σ(δ3ΘL))
2 β2

0

β2α
2
0︸ ︷︷ ︸

4η
β2
0

β2 δ4

)
F ([W ]k),

where 1⃝ is due to the definition of objective. 2⃝ is due to upper bound of learning rate in Equa-
tion (14a) and δ1

T = δ2 +
∑T

j=1Λj in definition. 3⃝ is due to the lower bound of the least eigenvalue
α0 in Equation (13b).

Due to learning rate’s upper bound in Equation (14b), we know 0 < 1− η4η
β2
0

β2 δ4 < 1, which yields
the following linear rate by nature:

F ([W ]k) ≤ (1− η4η
β2
0

β2 δ4)
kF ([W ]0).

B Details for Initialization

B.1 Preliminary

To begin with, we define the following quantities:

δ5 = σ
((

2T − 1 + 2T−2
β

)
∥M⊤Y ∥2ΘL

)−2(
1− σ

((
2T − 1 + 2T−2

β

)
∥M⊤Y ∥2ΘL

))−2

,

δ6 = σmin

(
[
∑T−1

t=1 (I− 1
βM

⊤M)T−tM⊤Y |M⊤(M(
∑T−1

t=1 (I− 1
βM

⊤M)T−tM⊤Y )− Y )]
)
,

δ7 = σmin(
∑T−1

t=1 (I− 1
βM

⊤M)T−t).
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Analysis for the numerical stability of δ5. δ5 is a function with Λt, which is also enlarged w.r.t.
eL. In general, it is possible to push σ(1− σ(

(
2T − 1 + 2T−2

β

)
∥M⊤Y ∥2ΘL)) to zero and let RHS

of above inequality to be ∞ when eL → ∞. As presented in the lemma, we claim that the required e
is not necessarily to be ∞. Thus, δ5 can be regarded as a O(eL−1) ≪ ∞ constant. In the following
proofs, we demonstrate that it holds since e is finite.

We calculate the following exact formulations of the quantities defined in Theorem 4.3:

ΛT =(1 + β)∥X0∥22 +
(
(4T − 3)(1 + 1

β ) + 1
)
∥X0∥2∥M⊤Y ∥2

+ (2T−1)(β(2T−1)+(2T−2))
β2 ∥M⊤Y ∥22,

= 4(β+1)
β2 ∥M⊤Y ∥22T 2 +

(
4(1+β)

β ∥X0∥2∥M⊤Y ∥2 − 4β+6
β2 ∥M⊤Y ∥22

)
T

+ (1 + β)∥X0∥22 − (2 + 3
β )∥X0∥2∥M⊤Y ∥2 + β+2

β2 ∥M⊤Y ∥22,
1⃝
= 4(β+1)

β2 ∥M⊤Y ∥22T 2 − 4β+6
β2 ∥M⊤Y ∥22T + β+2

β2 ∥M⊤Y ∥22,

(53)

where 1⃝ is due to X0 = 0 and∑T
i=1Λi =

∑T
i=1(1 + β)∥X0∥22 +

(
(4i− 3)(1 + 1

β ) + 1
)
∥X0∥2∥M⊤Y ∥2

+ (2i−1)(β(2i−1)+(2i−2))
β2 ∥M⊤Y ∥22

= 4(β+1)
3β2 ∥M⊤Y ∥22T 3 +

(
2(1+β)

β ∥X0∥2∥M⊤Y ∥2 − 1
β2 ∥M⊤Y ∥22

)
T 2

+
(
(1 + β)∥X0∥22 − 1

β ∥X0∥2∥M⊤Y ∥2 − β+1
3β2 ∥M⊤Y ∥22

)
T,

1⃝
= 4(β+1)

3β2 ∥M⊤Y ∥22T 3 − 1
β2 ∥M⊤Y ∥22T 2 − β+1

3β2 ∥M⊤Y ∥22T,

(54)

where 1⃝ is due to X0 = 0.

Then, we analyze the expansion of σmin(G
0
L−1,T ) w.r.t. [W ]L = e[W ]L. Due to the one line form

equation of L2O model in Equation (22), we have σmin(G
0
L−1,T ) is calculated by:

σmin(G
0
L−1,T ) = σmin

(
ReLU(ReLU([X0

T−1,M
⊤(MX0

T−1 − Y )]W 0
1
⊤
) · · ·W 0

L−1
⊤
)
)
,

where due to Equation (22), X0
T−1 is given by:

X0
T−1 =

∏1
t=T−1(I−

1
βD(P 0

t )M
⊤M)X0 +

1
β

∑T−1
t=1

∏t+1
s=T−1(I−

1
βD(P 0

s )M
⊤M)D(P 0

t )M
⊤Y,

1⃝
=(I− 1

βM
⊤M)T−1X0 +

1
β

∑T−1
t=1 (I− 1

βM
⊤M)T−tM⊤Y,

2⃝
= 1

β

∑T−1
t=1 (I− 1

βM
⊤M)T−tM⊤Y,

(55)
where 1⃝ is due to Pt = σ(0) = I since WL = 0. The result shows that X0

T−1 is unrelated to [W ]L
with WL = 0. 2⃝ is due to X0 = 0.

Further, for t ∈ [T ], denote the angle between X0
t−1 and M⊤(MX0

t−1 − Y ) as θt−1, we have
sin(θt−1) ∈ (0, 1), setting [W ]L = e[W ]L, we calculate σmin(G̃

0
L−1,T ) by:

σmin(G̃
0
L−1,T ) =σmin

(
ReLU(ReLU([X0

T−1,M
⊤(MX0

T−1 − Y )]eW 0
1
⊤
) · · · eW 0

L−1
⊤
)
)
,

≥σmin

(
[X0

T−1|M⊤(MX0
T−1 − Y )]

)∏L−1
ℓ=1 σmin(eW

0
ℓ ),

≥∥X0
T−1∥2∥M⊤(MX0

T−1−Y )∥2 sin(θT−1)

∥X0
T−1∥2+|M⊤(MX0

T−1−Y )∥2

∏L−1
ℓ=1 σmin(eW

0
ℓ ),

= sin(θT−1)
1

∥X0
T−1∥2

+
1

∥M⊤(MX0
T−1−Y )∥2

∏L−1
ℓ=1 σmin(eW

0
ℓ ),

≥ sin(θT−1)
∏L−1

ℓ=1 σmin(W
0
ℓ )ΘL∥X0

T−1∥2.

(56)
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Based on the definition of X0
T−1 in Equation (55), we calculate following bound:

σmin(G̃
0
L−1,T ) ≥

sin(θT−1)
β ∥

∑T−1
t=1 (I− 1

βM
⊤M)T−tM⊤Y ∥2

∏L−1
ℓ=1 σmin(eW

0
ℓ ),

≥ sin(θT−1)
β σmin(

∑T−1
t=1 (I− 1

βM
⊤M)T−t)︸ ︷︷ ︸

δ7

∥M⊤Y ∥2eL−1∏L−1
ℓ=1 σmin(W

0
ℓ ),

(57)
where X0

T−1 is a constant related to problem definition.

Substituting Equation (55), we calculate a tighter lower bound of ∥X0
T−1∥2 by:

∥X0
T−1∥2 =

∥∥∥ 1
β

∑T−1
t=1

∏t+1
s=T−1(I−

1
βD(P 0

s )M
⊤M)D(P 0

t )M
⊤Y
∥∥∥
2
,

≥ 1
β ∥M

⊤Y ∥2σmin

(∑T−1
t=1

∏t+1
s=T−1(I−

1
βD(P 0

s )M
⊤M)D(P 0

t )
)
,

1⃝
≥ 1

β ∥M
⊤Y ∥2

∑T−1
t=1 σmin

(∏t+1
s=T−1(I−

1
βD(P 0

s )M
⊤M)

)
σmin(D(P 0

t )),

≥ 1
β ∥M

⊤Y ∥2
∑T−1

t=1

(∏t+1
s=T−1σmin

(
I− 1

βD(P 0
s )M

⊤M
))

σmin(D(P 0
t )),

(58)

where 1⃝ is due to all matrices in the summation are positive semi-definite by definition.

We calculate lower bound for σmin

(
I− 1

βD(P 0
s )M

⊤M
)

by:

σmin

(
I− 1

βD(P 0
s )M

⊤M
)
≥1− 1

βσmax

(
D(2σ(eW 0

LG̃
0
L−1,s))M

⊤M
)

≥1− 2σ(δ3ΘL)(1− σ(δ3ΘL))︸ ︷︷ ︸
δ4

σmax(eW
0
LG̃

0
L−1,s), (59)

It is easy to verify that the above equation equal to 1 when e → +∞ and it decreases with e. Also, a
large e ensures the RHS of above inequality to be positive.

Similarly, we calculate lower bound for σmin(P
0
t ) by:

σmin(D(P 0
t ))

1⃝
=min

(
2σ(eW 0

LG̃
0
L−1,t)

)
,

2⃝
=min

(
∂2σ
∂v4

(eW 0
LG̃

0
L−1,t)

)
,

3⃝
≥2δ4σmin

(
eW 0

LG̃
0
L−1,t

)
,

4⃝
≥2δ4e∥W 0

L∥2σmin(G̃
0
L−1,t),

≥2ΘLδ4
∏L

ℓ=1∥W
0
ℓ ∥2σmin

(
[X0

t−1|M⊤(MX0
t−1 − Y )]

)
,

5⃝
≥2ΘLδ4

∏L
ℓ=1∥W

0
ℓ ∥2 sin(θT−1)∥X0

t−1∥2

(60)

where 1⃝ means we apply the expansion here. 2⃝ is due to Mean Value Theorem and v4 denotes a
inner point between 0 and eW 0

LG̃
0
L−1,T . 3⃝ is due to Lemma A.12 and Lemma A.14. 4⃝ is due to

W 0
L is a vector in definition. 5⃝ is similar to the workflow in Equation (56).

Substituting Equation (59) and Equation (60) back into Equation (58) yields:

∥X0
t−1∥2 ≥ 1

β ∥M
⊤Y ∥2

∑t−1
s=12ΘLδ4

∏L
ℓ=1∥W

0
ℓ ∥2σmin

(
[X0

s−1|M⊤(MX0
s−1 − Y )]

)
,

≥ 2
β ∥M

⊤Y ∥2ΘL

∑t−1
s=1δ4

∏L
ℓ=1∥W

0
ℓ ∥2 sin(θs−1)∥X0

s−1∥2,

Similarly, we can get the following lower bound of ∥X0
t−1∥2:

∥X0
t−1∥2 ≥ 2

β ∥M
⊤Y ∥2ΘL

∑t−1
s=1δ4

∏L
ℓ=1∥W

0
ℓ ∥2 sin(θt−1)∥X0

s−1∥2,

Based on the above results, we calculate the Ω of ∥X0
T−1∥2 as in terms of T and ΘL as:
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∥X0
T−1∥2 ≥ Ω(ΘL

∑T−1
t=1 ΘL

∑t−1
s=1ΘL

∑s−1
j=1 . . .

∑2
j=1︸ ︷︷ ︸

T-2 terms

) = Ω(ΘT−2
L ).

Substituting back into Equation (56) yields:

σmin(G̃
0
L−1,T ) = Ω(eL−1e(T−2)(L−1)) = Ω(e(T−1)(L−1)). (61)

B.2 Proof of Lemma 5.1

Proof. Making up the lower bounding relationship with Equation (57) and Equation (62) yields:

eL−1∥M⊤Y ∥2δ7
∏L−1

ℓ=1 σmin(W
0
ℓ ) ≥8(1 + β)(∥X0∥2 + 2T−2

β ∥M⊤Y ∥2),

= 8(1+β)
β (2T − 2)∥M⊤Y ∥2,

which yields:

e ≥ L−1

√
8(1+β)

β δ−1
7 σmin(W 0

ℓ )
−1(2T − 2).

B.3 Proof of Lemma 5.4

We apply a similar workflow to prove Lemma 5.4.

Proof. With X0 = 0, we find the upper bound of the RHS of Equation (13d) by substituting the
quantity δ5:

(1+β)β2√β
2β2

0
δ5
(√

β∥X0∥2 + (2T + 1)∥Y ∥2
)
ζ2SΛ,TΘL−1

(∑L
ℓ=1

ΘL

λ̄2
ℓ

)
1⃝
= (1+β)β2√β

2β2
0

δ5
(√

β∥X0∥2 + (2T + 1)∥Y ∥2
)
ζ2(

4(β+1)
3β2 ∥M⊤Y ∥22T 3 − 1

β2 ∥M⊤Y ∥22T 2 − β+1
3β2 ∥M⊤Y ∥22T

)
ΘL−1

(∑L
ℓ=1

ΘL

λ̄2
ℓ

)
,

2⃝
= (1+β)β

√
β

2β2
0

δ5∥Y ∥2∥M⊤Y ∥2(2T − 2)(2T + 1)(
4(β+1)
3β2 ∥M⊤Y ∥22T 3 − 1

β2 ∥M⊤Y ∥22T 2 − β+1
3β2 ∥M⊤Y ∥22T

)
ΘL−1

(∑L
ℓ=1

ΘL

λ̄2
ℓ

)
,

3⃝
≤ (1+β)

√
β

6β2
0β

δ5∥Y ∥2∥M⊤Y ∥32(
16(β + 1)T 5 − (8β + 20)T 4 − 6(2β + 1)T 3 + 2(β + 4)T 2 + 2(β + 1)T

)
LΘ2

L−1,

(62)

where 1⃝ is due to Equation (54) and definition of quantity δT−1
1 in Theorem 4.3. 2⃝ is due to X0 = 0.

3⃝ is due to λ̄L = 1 and λ̄ℓ > 1, ℓ ∈ [L− 1].

Making up the lower bounding relationship with Equation (57) and Equation (62) yields:

(
eL−1∥M⊤Y ∥2δ7

∏L−1
ℓ=1 σmin(W

0
ℓ )
)3

≥e2L−2 (1+β)
√
β

6β2
0β

δ5∥Y ∥2∥M⊤Y ∥32L
∏L−1

ℓ=1 (∥W
0
ℓ ∥2 + 1)2(

16(β + 1)T 5 − (8β + 20)T 4 − 6(2β + 1)T 3 + 2(β + 4)T 2 + 2(β + 1)T
)
,

(63)

which yields:

e ≥ L−1

√
C2,δ5

(
16(β + 1)T 5 − (8β + 20)T 4 − 6(2β + 1)T 3 + 2(β + 4)T 2 + 2(β + 1)T

)
.

where C2,δ5 denotes the (1+β)
√
β

6β2
0βδ

3
7
δ5∥Y ∥2L∏L−1

ℓ=1
(∥W 0

ℓ ∥2 + 1)2
∏L−1

ℓ=1
σmin(W

0
ℓ )

−3 term.

Similarly, the finite RHS of above inequality ensures δ5 ≪ ∞.
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B.4 Proof of Lemma 5.2

Proof. Using quantities from Equation (12), with X0 = 0, we find the upper bound of the RHS of
Equation (13b) by substituting the quantity δ5:

β3

4β2
0
δ5

(
− 1

2Θ
2
L−1ΛT

(∑T−1
t=1 Λt

)
+Θ2

LSλ̄,L(ΛT + δ2)SΛ,T

)
1⃝
= β3

4β2
0
δ5

(
− 1

2Θ
2
L−1

(
4(β+1)

β2 ∥M⊤Y ∥22T 2 − 4β+6
β2 ∥M⊤Y ∥22T + β+2

β2 ∥M⊤Y ∥22
)

(
4(β+1)
3β2 ∥M⊤Y ∥22(T − 1)3 − 1

β2 ∥M⊤Y ∥22(T − 1)2 − β+1
3β2 ∥M⊤Y ∥22(T − 1)

)
+Θ2

LSλ̄,L

((
4(β+1)

β2 ∥M⊤Y ∥22T 2 − 4β+6
β2 ∥M⊤Y ∥22T + β+2

β2 ∥M⊤Y ∥22
)

+
∑T−1

s=1

(∏T
j=s+1

(
1 + 1+β

2β (2j − 1)ΘL∥M⊤Y ∥2
))

(
4(β+1)

β2 ∥M⊤Y ∥22s2 −
4β+6
β2 ∥M⊤Y ∥22s+

β+2
β2 ∥M⊤Y ∥22

))
(

4(β+1)
3β2 ∥M⊤Y ∥22T 3 − 1

β2 ∥M⊤Y ∥22T 2 − β+1
3β2 ∥M⊤Y ∥22T

))
,

≤O(e2L−2T 5 + e2L−4T 5 + e2L−4T 6∑T−1
s=1 s

2∏T
j=s+1je

L−1),

=O(eTL−T+2L−4T 3T+6).
(64)

where 1⃝ is due to Equation (54) and definition of quantity δT−1
1 in Theorem 4.3. 2⃝ is due to X0 = 0.

3⃝ is due to λ̄L = 1 and λ̄ℓ > 1, ℓ ∈ [L− 1].

Making up the lower bounding relationship with Equation (61) and Equation (62) yields:

(Ω(e(T−1)(L−1)))2 ≥ O(eTL−T+2L−4T 3T+6),

which yields:

e = Ω(T
3T+6

TL−T−4L+6 ).

B.5 Proof of Lemma 5.3

Proof. Using quantities from Equation (12), with X0 = 0, we find the upper bound of the RHS of
Equation (13c) by substituting the quantity δ5:

max
ℓ∈[L]

ΘL

Cℓλ̄ℓ

β2√β
8β2

0

σ
(
(2T − 1 + 2T−2

β )∥M⊤Y ∥2ΘL

)−2(
1− σ((2T − 1 + 2T−2

β )∥M⊤Y ∥2ΘL)
)−2︸ ︷︷ ︸

δ5

SΛ,T (2T + 1)∥Y ∥2,
1⃝
≤β2√β

8β2
0
δ5SΛ,T (2T + 1)∥Y ∥2

∏L−1
ℓ=1 (∥W

0
ℓ ∥2 + 1),

2⃝
=β2√β

8β2
0
δ5
( 4(β+1)

3β2 ∥M⊤Y ∥22T 3 − 1
β2 ∥M⊤Y ∥22T 2 − β+1

3β2 ∥M⊤Y ∥22T
)

(2T + 1)∥Y ∥2
∏L−1

ℓ=1 (∥W
0
ℓ ∥2 + 1),

=β2√β
8β2

0
δ5∥Y ∥2∥M⊤Y ∥22

(
8(β+1)
3β2 T 4 +

( 4(β+1)
3β2 − 2

β2

)
T 3 −

(
1
β2 + 2β+1

3β2

)
T 2 − β+1

3β2 T
)

∏L−1
ℓ=1 (∥W

0
ℓ ∥2 + 1),

(65)

where 1⃝ is due to λ̄ℓ > 1, ℓ ∈ [L− 1] and λ̄L = 1. 2⃝ is due to Equation (54).

We analyze the two sides of the above inequality when [W ]L = e[W ]L to demonstrate a sufficient
lower bound of e to ensure Equation (65) holds.
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If [W ]L = e[W ]L, since e ≥ 1, Equation (65) is upper-bounded by:
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(66)

If RHS (lower bound) of Equation (57) greater than the RHS (upper bound) of above result, lower
bound condition for minimal singular value in Equation (65) sufficiently holds, which yields:(
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ℓ )
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−2 term, which is a
“constant” w.r.t. δ5.

In the end, it is trivial to evaluate that the RHS of above δ5 is finite with such e.

C Additional Experimental Results

In this section, we present detailed experimental settings and corresponding results. We define
problems at three distinct scales, as described in Appendix C.1. The smaller scale is utilized
for ablation studies (Section 6.2), whereas the larger scales are adopted for training experiments
(Section 6.1 and Appendix C.2) and inference experiments (Appendix C.4).

C.1 Configurations for Different Experiments

Details of the three experimental configurations are presented in Table 1. Scale 1 involves a DNN
trained with input X ∈ R32×32 and output Y ∈ R32×25, featuring an (L − 1)-th layer dimension
of 1024. Scale 2 utilizes input X ∈ R10×512 and output Y ∈ R10×400, with the (L − 1)-th layer
dimension established at 5120. Scale 3 employs input X ∈ R2048×512 and output Y ∈ R2048×400.
This configuration is designed as an under-parameterized system, with an (L− 1)-th layer dimension
of 5120, specifically to evaluate the robustness of our proposed L2O framework. The third model,
although targeting the optimization problem with the same dimension, has a different number of
training samples N . We design the scale to align with the training configurations of the baseline
model LISTA-CPSS [7]. Moreover, due to the GPU memory limitation, we set a thin NN, whose
convergence is not guaranteed by our proposed theorem. The related experimental result is used to
further demonstrate our proposed framework in Section 3.

Table 1: Configurations with Different Scales
Index d b Dimension of L− 1 Layer’s Output Training Samples

1 32 25 1024 32
2 512 400 5120 10
3 512 400 20 2048
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C.2 Additional Training Performance Comparisons verses L2O Baselines

For these experiments, the Scale 3 configuration is utilized. Both baseline state-of-the-art (SOTA)
methods and our proposed L2O framework are trained for 2000 epochs using a learning rate of
0.001. However, the inherent model construction and training scheme of a prominent SOTA method,
LISTA-CPSS [7], diverges considerably from the requirements of our problem. Direct application of
its original settings to our scenario results in over-fitting and poor training convergence, indicating
a lack of robustness for this specific application. The following discussion elaborates on these
incompatibilities and the modifications undertaken.

The original LISTA-CPSS framework possesses two key characteristics pertinent to this discussion.
First, regarding its model construction, LISTA-CPSS addresses inverse problems by formulating a
learnable Least Absolute Shrinkage and Selection Operator (LASSO) problem, wherein it learns
a scalar coefficient for the L1 regularization term [7]. However, our objective in Equation (1) is
quadratic. Second, its training protocol is supervised, utilizing an L2 loss against pre-generated
optimal solutions, and employs a layer-wise training scheme. In this scheme, one layer is progressively
added to the set of trainable parameters per training iteration, and these parameters are updated using
four back-propagation (BP) steps [7]. To adapt LISTA-CPSS for our purposes, we modify both its
model architecture and original training scheme to enable unsupervised optimization of our loss
function (defined in Equation (2)) and to better align with our established training configuration.

First, to demonstrate the challenges of applying LISTA-CPSS’s original training paradigm to un-
supervised quadratic objectives, we evaluate a minimally adapted version. This version is trained
unsupervisedly by defining the loss as the objective function value from the final optimization step.
Given our quadratic loss in Equation (2), any model components in LISTA-CPSS specifically de-
signed for non-quadratic terms are not directly applicable. Moreover, a critical aspect of the publicly
available LISTA-CPSS implementation is its initialization of the neural network (NN) with a fixed
matrix M. This initialization inherently restricts the trained model’s utility to problems featuring this
identical, predetermined M.

We train this minimally adapted LISTA-CPSS variant for 50 epochs (corresponding to 20000 BPs
due to its layer-wise updates) using the Adam optimizer3 on a dataset of 2048 randomly generated
samples. The loss function defined in Equation (2) is evaluated at an optimization step of T = 100.
The experimental results, depicted in Figure 6, reveal that this configuration leads to severe over-
fitting on the training samples. Specifically, Figure 6a illustrates the convergence of the objective
function (at T = 100) as a function of the training iteration k. Concurrently, Figure 6b displays
the mean objective value across 100 optimization steps during inference. These results indicate
that while LISTA-CPSS achieves rapid convergence on the training data (which used a fixed M),
its performance degrades catastrophically (i.e., fails to generalize) when evaluated with a different
matrix, M′, during inference.
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Figure 6: Training Loss and Inference Trajectory of LISTA-CPSS [7] with Fixed M

Informed by the above observation, a more robust approach is achieved through the random initial-
ization of LISTA-CPSS. Specifically, weights are sampled from a standard Gaussian distribution
and subsequently scaled by a factor of 1

d·b to mitigate potential numerical overflow in cumulative
products. The LISTA-CPSS model is then trained using this initialization strategy.

For our proposed L2O framework, the expansion coefficient e is set to 100. As detailed in Scale 3 in
Table 1, we implement an under-parameterized system wherein the dimension of the (L− 1)-th layer

3Our preliminary experiments indicates that SGD fails to converge with LISTA-CPSS’s original layer-wise
training scheme.
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is configured to 20. This implementation intentionally deviates from the theoretical requirements
stipulated by our proposed theorems, which necessitate that the dimension of the (L− 1)-th layer
must be larger than the input dimension. This particular experiment is conducted to demonstrate the
robustness of the proposed L2O framework, especially under such conditions that depart from our
established theoretical framework.

The training losses of LISTA-CPSS and our proposed L2O framework are depicted in Figure 7,
with the performance of non-learnable gradient descent (indicated by a horizontal line in the figure)
serving as a baseline. Under scenarios with varied M configurations, LISTA-CPSS exhibits markedly
slower convergence compared to both our proposed L2O framework and the gradient descent baseline.
Moreover, the fast convergence observed for our L2O framework underscores the robustness and
efficacy of its proposed initialization strategy, particularly when applied to under-parameterized
models.
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C.3 Real-World Training Performance Comparisons

To empirically validate our proposed theorem, we perform an additional experiment comparing the
training convergence of our L2O construction against standard Gradient Descent (GD). Utilizing
a compact Convolutional Neural Network (CNN) on the MNIST dataset, our method achieved
significantly faster convergence, thereby corroborating our theoretical findings.

We employ the Scale 3 configuration (an under-parameterized setting from Table 1). The CNN
architecture (Table 2) comprises two convolutional layers, two max-pooling layers, ReLU activation
functions, and a final linear layer. The optimization objective is the total cross-entropy loss over 200
randomly selected MNIST samples. The learning rates for training our L2O model and the CNN
were set to 10−6 and 10−2, respectively.

Table 2: Architecture of a Small CNN Model with MNIST Dataset

Layer
Input

Channel
Output

Channel
Kernel

Size
Input
Size

Output
Size

Convolution 1 2 3 28 × 28 28 × 28
Max Pooling 2 2 2 28 × 28 14 × 14

ReLU 2 2 N/A 14 × 14 14 × 14
Convolution 2 3 3 14 × 14 14 × 14
Max Pooling 3 3 2 14 × 14 7 × 7

ReLU 3 3 N/A 7 × 7 7 × 7
Linear 147 10 N/A 1 1

To validate our framework, we conducted a comparative analysis of the CNN training loss on the
MNIST dataset, contrasting our proposed L2O method with Gradient Descent (GD). The results are
depicted in Figure 8a, which plots the training loss over 100 iterations. We evaluate two versions
of our L2O optimizer, pre-trained for 100 and 200 epochs, respectively. In both scenarios, our L2O
framework yields a substantially lower loss than the GD baseline, which corroborates the effectiveness
of our approach for training DNN models.

Additionally, Figure 8b provides a quantitative comparison of the iteration cost for both methods. The
proposed L2O framework converges to a more optimal (lower) loss value than GD in substantially
fewer iterations, confirming its superior efficiency in training the CNN model.
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Figure 8: Performance of Training CNN on MNIST Dataset

C.4 Inference Experiment

Beyond analyzing training outcomes, we extend our evaluation to the robustness of the proposed L2O
framework by assessing its performance in inference-stage optimization. This involves comparing the
convergence characteristics of L2O against the Adam optimizer [10] and standard gradient descent
(GD). It should be noted that while our theorems provide convergence guarantees for the training
phase, such guarantees do not explicitly extend to this inference optimization context. For this
empirical investigation, both our L2O framework and the Adam optimizer are executed across a
range of hyperparameter settings for 3000 iterations (longer than 100 iterations in training), and their
respective objective function trajectories are plotted as a function of the iteration count.

Adam utilizes momentum to accelerate gradient descent. In addition to the learning rate η, Adam
employs two crucial hyperparameters, β1 and β2, which control the exponential moving averages of
past gradients and their squared magnitudes, respectively. For the Adam optimizer in our experiments,
we set the learning rate η = 1

β (β-smoothness of objective) and explored hyper-parameters β1 ∈
{0.1, 0.3, . . . , 0.9} and β2 ∈ {0.95, 0.955, . . . , 1.0}.

Regarding our proposed L2O framework and consistent with the initialization strategy detailed
in Section 5, we selected a large expansion coefficient e = 100 to enhance training stability. The
L2O model is then trained with learning rates η chosen from the set {10−3, 10−4, . . . , 10−7}.

As illustrated in Figure 9, we present the objective trajectory over 3000 optimization steps, where each
point is a mean value of 30 randomly generated problems’ objectives. While the objective function
initially exhibits rapid decay, the Adam optimizer fails to maintain this convergence, ultimately
settling at sub-optimal values and not converging on average. In contrast, our proposed framework
demonstrates superior performance compared to the Gradient Descent (GD) algorithm and exhibits
robustness across various learning rates.
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C.5 Corollary in Ablation Studies

Corollary C.1 (LR’s upper bound w.r.t. e).

η =O(e3−LT−6) ∩ O(e1−LT−4) ∩ O(e
4
3 (1−L)T− 10

3 ) ∩ O(e−TL−2L+T+4T−3T−6) ∩ O(T−2).
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Proof. From Equation (14a), we calculate:
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From Equation (14b), due to the four lower bounds in Equation (13), we calculate following four
upper bounds:
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C.6 Additional Ablation Studies for Learning Rates

We present two additional ablation studies with e of 25 and 100. Both use the configuration 1
in Table 1. The results are in Figure 10, which shows a deterministic relationship between LR
and expansion coefficient. For e = 25 in Figure 10a, the 10−7 LR is too small and leads to worse
optimality. The large LRs, i.e., 10−3, 10−4, cause unstable convergence. Similarly, for e = 100 in
Figure 10b, a proper LR is 10−4.
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Figure 10: Additional Ablation Studies of Learning Rate with Different e.

C.7 Additional Ablation Studies for Expansion Coefficient e in Initialization

We present two additional ablation studies for e with learning rates of 0.001 and 0.00001. Both use
the configuration 1 in Table 1. The results are in Figure 11. For a large LR, a large e may cause poor
convergence due to Theorem 4.3. From Figure 11a, e = 25 is a proper setting for best convergence
with η = 0.001. Similarly, for η = 0.00001, e = 5 is enough.
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Figure 11: Additional Ablation Studies of e with Different Learning Rates.

D Discussion

Scope of Theoretical Guarantees. Our theoretical analysis establishes convergence guarantees
and demonstrates superior convergence rates specifically for over-parameterized Math-L2O systems
compared to baseline optimization algorithms. While we acknowledge the empirical effectiveness of
certain under-parameterized Math-L2O systems [23, 34], providing theoretical convergence proofs
for them remains challenging due to the inherent non-convexity of the underlying neural network
training. Alternative theoretical approaches, such as convex dualization [17, 18, 31], have been
explored. However, these methods typically necessitate the inclusion of regularization terms within
the loss function, which may deviate from the original optimization objective we aim to solve.

Generalization to Other Objective Functions. The central thesis of Section 3 is that learning
can enhance algorithmic convergence. To substantiate this claim, we first require a convergence
guarantee for the neural network training process—a well-known complex problem. We leverage
Neural Tangent Kernel (NTK) theory, which typically analyzes convergence under an L2-norm
objective [16]. Despite generalizations of NTK to other loss functions [9, 40], we retain the L2-norm
for two reasons: (1) it permits the derivation of an explicit convergence rate, rather than a surrogate
one [40], and (2) it aids in demonstrating a deterministic initialization strategy, which has practical
implications for model and training design.
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Choice of Base Algorithm. Our framework utilizes Gradient Descent (GD) as the core algorithm
primarily because it admits a direct analytical formulation relating the initial point X0 to the iterate
XT . This tractability is crucial for our analysis. In contrast, accelerated variants like Nesterov
Accelerated Gradient Descent (NAG) [4] generally lack such closed-form expressions for XT .
This absence significantly complicates the derivation of the output bounds required to analyze the
L2O system’s dynamics and to prove convergence guarantees. Consequently, rigorously extending
our current theoretical framework to momentum-based methods, despite attempts using inductive
approaches, remains an open challenge.

We contend that a convergence proof for NAG can be constructed. Our central strategy involves
bounding the L2O model’s output to satisfy the convergence conditions of the backbone algorithm.
This is analogous to our use of the β-smoothness property to derive the step size in Equation (3) and
is a methodology applicable to any provably convergent algorithm. To this end, we aim to bound
XT relative to X0. The proof proceeds as follows: First, NAG is formulated as a linear dynamical
system where a transition matrix maps Xt to Xt+1. Second, we constrain the neural network outputs
(i.e., momentum terms and step sizes) to ensure the transition matrix remains bounded over T steps.
Finally, by applying the Cauchy-Schwarz and Triangle inequalities to this stable system, a formal
bound on XT is derived.

E Impact Statement

This paper presents work whose goal is to advance the field of Learning Theory and its combination
with optimization. There are many potential societal consequences of our work, none of which we
feel must be specifically highlighted here.
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made in the paper.
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• The authors should reflect on the factors that influence the performance of the approach.
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the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: If accepted, we will open source the codes.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Section 6 and Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See Section 6 and Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Section 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: See Appendix E.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Appendix E.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: See Appendix E.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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