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Abstract

The rapid advancements in 3D visual generative AI are001
driven by improvements in the quality and realism of 2D002
generative models, alongside recent developments in effi-003
cient 3D reconstruction techniques. In this work, we ad-004
dress the problem of 3D editing by developing a consistent005
multi-view 2D editing model and leveraging 3D reconstruc-006
tion methods to obtain a 3D representation. Our approach007
generalizes across various inputs, including renderings of008
digital 3D assets and turntable videos of real-world objects.009
Furthermore, this generalization enables our method to be010
applied as a post-processing step to any existing 3D gener-011
ative approach, regardless of the underlying geometry rep-012
resentation model.013

We introduce 3D-Pix, a model that integrates 2D gener-014
ation with 3D reconstruction to facilitate 3D editing. A key015
component of our approach is MV Instruct Pix2Pix XL, a016
modified version of Instruct Pix2Pix [4], designed to gen-017
erate consistent multi-view images of the same object using018
the Stable Diffusion XL [37] image generation model. To019
ensure coherence across multiple views, we employ a novel020
interpolation mechanism that enables single-inference pro-021
cessing for consistent editing across multiple images. Ad-022
ditionally, we enhance output fidelity by incorporating a023
super-resolution upscaling step. The geometry of the asset024
is estimated using a state-of-the-art 3D Gaussian Splatting025
[22] model. Our proposed 3D-Pix model effectively bal-026
ances appearance refinement and geometric accuracy, par-027
ticularly in preserving high-frequency details and achieving028
high-fidelity results.029

1. Introduction030

The field of 3D visual generative AI is undergoing signifi-031
cant growth, driven by advances in the quality and realism032
of 2D generative models, as well as breakthroughs in novel033
3D reconstruction techniques, such as 3D Gaussian Splat-034
ting [22]. The increasing demand for automation in the035

Figure 1. Our 3D-Pix editing high-level process. We expect a
turn-around sequence and the edit prompt on input, and our 3D-
Pix returns the edited and reconstructed 3D model.

creation of high-quality 3D assets has further accelerated 036
research in this domain. 037

The 3D generative domain comprises various tasks, 038
commonly classified with respect to input modalities: text- 039
to-3D [8, 32, 38, 43, 43, 47, 58, 70, 71], image-to-3D 040
[12, 27, 29, 49, 50, 61, 72], and 3D-to-3D or editing genera- 041
tions [1, 4, 15, 18, 34, 35]. Although many approaches exist 042
in each direction, many use outdated 2D generative and 3D 043
reconstruction approaches, providing low resolution of the 044
estimated 3D model. Moreover, the 3D-to-3D direction is 045
often treated as re-texturing, aiming to modify only the ap- 046
pearance with no geometry changes. 047

In this work, we introduce an advanced implicit 3D edit- 048
ing algorithm that operates solely on text prompts, eliminat- 049
ing the need for explicit manual masks or bounding boxes to 050
specify the target region for editing. Our approach presents 051
a novel 3D editing pipeline that integrates sequential com- 052
ponents of 3D reconstruction using 3D Gaussian Splatting 053
[22] with a multi-view editing framework. This framework 054
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Figure 2. Our 3D-Pix text-guided edit renderings of the reconstructed 3D models.

leverages the Stable Diffusion XL [37] generative model055
and the 2D editing capabilities of Instruct Pix2Pix [4], al-056
lowing high-fidelity text-guided modifications of 3D assets.057

In summary, our contributions are:058

• We propose a novel Multi-View Instruct Pix2Pix XL059
model, a modified version of the original 2D editing060
model Instruct Pix2Pix [4] to generate consistent multi-061
view frames of the same object using the SOTA Stable062
Diffusion XL [37] generative model.063

• We propose our 3D editing model 3D-Pix by leveraging064
our pre-trained Multi-View Instruct Pix2Pix XL model in065
a single-inference manner due to being coupled with the066
complex interpolation logic, together with the 3D Gaus-067
sian Splatting [22] geometry reconstruction.068

• We demonstrate the generalization of 3D-Pix to various069
real-life and digital inputs and its application as a post070
hoc stage for an arbitrary 3D generative model of any ge-071
ometry representation technique.072

2. Related Works073

2.1. Diffusion Models074

Although diffusion generative models were first introduced075
by Sohl-Dickstein et al. [45], they gained widespread at-076
tention following the DDPM work [20], which signifi-077
cantly improved diffusion processes and sampling strate-078
gies. DDIM [46] further enhanced efficiency by introducing079
a non-Markovian denoising process, enabling faster sam-080
pling with superior quality.081

Although diffusion models eventually surpassed GANs082
in quality [14], they remained computationally expensive083
due to their high-dimensional pixel-space operations. The084
Latent Diffusion Model (LDM) [39] addressed this by in-085
corporating a VAE, reducing dimensionality and improving086
efficiency.087

Stable Diffusion (SD) [39] became the most widely088
adopted LDM implementation. Despite numerous advance-089
ments [21, 33, 60, 69, 77], the most recognized diffusion090

model today is Stable Diffusion XL [37], which achieves 091
state-of-the-art realism and quality. 092

2.2. 3D Representation Models 093

When estimating a 3D model from a set of images, geome- 094
try can be represented using explicit or implicit techniques. 095
Explicit representations are widely used due to their sim- 096
plicity and efficiency, with common approaches including 097
3D voxels [9, 41, 67], meshes [16, 17, 36, 56], and point 098
clouds [26, 48, 63, 73]. 099

Implicit representations are also widely adopted, with 100
many works leveraging signed distance functions (SDF) 101
[7, 42, 44, 64] and occupancy fields [28, 74, 75]. How- 102
ever, NeRF [30] and its extensions [2, 6, 13, 29, 54, 55, 68] 103
dominate much of the research in implicit 3D modeling. 104

Despite extensive efforts to accelerate NeRF, even the 105
latest optimizations remain computationally demanding. A 106
significantly faster alternative is 3D Gaussian Splatting (3D 107
GS) [22], which not only surpasses NeRF in speed but also 108
achieves superior visual quality while enabling real-time 109
rendering. Due to its efficiency, 3D GS is increasingly being 110
adopted in 3D generation tasks [8, 23, 24, 31, 62, 65]. 111

2.3. Text-to-3D 112

One of the most influential works in text-to-3D generation 113
using diffusion models is DreamFusion [38], which intro- 114
duced the Score Distillation Sampling (SDS) loss. This 115
novel loss function operates in parameter space, using a 116
frozen diffusion model as a critic to guide NeRF optimiza- 117
tion. SDS remains a fundamental component in many mod- 118
ern 3D generation methods [43, 47, 58, 70, 71]. 119

A common strategy is training a multi-view diffusion, as 120
introduced in MVDream [43], to generate consistent multi- 121
views [51]. GSGEN [8] is among the first works to in- 122
tegrate 2D diffusion-based generation with 3D Gaussian 123
Splatting, coupled with pre-trained text-to-point-cloud dif- 124
fusion Point-E [32] and effective guidance of the geometry 125
estimation of 3D Gaussians using 3D SDS loss. 126
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2.4. Image-to-3D & Re-texturing127

The re-texturing problem differs from full 3D reconstruc-128
tion as it often requires no geometry changes and can be129
addressed by generating PBR materials [25, 66]. However,130
these methods may not apply to implicit geometry, necessi-131
tating further optimization of the 3D model. Many image-132
to-3D models can also be adapted for re-texturing tasks133
[29, 72].134

Latent-NeRF [29] was among the first diffusion-based135
methods to generate 3D objects using both text and image136
inputs, introducing a model for retexturing based on pat-137
tern images. IP-Dreamer [72] expanded this approach, be-138
ing the first to implement Image Prompt (IP) control in Sta-139
ble Diffusion with modifications to the SDS loss. Several140
other methods can generate 3D models from a single image141
[12, 27, 49, 61], with DreamGaussian [50] being the most142
relevant, as it utilizes 3D Gaussian Splatting for reconstruc-143
tion.144

2.5. 3D Editing145

The editing task gained significant popularity following146
the Prompt-to-Prompt work [19], which eliminated the147
need for manual mask selection and introduced edits con-148
trolled solely by text prompts through attention mecha-149
nisms. This innovation has spurred further research in the150
domain [1, 4, 18, 35].151

Recent approaches that leverage 3D Gaussian Splat-152
ting for geometry optimization include GSEdit [34], Gaus-153
sianEditor [15], View-consistent Editing (VcEdit) [57] and154
GaussCtrl [59] models. GSEdit [34] iteratively guides the155
reconstruction process using Score Distillation Sampling156
(SDS) loss with Instruct Pix2Pix as the diffusion model, al-157
lowing refined edits based on user prompts. GaussianEditor158
[15] separates editing tasks into object removal and incor-159
poration through semantic tracing, followed by Hierarchical160
Gaussian Splatting (HGS). VcEdit [57] introduces 3DGS161
coupled with Cross-attention and Editing Consistency mod-162
ules to improve multi-view consistency. GaussCtrl [59]163
employs depth guidance with ControlNet [76] to enhance164
geometric consistency and the attention-based latent code165
alignment module to improve texture consistency.166

3. Preliminary167

3.1. Instruct Pix2Pix168

Instruct Pix2Pix [4] is a state-of-the-art (SOTA) 2D diffu-169
sion model designed for text-guided image editing. The170
authors introduced a novel training methodology based on171
a synthetically generated dataset, leveraging Prompt-to-172
Prompt [19] and the GPT-3 language model [5] to create173
text-image editing pairs.174

The dataset generation process consists of three key175
stages. First, an ”edited prompt” is generated by condi-176

tioning GPT-3 on the original image description and the 177
given editing instruction, producing a modified description 178
that aligns with the intended transformation. In the second 179
stage, Stable Diffusion [39] and Prompt-to-Prompt [19] are 180
employed to generate both the original and edited images 181
corresponding to the prompts. 182

The model is trained by minimizing the latent diffusion 183
objective function, conditioned on text input cT and the im- 184
age cI : 185

L = EE(x),E(cI),cT ,ϵ,t

[
||ϵ− ϵθ(zt, t, E(cI), cT )||22

]
, (1) 186

where zt is the noisy latent variable after diffusing for t 187
steps the input image x in a latent space with the encoder 188
z = E(x). 189

4. Approach 190

Generation consistency for many images was proven to be 191
a challenging task ([43]). Unlike GSEdit [34], which used 192
Instruct Pix2Pix edits iteratively for geometry optimization 193
with SDS loss, we edit the frames in only a single inference 194
with our modified Instruct Pix2Pix model, making 2D edits 195
and 3D reconstruction as independent processes. 196

The main idea of our approach is to process the edits 197
described in the input prompt with a single inference of the 198
generative model to achieve consistency. For that, we divide 199
all of the input frames into specifically four orthogonal key 200
frames and the rest of the intermediate (inter) frames. The 201
key images capture the most information about the object 202
from different angles, and the edits with the diffusion model 203
are applied only to those with our proposed Multi-View 204
variation of the Instruct Pix2Pix model [4] (see Sec. 4.2). 205
The rest of the frames are edited by interpolating the edited 206
key frames into the poses of the original inter frames (see 207
Sec. 4.3) to achieve edits consistent with the key ones. The 208
full pipeline is shown in Fig. 4. This idea is highly inspired 209
by the 3D-GSR [3] work, which leverages consistent 3D 210
Super-Resolution by leveraging 2D Super-Resolution and 211
3D GS models. 212

Figure 3. A model sheet is a single image composed as a grid of
the orthogonal frames of the same object.
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Figure 4. The complete architecture of 3D-Pix. Our proposed MV Instruct Pix2Pix XL is used to edit several key frames from the
input sequence given the prompt guidance, and the complex interpolation algorithm is used to achieve the edits of all intermediate frames
consistent with the already changed images. Once all of the frames are edited, the images are upscaled with a Super-Resolution model and
passed to the 3D GS reconstruction together with the SfM point cloud created from the original sequence.

4.1. Model sheet213

The idea is first introduced in MVDream [43] work, where214
the authors trained a multi-view diffusion model to generate215
four orthogonal views as a grid. Similar to their approach,216
we also compose a grid of orthogonal frames as in Fig. 3,217
which we call a model sheet, as the SD produces consistent218
generations when done in a single inference.219

4.2. Multi-View Instruct Pix2Pix XL220

Instruct Pix2Pix [4] is a high-fidelity, text-guided image221
editing model built upon the original Stable Diffusion v1222
framework [39], capable of generating images at a resolu-223
tion of 512× 512.224

To enhance both the quality and resolution of 2D-225
generated outputs, we adapt the training methodology of226
Instruct Pix2Pix to a more advanced model—Stable Dif-227
fusion XL (SDXL) [37], which is approximately three228
times larger in scale. Specifically, we follow the mod-229
ified training instructions provided in the official imple-230
mentation (https://github.com/huggingface/231
diffusers/blob/main/examples/instruct_232
pix2pix/train_instruct_pix2pix_sdxl.py)233
and fine-tune the SDXL-base-1.0 checkpoint as our foun-234
dation.235

Ensuring consistency in prompt-guided edits across mul-236
tiple frames of a given sequence presents a key chal-237
lenge. To address this, we employ a model sheet approach,238
wherein multiple key frames are aggregated into a single239
composite image (sheet). Edits are then applied in a single240
inference pass, preserving temporal and structural coher-241
ence across frames. To facilitate this, we modify the data242

generation process for Instruct Pix2Pix while maintaining 243
the original training pipeline, introducing Multi-View In- 244
struct Pix2Pix XL (MV Instruct Pix2Pix XL) for multi-view 245
editing. 246

For our dataset construction, we utilize Objaverse 1.0 247
[11], a large-scale collection of over 800K 3D models. To 248
optimize computational resources—given the high cost of 249
SDXL fine-tuning—we filter the dataset to include only 250
high-definition (HD) models, reducing it to approximately 251
50K assets. From each selected 3D model, we generate ran- 252
dom renderings from four orthogonal viewpoints, with an 253
initial camera position randomly assigned. These render- 254
ings are then composed into model sheets, with each 3D 255
asset yielding 10 different sheets from diverse perspectives, 256
resulting in a total of 40 individual renders per object. Each 257
model sheet is further paired with a unique editing prompt, 258
ultimately producing 500K training samples. 259

Following the methodology outlined in the original In- 260
struct Pix2Pix paper, we leverage the GPT-3 model [5] to 261
generate triplets of text prompts. Each triplet consists of 262
(1) an image caption, (2) an edit instruction, and (3) a 263
caption describing the modified image. These structured 264
prompts are then used in conjunction with Stable Diffusion 265
and Prompt-to-Prompt [19] to generate the corresponding 266
image edits. 267

More specifically, for the input model sheet m composed 268
of 4 key frames, the forward pass of the SD-XL model adds 269
noise to the encoded latent variable z = E(x) and produces 270
the noisy variable zt. We learn a network ϵθ to predict the 271
noise added to the diffused latents zt, conditioned with the 272
edited by Prompt-to-Prompt [19] model sheet cM and the 273
text prompt cT , by optimizing the conditioned latent diffu- 274
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sion loss function:275

L = EE(m),E(cM ),cT ,ϵ,t

[
||ϵ− ϵθ(zt, t, E(cM ), cT )||22

]
. (2)276

While the generation process ensures consistency within277
a single model sheet, it does not guarantee coherence across278
multiple sheets when edited in separate inference passes.279
If two model sheets were edited independently, the result-280
ing modifications could diverge, leading to inconsistencies281
across frames. To maintain uniformity across all original282
input frames, we propose interpolating the edited outputs of283
a single model sheet rather than generating new sheets for284
each edit. This approach prevents discrepancies between285
successive generations and ensures a more temporally and286
structurally consistent editing process.287

4.3. Interpolation288

Since MV Instruct Pix2Pix XL generates edits for only a289
subset of frames from the model sheet, it is necessary to290
propagate these modifications to the remaining input im-291
ages. To achieve this, we interpolate the content of the292
edited model sheet frames into the corresponding unmod-293
ified poses, effectively transferring the new edits to the en-294
tire sequence. The interpolation process between two key295
frames is illustrated in Fig. 6.296

Figure 6. Interpolation process of a single intermediate frame
batch given two key frames. Firstly, we classically interpolate only
the binary mask of the area to apply edits with some margin, and
then the Ezsynth [53] model is used to generate the edited images,
given the updated content from the key frames.

For this interpolation, we employ the Ezsynth video styl-297
ization model [53], which is based on the Recurrent All-298

Pairs Field Transforms (RAFT) model for optical flow [52]. 299
In our pipeline, we treat Ezsynth as a black-box component, 300
fine-tuning its hyperparameters to reduce reliance on edge 301
detection, thereby allowing for more significant geometric 302
transformations in the inputs. 303

To ensure high-fidelity interpolation, we constrain the 304
model to modify only the regions that were edited by MV 305
Instruct Pix2Pix XL. For each input frame, we generate a 306
binary mask highlighting the areas requiring interpolation. 307
This is accomplished by first identifying the modified re- 308
gions in the model sheet frames by computing the differ- 309
ence between the original and edited images and threshold- 310
ing the result to create four binary masks. To refine these 311
masks, we apply morphological opening followed by clos- 312
ing operations. 313

Additionally, since our pipeline incorporates a Struc- 314
ture from Motion (SfM) step for geometry estimation (see 315
Sec. 4.5), we leverage the matched keypoints and estimated 316
homography between sequential frames. This allows us to 317
warp and transform the masks derived from edited model 318
sheets, generating corresponding masks for the remaining 319
frames. These refined masks are then used as input to the 320
interpolation model, enabling it to synthesize realistic and 321
spatially consistent modifications. This approach produces 322
more coherent and visually accurate interpolated frames 323
than directly transforming the edited regions. 324

More specifically, having the key frames k′1 = ϵθ(k1) 325
and k′2 = ϵθ(k2) edited with the MV Instruct Pix2Pix XL 326
model ϵθ, we can describe the interpolating process as an 327
inference of the learned model ϵψ used to edit the original 328
intermediate frame i into edited frame i′: 329

i′ = ϵψ(i,mi, k
′
1, k1 − k′1, k

′
2, k2 − k′2), (3) 330

where the mi mask of the interpolated image i is obtained 331
via computing the homography matrix H between key and 332
inter frames: mi = H−1i. 333

The key contribution of this component is that it ensures 334
consistency between intermediate frames and the already 335
edited key frames generated by MV Instruct Pix2Pix XL. 336
As a result, the final output maintains a unified and seamless 337
sequence, preserving both geometric and visual coherence 338
throughout the edited frames. 339

”Make astronaut ride a huge cat”

(a) Multi-view input (b) Original Instruct Pix2Pix [4] (c) Multi-View Instruct Pix2Pix XL (our)

Figure 5. 2D editing comparison on a simple model sheet of 2 images (a) with original Instruct Pix2Pix (b) and our MV model (c).
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Figure 7. Results of edits with 3D-Pix. The input sequence of a lion is being edited to new 3D models with respect to the input prompts.
Our model is capable of producing complex geometry changes (bottom row with structure changes) and appearance changes (top row with
color changes).

4.4. Super-Resolution340

To further enhance the visual fidelity and detail of the im-341
ages, we integrate an additional Super-Resolution upscal-342
ing model, processing frames in batches of four. For this343
purpose, we employ the transformer-based Swin2SR model344
[10].345

4.5. Structure from Motion346

Since 3D Gaussian Splatting (3D GS) requires an ini-347
tial sparse point cloud, and our interpolation pipeline (see348
Sec. 4.3) relies on estimated homographies between frames,349
we utilize a classical Structure from Motion (SfM) approach350
from the COLMAP library [40].351

The SfM reconstruction process is applied exclusively352
to the original, non-edited images. Running SfM on the353
edited images often leads to failures due to minor incon-354
sistencies introduced during the editing process, as the tra-355
ditional COLMAP pipeline lacks robustness against such356
artifacts. However, performing SfM on the original images357
consistently succeeds, providing a reliable foundation for358
subsequent 3D GS optimization with an initial coarse set of359
features.360

4.6. 3D Gaussian Splatting 361

For the final 3D reconstruction, we employ the original im- 362
plementation of 3D Gaussian Splatting [22] as a black-box 363
model. The optimization process refines the initial Gaus- 364
sians obtained from the sparse point cloud to align with 365
the updated, edited appearance. Additionally, we disable 366
the model’s ability to represent view-dependent colors via 367
spherical harmonics (SH) coefficient optimization to main- 368
tain consistency in color representation. 369

5. Experiments 370

5.1. Instruct Pix2Pix vs Ours 371

We evaluate the performance of our MV Instruct Pix2Pix 372
XL model against the original Instruct Pix2Pix in a 2D edit- 373
ing task using a model sheet. A visual comparison is pre- 374
sented in Fig. 5, demonstrating that our proposed approach 375
achieves greater consistency across different frames. In 376
contrast, the original Instruct Pix2Pix struggles to maintain 377
high-quality and consistent modifications, even in a simple 378
case of two sequential images. 379

To quantitatively assess the differences, we compute av- 380
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Figure 8. Comparison oft our 3D-Pix and other open-source models: GaussianEditor [15] and GaussCtrl [59]. While our model performs
more robust color changes, other models perform scene-level edits, while we focus only on object-level reconstruction.

erage CLIP scores on our dataset and report the results in381
Tab. 1. The evaluation considers two key metrics: (1) Simi-382
larity to the input image, ensuring that the edited image re-383
mains structurally consistent with the original, and (2) Text-384
image alignment, measuring the adherence of the edited im-385
age to the input textual prompt.386

For Instruct Pix2Pix, we test two scenarios: processing387
a model sheet (similar to our method) and editing individ-388
ual frames sequentially (which aligns more closely with the389
original model’s training distribution). Our method outper-390
forms both cases in terms of text-image alignment, indicat-391
ing that it generates more robust and realistic edits. How-392
ever, our approach yields lower similarity scores to the input393
images, suggesting that it introduces more substantial mod-394
ifications compared to the original Instruct Pix2Pix.395

5.2. Results396

We present a diverse set of edited 3D assets generated with397
3D-Pix in Figs. 1, 2, 5, 7 and 9. Our approach demon-398
strates the ability to produce high-quality 3D edits that ac-399
curately reflect the desired modifications specified by the400
text prompt.401

We compare our 3D-Pix model with other works in 3D402
editing with open source code: GaussianEditor [15] and403
GaussCtrl [59] in the Fig. 8. While our solution provides404
more robust edits, we perform strictly object-level edits, as405
opposed to other models capable of generalizable scene-406
level reconstructions.407

Instruct Pix2Pix model CLIP1 ↑ CLIP2 ↑
Our (model sheet) 0.86 0.14

Original (model sheet) 0.79 0.09

Original (frame-wise) 0.91 0.13

CLIP1 : Input image similarity
CLIP2 : Edited text - edited image similarity

Table 1. Comparison of CLIP text and image alighnment scores
on edited model sheets with our MV Instruct Pix2Pix XL and the
original model [4].

Our method is effective for both geometric transforma- 408
tions (e.g., converting an object into a different form) and 409
appearance modifications (e.g., style or color adjustments). 410
The generated assets exhibit high fidelity and successfully 411
capture complex geometric structures while maintaining 412
consistency across multiple views. 413

5.3. Real-Life Inputs 414

To further evaluate our model’s performance, we apply 3D- 415
Pix to turntable-style images captured from real-world ob- 416
jects, as shown in Fig. 9. However, the results indicate a 417
performance degradation compared to digital input data. 418

Upon analysis of the intermediate outputs, we identify 419
the primary cause as suboptimal key frame selection, re- 420
sulting from instability in video recordings, abrupt camera 421
movements, or sudden shifts in the object’s position. To en- 422
hance robustness against such real-world artifacts, we pro- 423
pose integrating a more advanced key frame selection al- 424
gorithm and applying frame deblurring techniques in future 425
work to improve editing quality. 426

5.4. Failed Cases 427

Despite its improvements, our approach inherits certain fail- 428
ure cases from the original Instruct Pix2Pix [4], as illus- 429
trated in Fig. 10. In some instances, the model fails to iso- 430
late the specified object components accurately. For exam- 431
ple, in the ice cream scenario, the model erroneously modi- 432
fies the green jam instead of the intended waffle. Similarly, 433
in the goblet case, it struggles to preserve the fine structure 434
of the input skeleton, resulting in inconsistencies in bone 435
articulation and subsequent reconstruction artifacts. 436

Furthermore, our 2D editing and interpolation pipeline 437
occasionally misidentifies elements of an object. For ex- 438
ample, the top of a glass is misclassified, leading to a non- 439
transparent blue coloration. Additionally, the model fails to 440
correctly interpret the internal composition of a goblet, mis- 441
takenly placing a cherry at its center rather than modifying 442
its interior as intended. 443

7



CVPR
#22

CVPR
#22

CVPR 2025 Submission #22. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 9. Our 3D-Pix generalizes to both digital (left column) and real-life (right column) inputs.

Figure 10. Failed cases. 3D-Pix sometimes struggles with isolat-
ing a correct area of the edits (middle and bottom row) or struggles
in the thin edges and semi-transparent objects as in the top row.

6. Conclusions444

In this work, we introduce MV Instruct Pix2Pix XL, an en-445
hanced version of the Instruct Pix2Pix [4] diffusion model,446

adapted for multi-view image editing. Our approach lever- 447
ages the state-of-the-art (SOTA) SD-XL [37] generative 448
model, extending its capabilities to ensure consistent modi- 449
fications across multiple viewpoints. 450

We further demonstrate how MV Instruct Pix2Pix XL 451
enables 3D editing within our 3D-Pix pipeline, a novel 452
framework designed for efficient multi-view object modi- 453
fication. Unlike conventional methods that require multiple 454
inference passes, our approach performs a single inference 455
step, followed by a complex interpolation process to propa- 456
gate edits across all views while maintaining consistency. 457

To enhance the visual fidelity of the outputs, we in- 458
corporate the Swin2SR [10] super-resolution model for 459
fine-grained image refinement. Additionally, for geome- 460
try estimation, we integrate a Structure from Motion (SfM) 461
pipeline, followed by 3D Gaussian Splatting [22], enabling 462
high-quality 3D reconstruction of the edited asset. 463

Our method is generalizable to both digital and real- 464
world inputs and can serve as a post-hoc refinement stage 465
for any existing 3D generative model, regardless of its un- 466
derlying geometry representation. 467

Beyond the scope of 3D editing, our work raises broader 468
questions about adapting 2D generative models to multi- 469
view settings in a structured and scalable manner. We in- 470
troduce a novel frame interpolation technique, ensuring that 471
modifications applied to a subset of frames are seamlessly 472
propagated, preserving object consistency across multiple 473
perspectives. 474

This research paves the way for future explorations in 475
multi-view generative modeling, extending beyond editing 476
to tasks such as multi-view synthesis, reconstruction, and 477
consistency-aware generation. 478
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