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Abstract001

Expanding the long-context capabilities002
of Multi-modal Large Language Mod-003
els (MLLMs) is critical for advancing video004
understanding and high-resolution image005
analysis. Achieving this requires systematic006
improvements in model architecture, data con-007
struction, and training strategies, particularly008
to address challenges such as performance009
degradation with increasing image counts and010
high computational costs. In this paper, we011
propose a hybrid architecture that integrates012
Mamba and Transformer blocks, introduce013
data construction methods that capture both014
temporal and spatial dependencies, and employ015
a progressive training strategy. Our released016
model, LongLLaVA (Long-Context Large017
Language and Vision Assistant), demonstrates018
an effective balance between efficiency019
and performance. LongLLaVA achieves020
competitive results across various benchmarks021
while maintaining high throughput and low022
memory consumption. Notably, it can process023
nearly one thousand images on a single A100024
80GB GPU, underscoring its potential for a025
wide range of multi-modal applications.026

1 Introduction027

The rapid advancement of MLLMs (Liu et al.,028

2024b, 2023a; Dong et al., 2024a; Chen et al.,029

2024a) has demonstrated their remarkable capabili-030

ties across various applications (Chu et al., 2024;031

Yang et al., 2023; Wu et al., 2023b; Chen et al.,032

2024b). However, multi-image scenario remain an033

important yet to-be-explored aspect. In particular,034

expanding the context of MLLMs to understand035

longer videos (Zhang et al., 2023; Cheng et al.,036

2024a), higher-resolution images (Xu et al., 2024b;037

Wu and Xie, 2023a), and make decisions based038

on more historical messages (Wang et al., 2024b;039

Liu et al., 2024d) is crucial for enhancing user ex-040

perience (Li et al., 2024b) and further broadening041

MLLMs’ application scope (Apple, 2024).042

However, extending the context length of 043

MLLMs to improve their usability poses challenges 044

related to degraded performance and high compu- 045

tational costs when processing more images. To 046

maintain the performance in longer context, some 047

studies (Zhang et al., 2024a; Zhao et al., 2024a) 048

have concentrated on curating long-context train- 049

ing data involving multiple images to enhance per- 050

formance. Additionally, other research efforts have 051

explored new training strategies (Liu et al., 2024a; 052

Zhang et al., 2024b; Li et al., 2024a; Zhang et al., 053

2024c) to mitigate performance declines. Regard- 054

ing the issue of high computational costs, Xue et al. 055

(2024) have made strides in improving multi-node 056

efficiency by reducing communication costs. How- 057

ever, a significant gap persists in accelerating core 058

on-node computation for long visual contexts with- 059

out sacrificing performance. An integrated archi- 060

tectural solution addressing both performance and 061

efficiency is thus needed. 062

To tackle these challenges, we propose 063

LongLLaVA, featuring a hybrid architecture for ef- 064

ficient acceleration. Our solution focuses on three 065

aspects: Multi-modal Architecture, Data Construc- 066

tion, and Training Strategy. 067

• Multi-modal Architecture: We use a hybrid 068

Transformer-Mamba design and 2D pooling 069

to compress image tokens, reducing computa- 070

tion while maintaining performance. 071

• Data Construction: We create task-specific 072

formats to help the model distinguish tempo- 073

ral and spatial relationships between images. 074

• Training Strategy: We implement a three- 075

stage adaptation process to enhance model’s 076

multi-modal long-context capabilities. 077

Experiemntal results show that LongLLaVA ex- 078

cels in understanding multi-modal long contexts 079

with high efficiency. It leads in retrieval, count- 080

ing, and ordering tasks in VNBench (Zhao et al., 081
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Arch. Model Active
Param. ICL

#Few-shot of VL-ICL Compute
Complexity

100K Token (Efficiency)

1 2 4 5
Prefill

(s)
TP

(tokens/s)
Mem.
(GB)

Max TP
(tokens/s)

Mamba Falcon-mamba-V 7B ✗ 49.0 51.9 52.4 53.2 Linear 14.3 72.6 32.1 170.3
Transformer LLaVA-1.5 13B ✓ 50.0 52.3 54.6 58.9 Quadratic 34.0 14.7 79.4 14.7

Hybrid LongLLaVA-9B 9B ✓ 51.6 57.8 58.4 60.2 Quasi-Linear 16.5 62.1 38.7 155.2
Hybrid LongLLaVA-A13B 13B ✓ 52.3 59.0 59.0 61.3 Quasi-Linear 25.5 37.6 79.1 37.6

Table 1: Model Architectures Analysis: ICL Capability, and Efficiency. ICL performance is reported using
VL-ICL (Zong et al., 2024) with varying numbers of examples. Efficiency metrics for processing 100K tokens
include Prefill time (Prefill), Throughput (TP), Memory usage (Mem.). The Mamba architecture is represented by
Falcon-mamba (Zuo et al., 2024), the largest publicly available pure Mamba LLM. Details are in Appendix A.

2024d) and achieves nearly 100% accuracy with082

1,000 images on a single 80GB GPU for Needle-083

In-A-Haystack evaluation (Zhang et al., 2024b).084

2 Background085

2.1 Multi-Image Benefit and Burden086

Multi-Image Benefit Increasing the number of087

images processed by Multimodal Large Language088

Models (MLLMs) significantly expands their appli-089

cations through enhanced temporal and spatial un-090

derstanding. Temporal expansion is crucial for real-091

time recall in assistants, benefiting users improving092

task planning for mobile agents (Deng et al., 2024;093

Li et al., 2024f; Wu et al., 2023a), and aiding 3D094

medical video anomaly detection in healthcare (Bai095

et al., 2024a). Simultaneously, spatial expansion,096

crucial for handling high-resolution images (Xu097

et al., 2024b; Dong et al., 2024b) and for detailed098

analysis of decomposed sub-images where under-099

standing spatial dependencies is key (Wu and Xie,100

2023a), directly enhances remote sensing cover-101

age (Guo et al., 2024) and pathology diagnostic102

accuracy (Sun et al., 2024).103

Multi-Image Burden Open-source MLLMs can104

match closed-source counterparts on single-image105

tasks (Bai et al., 2023; Li et al., 2024a; Zhang et al.,106

2024a; OpenAI, 2024; Google, 2024), yet their107

performance deteriorates in multi-image scenarios,108

especially those involving temporal or semantic109

relationships (Song et al., 2024). Processing mul-110

tiple images yields excessive input lengths from111

encoders like CLIP (Radford et al., 2021). For in-112

stance, representing three-minute video at 1 FPS113

requires 103,680 tokens, increasing computational114

and memory burdens. While compression tech-115

niques (Chen et al., 2023a; Zhang et al., 2024b; Xu116

et al., 2024a) mitigate overhead, they often com-117

promise performance.118

2.2 Motivation of Hybrid Architecture 119

Architectural Pros and Cons As shown in Ta- 120

ble 1, Transformer architectures face significant 121

computational challenges due to the quadratic com- 122

plexity with sequence length. This inefficiency 123

becomes a bottleneck in long-context scenarios, re- 124

quiring high memory and computation resources. 125

Mamba architectures address this issue with their 126

linear computational complexity, making them sig- 127

nificantly more efficient. However, they exhibit 128

weaknesses in In-Context Learning (ICL) tasks, 129

particularly those involving complex retrieval or 130

reasoning (Park et al., 2024). These limitations may 131

attributed to Mamba’s reliance on reduced attention 132

mechanisms (Olsson et al., 2022), which constrain 133

its ability to learn contextual patterns effectively. 134

Although explicit training allows the Mamba model 135

to execute basic ICL tasks, it falls short of leverag- 136

ing the full potential of the parameter capacity and 137

the available training data. (Dao and Gu, 2024). 138

Synergistic Advantages of Hybrid Architecture 139

Recent advancements have demonstrated the poten- 140

tial of hybrid Mamba-Transformer architectures, 141

which integrate Mamba’s efficiency with the ro- 142

bust ICL capabilities of Transformers (Dao and 143

Gu, 2024; Wang et al., 2024a). Comparative ex- 144

periments show that these hybrids achieve superior 145

performance on ICL tasks and maintain compu- 146

tational efficiency. For instance, Jamba (Lieber 147

et al., 2024), a hybrid model, can process 256K 148

tokens with only 4GB of KV-Cache memory, far 149

surpassing the capabilities of Mixtral (Jiang et al., 150

2024a), which has the same activation parameters. 151

As shown in Table 1, this balance between effec- 152

tiveness and efficiency makes hybrid architectures 153

an ideal solution for long-context multimodal tasks, 154

addressing both computational and functional limi- 155

tations. Experimental details are in Appendix A. 156
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Figure 1: Architecture of LongLLaVA. The LongLLaVA model is capable of (1) accommodating a variety of
multimodal inputs and efficiently processing image tokens via 2D token compression; (2) uniformly managing the
preprocessed inputs within its hybrid LLM architecture.

2.3 Implementation for Hybrid Architecture157

Arch HellaSwag NQ BoolQ ARC-C

Attention (1:0) 62.4 14.5 60.9 34.6
Hybrid (1:3) 65.1 16.5 60.6 36.8
Hybrid (1:7) 65.1 16.0 64.4 34.8
Mamba (0:1) 62.6 14.5 61.1 34.1

Table 2: Performance comparison of different hybrid
architecture ratios on a 1.3B parameter model trained
with 250B tokens. Details provided in Appendix B.

Our hybrid architecture leverages established158

foundation model research. Its Mixture of Ex-159

perts (MoE) configuration adopts the layer-wise160

pattern proposed by Jamba (Lieber et al., 2024),161

with expert layers integrated every two layers. For162

the Attention-Mamba blend ratio, previous work163

(Wang et al., 2024a) evaluated ratios such as 1:0,164

1:1, 1:3, and 1:7, and found substantial perfor-165

mance gains when transitioning from pure Mamba166

(0:1 ratio) to a 1:7 blend, with diminishing re-167

turns as the transformer proportion increases fur-168

ther. This conclusion is further supported by Lieber169

et al. (2024). Experiments on 1.3B parameter archi-170

tectures trained on 250 billion tokens, with results171

presented in Table 2 and details provided in Ap-172

pendix B, show only a marginal performance differ-173

ence between the 1:7 and 1:3 ratios. Crucially, the174

1:3 configuration is also significantly more com-175

putationally expensive. Thus, balancing empirical176

performance and computational efficiency, we se-177

lected the 1:7 configuration as optimal.178

3 LongLLaVA179

To address the aforementioned challenges and en-180

hance the model’s adaptability to long-context,181

multi-image scenarios, we introduce improvements182

from three perspectives: multi-modal model ar-183

chitecture (Sec. 3.1), data processing protocol184

(Sec. 3.2), and training strategy (Sec. 3.3).185

3.1 Multi-modal Architecture 186

The architecture consists of three core components 187

inspired by LLaVA (Li et al., 2024a): the Vision 188

Encoder, the Projector, and the LLM. 189

Vision Information Processing We employ 190

CLIP1 as the vision encoder to encode visual in- 191

formation and a two-layer MLP as the projector to 192

map vision features into the text embedding space 193

suitable for the LLM. Prior to projection, bilinear 194

pooling is applied, reducing the token representa- 195

tion of an image from 576 to 144 by aggregating 196

2×2 patch units into a single token. This approach 197

effectively conserves training and inference time 198

while maintaining essential spatial relationships be- 199

tween patches. In Section 4.3, we further discuss 200

the impact of this token reduction on performance 201

and explore strategies for its mitigation. 202

LLM Architecture Our model employs a hybrid 203

LLM architecture comprising four stacks of hybrid 204

layers, each integrates Transformer and Mamba lay- 205

ers in a 1:7 ratio, as depicted in Figure 1. It also fea- 206

tures a Mixture of Experts (MoE) approach in every 207

other layer, utilizing 16 experts and selecting the 208

top-2 experts for each token. RMSNorm (Zhang 209

and Sennrich, 2019) is used between layers to 210

enhance normalization, although positional em- 211

beddings are omitted. The model incorporates 212

Grouped Query Attention (GQA) (Ainslie et al., 213

2023) and SwiGLU activation functions (Shazeer, 214

2020), similar to other large language models. The 215

total parameter count of the model is 53B, with ac- 216

tivation parameters during inference totaling 13B; 217

we designate this model as LongLLaVA-A13B. 218

In an effort to make the model more efficient, we 219

have retained only the Expert-0 in the Mamba MoE 220

Layer2, thereby constructing LongLLaVA-9B. 221

1openai/clip-vit-base-patch32
2We chose Expert-0 due to minimal performance differ-

ences, detailed in Appendix C.
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Data Processing Protocol

In the Following Statement: <Image>=<img><img_token>...</img>
For Single-image: “<Image>\n What is this?”
For Multi-image: “<Image>\n This is a cat. <Image>\nThis is a:”
For Video: “<vid><Image><t>...<Image></vid>\n What are they?”
For Patched-image: “<Image>\n<Image>..\n..<Image>\n What are they?”

Figure 2: Data Processing Protocol for LongLLaVA.We utilized different tokens to distinguish various modal
information, and to identify the spatial and temporal relationships within images.

Figure 3: Dataset Taxonomy of LongLLaVA. Replay refers to data sampled from former phase to maintain
single-image and dialogue understanding ability. SubImage denotes a constructed dataset for understanding complex
single images divided into sub-images. Ins-T. and Align. refer to instruction-tuning and alignment, respectively.

3.2 Data Processing Protocol222

To ensure the model can effectively distinguish223

temporal from spatial dependencies in multi-image224

inputs and perform robustly across diverse tasks,225

we have meticulously designed and differentiated226

special tokens for various scenarios. As illustrated227

in Figure 2, these tokens are tailored to represent228

the complex relationships between images in vary-229

ing contexts, thereby enhancing the model’s adapt-230

ability to a wide range of tasks.231

Regular Single and Multiple Images For regu-232

lar single and multiple image inputs, we use <img>233

and </img> tokens to demarcate image-derived to-234

ken sequences. This helps the model to differenti-235

ate these from textual tokens in the input stream.236

Video For video inputs, to enable the model to237

comprehend the temporal relationships between238

frames, we enclose the entire sequence of frame239

tokens with <vid> and </vid>. Furthermore, the240

special token <t> is inserted between consecutive241

frames to signal their temporal dependency.242

High Resolution Image For scenarios involv-243

ing complex image understanding, such as high-244

resolution images segmented into multiple sub-245

images, we utilize the \n token for structural or-246

ganization. This token is first used to separate the247

representation of the global image from the block248

of its constituent sub-images. Additionally, when249

arranging these sub-images, which are typically250

ordered in a top-left to bottom-right raster scan, \n251

is inserted between the rows of sub-images. This252

approach preserves their relative spatial positions253

within the linearized input.254

3.3 Training Strategy 255

Our training strategy employs both single-modal 256

and multi-modal adaptations to transform a pre- 257

trained language model into a multimodal long- 258

context model. 259

Pure-text Instruction Tuning Initially, we en- 260

hance the pre-trained language model’s capacity to 261

follow instructions of varying lengths within pure- 262

text contexts. This is accomplished using a com- 263

prehensive dataset of 813k pure-text entries, aggre- 264

gated from Evol-instruct-GPT4 (Xu et al., 2023), 265

WildChat (Zhao et al., 2024c), SmolTalk (Allal 266

et al., 2025), and high-quality data sampled from 267

Tulu3 (Lambert et al., 2025) via DEITA (Liu et al., 268

2024c), alongside LongAlign (Bai et al., 2024b). 269

For multi-modal adaptation, we adopt a progres- 270

sive training approach, which offers better variable 271

control and increases model performance (Fu et al., 272

2024c). Building upon the Single-image Align- 273

ment and Single-image Instruction-tuning stages 274

outlined in LLaVA (Li et al., 2024a), we introduce a 275

Multi-image Instruction-tuning stage to systemati- 276

cally enhance the model’s long-context capabilities. 277

Details of dataset usage are provided in Figure 3. 278

Stage I: Single-image Alignment This initial 279

multi-modal stage aims to align visual features 280

with the textual modality. We utilize datasets 281

such as ALLaVA-Caption (Chen et al., 2024a) 282

and ShareGPT4V (Chen et al., 2023b), collec- 283

tively comprising approximately 600K high-quality 284

image-caption pairs. During this phase, only the 285

projector is trained, while the parameters of the 286

Visual Encoder and the LLM remain frozen. 287
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Model PFLOPs #P. MileBench Video-MME w/o subs MVBench LongVideo*Temporal Semantic IR Avg. Short Medium Long Avg.

Proprietary Models
GPT-4V - - 45.6 58.9 86.7 63.7 70.5 55.8 53.5 59.9 43.5 59.1
GPT-4o - - 56.2 63.5 88.8 69.5 72.5 63.1 58.6 64.7 - 66.7
Gemini-1.5-Pro - - 50.2 58.3 88.0 65.5 78.8 68.8 61.1 69.6 - 64.0
Claude3-Opus - - 37.4 48.1 25.0 36.8 70.5 57.4 51.2 59.7 - -

Open-source MLLMs
LongVA 4.90 8B - - - - 61.1 50.4 46.2 52.6 - -
InternVL2 4.10 8B - - - - - - - 56.3 65.8 54.6
InternVL2.5 4.10 8B - - - - - - - 64.2 72.0 60.0
OmChat 3.90 8B 51.4 52.0 34.2 45.9 - - - - 50.2 -
LongVILA 3.90 8B - - - - 61.8 49.7 39.7 50.5 - -
Qwen2-VL 3.80 7B - - - - - - - 63.3 67.0 -
Qwen2.5-VL - 7B - - - - - - - 65.1 69.6 56.0

Open-source Efficient MLLMs
VideoLLaMA2 3.71 7B 3.2 6.6 4.5 5.0 55.9 45.4 42.1 47.8 34.1 40.3
mPLUG-Owl3 - 8B - - - - - - - 53.5 54.5 52.1
Phi-3-Vision 2.68 4B 46.9 50.0 18.7 38.5 - - - - - 49.6
Cobra 1.02 7B - - - - - - - 49.5 - -
VideoChat2 0.24 7B 25.5 25.5 9.2 20.1 48.3 37.0 33.2 39.5 51.9 39.3
LongLLaVA-9B 0.15 9B 54.2 52.4 53.2 53.2 59.6 50.3 42.7 50.9 59.4 51.9
LongLLaVA-A13B 0.22 53B 56.2 58.6 68.5 59.2 62.9 52.2 46.4 53.8 64.6 53.5

Table 3: Multi-image Evaluation Results: PFLOPs indicate floating-point operations per 128 images. LongVideo*
abbreviates LongVideoBench. All evaluations used FP16 precision.

Stage II: Single-image Instruction Tuning The288

objective of this stage is to imbue the model with289

multimodal instruction-following capabilities. We290

employ datasets including LLaVA-1.5 (Liu et al.,291

2023b) and Mantis-Single (Jiang et al., 2024b),292

totaling 932K high-quality question-answer pairs.293

Only the Visual Encoder’s parameters are frozen.294

Stage III: Multi-image Instruction Tuning295

This stage fine-tunes the model for instruction296

following in multi-image scenarios. Training297

data includes 200K instances from Mantis (Jiang298

et al., 2024b), 200K from VideoChat2 (Li et al.,299

2024c), and 50K from ShareGPT4Video (Chen300

et al., 2024c). The Replay component, incor-301

porating 200K single-image and 50K pure-text302

instruction-tuning instances, preserves established303

single-image comprehension and pure-text dia-304

logue capabilities. Furthermore, the Sub-Image305

component enhances the interpretation of complex306

single images processed as segments; this is formed307

using 50K single-image instruction instances where308

original images are padded and segmented into sub-309

images of size 336× 336.310

4 Experiments311

4.1 Experimental Setup312

To manage large-scale, diverse datasets during313

training, data items are randomly sampled and con-314

catenated into sequences of 176K tokens, with315

individual items separated by the <eos> token.316

The model is trained for a single epoch on a317

distributed setup of 3 × 8 A800 GPUs. A co- 318

sine learning rate schedule is employed, with a 319

0.03 warm-up proportion and a peak learning rate 320

of 1e-5. Detailed information on multi-image 321

evaluation benchmarks and baselines is available 322

in Appendix D. Unless otherwise noted, both 323

LongLLaVA-9B and LongLLaVA-A13B models are 324

evaluated using Int8 quantization to reduce com- 325

putational costs while maintaining performance. 326

Hereafter, LongLLaVA will refer to the LongLLaVA- 327

A13B model. Information regarding the evaluation 328

of fundamental single-image understanding capa- 329

bilities is provided in Appendix E. 330

4.2 Results 331

Main Results As detailed in Table 3, LongLLaVA 332

exhibits strong performance among open-source 333

models on the MileBench benchmark. It also 334

demonstrates notable results in retrieval-oriented 335

tasks, indicating its proficiency in processing 336

multi-image inputs. Furthermore, its effectiveness 337

is reflected in its performance on video bench- 338

marks such as Video-MME (Fu et al., 2024a) and 339

MVBench (Li et al., 2024c). A key aspect is its 340

achievement of these results with a substantially 341

lower computational cost, specifically an order of 342

magnitude fewer FLOPs. This approach, there- 343

fore, presents a balance of enhanced performance 344

relative to other architecture optimization meth- 345

ods while maintaining considerable operational ef- 346

ficiency in comparison to several SOTA models. 347
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Video MLLM PFLOPs #P Retrieval Ordering Counting Avg.E I-1 I-2 E I-1 I-2 E-1 E-2 I

GPT-4o - - 100.0 98.0 87.3 88.4 86.6 45.2 36.8 0.0 36.1 64.4
GPT-4V - - 100.0 99.3 82.0 42.6 22.8 23.0 37.6 0.0 32.4 48.9

Open-source MLLMs
Qwen2-VL 0.87 7B 98.0 76.0 33.3 16.0 12.7 8.7 26.0 9.3 24.7 33.9
VideoLLaMA2 0.85 7B 1.2 26.0 6.0 0.0 0.0 0.0 2.0 4.7 0.7 4.5
LongLLaVA-9B 0.07 9B 98.3 57.2 96.3 24.2 57.2 24.3 24.5 21.0 26.0 44.4
LongLLaVA-A13 0.09 53B 100 73.3 100.0 37.5 35.3 34.8 36.0 23.7 28.0 52.1

Table 4: Long Context MLLMs’ Atomic Capabilities Analysis using VNBench (Zhao et al., 2024d). PFLOPs refers
to the number of floating-point operations required for inference on 54 images, which corresponds to the average
number of frames extracted from the dataset videos at 1 FPS.
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Figure 4: Video-NIAH (Zhang et al., 2024b) evaluated
on one A800 80GB GPU.

Model MMLU BBH GQA MMMU SEEDv1
img Mile

With LLaVA-1.5 Recipe
Vicuna-13B 55.3 40.5 63.3 34.4 68.2 27.6
Jamba-9B 54.3 38.4 62.3 36.2 70.1 28.2

Table 5: Ablation on MLLM Backbone Architectures.

Diagnostic Evaluation of Long-Context To348

address limitations in evaluating long-context349

MLLMs, we conducted a diagnostic assessment350

using VNBench (Zhao et al., 2024d), a synthetic351

video framework evaluating atomic capabilities352

like retrieval, ordering, and counting. As de-353

tailed in Table 4, LongLLaVA’s performance is on354

par with, and sometimes exceeds, leading closed-355

source models such as GPT-4V, while also outper-356

forming other open-source counterparts in manag-357

ing extensive contexts. Further substantiating its358

retrieval strength, LongLLaVA also achieves nearly359

100% accuracy on the 1200-image V-NIAH eval-360

uation framework (Zhang et al., 2024b) without361

additional training, as depicted in Figure 4. These362

findings collectively indicate LongLLaVA’s signifi-363

cant proficiency in long-context understanding and364

information retrieval.365

4.3 Ablation Study366

Ablation on MLLM Backbone Architectures367

To assess the impact of hybrid architectures on368

MLLM performance, we use Vicuna-13B (Chiang369

et al., 2023) and Jamba-9B (trained as described370

in Appendix C) as initial LLMs. As shown in Ta-371

ble 5, both models perform similarly before multi-372

Method #T GQA MMMU SQA SEEDv1
img Mile

with LLaVA-1.5 Data Recipe
Jamba 576 63.2 41.4 75.4 69.8 38.2
1D Pooling 144 60.4 42.0 73.9 66.3 36.2
2D Pooling 144 61.3 42.1 75.2 67.4 37.7

add our Multi-Modal Data
+S-image Data 144 62.2 42.1 75.9 68.9 50.0
+M-image Data 144 59.9 39.2 73.4 65.3 57.4

Jamba-9B with our Multi-Modal Data Recipe
Stage1&2&3 144 56.9 32.8 67.2 66.9 42.2
Stage1, 2&3 144 57.6 33.2 70.2 68.4 44.2
Stage1, 2, 3 144 58.4 34.4 69.9 67.9 46.5

Table 6: Ablation on ■ token compression, ■ dataset
construction and ■ training strategies. 1D and 2D de-
note different pooling strategies. #T: the token count for
one image. &: the combination of the stages. S-image:
single-image. M-image: multiple-image.

modal adaptation, with Vicuna-13B slightly ahead, 373

ensuring a fair comparison. After training with 374

the LLaVA-1.5 training recipe (Liu et al., 2024b), 375

the hybrid architecture consistently achieves better 376

results on most multimodal benchmarks, despite 377

slightly lower base LLM performance. This demon- 378

strates that hybrid architecture is efficient and has 379

no adverse effect on the multimodal adaptation. 380

Ablation on other Methods Ablation results for 381

other methods are presented in Table 6. For token 382

compression, pooling significantly reduces com- 383

putational cost while keeping performance degra- 384

dation within acceptable limits. Moreover, two- 385

dimensional pooling with a 12× 12 label arrange- 386

ment offers clear advantages over one-dimensional 387

pooling. Regarding dataset construction, the qual- 388

ity of our single-image training data surpasses that 389

of LLaVA-1.5, and incorporating multi-image data 390

substantially improves the model’s performance 391

on multi-image tasks. In terms of training strate- 392

gies, progressive training is more effective than 393

mix-training for multi-image tasks, while maintain- 394

ing comparable results on single-image tasks. Due 395

to space constraints, ablation results for replay data 396

are provided in Appendix F. 397
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Figure 6: Performance comparison between Many-Shot
ICL and fine-tuning on VL-ICL.

5 Analysis398

5.1 Scaling Law of Image Numbers399

Processing more images enables models to handle400

additional video frames and provide more examples401

for few-shot learning. To investigate the effects of402

increasing the number of frames and examples, we403

evaluate LongLLaVA on the Video-MME (Fu et al.,404

2024a) and LongLLaVA-9B on the VL-ICL (Zong405

et al., 2024), respectively.406

Scaling Number of Frames Video-MME evalu-407

ates a model’s ability to extract information from408

videos. As shown in Figure 5, increasing the num-409

ber of sampled frames steadily improves perfor-410

mance, peaking at 256 frames. This indicates that411

the model effectively utilizes additional visual in-412

formation from more frames.413

Scaling Number of Shots Fine-tuning LLMs414

can be costly and impractical, especially with lim-415

ited data or frequently changing tasks. In contrast,416

many-shot in-context learning (ICL) allows models417

to utilize more task-specific examples during infer-418

ence without retraining (Agarwal et al., 2024). To419

evaluate this, we compare performance across dif-420

ferent shot numbers and fine-tuning on the “Match-421

ing Image” task from VL-ICL, where each input is422

an image pair x = {x1, x2} and the output y indi-423

cates if a predefined relation r holds. As shown in424

Figure 6, ICL outperforms fine-tuning up to around425
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Figure 7: Performance and inference cost across five
benchmarks with varying number of tokens per image.
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Figure 8: Performance on V* with different Sub-Image
counts as Mitigating Token Compression Strategy.

100 shots; however, when the number of examples 426

exceeds 1,000, fine-tuning becomes more effective. 427

5.2 Impact and Mitigation of Token 428

Compression 429

To assess token compression’s impact on image 430

understanding and explore mitigation strategies 431

for tasks sensitive to token reduction, we conduct 432

experiments on five general benchmarks and V* 433

Bench (Wu and Xie, 2023b), which specifically 434

evaluates a model’s ability to localize small objects 435

within large images. 436

Impact of Token Compression As shown in 437

Figure 7, setting the token count to 144 per image 438

significantly reduces inference cost while main- 439

taining overall performance, with the effect being 440

especially notable on SEEDBench. 441

Mitigation Strategies Figure 8 demonstrates 442

that increasing the number of sub-images initially 443

brings substantial performance improvements, indi- 444

cating enhanced fine-grained image understanding. 445

Furthermore, as further evidenced in the table, par- 446

titioning images into sub-images effectively miti- 447

gates the performance drop caused by token com- 448

pression on fine-grained tasks. Notably, average 449

accuracy rises markedly from 49.6 to 68.5 when 450

using image partitioning rather than processing the 451

entire image directly. 452
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Model Size VQA-RAD PathVQA

GPT-4V - 39.5 -
LLaVA 34B 58.6 59.1

LLaVA-Med 7B 55.5 35.9
HuatuoGPT-V 8B 63.8 59.9

LongLLaVA-Med 9B 68.5 55.0

Table 7: Comparison of model performance on pathol-
ogy image understanding benchmarks.

Model Acc. Rec. Prec. F1

CT-CLIP 65.1 73.8 30.4 43.0
LongLLaVA-Med 86.7 77.6 35.5 48.5

Table 8: Model performance on the 3D CT image inter-
pretation task. Acc., Rec., and Prec. denote Accuracy,
Recall, and Precision, respectively.

6 Applications453

6.1 Healthcare Applications454

We showcase LongLLaVA’s effectiveness in two455

critical healthcare tasks: pathology image analysis456

and 3D CT image interpretation. LongLLaVA-9B457

was fine-tuned for one epoch on the PubMedVision458

dataset (Chen et al., 2024b) using 5× 8 A800 GPU459

hours, resulting in the LongLLaVA-Med.460

Pathology Image Understanding. Pathology461

image analysis demands both fine-grained visual462

recognition and a deep understanding of medical463

knowledge. We evaluate LongLLaVA-Med on two464

benchmarks: VQA-RAD (Lau et al., 2018) and465

PathVQA (He et al., 2020). As shown in Table 7,466

our model achieves competitive performance com-467

pared to state-of-the-art approaches, despite being468

trained on less data.469

3D CT Image Interpretation. To test its 3D470

vision capabilities, we apply LongLLaVA-Med to471

CT scan interpretation. Each 3D CT scan, consist-472

ing of multiple slices, is processed as a sequence473

of RGB images. We conduct zero-shot evaluation474

on the CT-RATE (Hamamci et al., 2024) validation475

set, which includes 1,304 samples with varying476

resolutions (512 × 512 to 1024 × 1024, average477

690) and slice counts (100–984, average 300). As478

shown in Table 8, LongLLaVA-Med surpasses pre-479

vious state-of-the-art results by 21.6%, setting a480

new benchmark for 3D CT image interpretation.481

6.2 Application in Science482

In the scientific domain, we focus on geology483

and the interpretation of remote sensing imagery,484

which requires models to perform VQA on high-485

resolution satellite images (Zhou et al., 2024). Fol-486

1 2

How many red cars?

Yes, the text in the picture reads 
"Fukuoka", which is a city in Japan.

Based on the text in the picture, can 
you tell where this is?

The image you uploaded shows an aerial view of an 
airport. I can see text on the runways and taxiways that 
might indicate its location, but it’s too small for me to 
discern in this format. If you could let me know what the 
text says or zoom in and provide a clearer image of the 
text, I might be able to help identify the airport.

Case 2

Case 1

Figure 9: Comparative Study of Remote Sensing on the
STAR Dataset.

Model LLaVA1.5-7B GeoChat-7B LongLLaVA-9B

Zero-shot 58.6 53.5 65.2

Model SkySenseGPT-7B LongLLaVA-RS*-9B

Fine-tuned 79.8 82.3

Table 9: Results on FIT-RSFG-VQA

lowing the recent work of SkySenseGPT (Luo et al., 487

2024), a state-of-the-art MLLM for this field, we 488

adopt the FIT-RSFG-VQA task (Luo et al., 2024) 489

to evaluate models on fine-grained perception and 490

instruction-following abilities. 491

As shown in Table 9, LongLLaVA exhibits 492

strong performance among all evaluated models. 493

Notably, after fine-tuning on only 27% of the Sky- 494

SenseGPT data, LongLLaVA surpasses existing 495

state-of-the-art models. 496

To address the resolution limitations of FIT- 497

RSFG-VQA (512× 512 pixels), we further evalu- 498

ate on two high-resolution images from the STAR 499

dataset (Li et al., 2024d), with resolutions of 500

1024× 768 and 3327× 4083. This enables a more 501

comprehensive assessment of model capabilities. 502

As illustrated in Figure 9, LongLLaVA effectively 503

answers fine-grained VQA queries by segmenting 504

large images into manageable subimages, consis- 505

tently outperforming GPT-4V, especially on tasks 506

requiring detailed visual analysis. 507

7 Conclusion 508

In this study, we introduce LongLLaVA, an innova- 509

tive hybrid architecture model that excels in long- 510

context multi-modal understanding. The model 511

integrates Mamba and Transformer blocks, lever- 512

aging temporal and spatial dependencies between 513

multiple images to construct data, and employs a 514

progressive training strategy. LongLLaVA demon- 515

strates competitive performance across various 516

benchmarks while ensuring efficiency, setting a 517

new standard for long-context MLLMs. 518
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Limitations519

While our current model achieves a multimodal520

context length of 176K tokens, this is still limited521

compared to the ideal context range of 10–100 mil-522

lion tokens, which would enable more comprehen-523

sive understanding of large-scale inputs. Extending524

the context window to this scale remains a signifi-525

cant technical challenge, involving issues such as526

computational efficiency and memory constraints.527

Further research is needed to explore more effective528

architectures and optimization strategies to address529

these limitations.530
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A Details about Hybrid Motivation1073

This section covers the details about investigating1074

the respective strengths and limitations of various1075

model architectures concerning in-context learning1076

(ICL) capabilities and inference efficiency. Our1077

analysis aims to underscore the advantages offered1078

by hybrid architectures, which are designed to1079

amalgamate the beneficial characteristics of their1080

constituent architectural paradigms.1081

Baselines To assess the Mamba architecture, we1082

employed the Falcon-mamba model (Zuo et al.,1083

2024) featuring 7.3 billion parameters. This model1084

was trained and evaluated under identical settings1085

to our proposed model. Despite the inherent1086

challenges in precisely aligning parameter counts1087

across different Multimodal Large Language Mod-1088

els (MLLMs), Falcon-mamba represents the largest1089

publicly available Mamba configuration suitable1090

for this comparative analysis. For the Transformer1091

architecture, we selected LLaVA-1.6 (Liu et al.,1092

2024b) with 13B parameters. This choice was mo-1093

tivated by its inference parameter consistency with1094

LongLLaVA, thereby facilitating a more equitable1095

comparison of inference efficiency.1096

ICL Analysis Settings We conducted an evalua-1097

tion of multimodal in-context learning performance1098

using the “Matching Image” task from the VL-1099

ICL benchmark (Zong et al., 2024). In this task,1100

the input consists of an image pair, denoted as1101

x = {x1, x2}. The corresponding output, y, sig-1102

nifies whether a predefined relation, r, is present1103

between the two images. The objective for the1104

MLLMs is to discern this underlying relation from1105

a set of provided examples.1106

Efficiency Analysis Settings Our examination of1107

inference efficiency encompasses four key metrics:1108

Prefill Time (latency of the initial inference step),1109

Throughput (measured as subsequent tokens gener-1110

ated per second), Memory Usage, and Maximum1111

Throughput (defined as the throughput achieved1112

under the maximum possible batch size). For these1113

evaluations, we standardized the input text length to1114

100,000 tokens. We then measured the time taken1115

and the peak memory consumption for generating1116

outputs of 1 token and 1,000 tokens. Through-1117

put was subsequently calculated using the formula:1118

(1000−1)/(time1000− time1). To more accurately1119

reflect real-world application scenarios, both Trans-1120

former and Hybrid architectures were benchmarked1121

utilizing the vLLM framework (Kwon et al., 2023)1122

and Int8 quantization (Frantar et al., 2023).1123

B Experiments Settings for Hybrid Ratio 1124

To investigate the optimal ratio of Attention to 1125

Mamba layers (denoted as a : m) within 1.3B pa- 1126

rameter models, various model configurations were 1127

trained using 250B tokens randomly sampled from 1128

the FineWeb-Edu dataset (Penedo et al., 2024). The 1129

training utilized a global batch size of 512, a co- 1130

sine learning rate schedule with a peak learning 1131

rate of 1× 10−4, and the AdamW optimizer (with 1132

β1 = 0.9, β2 = 0.95, and a weight decay of 0.1). 1133

Upon completion of training, model performance 1134

was evaluated on multiple benchmark datasets. 1135

The evaluation benchmarks included: 1136

• HellaSwag (Zellers et al., 2019): Evaluated 1137

using a 10-shot setting, this benchmark as- 1138

sesses commonsense inference by requiring 1139

models to choose the most plausible continua- 1140

tion of a given context from four options. 1141

• ARC-Challenge (Clark et al., 2018): This 1142

benchmark was evaluated with a 25-shot 1143

methodology and tests complex question- 1144

answering abilities, particularly the more dif- 1145

ficult questions from the AI2 Reasoning Chal- 1146

lenge (ARC) which often demand multi-step 1147

reasoning. 1148

• Natural Questions (NQ) (Kwiatkowski et al., 1149

2019): A 5-shot evaluation was used for this 1150

benchmark, which measures the model’s ca- 1151

pacity to answer real user questions from 1152

Google Search without access to external doc- 1153

uments, relying on its internal knowledge. 1154

• BoolQ (Clark et al., 2019): Evaluated in a 1155

10-shot setup, this benchmark assesses read- 1156

ing comprehension through yes/no questions 1157

paired with short passages, where the model 1158

must determine the answer’s veracity based 1159

on the text. 1160

C Preliminary Experiments on Expert 1161

Selection for LongLLaVA-9B 1162

To determine the optimal expert selection method 1163

in the MoE layers we also conducted preliminary 1164

experiments. Using prevalent LLM benchmarks, 1165

MMLU (Hendrycks et al., 2020) and BBH (Suzgun 1166

et al., 2022), we evaluated three expert selection 1167

strategies: numerical averaging, spherical averag- 1168

ing, and random expert selection. 1169

These methods were compared both before and 1170

after Pure-text Instruction Tuning with dataset 1171
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Downcycling Strategy Arithmetic
Mean

Spherical
Mean

Expert-0 Expert-5 Expert-12 Expert-15

MMLU 52.7 53.2 53.2 51.9 52.6 52.2
Aft. Train 53.8 54.3 54.3 53.3 53.8 53.3

BBH 36.7 36.7 37.2 36.7 37.4 36.3
Aft. Train 37.8 37.9 38.4 38.9 38.9 37.9

Table 10: Performance of Different Downcycling Strategies on MMLU and BBH

of 278k pure-text entries, aggregated from Evol-1172

instruct-GPT4 (Xu et al., 2023), WildChat (Zhao1173

et al., 2024c), alongside LongAlign (Bai et al.,1174

2024b). As shown in Table 10, the differences in1175

model performance were minimal across the selec-1176

tion methods. Therefore, for simplicity, we opted1177

to use Expert-0.1178

D Details of Multi-Image Evaluation1179

D.1 Benchmarks1180

The multimodal long-context understanding capa-1181

bilities of our model are primarily assessed us-1182

ing five multi-image benchmarks. These include1183

MileBench (Song et al., 2024), selected for its fo-1184

cus on multimodal long-context scenarios. For1185

video analysis, we additionally incorporate Video-1186

MME (Fu et al., 2024a), MVBench (Li et al.,1187

2024c), and LongVideoBench (Wu et al., 2024).1188

Detailed descriptions of these benchmarks are pro-1189

vided subsequently.1190

Multi-image Benchmarks To evaluate multi-1191

image understanding capabilities, the following1192

benchmarks were employed:1193

• MileBench (Song et al., 2024): This bench-1194

mark evaluates performance in long-context1195

scenarios, with a particular emphasis on its1196

Temporal, Semantic, and Information Re-1197

trieval (IR) components.1198

• Video-MME (Fu et al., 2024a): This bench-1199

mark assesses video analysis capabilities1200

across 30 distinct sub-fields. The evaluation1201

protocol typically involves processing 1281202

frames uniformly sampled from each video,1203

without relying on subtitle information.1204

• MVBench (Li et al., 2024c): MVBench tar-1205

gets 20 challenging video understanding tasks1206

that are intractable with single-frame analysis,1207

thus requiring multi-frame reasoning.1208

• LongVideoBench (Wu et al., 2024): This1209

benchmark provides a question-answering1210

(QA) framework with interleaved video- 1211

language inputs, where video durations can 1212

extend up to one hour. 1213

D.2 Comparative Models 1214

Our model is benchmarked against a compre- 1215

hensive suite of existing models, encompassing 1216

three commercial and thirteen open-source coun- 1217

terparts. The commercial models include GPT- 1218

4V3 (OpenAI, 2024), GPT-4o4, Claude3-Opus (An- 1219

thropic, 2024) and Gemini-1.5-Pro5 (Google, 1220

2024). The open-source models comprise Qwen2- 1221

VL2 (Wang et al., 2024c), Qwen2.5-VL (Bai 1222

et al., 2025), InternVL2 (Chen et al., 2024e), In- 1223

ternVL2.5 (Chen et al., 2024d), Phi-3-Vision (et al., 1224

2024), OmChat (Zhao et al., 2024b), LongVA, 1225

LongVILA (Xue et al., 2024), Video-LLaMA- 1226

2 (Cheng et al., 2024b), Cobra (Zhao et al., 2025), 1227

Mini-Gemini (Li et al., 2024e), mPLUG-Owl3 (Ye 1228

et al., 2024), and VideoChat2 (Li et al., 2024c). 1229

For consistent and reproducible evaluations, the 1230

temperature parameter is set to 0. 1231

E Details of Single-Image Evaluation 1232

The single-image evaluation is designed to investi- 1233

gate the model’s fundamental capabilities and the 1234

impact of extended long-context training on single- 1235

image understanding. 1236

E.1 Experimental Setup 1237

We employed a comprehensive suite of benchmarks 1238

to assess various aspects of visual understanding 1239

and cognitive processing within a single-image 1240

context. These benchmarks include GQA (Hud- 1241

son and Manning, 2019), MME (Fu et al., 2023), 1242

MM-Vet (Yu et al., 2023), ScienceQA (Lu et al., 1243

2022), SEED-Bench-v1 (Li et al., 2023), MM- 1244

Bench (Liu et al., 2023c), MMMU (Yue et al., 1245

2024), BLINK (Fu et al., 2024b), ChartQA (Masry 1246

et al., 2022), and DocVQA (Mathew et al., 2021). 1247

Detailed descriptions are provided below. 1248

3gpt-4-vision-preview
4gpt-4o-2024-08-06
5gemini-1.5-pro
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Model TFLOPs #P #T ChartQA DocVQA GQA MM-Vet MMEP MMB MMMU SQAI SEEDv1
img BLINK

Proprietary Models
GPT-4V - - - 75.6 - - 67.7 1926.5 81.3 56.8 82.1 69.1

Gemini-1.5 - - - 81.3 90.9 - 65.8 2148.9 73.6 48.9 81.4 62.9
Claude3-Opus - - - 80.8 89.3 - 74.2 1586.8 63.3 54.9 - 42.0

Open-source MLLMs
InternVL2 5.45 8B 576 83.3 91.6 - - 2210.3 82.9 52.6 - - 50.9

InternVL2.5 5.45 8B 576 84.8 93.0 - - 2344.1 83.8 56.0 - - 54.8
OmChat 5.18 8B 576 - - - 39.6 - 78.8 45.9 - - -

LongVILA 5.18 8B 576 - - 65.4 51.7 - 83.4 - - 70.6 -
Qwen2-VL 5.05 7B 576 83.0 94.5 - - 1872.0 54.1 - -

Qwen2.5-VL - 7B - 87.3 95.7 - - 2347.0 83.5 58.6 - - 56.4

Open-source Efficient MLLMs
Phi-3-Vision 3.56 4B 576 81.8 69.3 - - - 80.5 40.4 90.8 - -

Cobra 2.35 7B 768 - - 63.9 - 1496.5 - 37.2 - -
LongLLaVA-9B 0.58 9B 144 44.8 47.4 58.4 32.3 1504.6 65.6 34.4 69.9 67.9 50.2

LongLLaVA-A13B 0.86 53B 144 46.3 51.2 59.9 35.2 1523.9 63.7 39.2 73.4 65.3 52.4

LongLLaVA-9B* 4.86 9B - 72.3 83.6 72.3 42.6 1693.6 72.8 45.3 76.3 70.9 52.2
LongLLaVA-A13B* 5.14 53B - 81.6 90.8 76.5 53.6 1823.9 79.4 52.5 80.4 72.4 55.2

Table 11: Single-image Evaluation. TFLOPs represents the number of floating-point operations required to infer 1
images. The highest scores for proprietary and open-source MLLMs are marked in bold. #Token refers to the token
count for one image. * means using Mitigating Token Compression Strategy mentioned in Section 5.2.

MMLU BBH GQA MMMU SQAI SEEDv1
img Mile∗avg

LongLLaVA-9B 53.9 38.8 58.4 34.4 69.9 67.9 46.5
w/o Replay Data 52.3 36.2 57.5 31.2 53.5 64.3 46.8
Replace with Multi-Image 52.6 35.9 57.2 29.8 52.6 63.8 47.2

Table 12: Comparison of Model Performance With and Without Replay Data.

Single-Image Benchmarks To evaluate the1249

model’s single-image understanding capabilities,1250

we selected eight commonly utilized benchmarks.1251

These are:1252

• GQA (Hudson and Manning, 2019): A bench-1253

mark for real-world visual reasoning and com-1254

positional question answering.1255

• MME (Fu et al., 2023): A comprehensive1256

benchmark for evaluating multimodal percep-1257

tion and cognition; the perception-focused1258

subset was employed in this study.1259

• MM-Vet (Yu et al., 2023): Examines six core1260

visual-linguistic (VL) capabilities alongside1261

sixteen integrated tasks derived from these1262

capabilities.1263

• ScienceQA (Lu et al., 2022): Comprises1264

4,210 questions on diverse science topics, fea-1265

turing detailed annotations.1266

• SEED-Bench-v1 (Li et al., 2023): Evaluates1267

multimodal comprehension across twelve di-1268

mensions in both image and video modalities;1269

our analysis utilized the image-based subset.1270

• MMBench (Liu et al., 2023c): A systemat- 1271

ically designed benchmark covering twenty 1272

distinct multimodal ability dimensions. 1273

• MMMU (Yue et al., 2024): Assesses multi- 1274

modal models on multidisciplinary tasks re- 1275

quiring university-level expertise, spanning 1276

183 subfields and 30 types of images. 1277

• BLINK (Fu et al., 2024b): A benchmark 1278

for multimodal LLMs that specifically targets 1279

core visual perception abilities not empha- 1280

sized in existing evaluations. 1281

Comparison Models Our model was bench- 1282

marked against a comprehensive suite of existing 1283

models, comprising four commercial and thirteen 1284

open-source alternatives. This set of comparison 1285

models is identical to that used in the Multi-Image 1286

evaluations. For consistent and reproducible evalu- 1287

ations, the temperature parameter is set to 0. 1288

E.2 Results Analysis 1289

As shown in Table 11, for the single-image un- 1290

derstanding task, the LongLLaVA series models, 1291
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MMLU BBH

LongLLaVA-9B (w/o Replay Data) 52.3 36.2
with 10K 52.9 37.3
with 20K 53.4 38.1
with 50K 53.9 38.8
with 100K 53.9 39.2

Table 13: Impact of Text Replay Data Quantity.

GQA MMMU SQAI SEEDv1
img Mile∗avg

w/o Replay Data 57.5 31.2 53.5 64.3 46.8
with 50K 57.9 32.3 58.2 66.2 46.5
with 100K 57.9 33.5 62.7 67.1 46.5
with 200K 58.2 34.5 67.1 67.9 46.8
with 400K 58.5 35.2 73.2 68.2 46.4

Table 14: Impact of Single-Image Replay Data Quantity.

when using default inference settings, achieve per-1292

formance comparable to other efficient multimodal1293

models, while requiring fewer inference FLOPs.1294

However, their performance still lags behind that1295

of some leading multimodal models, primarily due1296

to token compression.1297

To fully realize the potential of LongLLaVA in1298

single-image understanding, we applied the token1299

compression mitigation strategy described in Sec-1300

tion 5.2. Specifically, we pad each image so that1301

its height and width are multiples of 168, then1302

partition it into sub-images of size 168 × 168.1303

This approach effectively eliminates the adverse1304

effects of token compression. Experimental results1305

demonstrate that, with this mitigation strategy, the1306

LongLLaVA series achieves performance on par1307

with state-of-the-art multimodal models.1308

F Replay Data Ablation Study1309

To assess the impact of replay data, we conducted1310

three experiments as part of the Replay Data Abla-1311

tion Study.1312

Comparison With and Without Replay Data.1313

We first conducted experiments comparing models1314

trained with and without replay data. To isolate1315

the effect of replay data from the impact of in-1316

creased training data, we performed an ablation1317

study by replacing replay data in the original train-1318

ing recipe with an equivalent amount of multi-1319

image data. The results, presented in Table 12,1320

demonstrate that replay data is essential for pre-1321

serving the model’s original single-image under-1322

standing and text-following capabilities.1323

Replay Data Quantity Ablation. We also exam- 1324

ined the impact of varying the quantity of replay 1325

data. For text replay data, the supplementary ex- 1326

periments reveal that adding text replay data en- 1327

hances the model’s text-following ability, although 1328

the improvement eventually saturates, as shown in 1329

Table 13. For single-image replay data, the results 1330

in Table 14 indicate that the model’s single-image 1331

capability continues to improve with increased data 1332

volume and has not yet reached saturation. How- 1333

ever, the improvement in multi-image tasks is lim- 1334

ited. 1335
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