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Abstract

Natural language to code generation is an important application area of LLMS and
has received wide attention from the community. The majority of relevant stud-
ies have exclusively concentrated on increasing the quantity and correctness of
the training sets while disregarding other stylistic elements of programs. More
recently, data quality has garnered a lot of interest and multiple works have show-
cased its importance for improving performance. In this work, we investigate data
quality for code in terms of lexical properties, control-flow properties, and pro-
gram explanations. We find that making the code more structured and readable
leads to improved code generation performance of the system. We build a novel
data-cleaning pipeline that uses these principles to transform existing programs
by 1.) renaming variables, 2.) modularizing and decomposing complex code into
smaller helper sub-functions, and 3.) inserting natural-language based planning
annotations. We evaluate our approach on two challenging algorithmic code gen-
eration benchmarks and find that fine-tuning CODELLAMA-7B on our transformed
programs improves the performance by up to 30% compared to fine-tuning on the
original dataset. Additionally, we demonstrate improved performance from using
a smaller amount of higher-quality data, finding that a model fine-tuned on the
entire original dataset is outperformed by a model trained on one-eighth of our
cleaned dataset.

1 Introduction

Natural language to code generation has witnessed considerable advances in recent years with the
advent of large language models (LLMS for brevity). These advances primarily arise from training
on extensive web-scale data and are measured based on the functional correctness of the programs.
Thus, other aspects like readability, structuring, and styling and how they affect training and data
quality are primarily ignored by these works. On the flip side, many recent works have demonstrated
the effectiveness of training on higher quality data during both pre-training Li et al. (2023d) and
fine-tuning Zhou et al. (2023); Cao et al. (2023) phases. Even within the code-generation domain,
Gunasekar et al. (2023) proposed training on “textbook” quality dataset, generated synthetically
using the GPT-3.5-TURBO model Ouyang et al. (2022). However, these techniques do not provide an
understanding of the factors improving data quality.

In this work, we show that using programs following good programming practices and allowing
for more readability leads to improved code generation performance compared to using programs
that do not follow these practices. We use these insights to build a novel automated code data-
cleaning pipeline that transforms programs while maintaining functional correctness using input-
output examples. In contrast to prior works that curate high quality datasets by directly generating
new data using LLMS, here we translate existing datasets into their parallel cleaned versions while
identifying attributes that improve data quality.

We use LLMS to perform the transformations in our data-cleaning approach. We demonstrate that
instruction-tuned models can take a user-identified attribute of data quality, such as using meaning-
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Figure 1: The overview of our code cleaning approach. We use instruction-tuned LLMS to transform
existing datasets by providing natural language prompts and use input-output examples to maintain
function equivalence. Our cleaning approach works in three steps. The top-left figure depicts the
original program from our dataset. This program undergoes variable renaming (top-right figure).
Next, the renamed program is decomposed into constituent sub-functions (bottom-right figure). Fi-
nally, we generate a plan from the modularized program by summarizing the functions called in the
(bottom-left figure). The middle-left figure presents the truncated problem statement

ful variable names, as a natural language instruction and perform the transformation accurately. Our
approach leverages the disparity in difficulty between generating a solution and editing an existing
one. Therefore, it is particularly effective in domains where the existing model struggles to generate
a correct solution but can effectively edit a given solution. We perform our data-cleaning transfor-
mations in three iterations: 1) renaming variables, 2) modularizing complex code into subfunctions,
and 3) adding planning annotations.

Figure 1 provides an overview of our approach. Notice that the variable renaming step at the top
adjusts the variable names to be contextually relevant (e.g., a to root_u and d to graph). The mod-
ularization step (depicted on the right) identifies and decomposes the original program into several
smaller subfunctions such as find_root, merge_trees, build_graph, etc. It then implements these
subroutines and assembles the modular program. Finally, our planning step (depicted at the bottom)
constructs a plan by summarizing functions in a top-down fashion (starting from the main).

We evaluate our approach in a niche yet challenging domain of algorithmic code generation. The
goal is to generate a program for a given problem statement. The task is challenging because it
requires high-level algorithmic reasoning and low-level coding and is evaluated using a strict func-
tional correctness metric. We use two well-known algorithmic code generation benchmarks, namely
APPS Hendrycks et al. (2021) and CODE-CONTESTS Li et al. (2022). We transform the correspond-
ing programs in the training sets and obtain parallel datasets from our cleaning approach. Addition-
ally, we utilize input-output examples to maintain functional equivalence between the original and
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transformed programs. We qualitatively analyze the generated dataset and find that it uses smaller
helper sub-functions, each often implementing a standard algorithm or key program functionality.
We analyze the generated dataset in more depth in Section 4.1. We further assess the impact of the
transformed datasets on the performance of our downstream code generation task. We fine-tune the
CODELLAMA-7B model on the collected datasets. Our findings reveal that the model fine-tuned on
our modularized dataset outperforms the model fine-tuned on the functionally equivalent original
dataset by up to 30%. Beyond performance improvement, we also demonstrate that improving data
quality improves data efficiency. In particular, a model fine-tuned on the original dataset outperforms
a model trained on just one-eighth of our cleaned dataset.

2 Methodology

In this section, we present our general data transformation approach and then instantiate it for per-
forming code data cleaning.

2.1 Transformations for data cleaning

Given a dataset D consisting of N instances di, such that, D = {di}Ni=1. To achieve a desired data
cleaning specification, the user additionally provides a data-cleaning instruction I, which highlights
an attribute that needs to be modified. Optionally, we also use an oracle equivalence checker (O)
which ensures that the transformed data instance d̃i is consistent with the original input based on
some desired metric. For example, we can use edit-distance or functional equivalence based on
input-output examples as our oracle checker.

We use a pre-trained language model (denoted by M) to generate the transformed instance (d̃i)
by prompting the model with the transformation instruction (I) and the original answer (y). We
perform zero-shot prompting for performing the data cleaning operations. Finally, we extract the
instance d̃i generated by M, and apply our oracle equivalence checker (O) to ensure consistency
with the original data. If O(d̃i,di) = 0, i.e., the oracle reports a failure, we reject the generated
output and retry the example within a sampling budget

While our transformation approach does not provide any guarantees about the quality of the per-
formed transformation and relies on LLMS, we empirically observe that instruction-tuned LLMS

can perform various unstructured data cleaning steps quite effectively. We provide a detailed anal-
ysis of the generated outputs for our algorithmic code generation setting in Section 4.1. Finally, in
accordance with existing literature on prompting LLMS, we found that using simple and precise,
low-level instructions improves the performance and accuracy of the models in performing the op-
erations. Thus, for complex data cleaning operations, we find improvements by breaking it down
and performing multiple operations iteratively.

2.2 Code Data-Cleaning

We apply our transformations-based data cleaning approach to programming data. Coding requires
both – low-level programming and high-level reasoning or planning skills. Therefore, we propose a
three-step cleaning pipeline that improves the readability and program structuring targeting the low-
level coding skills and inserts natural-language-based plans data targeting the high-level reasoning
skills. Our steps are detailed below.

1. Rename variables. This step renames the variables in the program, making them descrip-
tive and easier to follow. Figure 1 top provides an example of this transformation.

2. Modularize functions. Problem decomposition has been identified as a key approach for
improving the reasoning capabilities of models Zhou et al. (2022); Wang et al. (2023). We
identify program decompositions and transform the program by extracting their functional-
ity into smaller helper functions. Figure 1 right provides an example of this transformation.

3. Plan annotations. This step summarizes the helper functions in the already modularized
program and prepends it to the programs in the form of a natural language plan. These nat-
ural language descriptions are analogous to prompting approaches that are used for solving
reasoning problems like chain-of-thought prompting Wei et al. (2022), parsel Zelikman
et al. (2023), etc. Figure 1 bottom provides an example of this transformation.
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Dataset Notation Applied On Transformation Instruction (I)
Base Doriginal - -
Rename Drename Doriginal Rename the variables in the program to be descriptive, meaningful, and consistent
Modularize Dmodular Drename Refactor the above program making it more modular with smaller and meaningful

helper functions with good descriptive names for the helper functions
Plan Dplanning Dmodular Generate a natural language description for the following functions in the program

Table 1: Transformed datasets generated by our code cleaning approach. For each transformation,
we have provided the corresponding notation, the transformation instruction used to perform the
cleaning step and the dataset the transformation was applied on.

Additionally, while performing these transformations, we use the test cases provided in the dataset
to construct our oracle equivalence checker (O). It ensures that our transformed programs maintain
functional equivalence to the original program.

3 Experimental Setup

We next detail our experimental setup and implementation. Section 3.1 outlines the benchmarks
and metrics used for the algorithmic code generation task, while Sections 3.2 and 3.3 delve into the
specifics of our code cleaning approach and fine-tuning experiments respectively.

3.1 Benchmarks

We use two standard algorithmic code generation benchmarks, APPS and CODE-CONTESTS. The
benchmarks provide a collection of problem statements described in natural language and corre-
sponding test cases. The goal is to generate a program that successfully solves the problem. The
evaluation is performed using a functional-correctness-based metric.

APPS Hendrycks et al. (2021). This benchmark includes 10,000 problems, evenly split between
training and test sets. It is sourced from multiple open-access competitive programming websites.
It is further divided into APPS-INTRODUCTORY, APPS-INTERVIEW, and APPS-COMPETITION subsets
based on problem difficulty. In this study, we only consider problems sourced from a subset of the
competition websites based on the number of test cases provided.

CODE-CONTESTS Li et al. (2022). This benchmark includes 13,328 problems in the training set
and 165 problems in the test set. We only use a subset of the training split that includes python
solutions satisfying the provided test cases. Additionally, since the training set provides over a
hundred solutions per problem, we perform near-deduplication on the solutions and limit them to a
maximum of 25 solutions per problem.

Metrics. We assess the code generation performance of the models using the PASS@K metric Kulal
et al. (2019); Chen et al. (2021), which evaluates the functional correctness of generated programs.
For each problem, we generate N solutions (where N ≥ 2K) and compute the expected number
of scenarios in which the problem is solved at least once when sub-selecting a random sample of
K solutions. We vary K in {1, 10, 25} for APPS dataset and {1, 10, 100} for the CODE-CONTESTS

benchmark. We present more details about sampling hyperparameters in Appendix A.

3.2 Data Transformations

We apply our data transformation approach on the APPS and CODE-CONTESTS datasets. Unless
specified otherwise, we use GPT-3.5-TURBO as our default language model M to perform the trans-
formations and use a default temperature 0.3. In case of failure, we retry up to 5 iterations. We obtain
three parallel datasets at the end of our cleaning process, one for each of renaming, modularization,
and planning. Table 1 provides a summary of the generated datasets along with the instructions used
to generate them. We provide complete details about the transformations in Appendix B.

We also simulate a simple distillation baseline, analogous to direct synthetic data generation ap-
proaches similar to Gunasekar et al. (2023). Specifically, we generate solutions for the training
problems using the GPT-3.5-TURBO model. We use in-context learning with the two-shot prompt
examples selected from our Dmodular dataset. To ensure diverse solutions, we use three distinct
few-shot examples and generate eight solutions for every prompt at a temperature of 0.5. Addition-
ally, we filter the solutions that do not pass the test cases and refer to this dataset as Ddistill.
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APPS-INTRODUCTORY APPS-INTERVIEW

PASS@1 PASS@10 PASS@25 PASS@1 PASS@10 PASS@25
In-context Learning
CL-7B + Doriginal 14.2 29.2 38.4 1.8 7.3 10.4
CL-7B + Dmodular 17.5 30.1 39.7 2.2 8.6 12.3

+3.3 +0.9 +1.3 +0.4 +1.3 +1.9
Fine-tuning
CL-7B + Doriginal 18.7 34.4 40.2 3.4 9.7 13.6
CL-7B + Dmodular 22.7 36.9 42.6 4.2 11.0 15.0

+4.0 +2.5 +2.4 +0.8 +1.3 +1.4
CL-7B + Dplanning 22.1 37.1 43.8 3.7 10.5 14.8
CL-7B + Drename 19.2 36.6 42.9 4.0 10.7 14.6
CL-7B + Ddistill 21.1 35.3 40.5 - 10.8 14.5
Closed models
CODE-DAVINCI-002 1 22.1 50.2 58.7 4.1 16.8 23.8

Table 2: Results on APPS dataset. We use the CODELLAMA-7B model (referred to as CL-7B)
and evaluate it under both fine-tuning and in-context learning settings. We use samples from the
original and our transformed datasets in these settings and find that our cleaned datasets improve the
performance of the model by up to 30%. The green highlighted numbers depict the improvements
obtained from using our Dmodular dataset over the Doriginal dataset.

3.3 Experiment Details

To evaluate the quality of the transformed datasets, we measure how they impact the test benchmark
accuracy. We study both in-context learning and fine-tuning using examples from our datasets.

Models. We use the CODELLAMA-7B model Rozière et al. (2023) in all our experiments (referred
as CL-7B ahead).

In-context learning. We select two question-answer pairs from the Doriginal and Dmodular training
sets as our in-context learning example.

Fine-Tuning. We perform full fine-tuning over the base CL-7B model on the different datasets. We
train the models for two epochs on the APPS dataset and one epoch on the CODE-CONTESTS dataset
using a 5e−5 learning rate and an effective batch size of 256 on 4 A6000 GPUs.

4 Experimental Results

We present our experimental results in this section. Section 4.1 first provides a qualitative overview
of the transformed programs and the remaining section presents the code generation results.

4.1 Analysis of the transformed programs

Data statistics. For the CODE-CONTESTS dataset, out of 98,582 programs extracted from the original
dataset (Doriginal), we can successfully transform 92,675 (94.0%) into our modularized dataset
(Dmodular). We obtain similar success rates for the APPS dataset (details deferred to the appendix).
On the contrary, the distilled dataset (Ddistill), which is constructed by generating solutions directly
using GPT-3.5-TURBO only finds a correct solution for about 50% of the problems.

Analysis of the transformed programs. We find that our transformation approach decomposes the
original programs by inserting three new functions on a median (∼2.6 functions on average).To get a
better understanding of the decomposition, we cluster the functions using their function names and
signatures. We find that these helper functions often implement key program logic, standard algo-
rithms, and utilities like handling inputs, outputs, and orchestrating the main function. Interestingly,
we also find that the helper functions are often reused across problems, with small variations in
implementations. For example, the top five most frequent helper functions, dfs, build_graph, gcd,
dp, and binary_search occur in about 3-8% of the problems. Additionally, we qualitatively analyze
a hundred random samples from Doriginal and Dmodular datasets to determine the quality of per-
formed transformations. Figures 4 to 11 in the appendix provide examples of such transformations.
We find that most of the transformations are meaningful. They improve the readability of the pro-
grams and also find suitable decomposition for the program logic encoded in the control flow (see

1Model generations were obtained from Chen et al. (2022a)
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Figure 4 as an example). However, in some cases, the generated helper functions can have improper
names (calculate_max_colors in Figure 11) or complex implementations copied directly from the
original program (count_sequences in Figure 12). Additionally, for simpler programs (Figure 13),
the entire program functionality can be implemented in a single function and the decomposition does
not provide any extra information.

Unlike, generated code, we cannot constrain or check the generated natural language plans. Thus, we
find that sometimes the plans can be imprecise and vary in detail. While using a stronger pretrained
model like GPT-4 could alleviate some of these issues, we believe this will be a good avenue for
applying process supervision Lightman et al. (2023).

4.2 Main Result

Tables 2 and 3a provide our primary results on APPS and CODE-CONTESTS datasets respectively. We
present our key results here and defer other results to the appendix.

We find that our data-cleaning approach improves the performance of the model on both APPS and
CODE-CONTESTS datasets in both in-context learning and fine-tuning settings.

In-context Learning. We first evaluate the performance of the model when provided with parallel
two-shot in-context learning examples from Doriginal and Dmodular datasets each. We find that the
PASS@1 improves from 14.2 to 17.5 (a 23% relative improvement) on the APPS-INTRODUCTORY

dataset and PASS@100 improves from 7.2 to 9.3 (a 29% relative improvement) on the CODE-
CONTESTS dataset. These results indicate that more readable and better-structured code helps the
model in solving more problems.

Fine-tuning. Next, we fine-tune the model on the Doriginal and Dmodular datasets and again find
strong performance improvements from our transformation approach. Specifically, on the APPS-
INTRODUCTORY dataset, the PASS@1 improves from 18.7 to 22.7 (a 23% relative improvement).
Similarly, the CODE-CONTESTS dataset PASS@25 metric improves from 6.4 to 8.4 (30% relative
improvement). These results cement our above findings about the effect of cleaning the data.

Interestingly, we also note that fine-tuning only provides modest improvements over the in-context
learning performance. We hypothesize that this is due to the challenging nature of our task. Addi-
tionally, the in-context learning examples insert over 2,000 additional tokens to the sequence prefix
and provide a much slower generation speed compared to the fine-tuned models.

5 Related Work

Data quality has been receiving increasingly more attention in the LLM literature, both in terms of
improving the model performance and also for reducing the data requirements.

Instruction tuning. Instruction tuning refers to the process of finetuning a base pretrained LLM to
perform general-purpose tasks and follow instructions. Recent works, Zhou et al. (2023); Cao et al.
(2023); Chen et al. (2023) have demonstrated that a small high-quality instruction corpus is sufficient
for achieving good instruction tuning performance. Here, we perform task-specific fine-tuning of
LLMS and observe similar performance improvements.

Synthetic data for LLMS. Recent works have explored using synthetic datasets for general-
purpose or task-specific finetuning of LLMS. These approaches work by generating synthetic
datasets from a strong LLM (like GPT-3.5-TURBO or GPT-4) using a set of existing tasks Taori
et al. (2023); Chiang et al. (2023) or generating new tasks using self-instruct Wang et al. (2022) or
evol-instruct Xu et al. (2023) approaches. This has been also applied for task-specific finetuning –
in common-sense reasoning West et al. (2022), text-summarization Sclar et al. (2022), mathematical
reasoning Luo et al. (2023a); Yue et al. (2023), tool use Patil et al. (2023), coding Luo et al. (2023b),
and general-purpose reasoning Li et al. (2023b).

More specifically, Yue et al. (2023) curates diverse corpus of mathematics problems with chain-
of-thought Wei et al. (2022) or program-of-thought Chen et al. (2022b) annotations for mathemat-
ical reasoning analogous to our plans. Gunasekar et al. (2023) proposed pre-training models on
programming “textbooks” generated synthetically from GPT-3.5-TURBO followed by finetuning the
model on programming exercises generated similarly. Our work also studies curating synthetic data
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for code-generation space. However, instead of directly generating data using LLMS, we identify
better programming patterns and use our transformation approach to clean existing datasets.

6 Conclusion

Traditionally, data quality has primarily been linked to the correctness of programs, ignoring the
rich stylistic aspects differing across programs. In this work, we demonstrate that stylistic aspects
like readability, and program structuring actually impact the performance of the trained model on
downstream tasks and thus also contribute to data quality. Next, we propose a LLM based data-
cleaning pipeline that can be used for transforming programs to use better variable names, control
flow structures, and function explanations in a scalable manner. While our evaluations focused on
the algorithmic code generation task, we believe that these findings would also improve the general-
purpose code generation capabilities of language models and be useful for software-engineering use
cases.
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A Experimental Setup

APPS benchmark. We only retain problems from the codeforces, codechef, and atcoder
competition websites. Specifically, the other websites or platforms provide very few (or no test
cases) and use separate formats. While we considerably reduced the size of our training set, our test
set is still quite close to the test set containing around 3800 problems instead of the default 5000.

Additionally, we note that some of the provided solutions in both APPS and CODE-CONTESTS

datasets do not pass the test cases. These cases are sometimes due to incorrect programs but more
often come from the fact that there can be multiple correct solutions are possible for the problem
while only a single test solution is provided. We retain such samples for the APPS dataset and
instead check whether the transformed program behavior is similar to the original program.

Metrics We use the PASS@K to perform our evaluations. We perform nucleus sampling using
VLLM with p = 0.95. We outline the default sampling configurations used for computing the
metrics

1. PASS@1 - We use a sampling budget (N ) = 10 and temperature = 0.1.
2. PASS@10 - We use a sampling budget (N ) = 50 and temperature = 0.6.
3. PASS@25 - We use a sampling budget (N ) = 50 and temperature = 0.6.
4. PASS@100 - We use a sampling budget (N ) = 200 and temperature = 0.8.

Finetuning details We finetune the CODELLAMA-7B model using deepspeed huggingface trainer.
We use the following training configuration for our main experiments -

Training Parameters Values
LR 5e−5

Epochs 1 or 2 depending on the dataset
Batch Size 256 (combing grad. accumulation)
Dtype bf16
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B Code Transformations Implementation

We implement our code transformation approach using zero-shot prompting with GPT-3.5-TURBO

model. After transformation, we extract the generated code and evaluate its functional correctness
using the provided test cases. In case the program does not pass, we retry the process with up to a
maximum of 5 attempts. In our experience, instruction-tuned models can follow precise commands
and transform programs very well.

B.1 Renaming

We use the following prompt to perform renaming.

QUESTION :
{ p r o b l e m _ s t a t e m e n t }

ANSWER:
‘ ‘ ‘ py thon
{ s o l u t i o n }
‘ ‘ ‘
Rename t h e v a r i a b l e s i n t h e program t o be d e s c r i p t i v e , mean ing fu l , and c o n s i s t e n t . Do n o t
change t h e o r i g i n a l s e m a n t i c s o f t h e program . E n c l o s e t h e program w i t h i n b a c k t i c k s a s shown
above and remember t o use d e s c r i p t i v e v a r i a b l e names .

B.2 Modularization

Unlike renaming, we perform two rounds of modularization in case the generated program consists
of long function implementations (hinting that the function can be decomposed further). We use the
following prompt to perform the first round of modularization

QUESTION :
{ p r o b l e m _ s t a t e m e n t }

ANSWER:
‘ ‘ ‘ py thon
{ r e n a m e d _ s o l u t i o n }
‘ ‘ ‘
R e f a c t o r t h e above program . Fol low t h e g u i d e l i n e s
* make t h e program more modular wi th s m a l l e r and m e a n i n g f u l h e l p e r f u n c t i o n s
* good d e s c r i p t i v e names f o r t h e h e l p e r f u n c t i o n s
* have an e n t r y f u n c t i o n c a l l e d ‘ main ( ) ‘
* ‘ main ( ) ‘ i s c a l l e d i n s i d e ‘ i f __name__ == ’ __main__ ’ ‘

Do n o t change t h e o r i g i n a l s e m a n t i c s o f t h e program s i g n i f i c a n t l y and no need t o pe r fo rm
o p t i m i z a t i o n s . E n c l o s e t h e program w i t h i n b a c k t i c k s as shown above

Next, in case the modularized program contains a function with the number of lines greater than 20,
we further prompt the model while signaling which functions to further decompose. This occurs in
about 20-40% of modularized solutions and we use the following prompt.

QUESTION :
{ p r o b l e m _ s t a t e m e n t }

ANSWER:
‘ ‘ ‘ py thon
{ m o d u l a r i z e d _ s o l u t i o n }
‘ ‘ ‘
R e f a c t o r t h e above program by m o d u l a r i z i n g i t and b r e a k i n g down long and complex f u n c t i o n s
i n t o s m a l l e r m e a n i n g f u l h e l p e r f u n c t i o n s . P a r t i c u l a r l y r e f a c t o r and decompose t h e f o l l o w i n g
f u n c t i o n ( s ) i n t o s m a l l e r h e l p e r f u n c t i o n s − { f u n c t i o n _ n a m e s _ s t r i n g }
Only r e t u r n t h e r e f a c t o r e d program e n c l o s e d i n b a c k t i c k s as shown above . " " "

B.3 Planning

We use the following prompt to generate natural language plans
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QUESTION :
{ p r o b l e m _ s t a t e m e n t }

ANSWER:
‘ ‘ ‘ py thon
{ m o d u l a r i z e d _ s o l u t i o n }
‘ ‘ ‘
G e n e r a t e a summary f o r t h e f o l l o w i n g f u n c t i o n s and c l a s s e s i n t h e program w i t h i n f o u r l i n e s
each . The summaries s h o u l d be d e s c r i p t i v e and h e l p f u l f o r u n d e r s t a n d i n g t h e program ( however
y e t c o n c i s e i n f o u r l i n e s ) .
The f u n c t i o n s and c l a s s e s a r e −
{ l i s t _ o f _ f u n c t i o n _ n a m e s }
Fol low t h e p r o v i d e d f o r m a t f o r t h e summaries w h i l e b e i n g i n f o r m a t i v e and c o n c i s e . E n c l o s e t h e

s i g n a t u r e s i n b a c k t i c k s as shown above .
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CODE-CONTESTS

PASS@10 PASS@25 PASS@100
In-context Learning
CL-7B + Doriginal 5.1 6.5 7.2
CL-7B + Dmodular 4.9 6.6 9.3

-0.2 +0.1 +2.1
Fine-tuning
CL-7B + Doriginal 5 6.4 10.9
CL-7B + Dmodular 6.1 8.3 12.4

+1.1 +1.9 +1.5
CL-7B + Dplanning 5.3 7.0 10.8
CL-7B + Drename 4.7 6.3 10.5
Closed models
ALPHACODE-9B 2 5.0 7.0 10.0
ALPHACODE-41B3 5.0 7.0 10.0
CODE-DAVINCI-002 3 3.0 - 7.5
GPT-3.5-TURBO4 - - 18.2
+ BRAINSTORM5 - - 29.3

(a) Results on the CODE-CONTESTS dataset. Sim-
ilar to findings on the APPS dataset, we find that our
data cleaning improves the performance.

CODE-CONTESTS-PLAN

PASS@10 PASS@25 PASS@100

CL-7B + Doriginal 6.5 9.5 15.0
CL-7B + Dmodular 8.8 11.8 17.8
CL-7B + Dplanning 6.9 10.5 15.4
CL-7B + DGT

plan 17.9 22.3 28.1
+9.1 +10.5 +11.3

(b) Effect of using ground-truth plans. We disen-
tangle the high-level reasoning vs coding capabili-
ties by extracting ground-truth plans from solutions
corresponding to the test problems. We find signifi-
cant improvement in the performance on the CODE-
CONTESTS-PLAN dataset, indicating that the model
trained on the Dplanning dataset while incapable of
building correct plans, can follow such plans accu-
rately

C Additional Results

C.1 Other results

C.1.1 Effect of planning

We next measure the effect of fine-tuning on the Dplanning dataset which contains the natural lan-
guage plans generated by our approach. Surprisingly, we find that planning only provides a mod-
est improvement over the Dmodular dataset (PASS@25 improved from 42.6 to 43.9 on the APPS-
INTRODUCTORY dataset) or no improvements at all. These results are in sharp contrast to the litera-
ture on improving mathematical reasoning Yue et al. (2023); Magister et al. (2022); Fu et al. (2023)
where training on chain-of-thought reasoning has been shown to be particularly effective. We hy-
pothesize that this is an artifact of the difficult nature of our task and the diverse reasoning required
for solving these problems. We leave a thorough comparison of these tasks for future work.

Upon inspection of the generated solutions, we find that often the generated plans are imprecise or
incorrect, highlighting that planning still remains a bottleneck. To disentangle the high-level plan-
ning from the coding component, we analyze the performance of the model when provided with
ground-truth plans on the CODE-CONTESTS dataset. We extract these ground-truth plans by applying
our data transformation approach on the test set (similar to how Dplanning training set was created).
Since some problems in the test set do not have a corresponding correct python solution, we only
consider a subset of 109 problems (instead of the original 165 problems). Table 3b provides results
on this subset of the CODE-CONTESTS dataset. We find that while our model trained on the Dplanning

dataset is incapable of synthesizing new plans, it is capable of following the generated plans cor-
rectly. Specifically, all metrics showcase significant improvement, e.g. PASS@100 improving from
17.8 to 28.1, approaching the performance of GPT-3.5-TURBO, a much larger model!

C.1.2 Ablations

Effect of data size. Beyond improving the quality of the resulting model, data quality is also
attributed to improving the data efficiency. We evaluate this aspect by fine-tuning our model on
different fractions of Doriginal and Dmodular datasets and find similar results. Figure 3 presents the
performance of the model as a function of training set size. As shown in the figure, training on just
one-eighth of Dmodular dataset achieves similar PASS@1 as fine-tuning on the entire Doriginal.

2Results sourced from Li et al. (2022)
3Results sourced from Zhang et al. (2023a)
4Results sourced from Li et al. (2023c)
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def read_grid ():
n,m = input().split()
...

def remove_white_rows(grid):
row_indices = []
...
return grid

def remove_white_columns(grid):
column_indices = []
...
return grid

def main():
grid = read_grid ()
grid = remove_white_rows(grid)
grid = remove_white_columns(grid)
print_grid(grid)
...

Figure 2: Example of a program gen-
erated by our model trained on the
Dmodular dataset. It correctly solves
the problem by constructing smaller
helper functions remove_white_rows,
remove_white_columns
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Figure 3: Effect of quality on data-efficiency
of the model. Finetuning on 12.5% of clean
Dmodular dataset results in similar performance
as finetuning on the entire Doriginal dataset.

Effect of renaming. We use variable renaming as an intermediate step in our cleaning process. We
evaluate the performance of the model fine-tuned only on the Drename dataset and find that renaming
alone improves the performance when compared to fine-tuning on Doriginal dataset. For example,
PASS@1 improved from 17.2 to 19.1. However, renaming still performs worse in comparison to fine-
tuning on the Dmodular. This highlights that beyond just readable code, functional decomposition
is also a key aspect of improving our performance.

Transformations vs Distillation. We compare our transformation approach with a direct distilla-
tion baseline where we directly generate solutions using GPT-3.5-TURBO, referred to as the Ddistill

dataset5. On the APPS-INTRODUCTORY dataset, we find that fine-tuning on the Dmodular dataset
achieves better performance compared to the Ddistill dataset demonstrating the advantage of clean-
ing over the generation baseline.

C.1.3 Comparison to Other Baselines

We also provide a comparison to various In addition to CL-7B fine-tuned results, we also provide
reference numbers from various closed-source models. Interestingly, our fine-tuned models outper-
form strong baselines like ALPHACODE on the CODE-CONTESTS dataset but still lag behind much
larger CODE-DAVINCI-002 and GPT-3.5-TURBO models.

C.1.4 Case study of generated modularized program

Figure 2 provides an example of a program correctly generated by a model fine-tuned on our
Dmodular dataset. The problem requires removing rows and columns containing cells with certain
attributes (i.e., if the cell is white) The modularized solution correctly identifies the steps required
to solve the problem and implements them as separate helper functions, providing readable code.

We present the results on APPS-COMPETITION dataset here.

5Note that we generate these solutions using in-context examples from the Dmodular dataset
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APPS-COMPETITION

PASS@1 PASS@10 PASS@100
Fine-tuning
CL-7B + Doriginal 0.2 1.7 3.1
CL-7B + Dmodular 0.5 2.3 3.2

+0.3 +0.6 +0.1
CODE-DAVINCI-002 0.3 2.9 5.7

Table 4: Results on the APPS-COMPETITION datasets

D Examples of Transformed Program

def main():
import sys
input=sys.stdin.readline

n,k=map(int ,input ().split ())

ab=[list(map(int ,input().split())) for _ in
[0]*n]

g=[[] for _ in [0]*10]
[g[b-1]. append(a) for a,b in ab]
[g[c].sort(reverse=True) for c in range (10)]

for c in range (10):
g[c]=[0]+g[c]

for c in range (10):
for i in range(2,len(g[c])):

g[c][i]+=g[c][i -1]+2*(i-1)

dp =[0]*(k+1)

for c in range (10):
dp2 =[0]*(k+1)
for i in range(len(g[c])):

for j in range(k+1-i):
dp2[i+j]=max(dp2[i+j],dp[j]+g[c

][i])
dp=dp2

print(max(dp))

if __name__ ==’__main__ ’:
main()

(a) Original program

def read_input ():
... (TRUNCATED)
return num_books , num_sell , book_info

def group_books_by_genre(num_books , book_info):
genre_books = [[] for _ in range (10)]
for price , genre in book_info:

genre_books[genre -1]. append(price)
return genre_books

def sort_books_by_price(genre_books):
for genre in genre_books:

genre.sort(reverse=True)
return genre_books

def calculate_purchase_prices(genre_books):
for genre in genre_books:

genre.insert(0, 0)
for genre in genre_books:

for i in range(2, len(genre)):
genre[i] += genre[i-1] + 2*(i-1)

return genre_books

def calculate_max_purchase_price(num_sell ,
genre_books):

dp = [0] * (num_sell +1)
for genre in genre_books:

dp2 = [0] * (num_sell +1)
for i in range(len(genre)):

for j in range(num_sell+1-i):
dp2[i+j] = max(dp2[i+j], dp[j] +

genre[i])
dp = dp2

return max(dp)

def main():
num_books , num_sell , book_info = read_input
()

genre_books = group_books_by_genre(num_books
, book_info)

genre_books = sort_books_by_price(
genre_books)

genre_books = calculate_purchase_prices(
genre_books)

max_purchase_price =
calculate_max_purchase_price(num_sell ,
genre_books)

print(max_purchase_price)

if __name__ == ’__main__ ’:
main()

(b) Transformed program

Figure 4: Original and transformed programs
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for _ in range(int(input())):
p, q = map(int ,input ().split ())
c = q
d = p

i = 1
factor = []
while i*i <= q:

if q % i == 0:
factor.append(i)
if q//i != i:

factor.append(q//i)
i += 1

factor.sort(reverse=True)
factor.pop()
m = 1
for i in factor:

d = p
while d % c == 0:

d //= i
m = max(m, d)

print(m)

(a) Original program

def get_factors(q):
factors = []
i = 1
while i*i <= q:

if q % i == 0:
factors.append(i)
if q//i != i:

factors.append(q//i)
i += 1

factors.sort(reverse=True)
factors.pop()
return factors

def get_largest_divisor(p, q, factors):
largest_divisor = 1
for i in factors:

dividend_copy = p
while dividend_copy % q == 0:

dividend_copy //= i
largest_divisor = max(largest_divisor ,

dividend_copy)
return largest_divisor

def main():
t = int(input())
for _ in range(t):

p, q = map(int , input().split())
factors = get_factors(q)
largest_divisor = get_largest_divisor(p,

q, factors)
print(largest_divisor)

if __name__ == ’__main__ ’:
main()

(b) Transformed program

Figure 5: Original and transformed programs
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def ncr(n, r, p):
# initialize numerator
# and denominator
num = den = 1
for i in range(r):

num = (num * (n - i)) % p
den = (den * (i + 1)) % p

return (num * pow(den ,
p - 2, p)) % p

a,b,n=map(int ,input().split())
ans=0
p=10**9+7
num=1
den=1
for i in range(n+1):

s=a*i+b*(n-i)
if i!=0:

num=(num*(n-i+1))%p
den=(den*(i))%p

am=True
while s!=0:

if s%10!=a and s%10!=b:
am=False
break

s//=10
if am:

ans=(ans+(num*pow(den ,p-2,p))%p)%p
print(ans%p)

(a) Original program

def ncr(n, r, p):
# calculate nCr modulo p
# initialize numerator and denominator
numerator = denominator = 1
for i in range(r):

numerator = (numerator * (n - i)) % p
denominator = (denominator * (i + 1)) %

p
return (numerator * pow(denominator , p - 2,
p)) % p

def is_good_number(number , a, b):
# check if a number is a good number
while number != 0:

if number % 10 != a and number % 10 != b
:

return False
number //= 10

return True

def count_excellent_numbers(a, b, n):
ans = 0
p = 10**9 + 7
numerator = 1
denominator = 1

for i in range(n + 1):
sum_of_digits = a * i + b * (n - i)

if i != 0:
numerator = (numerator * (n - i + 1)

) % p
denominator = (denominator * i) % p

if is_good_number(sum_of_digits , a, b):
ans = (ans + (numerator * pow(

denominator , p - 2, p)) % p) % p

return ans % p

def main():
a, b, n = map(int , input ().split ())
result = count_excellent_numbers(a, b, n)
print(result)

if __name__ == ’__main__ ’:
main()

(b) Transformed program

Figure 6: Original and transformed programs
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import bisect
rev =[]
for i in range (1 ,10002):

if str(i)==str(i)[:: -1]: rev.append(i)
n=int(input())
ind= bisect.bisect_left(rev ,n)
if abs(n-rev[ind -1]) <=abs(n-rev[ind]):

print(rev[ind -1])
else:

print(rev[ind])

(a) Original program

import bisect

def generate_palindromes ():
palindromes = []
for num in range(1, 10002):

if str(num) == str(num)[:: -1]:
palindromes.append(num)

return palindromes

def find_closest_palindrome(palindromes , n):
index = bisect.bisect_left(palindromes , n)
if abs(n - palindromes[index - 1]) <= abs(n
- palindromes[index ]):

return palindromes[index - 1]
else:

return palindromes[index]

def main():
palindromes = generate_palindromes ()
n = int(input())
closest_palindrome = find_closest_palindrome
(palindromes , n)

print(closest_palindrome)

if __name__ == ’__main__ ’:
main()

(b) Transformed program

Figure 7: Original and transformed programs
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N = int(input())
T = [int(input()) for i in range(N)]
T.sort()
if N == 1:

ans = 0
else:

y = T[-1]
R = []
for x in range(1, y+1):

if y % x == 0:
R.append(x)

cur = ans = 0
for t in T:

while R[cur] < t:
cur += 1

ans += R[cur] - t
print(ans)

(a) Original program

def find_divisors(max_interval):
divisors = []
for divisor in range(1, max_interval +1):

if max_interval % divisor == 0:
divisors.append(divisor)

return divisors

def calculate_min_sum(intervals , divisors):
current_index = min_sum = 0
for interval in intervals:

while divisors[current_index] < interval
:

current_index += 1
min_sum += divisors[current_index] -

interval
return min_sum

def main():
num_metronomes = int(input())
intervals = [int(input ()) for i in range(
num_metronomes)]

intervals.sort()
if num_metronomes == 1:

min_sum = 0
else:

max_interval = intervals [-1]
divisors = find_divisors(max_interval)
min_sum = calculate_min_sum(intervals ,

divisors)
print(min_sum)

if __name__ == ’__main__ ’:
main()

(b) Transformed program

Figure 8: Original and transformed programs
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def main():
from collections import defaultdict
n, colors = int(input()), input () [::2]
dsu , edges , d = list(range(n)), [],
defaultdict(list)

for _ in range(n - 1):
u, v = map(int , input().split())
u -= 1
v -= 1
if colors[u] == colors[v]:

a, b = dsu[u], dsu[v]
while a != dsu[a]:

a = dsu[a]
while b != dsu[b]:

b = dsu[b]
if a < b:

dsu[b] = dsu[v] = a
else:

dsu[a] = dsu[u] = b
else:

edges.append(u)
edges.append(v)

for u, v in enumerate(dsu):
dsu[u] = dsu[v]

while edges:
u, v = dsu[edges.pop()], dsu[edges.pop()

]
d[u]. append(v)
d[v]. append(u)

def bfs(x):
nxt , avail , t = [x], [True] * n, 0
while nxt:

t += 1
cur , nxt = nxt , []
for y in cur:

avail[y] = False
for y in d[y]:

if avail[y]:
nxt.append(y)

return t if x else cur [0]

print(bfs(bfs(0)) // 2)

if __name__ == ’__main__ ’:
main()

(a) Original program

from collections import defaultdict

def find_root(vertex , dsu):
while vertex != dsu[vertex ]:

vertex = dsu[vertex]
return vertex

def merge_trees(u, v, dsu):
root_u = find_root(u, dsu)
root_v = find_root(v, dsu)
if root_u < root_v:

dsu[root_v] = dsu[v] = root_u
else:

dsu[root_u] = dsu[u] = root_v

def build_graph(num_vertices , colors , edges):
dsu = list(range(num_vertices))
graph = defaultdict(list)
for u, v in edges:

if colors[u] == colors[v]:
merge_trees(u, v, dsu)

else:
graph[dsu[u]]. append(dsu[v])
graph[dsu[v]]. append(dsu[u])

return dsu , graph

def bfs(x, num_vertices , graph):
next_vertices = [x]
available = [True] * num_vertices
t = 0
while next_vertices:

t += 1
current_vertices , next_vertices =

next_vertices , []
for y in current_vertices:

available[y] = False
for neighbor in graph[y]:

if available[neighbor ]:
next_vertices.append(

neighbor)
return t if x else current_vertices [0]

def main():
num_vertices = int(input())
colors = input() [::2]
edges = []
for _ in range(num_vertices - 1):

u, v = map(int , input().split())
u -= 1
v -= 1
edges.append ((u, v))

dsu , graph = build_graph(num_vertices ,
colors , edges)

print(bfs(bfs(0, num_vertices , graph),
num_vertices , graph) // 2)

if __name__ == ’__main__ ’:
main()

(b) Transformed program

Figure 9: Original and transformed programs
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import heapq

def dfs(graph , start):
n = len(graph)
dist = [-0 for i in range(n + 1)]
visited = [False for i in range(n + 1)]
visited[start] = True
stack = []
dist[start] = 0
heapq.heappush(stack , start)
while stack:

u = heapq.heappop(stack)
for v in graph[u]:

if not visited[v]:
visited[v] = True
dist[v] = dist[u] + 1
heapq.heappush(stack , v)

return dist

def solution ():
n, m, d = map(int , input().strip().split ())
p = list(map(int , input ().strip ().split ()))
graph = [[] for i in range(n + 1)]
for i in range(n - 1):

a, b = map(int , input().strip().split())
graph[a]. append(b)
graph[b]. append(a)

dist = dfs(graph , 1)

max_distance = -1
u = -1
v = -1
for i in p:

if dist[i] > max_distance:
max_distance = dist[i]
u = i

distu = dfs(graph , u)

max_distance = -1
for i in p:

if distu[i] > max_distance:
max_distance = distu[i]
v = i

distv = dfs(graph , v)

affected = 0
for i in range(1, n + 1):

if 0 <= distu[i] <= d and 0 <= distv[i]
<= d:

affected += 1

print(affected)

solution ()

(a) Original program

import heapq

def calculate_distances(graph , start):
n = len(graph)
distances = [-0 for i in range(n + 1)]
visited = [False for i in range(n + 1)]
visited[start] = True
stack = []
distances[start] = 0
heapq.heappush(stack , start)
while stack:

current_node = heapq.heappop(stack)
for neighbor in graph[current_node ]:

if not visited[neighbor ]:
visited[neighbor] = True
distances[neighbor] = distances[

current_node] + 1
heapq.heappush(stack , neighbor)

return distances

def find_possible_book_locations ():
n, m, d = map(int , input ().strip ().split ())
affected_settlements = list(map(int , input()
.strip().split()))

graph = [[] for i in range(n + 1)]
for i in range(n - 1):

a, b = map(int , input().strip().split())
graph[a]. append(b)
graph[b]. append(a)

return calculate_possible_locations(n, m, d,
affected_settlements , graph)

def calculate_possible_locations(n, m, d,
affected_settlements , graph):

distances = calculate_distances(graph , 1)
max_distance , u = find_max_distance(
distances , affected_settlements)

distances_u = calculate_distances(graph , u)
max_distance , v = find_max_distance(
distances_u , affected_settlements)

distances_v = calculate_distances(graph , v)
return count_possible_locations(n, d,
distances_u , distances_v)

def find_max_distance(distances ,
affected_settlements):

max_distance = -1
u = -1
for settlement in affected_settlements:

if distances[settlement] > max_distance:
max_distance = distances[settlement]
u = settlement

return max_distance , u

def count_possible_locations(n, d, distances_u ,
distances_v):

possible_locations = 0
for i in range(1, n + 1):

if 0 <= distances_u[i] <= d and 0 <=
distances_v[i] <= d:

possible_locations += 1
return possible_locations

def main():
possible_locations =
find_possible_book_locations ()

print(possible_locations)

if __name__ == ’__main__ ’:
main()

(b) Transformed program

Figure 10: Original and transformed programs
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n = int(input())
dividers = list()
i = 2

while i * i <= n:
if n % i == 0:

dividers.append(i)

while n % i == 0:
n /= i

i += 1

if n > 1:
dividers.append(n)

if len(dividers) == 1:
print(dividers [0])

else:
print (1)

(a) Original program

def find_dividers(path_length):
dividers = []
divisor = 2

while divisor * divisor <= path_length:
if path_length % divisor == 0:

dividers.append(divisor)
while path_length % divisor == 0:

path_length //= divisor
divisor += 1

if path_length > 1:
dividers.append(path_length)

return dividers

def calculate_max_colors(path_length):
dividers = find_dividers(path_length)
if len(dividers) == 1:

return dividers [0]
else:

return 1

def main():
path_length = int(input())
max_colors = calculate_max_colors(
path_length)

print(max_colors)

if __name__ == ’__main__ ’:
main()

(b) Transformed program

Figure 11: Original and transformed programs
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import sys
readline = sys.stdin.readline

N, M = map(int , readline ().split ())
mod = 10**9+7
dpscc = [[0]*(N+1) for _ in range(N+1)]
dpus = [[0]*(N+1) for _ in range(N+1)]
dpscc [1][0] = 1

for m in range(M):
dpscc2 = [[0]*(N+1) for _ in range(N+1)]
dpus2 = [[0]*(N+1) for _ in range(N+1)]
for i in range(1, N+1):

for j in range(N+1-i):
kscc = dpscc[i][j]
kus = dpus[i][j]
dpscc2[i][j] = (dpscc2[i][j] + i*

kscc) % mod
dpus2[i][j] = (dpus2[i][j] + j*(kus+

kscc)) % mod
dpscc2[i+j][0] = (dpscc2[i+j][0] + i

*kus) % mod
if N-i-j:

dpus2[i][j+1] = (dpus2[i][j+1] +
(N-i-j)*(kus+kscc)) % mod

dpscc = [d[:] for d in dpscc2]
dpus = [d[:] for d in dpus2]

print(dpscc[N][0])

(a) Original program

import sys

def count_sequences(num_towns , num_days):
mod = 10**9+7
dp_same_city_count = [[0]*( num_towns +1) for
_ in range(num_towns +1)]

dp_unique_city_count = [[0]*( num_towns +1)
for _ in range(num_towns +1)]

dp_same_city_count [1][0] = 1

for day in range(num_days):
dp_same_city_count2 = [[0]*( num_towns +1)

for _ in range(num_towns +1)]
dp_unique_city_count2 = [[0]*( num_towns

+1) for _ in range(num_towns +1)]
for i in range(1, num_towns +1):

for j in range(num_towns+1-i):
same_city_count =

dp_same_city_count[i][j]
unique_city_count =

dp_unique_city_count[i][j]
dp_same_city_count2[i][j] = (

dp_same_city_count2[i][j] + i*
same_city_count) % mod

dp_unique_city_count2[i][j] = (
dp_unique_city_count2[i][j] + j*(
unique_city_count+same_city_count)) % mod

dp_same_city_count2[i+j][0] = (
dp_same_city_count2[i+j][0] + i*
unique_city_count) % mod

if num_towns -i-j:
dp_unique_city_count2[i][j

+1] = (dp_unique_city_count2[i][j+1] + (
num_towns -i-j)*( unique_city_count+
same_city_count)) % mod

dp_same_city_count = [d[:] for d in
dp_same_city_count2]

dp_unique_city_count = [d[:] for d in
dp_unique_city_count2]

return dp_same_city_count[num_towns ][0]

def main():
num_towns , num_days = map(int , input().split
())

result = count_sequences(num_towns , num_days
)

print(result)

if __name__ == ’__main__ ’:
main()

(b) Transformed program

Figure 12: Original and transformed programs
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n,m = [int(i) for i in input().split()]
seg = {i:[] for i in range(1,n+1)}
for j in range(m):

a,b = [int(i) for i in input().split()]
seg[a]. append(b)
seg[b]. append(a)

tail = [0]*(n+1)
tail [1] = 1
for i in range(2,n+1):

temp = [tail[j] for j in seg[i]]+[0]
tail[i] = max(temp)+1

temp = [len(seg[i])*tail[i] for i in range(1,n
+1)]

print(max(temp))

(a) Original program

def calculate_beauty(num_points , num_segments ,
segments):

tail_length = [0]*( num_points +1)
tail_length [1] = 1
for i in range(2, num_points +1):

temp = [tail_length[j] for j in segments
[i]]+[0]

tail_length[i] = max(temp)+1
spine_length = [len(segments[i])*tail_length
[i] for i in range(1, num_points +1)]

return max(spine_length)

def main():
num_points , num_segments = [int(i) for i in
input ().split ()]

segments = {i:[] for i in range(1,
num_points +1)}

for j in range(num_segments):
point1 , point2 = [int(i) for i in input

().split()]
segments[point1 ]. append(point2)
segments[point2 ]. append(point1)

result = calculate_beauty(num_points ,
num_segments , segments)

print(result)

if __name__ == ’__main__ ’:
main()

(b) Transformed program

Figure 13: Original and transformed programs
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E Related Work

Algorithmic Code Generation. Code generation is a broad domain and we only focus on algo-
rithmic code generation literature. Hendrycks et al. (2021) released the APPS dataset and evaluate
the performance of small LLMS on it. Li et al. (2022) released the CODE-CONTESTS dataset and
also developed the ALPHACODE models which depicted strong performance on the algorithmic code
generation tasks using massive pretraining and fine-tuning. Chen et al. (2021) introduced earlier ver-
sion of CODE-DAVINCI-002 models and applied it the APPS dataset. Zhang et al. (2023b) proposed a
lookahead-search-based decoding algorithm for improving reasoning in LLMS and is orthogonal to
our work. Zhang et al. (2023a) proposed the ALGO, that first generates a brute-force solution for the
problem and then uses it as an oracle for generating further solutions. More recently, Zelikman et al.
(2023) proposed the PARSEL approach which used the CODE-DAVINCI-002 model to first generate
a plan in their high-level problem-specification language and then generate a program using it. We
instead finetune smaller LLMS on natural language based plan descriptions. Li et al. (2023a) also
study disentangling the high-level planning and low-level code generation capabilities of LLMS,
similar to our experiments in Section C.1.1. However, the extract strong pre-training closed-source
models while evaluate locally fine-tuned LLMS in our work.
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