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Abstract
In this work, we investigate various state-of-the-001
art (SOTA) speech pre-trained models (PTMs)002
for their capability to capture prosodic sig-003
natures of the generative sources for audio004
deepfake source attribution (ADSD). These005
prosodic characteristics can be considered one006
of major signatures for ADSD, which is unique007
to each source. So better is the PTM at cap-008
turing prosodic signs better the ADSD per-009
formance. We consider various SOTA PTMs010
that have shown top performance in different011
prosodic tasks for our experiments on bench-012
mark datasets, ASVSpoof 2019 and CFAD.013
x-vector (speaker recognition PTM) attains014
the highest performance in comparison to all015
the PTMs considered despite consisting low-016
est model parameters. This higher perfor-017
mance can be due to its speaker recognition018
pre-training that enables it for capturing unique019
prosodic characteristics of the sources in a020
better way. Further, motivated from tasks021
such as audio deepfake detection and speech022
recognition, where fusion of PTMs represen-023
tations lead to improved performance, we ex-024
plore the same and propose FINDER for ef-025
fective fusion of such representations. With026
fusion of Whisper and x-vector representations027
through FINDER, we achieved the topmost028
performance in comparison to all the individ-029
ual PTMs as well as baseline fusion techniques030
and attaining SOTA performance.031

1 Introduction032

Imagine waking up to find your voice used in a vi-033

ral audio clip, falsely implicating you in a scandal.034

This increasingly plausible scenario highlights the035

growing threat of audio deepfakes. With advance-036

ments in text-to-speech (TTS) and voice conver-037

sion (VC) technologies, malicious actors can now038

create synthetic audio that is nearly indistinguish-039

able from authentic recordings. From high-profile040

frauds (Stupp, 2019) to the viral spread of falsi-041

fied audio targeting political figures (BBC, 2024),042

the misuse of synthetic audio for financial scams 043

and misinformation underscores the urgent need 044

for reliable detection methods. As the authenticity 045

of audio content becomes increasingly difficult to 046

verify, the importance of audio deepfake detection 047

(ADD) has never been more pressing. 048

Despite advancements in ADD, research has pri- 049

marily focused on binary classification - distin- 050

guishing real from fake audio (Wu et al., 2015; Kin- 051

nunen et al., 2017; Todisco et al., 2019; Liu et al., 052

2023; Yamagishi et al., 2021; Yi et al., 2022, 2023; 053

Shaaban et al., 2023; Hamza et al., 2022; Alta- 054

lahin et al., 2023; Kilinc and Kaledibi, 2023). This 055

approach, while effective in its simplicity, lacks 056

the granularity needed to address a crucial aspect 057

of deepfake detection: source attribution. Audio 058

deepfake source attribution (ADSD) goes beyond 059

merely identifying whether audio is real or fake; it 060

seeks to uncover the specific tool or model respon- 061

sible for generating the synthetic audio (Yan et al., 062

2022b; Zhang et al., 2023; Zhu et al., 2022). This 063

capability is vital for improving the explainability 064

of detection systems and enabling targeted counter- 065

measures, especially in high-stakes contexts such 066

as audio forensics and intellectual property protec- 067

tion. 068

Generative sources such as TTS, VC, etc. sys- 069

tems embed their unique prosodic characteristics, 070

such as pitch, tone, rhythm, and intonation, into 071

their generated audios, reflecting the inherent de- 072

sign and processing patterns of the generative sys- 073

tem. These prosodic signatures are vital for accu- 074

rately identifying the source and can be considered 075

one of the major fingerprint. In this study, we in- 076

vestigate various state-of-the-art (SOTA) speech 077

pre-trained models (PTMs) for capturing these 078

prosodic signatures of source for ADSD as such 079

PTMs has shown significant potential in advancing 080

ADSD (Klein et al., 2024a). We consider PTMs 081

that have shown efficacy in various prosodic tasks 082

such as speech emotion recognition (SER), depres- 083
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sion detection, etc. Motivated by tasks like ADD084

(Chetia Phukan et al., 2024) and speech recognition085

(Arunkumar et al., 2022), we also investigate the fu-086

sion of different PTM representations and propose,087

FINDER (FusIon through ReNyi DivERgence)088

for effective fusion. We believe, we are the first089

work, to the best of our knowledge, for exploring090

fusion of PTMs representations for ADSD.091

To summarize, the main contributions:092

• We give a comprehensive comparative study093

of SOTA speech PTMs for investigating their094

capacity of capturing prosodic signatures for095

ADSD.096

• We show that x-vector, a speaker recognition097

PTM, achieves the highest performance and098

this behavior can be attributed to its speaker099

recognition pre-training that enables it to cap-100

ture prosodic features better.101

• We propose FINDER, a novel framework that102

leverages renyi divergence as a fusion mecha-103

nism for fusion of PTMs representations.104

2 Related Work105

Early work on ADSD introduced the problem of106

identifying attacker signatures, showing that rep-107

resentations from RNN can characterize both seen108

and unseen attackers with high accuracy (Müller109

et al., 2022). Subsequent studies focused on de-110

tecting vocoder-specific fingerprints, revealing that111

vocoders leave identifiable traces in generated au-112

dio (Yan et al., 2022b,a). Building on this, methods113

such as t-SNE visualization and ResNet-based ar-114

chitectures further improved fingerprint detection115

accuracy (Yan et al., 2022a). Deng et al. 2024116

proposed VFD-Net, a patch-wise supervised con-117

trastive learning method, which achieved robust118

performance under cross-set and audio compres-119

sion conditions. More recent work (Klein et al.,120

2024b) has shown potential of using PTMs as back-121

bones for improved ADSD. In this study, for the122

first time, we investigate SOTA PTMs for assess-123

ing their capability of capturing unique prosodic124

signatures of sources for better ADSD.125

3 Pre-Trained Models126

Wav2vec2 (Baevski et al., 2020) and WavLM127

(Chen et al., 2022) are monolingual PTMs.128

Wav2vec2 trained on the LibriSpeech dataset,129

masks the input in latent space, it has shown ef-130

fectiveness in prosodic tasks such as SER (Pepino131

et al., 2021). WavLM showed SOTA perfor- 132

mance on SUPERB including various prosodic 133

tasks. XLS-R (Babu et al., 2022) and Whisper 134

(Radford et al., 2023) are multilingual PTMs. XLS- 135

R was pre-trained on 128 languages for 436k 136

hours of unlabeled speech while Whisper (Rad- 137

ford et al., 2023) on 96 languages for 680k hours 138

of labelled data. XLS-R shows good performance 139

in ML-SUPERB (Shi et al., 2023) that includes 140

prosodic tasks while Whisper shows potential for 141

SER (Feng and Narayanan, 2023). In addition to 142

these PTMs, we consider, x-vector (Snyder et al., 143

2018), trained for speaker recognition. It excels 144

in various prosodic tasks such as SER (Chetia 145

Phukan et al., 2023), shout intensity prediction 146

(Fukumori et al., 2023), depression detection (Egas- 147

López et al., 2022), and so on. We also consider, 148

Wav2Vec2-emo1 fine-tuned for SER, as SER is a 149

prosodic task and we think its representations might 150

be helpful for ADSD. Additional details regarding 151

the above PTMs are provided in Appendix A.1. 152

4 Modeling 153

We consider two downstream networks i.e. fully 154

connected network (FCN) and CNN with individ- 155

ual PTM representations. The FCN model consists 156

of 3 dense layers with CNN model has four convo- 157

lutional layers followed by three dense layers with 158

256, 128, and 64 neurons followed by the output 159

layer. For CNN, we use two convolution blocks 160

each consisting of 1D-CNN and max-pooling layer 161

followed by flattening and FCN with similar config- 162

uration as FCN network above. Hyperparameters 163

detail is given in Appendix A.3. 164

FINDER: We propose FINDER for effective fu- 165

sion of PTMs representations. The architecture is 166

given in Figure 1. The PTMs representations are 167

passed through two convolution blocks with same 168

configuration as CNN model built for modeling 169

with individual PTM representations above. 170

Features are flattened after the convolution 171

blocks and linearly projected to 120-dimensional 172

size to keep the same dimensions and also for com- 173

putational constraints. The projected features then 174

passed through the renyi divergence (RD). RD is a 175

measure of divergence or dissimilarity between two 176

probability distributions (Van Erven and Harremos, 177

2014). Here, we frame RD as a loss function that 178

calculates the divergence between the feature repre- 179

1https://huggingface.co/speechbrain/
emotion-recognition-wav2vec2-IEMOCAP
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Figure 1: Proposed Framework FINDER: RD and FCN
stand for renyi divergence and fully connected network,
respectively; L, LCE , and LRD represent the total loss,
cross-entropy loss, and renyi divergence loss, respec-
tively.

sentations of two different PTMs. We aim to reduce180

the disimilarity between the feature representations181

and make it closer to each other. ea and eb be the182

feature space for two PTMs networks.183

RD between the two feature distributions ea and184

eb is given by:185

LRD =
1

α− 1
log

(
D∑
i=1

(ea,i + ϵ)α(eb,i + ϵ)1−α

)
186

where D is the embedding dimension, α > 1 con-187

trols the order of the divergence, and ϵ is a small188

constant for numerical stability.189

Finally, we add the RD loss LRD to the cross-190

entropy loss LCE for joint optimization. Total loss191

is given as:192

L = λLCE + (1− λ)LRD193

where λ is a hyperparameter and weightage param-194

eter for the losses.195

5 Experiments196

Benchmark Datasets: We use two benchmark197

datasets for our experiments namely ASVSpoof198

2019 (ASV) (Wang et al., 2020) and FAD Chinese199

Dataset (CFAD) (Ma et al., 2024). We combine the200

train, validation and testing splits for ASV and in201

resultant we got 19 classes (A01 to A19) as fake202

audio sources, while CFAD has 9 classes (0 - 8) 203

for source classes. We followed 5-fold cross vali- 204

dation for ASV and followed official split given for 205

CFAD. For more details on the datasets and data 206

preprocessing, refer to Appendix A.2. 207

Training Details: We use softmax as the activa- 208

tion function in the output layer of all the models 209

that outputs class probabilites. We use Adam as 210

optimizer with learning rate of 10−3. We trained 211

all the models for 40 epochs with a batch size of 212

32. We use cross-entropy as the loss function for 213

all the models. We use early stopping and dropout 214

for preventing overfitting. For experiments with 215

FINDER, we set α = 2, ϵ = 0.1, and λ = 0.4 and 216

keep these values constant throughout the exper- 217

iments as we got better results with these values 218

through some preliminary exploration. 219

Experimental Results: We use accuracy and equal 220

error rate (EER) as the evaluation metrics for exper- 221

iments as used by previous works on ADSD (Klein 222

et al., 2024a) and ADD (Liu et al., 2023). For EER, 223

we present the average scores of one-vs-all. 224

Table 1 presents the results of downstream mod- 225

els trained on individual PTM representations. x- 226

vector consistently delivers best results across both 227

the datasets, achieving high accuracy and lower 228

EER. This performance can be traced back to 229

its speaker recognition pre-training that equips 230

x-vector to better capture prosodic features also 231

consistent across various prosodic tasks (Chetia 232

Phukan et al., 2023; Fukumori et al., 2023; Egas- 233

López et al., 2022). In contrast, monolingual PTMs 234

like Wav2vec2 and WavLM underperformed due 235

to their limited capacity to capture source-specific 236

prosodic features. The performance of Wav2vec2- 237

emo is a known behavior as it was trained for SER, 238

but not better than x-vector. Whisper and XLS- 239

R also shows better performance than monolin- 240

gual PTMs as seen in previous research for ADD 241

(Chetia Phukan et al., 2024) that multilingual PTMs 242

capture diverse pitches, tones, etc. prosodic char- 243

acteristics better than monolingual PTMs. We also 244

plots the t-SNE plots of the PTMs representations 245

in Appendix Figure 2 and 3. The plots adds to 246

the performance of x-vector as we can observe bet- 247

ter clusters across the source classes. Also, CNN 248

models consistently outperform FCN models. 249

Table 2 presents the results for fusion of PTMs 250

representations through baseline concatentation fu- 251

sion technique and FINDER. For the baseline, we 252

use the same modeling paradigm except the RD 253

loss. We observe that results of fusion of PTMs 254
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Table 1: Performance Comparison of individual PTMs representations on ASV and CFAD; All the scores are
average of 5-folds and in %; High Accuracy, Low EER better the model

Representations ASV CFAD

FCN CNN FCN CNN

Accuracy EER Accuracy EER Accuracy EER Accuracy EER

Wav2vec2 45.25 21.54 61.75 7.76 49.25 29.20 74.50 10.20
WavLM 33.48 15.25 45.46 10.50 32.23 22.23 35.78 27.60
XLS-R 63.98 11.55 79.04 4.01 50.25 19.30 76.90 9.50
Whisper 75.69 9.85 87.03 4.01 70.14 15.85 85.01 8.10
x-vector 87.48 4.42 97.60 2.03 74.58 10.02 91.39 4.40
Wav2vec2-emo 78.45 8.40 86.35 2.50 65.30 12.12 86.50 8.60

Table 2: Performance Comparison of Fusion Methods on ASV and CFAD; All the scores are average of 5-folds and
in %; High Accuracy, Low EER better the model

Representations ASV CFAD

Concatenation FINDER Concatenation FINDER

Accuracy EER Accuracy EER Accuracy EER Accuracy EER

Wav2vec2 + Wav2vec2-emo 96.57 0.67 96.69 0.63 89.80 3.60 93.32 3.51
WavLM + Wav2vec2-emo 93.60 1.10 94.60 1.08 85.65 5.70 88.03 5.55
XLS-R + Wav2vec2-emo 91.23 1.10 94.35 1.04 92.47 2.79 95.72 2.64
Whisper + Wav2vec2-emo 96.03 0.66 96.66 0.63 94.95 1.50 98.47 1.41
x-vector + Wav2vec2-emo 93.12 1.33 98.62 0.37 91.79 2.80 96.71 2.50
x-vector + Wav2vec2 96.25 0.63 98.16 0.33 85.50 5.40 86.77 4.40
WavLM + Wav2vec2 96.38 0.69 96.99 0.65 89.75 2.84 96.26 2.61
Whisper + Wav2vec2 96.87 0.51 97.21 0.50 94.11 2.04 97.59 1.91
XLS-R + Wav2vec2 96.09 0.65 96.54 0.57 94.93 1.45 98.09 1.24
WavLM + XLS-R 86.92 2.30 87.40 2.04 92.63 1.80 98.75 1.17
Whisper + XLS-R 93.99 1.10 94.50 1.01 89.50 3.40 94.98 2.97
x-vector + XLS-R 96.58 1.20 97.84 0.35 90.87 3.30 95.58 1.60
Whisper + WavLM 94.26 0.85 94.69 0.84 88.86 3.84 94.28 3.08
x-vector + WavLM 95.85 0.40 98.37 0.36 64.32 10.10 78.77 8.17
Whisper + x-vector 97.16 0.32 98.91 0.26 95.00 1.10 99.01 1.07

representations through both the fusion techniques255

are better than the individual PTM representations,256

thus, showing their complementary nature. Fusion257

of PTM representations through FINDER consis-258

tently beat the concatenation based baseline fusion259

techniques showing its effectiveness. Fusion of260

Whisper and x-vector through FINDER shows the261

best performance across both the datasets.262

Dataset Model Accuracy(%) EER(%)

ASV FINDER (Whisper + x-vector) 98.91 0.26
MiO(Whisper + x-vector) 97.75 0.68
AASIST(Wav2vec2) 63.81 5.68

CFAD FINDER 99.01 1.07
MiO(Whisper + x-vector) 97.31 2.15
AASIST(Wav2vec2) 77.92 9.69

Table 3: Comparison to previous SOTA works

Comparison to Previous Works: As we have con-263

sidered all the source classes across train, valida-264

tion, and test split for ASV, so we can’t directly265

compare our results to previous works. For CFAD,266

we are the first one to perform ADSD, so there267

is not previous work to compare to. So, we reim-268

plemented some of the SOTA methods for ADSD269

and ADD and compared it our results. For ADD,270

we consider MiO (Chetia Phukan et al., 2024), an271

SOTA method that proposed combination of PTM 272

representations. We implemented with Whisper 273

and x-vector representations i.e. the best perform- 274

ing pair. For ADSD, we implemeted AASIST 275

(Jung et al., 2022) as downstream with Wav2vec2 276

representations used by Klein et al. 2024a. Table 3 277

presents the comparison of the proposed with the 278

SOTA methods, we observe the FINDER outper- 279

forms both the methods and attains SOTA perfor- 280

mance showing its effectiveness for ADSD. 281

6 Conclusion 282

In this work, we investigate various SOTA speech 283

PTMs for their ability to capture prosodic signa- 284

tures of generative sources for ADSD. We evaluate 285

monolingual, multilingual, and speaker recogni- 286

tion PTMs on benchmark datasets (ASV, CFAD), 287

finding that x-vector, a speaker recognition PTM, 288

outperforms others due to its ability to capture 289

better source-specific prosody. Further, we ex- 290

plored fusion of PTM representations for ADSD 291

and propose FINDER for the same. With fusion 292

of x-vector and Whisper representations through 293

FINDER, we achieve the topmost performance sur- 294

passing both individual PTMs and baseline fusion 295

techniques and attains SOTA performance. 296
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7 Limitations297

One major limitation of our work is the proposed298

systems are not built for open-vocabulary ADSD.299

It can only identify fake audios that are generated300

by the generative systems present in the datasets301

considered in our study. In our future work, we will302

work towards building systems for open-vocabulary303

ADSD.304

Another limitation is the experimentation with305

limited downstream networks, previous research306

has shown that the downstream performance307

changes with the downstream modeling technique308

(Zaiem et al., 2023). Here, we have experimented309

with only FCN and CNN. In future, we will explore310

further varied downstream networks for ADSD.311

8 Ethics Statement312

ASV and CFAD are publicly available and widely313

recognized benchmarks for audio deepfake re-314

search and have been automatically identified to315

protect speaker privacy. Our proposed method aims316

to enhance ADSD, supporting efforts to combat317

misinformation, fraud, and misuse of generative318

models. We acknowledge the potential risks asso-319

ciated with generative technologies and emphasize320

that our work is solely intended for improving de-321

tection systems and promoting cybersecurity.322
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A Appendix509

A.1 Detailed Information of PTMs510

In this section, we present detailed information511

regarding the PTMs utilized in our study.512

• Wav2vec22: It is trained in self-supervised513

manner to perform a contrastive task based514

on the quantization of jointly learned latent515

representations. It is trained on 960 hrs of516

audio LibriSpeech data, particularly English517

language. We are using the Wav2Vec2-base518

model with approximately 95 million parame-519

ters.520

• Wav2vec2-emo: It is a fine-tuned version of521

Wav2vec2 for SER on the benchmark IEMO-522

CAP dataset using the general purpose speech523

toolkit - SpeechBrain. Similar to Wav2Vec524

2.0, it has 95.04 million parameters.525

• XLS-R3: It is a cross-lingual learnng model526

trained in self-supervised manner, based on527

the Wav2Vec2 framework. The model is528

trained on approximately 500k hrs of open529

source speech audio data, spanning over 128530

languages. For our experiments, we are utiliz-531

ing the version with 300 million parameters.532

• Whisper4: It is a model trained in a multitask533

manner on internet data of about 680k hours,534

consisting of multilingual and multitask su-535

pervision. Whisper demonstrates ability to536

generalize on diverse datasets and domains537

without the need for fine-tuning, in a zero-538

shot setting. Whisper shows improved per-539

formance on speech recognition over XLS-R.540

We have used the base model with 74 million541

parameters.542

• WavLM5 : It is self-supervised PTM designed543

to address the challenges of learning universal544

speech representations for diverse speech pro-545

cessing tasks. WavLM uses masked speech546

prediction with speech denoising during pre-547

training, enabling it to model both spoken548

content and non-ASR tasks effectively. It is549

trained on 960k hours of Librispeech English550

2https://huggingface.co/facebook/
wav2vec2-base

3https://huggingface.co/facebook/
wav2vec2-xls-r-300m

4https://huggingface.co/openai/whisper-base
5https://huggingface.co/microsoft/wavlm-base

Category Frequency

Dev 24,844
Train 25,380
Eval 71,237

Total Samples 121,461

Real 12,483
Total Fake Audio Samples 108,978

Table 4: ASV Statistics

data, outperforming models like Wav2vec2 551

and HuBERT. We have used the base version 552

with 94.70 million parameters. 553

• X-vector6: It is a time-delay neural network 554

(TDNN) trained in a supervised manner for 555

speaker recognition. It is trained on Voxceleb 556

1+ Voxceleb2 training data, using the general 557

purpose speech toolkit - Speechbrain. It has 558

achieved SOTA performance in speaker recog- 559

nition, outperforming models like i-vector. 560

We are using the Speechbrain model with ap- 561

prox 4.2 million parameters. 562

We resample the audios to 16 KHz before pass- 563

ing it to the PTMs and extract representations from 564

the last hidden state of the PTMs by average pool- 565

ing. We 566

A.2 Benchmark Datasets 567

ASV: It was was developed to advance research in 568

detecting audio deepfake detection and protecting 569

automatic speaker verification systems from manip- 570

ulation. It encompasses three major spoofing types: 571

synthetic speech, converted speech, and replay at- 572

tacks, generated using SOTA neural acoustic and 573

waveform models. The dataset comprises bonafide 574

(genuine) and spoofed audio samples, sourced from 575

19 synthetic systems, with recordings at a 16 kHz 576

sample rate and 16-bit depth. Bonafide record- 577

ings include diverse speakers, capturing a range 578

of accents, speaking styles, and vocal characteris- 579

tics. Spoofed samples are predominantly produced 580

using SOTA voice conversion (VC) and text-to- 581

speech (TTS) methods, ensuring high clarity and 582

naturalness. For this study, we leverage the 19 583

spoofed classes for neural generator attribution. 584

Statistics are presented in Table 4. 585

CFAD: It addresses the lack of public Chinese 586

datasets under noisy conditions for fake audio de- 587

tection. It includes bonafide and fake audio gen- 588

6https://huggingface.co/speechbrain/
spkrec-xvect-voxceleb
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Category Total Fake

Train 138,400 25,600
Validation 14,400 9,600
Test 42,000 28,000

Total Samples 194,800 63,200

Table 5: CFAD Statistics

erated by 12 advanced speech generation tech-589

niques. To simulate real-world conditions, three590

noise datasets were added at five different signal-to-591

noise ratios (SNRs). Spoofed samples were synthe-592

sized using 11 SOTA TTS and VC methods, as well593

as neural network-based speech generation mod-594

els. The dataset facilitates evaluation using metrics595

such as Equal Error Rate (EER) and Tandem De-596

tection Cost Function (t-DCF). CFAD contributes597

significantly to audio forensics, enabling the identi-598

fication of manipulated content and the attribution599

of spoofing algorithms.600

Data Pre-Processing: We resample the audios to601

16 KHz before passing it to the PTMs and extract602

representations from the last hidden state of the603

PTMs by average pooling. We extract representa-604

tions of 768-dimensions for Wav2vec2, Wav2vec2-605

emo and WavLM. We get representations of 512606

for Whisper-encoder and x-vector and 1024 for607

XLS-R.608

A.3 Hyperparameters and System609

Configurations610

The first layer of convolution block of the CNN611

model has 256 filters and a kernel size of 3, fol-612

lowed by batch normalization, and max pooling613

(pool size 2). The second layer uses 128 filters614

and a kernel size of 3, succeeded by followed by615

batch normalization, and max pooling (pool size616

2. The trainable parameters for CNN models with617

individual PTMs representations ranged from 0.8618

to 1.2 million parameters depending on the input619

representation dimension size. Also, for the fusion620

experiments, the trainable parameters of the models621

range from 1.3 to 1.5 million parameters.622

We use Tensorflow library for carrying out our623

experiments. We use A5000 GPU for running our624

experiments. The models and codes curated for625

this study will be released after the double-blind626

reviewing process.627
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(a) WavLM (b) Whisper

(c) x-vector (d) Wav2vec2-emo

Figure 2: Representation Space Visualization of PTMs for CFAD

(a) WavLM (b) Whisper

(c) x-vector (d) Wav2vec2-emo

Figure 3: Representation Space Visualization of PTMs for ASV
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