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Abstract

The rapid advancements in 3D visual generative Al are
driven by improvements in the quality and realism of 2D
generative models, alongside recent developments in effi-
cient 3D reconstruction techniques. In this work, we ad-
dress the problem of 3D editing by developing a consistent
multi-view 2D editing model and leveraging 3D reconstruc-
tion methods to obtain a 3D representation. Our approach
generalizes across various inputs, including renderings of
digital 3D assets and turntable videos of real-world objects.
Furthermore, this generalization enables our method to be
applied as a post-processing step to any existing 3D gener-
ative approach, regardless of the underlying geometry rep-
resentation model.

We introduce 3D-Pix, a model that integrates 2D gener-
ation with 3D reconstruction to facilitate 3D editing. A key
component of our approach is MV Instruct Pix2Pix XL, a
modified version of Instruct Pix2Pix [4], designed to gen-
erate consistent multi-view images of the same object using
the Stable Diffusion XL [37] image generation model. To
ensure coherence across multiple views, we employ a novel
interpolation mechanism that enables single-inference pro-
cessing for consistent editing across multiple images. Ad-
ditionally, we enhance output fidelity by incorporating a
super-resolution upscaling step. The geometry of the asset
is estimated using a state-of-the-art 3D Gaussian Splatting
[22] model. Our proposed 3D-Pix model effectively bal-
ances appearance refinement and geometric accuracy, par-
ticularly in preserving high-frequency details and achieving
high-fidelity results.

1. Introduction

The field of 3D visual generative Al is undergoing signifi-
cant growth, driven by advances in the quality and realism
of 2D generative models, as well as breakthroughs in novel
3D reconstruction techniques, such as 3D Gaussian Splat-
ting [22]. The increasing demand for automation in the
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Figure 1. Our 3D-Pix editing high-level process. We expect a
turn-around sequence and the edit prompt on input, and our 3D-
Pix returns the edited and reconstructed 3D model.

creation of high-quality 3D assets has further accelerated
research in this domain.

The 3D generative domain comprises various tasks,
commonly classified with respect to input modalities: text-
to-3D [8, 32, 38, 43, 43, 47, 58, 70, 71], image-to-3D
[12,27,29,49,50, 61, 72], and 3D-to-3D or editing genera-
tions [1, 4, 15, 18, 34, 35]. Although many approaches exist
in each direction, many use outdated 2D generative and 3D
reconstruction approaches, providing low resolution of the
estimated 3D model. Moreover, the 3D-to-3D direction is
often treated as re-texturing, aiming to modify only the ap-
pearance with no geometry changes.

In this work, we introduce an advanced implicit 3D edit-
ing algorithm that operates solely on text prompts, eliminat-
ing the need for explicit manual masks or bounding boxes to
specify the target region for editing. Our approach presents
a novel 3D editing pipeline that integrates sequential com-
ponents of 3D reconstruction using 3D Gaussian Splatting
[22] with a multi-view editing framework. This framework
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"Make it a green woman"

"Add black sunglasses"

......................

"Add panda ears"

Figure 2. Our 3D-Pix text-guided edit renderings of the reconstructed 3D models.

leverages the Stable Diffusion XL [37] generative model

and the 2D editing capabilities of Instruct Pix2Pix [4], al-

lowing high-fidelity text-guided modifications of 3D assets.
In summary, our contributions are:

* We propose a novel Multi-View Instruct Pix2Pix XL
model, a modified version of the original 2D editing
model Instruct Pix2Pix [4] to generate consistent multi-
view frames of the same object using the SOTA Stable
Diffusion XL [37] generative model.

* We propose our 3D editing model 3D-Pix by leveraging
our pre-trained Multi-View Instruct Pix2Pix XL model in
a single-inference manner due to being coupled with the
complex interpolation logic, together with the 3D Gaus-
sian Splatting [22] geometry reconstruction.

* We demonstrate the generalization of 3D-Pix to various
real-life and digital inputs and its application as a post
hoc stage for an arbitrary 3D generative model of any ge-
ometry representation technique.

2. Related Works
2.1. Diffusion Models

Although diffusion generative models were first introduced
by Sohl-Dickstein et al. [45], they gained widespread at-
tention following the DDPM work [20], which signifi-
cantly improved diffusion processes and sampling strate-
gies. DDIM [46] further enhanced efficiency by introducing
a non-Markovian denoising process, enabling faster sam-
pling with superior quality.

Although diffusion models eventually surpassed GANs
in quality [14], they remained computationally expensive
due to their high-dimensional pixel-space operations. The
Latent Diffusion Model (LDM) [39] addressed this by in-
corporating a VAE, reducing dimensionality and improving
efficiency.

Stable Diffusion (SD) [39] became the most widely
adopted LDM implementation. Despite numerous advance-
ments [21, 33, 60, 69, 77], the most recognized diffusion

model today is Stable Diffusion XL [37], which achieves
state-of-the-art realism and quality.

2.2. 3D Representation Models

When estimating a 3D model from a set of images, geome-
try can be represented using explicit or implicit techniques.
Explicit representations are widely used due to their sim-
plicity and efficiency, with common approaches including
3D voxels [9, 41, 67], meshes [16, 17, 36, 56], and point
clouds [26, 48, 63, 73].

Implicit representations are also widely adopted, with
many works leveraging signed distance functions (SDF)
[7, 42, 44, 64] and occupancy fields [28, 74, 75]. How-
ever, NeRF [30] and its extensions [2, 6, 13, 29, 54, 55, 68]
dominate much of the research in implicit 3D modeling.

Despite extensive efforts to accelerate NeRF, even the
latest optimizations remain computationally demanding. A
significantly faster alternative is 3D Gaussian Splatting (3D
GS) [22], which not only surpasses NeRF in speed but also
achieves superior visual quality while enabling real-time
rendering. Due to its efficiency, 3D GS is increasingly being
adopted in 3D generation tasks [8, 23, 24, 31, 62, 65].

2.3. Text-to-3D

One of the most influential works in text-to-3D generation
using diffusion models is DreamFusion [38], which intro-
duced the Score Distillation Sampling (SDS) loss. This
novel loss function operates in parameter space, using a
frozen diffusion model as a critic to guide NeRF optimiza-
tion. SDS remains a fundamental component in many mod-
ern 3D generation methods [43, 47, 58, 70, 71].

A common strategy is training a multi-view diffusion, as
introduced in MVDream [43], to generate consistent multi-
views [51]. GSGEN [8] is among the first works to in-
tegrate 2D diffusion-based generation with 3D Gaussian
Splatting, coupled with pre-trained text-to-point-cloud dif-
fusion Point-E [32] and effective guidance of the geometry
estimation of 3D Gaussians using 3D SDS loss.
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2.4. Image-to-3D & Re-texturing

The re-texturing problem differs from full 3D reconstruc-
tion as it often requires no geometry changes and can be
addressed by generating PBR materials [25, 66]. However,
these methods may not apply to implicit geometry, necessi-
tating further optimization of the 3D model. Many image-
to-3D models can also be adapted for re-texturing tasks
[29, 72].

Latent-NeRF [29] was among the first diffusion-based
methods to generate 3D objects using both text and image
inputs, introducing a model for retexturing based on pat-
tern images. IP-Dreamer [72] expanded this approach, be-
ing the first to implement Image Prompt (IP) control in Sta-
ble Diffusion with modifications to the SDS loss. Several
other methods can generate 3D models from a single image
[12, 27, 49, 61], with DreamGaussian [50] being the most
relevant, as it utilizes 3D Gaussian Splatting for reconstruc-
tion.

2.5. 3D Editing

The editing task gained significant popularity following
the Prompt-to-Prompt work [19], which eliminated the
need for manual mask selection and introduced edits con-
trolled solely by text prompts through attention mecha-
nisms. This innovation has spurred further research in the
domain [1, 4, 18, 35].

Recent approaches that leverage 3D Gaussian Splat-
ting for geometry optimization include GSEdit [34], Gaus-
sianEditor [15], View-consistent Editing (VcEdit) [57] and
GaussCtrl [59] models. GSEdit [34] iteratively guides the
reconstruction process using Score Distillation Sampling
(SDS) loss with Instruct Pix2Pix as the diffusion model, al-
lowing refined edits based on user prompts. GaussianEditor
[15] separates editing tasks into object removal and incor-
poration through semantic tracing, followed by Hierarchical
Gaussian Splatting (HGS). VcEdit [57] introduces 3DGS
coupled with Cross-attention and Editing Consistency mod-
ules to improve multi-view consistency. GaussCtrl [59]
employs depth guidance with ControlNet [76] to enhance
geometric consistency and the attention-based latent code
alignment module to improve texture consistency.

3. Preliminary

3.1. Instruct Pix2Pix

Instruct Pix2Pix [4] is a state-of-the-art (SOTA) 2D diffu-
sion model designed for text-guided image editing. The
authors introduced a novel training methodology based on
a synthetically generated dataset, leveraging Prompt-to-
Prompt [19] and the GPT-3 language model [5] to create
text-image editing pairs.

The dataset generation process consists of three key
stages. First, an “edited prompt” is generated by condi-

tioning GPT-3 on the original image description and the
given editing instruction, producing a modified description
that aligns with the intended transformation. In the second
stage, Stable Diffusion [39] and Prompt-to-Prompt [19] are
employed to generate both the original and edited images
corresponding to the prompts.

The model is trained by minimizing the latent diffusion
objective function, conditioned on text input ¢y and the im-
age cy:

L =Eg(a),e(cr)eret [HG —eo(2t,t,E(cr), CT)H%} )

where z; is the noisy latent variable after diffusing for ¢
steps the input image «x in a latent space with the encoder
z = E(x).

4. Approach

Generation consistency for many images was proven to be
a challenging task ([43]). Unlike GSEdit [34], which used
Instruct Pix2Pix edits iteratively for geometry optimization
with SDS loss, we edit the frames in only a single inference
with our modified Instruct Pix2Pix model, making 2D edits
and 3D reconstruction as independent processes.

The main idea of our approach is to process the edits
described in the input prompt with a single inference of the
generative model to achieve consistency. For that, we divide
all of the input frames into specifically four orthogonal key
frames and the rest of the intermediate (inter) frames. The
key images capture the most information about the object
from different angles, and the edits with the diffusion model
are applied only to those with our proposed Multi-View
variation of the Instruct Pix2Pix model [4] (see Sec. 4.2).
The rest of the frames are edited by interpolating the edited
key frames into the poses of the original inter frames (see
Sec. 4.3) to achieve edits consistent with the key ones. The
full pipeline is shown in Fig. 4. This idea is highly inspired
by the 3D-GSR [3] work, which leverages consistent 3D
Super-Resolution by leveraging 2D Super-Resolution and
3D GS models.
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Figure 3. A model sheet is a single image composed as a grid of
the orthogonal frames of the same object.
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Figure 4. The complete architecture of 3D-Pix. Our proposed MV Instruct Pix2Pix XL is used to edit several key frames from the
input sequence given the prompt guidance, and the complex interpolation algorithm is used to achieve the edits of all intermediate frames
consistent with the already changed images. Once all of the frames are edited, the images are upscaled with a Super-Resolution model and
passed to the 3D GS reconstruction together with the SfM point cloud created from the original sequence.

4.1. Model sheet

The idea is first introduced in MVDream [43] work, where
the authors trained a multi-view diffusion model to generate
four orthogonal views as a grid. Similar to their approach,
we also compose a grid of orthogonal frames as in Fig. 3,
which we call a model sheet, as the SD produces consistent
generations when done in a single inference.

4.2. Multi-View Instruct Pix2Pix XL

Instruct Pix2Pix [4] is a high-fidelity, text-guided image
editing model built upon the original Stable Diffusion v1
framework [39], capable of generating images at a resolu-
tion of 512 x 512.

To enhance both the quality and resolution of 2D-
generated outputs, we adapt the training methodology of
Instruct Pix2Pix to a more advanced model—Stable Dif-
fusion XL (SDXL) [37], which is approximately three
times larger in scale. Specifically, we follow the mod-
ified training instructions provided in the official imple-
mentation (https://github.com/huggingface/
diffusers/blob/main/examples/instruct_
pix2pix/train_instruct_pix2pix_sdxl.py)
and fine-tune the SDXL-base-1.0 checkpoint as our foun-
dation.

Ensuring consistency in prompt-guided edits across mul-
tiple frames of a given sequence presents a key chal-
lenge. To address this, we employ a model sheet approach,
wherein multiple key frames are aggregated into a single
composite image (sheet). Edits are then applied in a single
inference pass, preserving temporal and structural coher-
ence across frames. To facilitate this, we modify the data

generation process for Instruct Pix2Pix while maintaining
the original training pipeline, introducing Multi-View In-
struct Pix2Pix XL (MV Instruct Pix2Pix XL) for multi-view
editing.

For our dataset construction, we utilize Objaverse 1.0
[11], a large-scale collection of over 800K 3D models. To
optimize computational resources—given the high cost of
SDXL fine-tuning—we filter the dataset to include only
high-definition (HD) models, reducing it to approximately
50K assets. From each selected 3D model, we generate ran-
dom renderings from four orthogonal viewpoints, with an
initial camera position randomly assigned. These render-
ings are then composed into model sheets, with each 3D
asset yielding 10 different sheets from diverse perspectives,
resulting in a total of 40 individual renders per object. Each
model sheet is further paired with a unique editing prompt,
ultimately producing 500K training samples.

Following the methodology outlined in the original In-
struct Pix2Pix paper, we leverage the GPT-3 model [5] to
generate triplets of text prompts. Each triplet consists of
(1) an image caption, (2) an edit instruction, and (3) a
caption describing the modified image. These structured
prompts are then used in conjunction with Stable Diffusion
and Prompt-to-Prompt [19] to generate the corresponding
image edits.

More specifically, for the input model sheet m composed
of 4 key frames, the forward pass of the SD-XL model adds
noise to the encoded latent variable z = £(z) and produces
the noisy variable z;. We learn a network €y to predict the
noise added to the diffused latents z;, conditioned with the
edited by Prompt-to-Prompt [19] model sheet cj; and the
text prompt cr, by optimizing the conditioned latent diffu-
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sion loss function:
L = Eg(m),(ca)eret |1l —€o(ze,t,E(enr), CT)H%] ()

While the generation process ensures consistency within
a single model sheet, it does not guarantee coherence across
multiple sheets when edited in separate inference passes.
If two model sheets were edited independently, the result-
ing modifications could diverge, leading to inconsistencies
across frames. To maintain uniformity across all original
input frames, we propose interpolating the edited outputs of
a single model sheet rather than generating new sheets for
each edit. This approach prevents discrepancies between
successive generations and ensures a more temporally and
structurally consistent editing process.

4.3. Interpolation

Since MV Instruct Pix2Pix XL generates edits for only a
subset of frames from the model sheet, it is necessary to
propagate these modifications to the remaining input im-
ages. To achieve this, we interpolate the content of the
edited model sheet frames into the corresponding unmod-
ified poses, effectively transferring the new edits to the en-
tire sequence. The interpolation process between two key

frames is illustrated in Fig. 6.
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Figure 6. Interpolation process of a single intermediate frame
batch given two key frames. Firstly, we classically interpolate only
the binary mask of the area to apply edits with some margin, and
then the Ezsynth [53] model is used to generate the edited images,
given the updated content from the key frames.

For this interpolation, we employ the Ezsynth video styl-
ization model [53], which is based on the Recurrent All-

Pairs Field Transforms (RAFT) model for optical flow [52].
In our pipeline, we treat Ezsynth as a black-box component,
fine-tuning its hyperparameters to reduce reliance on edge
detection, thereby allowing for more significant geometric
transformations in the inputs.

To ensure high-fidelity interpolation, we constrain the
model to modify only the regions that were edited by MV
Instruct Pix2Pix XL. For each input frame, we generate a
binary mask highlighting the areas requiring interpolation.
This is accomplished by first identifying the modified re-
gions in the model sheet frames by computing the differ-
ence between the original and edited images and threshold-
ing the result to create four binary masks. To refine these
masks, we apply morphological opening followed by clos-
ing operations.

Additionally, since our pipeline incorporates a Struc-
ture from Motion (SfM) step for geometry estimation (see
Sec. 4.5), we leverage the matched keypoints and estimated
homography between sequential frames. This allows us to
warp and transform the masks derived from edited model
sheets, generating corresponding masks for the remaining
frames. These refined masks are then used as input to the
interpolation model, enabling it to synthesize realistic and
spatially consistent modifications. This approach produces
more coherent and visually accurate interpolated frames
than directly transforming the edited regions.

More specifically, having the key frames k] = eg(kq)
and k5, = eg(k2) edited with the MV Instruct Pix2Pix XL
model €y, we can describe the interpolating process as an
inference of the learned model ¢, used to edit the original
intermediate frame 4 into edited frame 4’

il:ﬁw(ivmivkllakl_ /17]{,27]62_]{;/2)7 (3)

where the m; mask of the interpolated image ¢ is obtained
via computing the homography matrix H between key and
inter frames: m; = H " li.

The key contribution of this component is that it ensures
consistency between intermediate frames and the already
edited key frames generated by MV Instruct Pix2Pix XL.
As aresult, the final output maintains a unified and seamless
sequence, preserving both geometric and visual coherence

throughout the edited frames.

”Make astronaut ride a huge cat”
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(a) Multi-view input

(b) Original Instruct Pix2Pix [4] (c) Multi-View Instruct Pix2Pix XL (our)

Figure 5. 2D editing comparison on a simple model sheet of 2 images (a) with original Instruct Pix2Pix (b) and our MV model (c).
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Figure 7. Results of edits with 3D-Pix. The input sequence of a lion is being edited to new 3D models with respect to the input prompts.
Our model is capable of producing complex geometry changes (bottom row with structure changes) and appearance changes (top row with

color changes).

4.4. Super-Resolution

To further enhance the visual fidelity and detail of the im-
ages, we integrate an additional Super-Resolution upscal-
ing model, processing frames in batches of four. For this
purpose, we employ the transformer-based Swin2SR model
[10].

4.5. Structure from Motion

Since 3D Gaussian Splatting (3D GS) requires an ini-
tial sparse point cloud, and our interpolation pipeline (see
Sec. 4.3) relies on estimated homographies between frames,
we utilize a classical Structure from Motion (SfM) approach
from the COLMAP library [40].

The SfM reconstruction process is applied exclusively
to the original, non-edited images. Running SfM on the
edited images often leads to failures due to minor incon-
sistencies introduced during the editing process, as the tra-
ditional COLMAP pipeline lacks robustness against such
artifacts. However, performing SfM on the original images
consistently succeeds, providing a reliable foundation for
subsequent 3D GS optimization with an initial coarse set of
features.

4.6. 3D Gaussian Splatting

For the final 3D reconstruction, we employ the original im-
plementation of 3D Gaussian Splatting [22] as a black-box
model. The optimization process refines the initial Gaus-
sians obtained from the sparse point cloud to align with
the updated, edited appearance. Additionally, we disable
the model’s ability to represent view-dependent colors via
spherical harmonics (SH) coefficient optimization to main-
tain consistency in color representation.

5. Experiments

5.1. Instruct Pix2Pix vs Ours

We evaluate the performance of our MV Instruct Pix2Pix
XL model against the original Instruct Pix2Pix in a 2D edit-
ing task using a model sheet. A visual comparison is pre-
sented in Fig. 5, demonstrating that our proposed approach
achieves greater consistency across different frames. In
contrast, the original Instruct Pix2Pix struggles to maintain
high-quality and consistent modifications, even in a simple
case of two sequential images.

To quantitatively assess the differences, we compute av-
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Figure 8. Comparison oft our 3D-Pix and other open-source models: GaussianEditor [15] and GaussCtrl [59]. While our model performs
more robust color changes, other models perform scene-level edits, while we focus only on object-level reconstruction.

erage CLIP scores on our dataset and report the results in
Tab. 1. The evaluation considers two key metrics: (1) Simi-
larity to the input image, ensuring that the edited image re-
mains structurally consistent with the original, and (2) Text-
image alignment, measuring the adherence of the edited im-
age to the input textual prompt.

For Instruct Pix2Pix, we test two scenarios: processing
a model sheet (similar to our method) and editing individ-
ual frames sequentially (which aligns more closely with the
original model’s training distribution). Our method outper-
forms both cases in terms of text-image alignment, indicat-
ing that it generates more robust and realistic edits. How-
ever, our approach yields lower similarity scores to the input
images, suggesting that it introduces more substantial mod-
ifications compared to the original Instruct Pix2Pix.

5.2. Results

We present a diverse set of edited 3D assets generated with
3D-Pix in Figs. 1, 2, 5, 7 and 9. Our approach demon-
strates the ability to produce high-quality 3D edits that ac-
curately reflect the desired modifications specified by the
text prompt.

We compare our 3D-Pix model with other works in 3D
editing with open source code: GaussianEditor [15] and
GaussCtrl [59] in the Fig. 8. While our solution provides
more robust edits, we perform strictly object-level edits, as
opposed to other models capable of generalizable scene-
level reconstructions.

| Instruct Pix2Pix model | CLIP; 1 | CLIP; 1 |

Our (model sheet) 0.86 0.14
Original (model sheet) 0.79 0.09
Original (frame-wise) 0.91 0.13

CLIP; : Input image similarity
CLIP; : Edited text - edited image similarity

Table 1. Comparison of CLIP text and image alighnment scores
on edited model sheets with our MV Instruct Pix2Pix XL and the
original model [4].

Our method is effective for both geometric transforma-
tions (e.g., converting an object into a different form) and
appearance modifications (e.g., style or color adjustments).
The generated assets exhibit high fidelity and successfully
capture complex geometric structures while maintaining
consistency across multiple views.

5.3. Real-Life Inputs

To further evaluate our model’s performance, we apply 3D-
Pix to turntable-style images captured from real-world ob-
jects, as shown in Fig. 9. However, the results indicate a
performance degradation compared to digital input data.

Upon analysis of the intermediate outputs, we identify
the primary cause as suboptimal key frame selection, re-
sulting from instability in video recordings, abrupt camera
movements, or sudden shifts in the object’s position. To en-
hance robustness against such real-world artifacts, we pro-
pose integrating a more advanced key frame selection al-
gorithm and applying frame deblurring techniques in future
work to improve editing quality.

5.4. Failed Cases

Despite its improvements, our approach inherits certain fail-
ure cases from the original Instruct Pix2Pix [4], as illus-
trated in Fig. 10. In some instances, the model fails to iso-
late the specified object components accurately. For exam-
ple, in the ice cream scenario, the model erroneously modi-
fies the green jam instead of the intended waffle. Similarly,
in the goblet case, it struggles to preserve the fine structure
of the input skeleton, resulting in inconsistencies in bone
articulation and subsequent reconstruction artifacts.

Furthermore, our 2D editing and interpolation pipeline
occasionally misidentifies elements of an object. For ex-
ample, the top of a glass is misclassified, leading to a non-
transparent blue coloration. Additionally, the model fails to
correctly interpret the internal composition of a goblet, mis-
takenly placing a cherry at its center rather than modifying
its interior as intended.
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Figure 10. Failed cases. 3D-Pix sometimes struggles with isolat-
ing a correct area of the edits (middle and bottom row) or struggles
in the thin edges and semi-transparent objects as in the top row.

6. Conclusions

In this work, we introduce MV Instruct Pix2Pix XL, an en-
hanced version of the Instruct Pix2Pix [4] diffusion model,

adapted for multi-view image editing. Our approach lever-
ages the state-of-the-art (SOTA) SD-XL [37] generative
model, extending its capabilities to ensure consistent modi-
fications across multiple viewpoints.

We further demonstrate how MV Instruct Pix2Pix XL
enables 3D editing within our 3D-Pix pipeline, a novel
framework designed for efficient multi-view object modi-
fication. Unlike conventional methods that require multiple
inference passes, our approach performs a single inference
step, followed by a complex interpolation process to propa-
gate edits across all views while maintaining consistency.

To enhance the visual fidelity of the outputs, we in-
corporate the Swin2SR [10] super-resolution model for
fine-grained image refinement. Additionally, for geome-
try estimation, we integrate a Structure from Motion (SfM)
pipeline, followed by 3D Gaussian Splatting [22], enabling
high-quality 3D reconstruction of the edited asset.

Our method is generalizable to both digital and real-
world inputs and can serve as a post-hoc refinement stage
for any existing 3D generative model, regardless of its un-
derlying geometry representation.

Beyond the scope of 3D editing, our work raises broader
questions about adapting 2D generative models to multi-
view settings in a structured and scalable manner. We in-
troduce a novel frame interpolation technique, ensuring that
modifications applied to a subset of frames are seamlessly
propagated, preserving object consistency across multiple
perspectives.

This research paves the way for future explorations in
multi-view generative modeling, extending beyond editing
to tasks such as multi-view synthesis, reconstruction, and
consistency-aware generation.
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