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ABSTRACT

Neural networks are known to suffer from catastrophic forgetting when trained
on sequential datasets. While there have been numerous attempts to solve this
problem for large-scale supervised classification, little has been done to over-
come catastrophic forgetting for few-shot classification problems. Few-shot meta-
learning algorithms often require all few-shot tasks to be readily available in a
batch for training. The popular gradient-based model-agnostic meta-learning al-
gorithm (MAML) is a typical algorithm that suffers from these limitations. This
work introduces a Bayesian online meta-learning framework to tackle the catas-
trophic forgetting and the sequential few-shot tasks problems. Our framework
incorporates MAML into a Bayesian online learning algorithm with Laplace ap-
proximation or variational inference. This framework enables few-shot classifica-
tion on a range of sequentially arriving datasets with a single meta-learned model
and training on sequentially arriving few-shot tasks. The experimental evaluations
demonstrate that our framework can effectively prevent catastrophic forgetting and
is capable of online meta-learning in various few-shot classification settings.

1 INTRODUCTION

Image classification models and algorithms often require an enormous amount of labelled exam-
ples for training to achieve state-of-the-art performance. Labelled examples can be expensive and
time-consuming to acquire. Human visual systems, on the other hand, are able to recognise new
classes after being shown a few labelled examples. Few-shot classification (Miller et al., 2000; Li
et al., 2004; 2006; Lake et al., 2011) tackles this issue by learning to adapt to unseen classes (known
as novel classes) with very few labelled examples from each class. Recent works show that meta-
learning provides promising approaches to few-shot classification problems (Santoro et al., 2016;
Finn et al., 2017; Li et al., 2017; Ravi & Larochelle, 2017). Meta-learning or learning-to-learn
(Schmidhuber, 1987; Thrun & Pratt, 1998) takes the learning process a level deeper – instead of
learning from the labelled examples in the training classes (known as base classes), meta-learning
learns the example-learning process. The training process in meta-learning that utilises the base
classes is called the meta-training stage, and the evaluation process that reports the few-shot per-
formance on the novel classes is known as the meta-evaluation stage.

Despite being a promising solution to few-shot classification problems, meta-learning methods suf-
fer from several limitations:

1. Unable to continually learn from sequential few-shot tasks: It is mandatory to have
all base classes readily available for meta-training. Such meta-learning algorithms often
require sampling a number of few-shot tasks in every iteration for optimisation.

2. Unable to retain few-shot classification ability on sequential datasets that have evident
distributional shift: A meta-learned model is restricted to perform few-shot classification
on a specific dataset, in the sense that the base and novel classes have to originate from the
same dataset distribution. A meta-learned model loses its few-shot classification ability on
previous datasets as new ones arrive subsequently for meta-training.

We emphasise that the task mentioned in this paper refers to the few-shot task for meta-learning.
This paper considers meta-learning a single model for few-shot classification in the sequential
datasets and sequential few-shot tasks settings respectively.

1



Under review as a conference paper at ICLR 2021

We introduce a Bayesian online meta-learning framework that can train a few-shot learning model
under the sequential few-shot tasks setting and train a model that is applicable to a broader scope
of few-shot classification datasets by overcoming catastrophic forgetting. We extend the Bayesian
online learning (BOL) framework (Opper, 1998) to a Bayesian online meta-learning framework us-
ing the model-agnostic meta-learning (MAML) algorithm (Finn et al., 2017). MAML finds a good
model parameter initialisation (called meta-parameters) that can quickly adapt to novel classes
using very few labelled examples, while BOL provides a principled framework for finding the pos-
terior of the model parameters. Our framework aims to combine both BOL and MAML to find the
posterior of the meta-parameters. Our work builds on Ritter et al. (2018a) which combines the BOL
framework and Laplace approximation with block-diagonal Kronecker-factored Fisher approxima-
tion, and Nguyen et al. (2018) which uses variational inference with BOL to overcome catastrophic
forgetting in large-scale supervised classification.

An important reason to implement Bayesian inference over non-Bayesian methods for an online @@@
Newsetting is that BOL provides a grounded framework that suggests using the previous posterior as

the prior recursively. Bayesian inference inherits an advantage for robust meta-learning (Yoon et al.,
2018) to overcome training instability problems addressed by Antoniou et al. (2019). BOL implicitly
keeps a memory on previous knowledge via the posterior, in contrast to recent online meta-learning
methods that explicitly accumulate previous data in a task buffer (Finn et al., 2019; Zhuang et al.,
2019). Explicitly keeping a memory on previous data often triggers an important question: how
should the carried-forward data be processed in future task rounds, in order to accumulate knowl-
edge? Finn et al. (2019) update the meta-parameters at each iteration using previous few-shot tasks
in the task buffer. This defeats the purpose of online learning, which by definition means to update
the parameters each round using only the new data encountered. Having to re-train on previous data
to avoid forgetting also increases the training time as the data accumulate (Finn et al., 2019; He
et al., 2019). Certainly one can clamp the amount of data at some maximal limit and sample from
the buffer, but the final performance of such an algorithm would be dependent on the samples being
informative and of good quality which may vary across different seed runs. In contrast to memoris-
ing the datasets, having an implicit memory via the posterior automatically deals with the question
on how to process carried-forward data and allows a better carry forward in previous experiences.

Below are the contributions we make in this paper:

• We develop the Bayesian online meta-learning (BOML) framework for sequential few-shot
classification problems. Under this framework we introduce the algorithms Bayesian online
meta-learning with Laplace approximation (BOMLA) and Bayesian online meta-learning
with variational inference (BOMVI).

• We propose a simple approximation to the Fisher corresponding to the BOMLA algorithm
that carries over the desirable block-diagonal Kronecker-factored structure from the Fisher
approximation in the non-meta-learning setting.

• We demonstrate that BOML can overcome catastrophic forgetting in the sequential few-shot
datasets setting with apparent distributional shift in the datasets.

• We demonstrate that BOML can continually learn to few-shot classify the novel classes in
the sequential meta-training few-shot tasks setting.

2 META-LEARNING

Most meta-learning algorithms comprise an inner loop for example-learning and an outer loop that
learns the example-learning process. Such algorithms often require sampling a meta-batch of tasks
at each iteration, where a task is formed by sampling a subset of classes from the pool of base
classes or novel classes during meta-training or meta-evaluation respectively. The N -way K-shot
task, for instance, refers to sampling N classes and using K examples per class for few-shot quick
adaptation.

An offline meta-learning algorithm learns a few-shot classification model only for a specific dataset
Dt+1 where all base classes of Dt+1 have to be readily available for meta-training. For notational
convenience, we drop the t + 1 subscript in this section, as there is only one dataset involved in
offline meta-learning. The datasetDt+1 is divided into the set of base classes D̃ and novel classes D̂
for meta-training and meta-evaluation respectively. Upon completing meta-training on the base class
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set D̃, the goal of few-shot classification is to perform well on an unseen task D̂∗ sampled from the
novel class set D̂ after a quick adaptation on a small subset D̂∗,S (known as the support set) of D̂∗.
The performance of this unseen task is evaluated on the query set D̂∗,Q, where D̂∗,Q = D̂∗\D̂∗,S .
Since D̂ is not accessible during meta-training, this support-query split is mimicked on the base
class set D̃ for meta-training.

Model-agnostic meta-learning We are interested in the well-known meta-learning algorithm
MAML (Finn et al., 2017). Each updating step of MAML aims to improve the ability of the meta-
parameters to act as a good model initialisation for a quick adaptation on unseen tasks. Each iteration
of the MAML algorithm samples M tasks from the base class set D̃ and runs a few steps of stochas-
tic gradient descent (SGD) for an inner loop task-specific learning. The number of tasks sampled
per iteration is known as the meta-batch size. For task m, the inner loop outputs the task-specific
parameters θ̃m from a k-step SGD quick adaptation on the objective L(θ, D̃m,S) with the support
set D̃m,S and initialised at θ:

θ̃m = SGDk(L(θ, D̃m,S)), (1)

where m = 1, . . . ,M . The outer loop gathers all task-specific adaptations to update the meta-
parameters θ using the loss L(θ̃m, D̃m,Q) on the query set D̃m,Q.

The overall MAML optimisation objective is

arg min
θ

1

M

M∑
m=1

L(SGDk(L(θ, D̃m,S)), D̃m,Q). (2)

Like most offline meta-learning algorithms, MAML requires all base classes to be readily available
for tasks-sampling at each iteration. We aim to overcome this limitation by meta-learning a model
that can few-shot classify unseen tasks from the novel classes, while the tasks from the base classes
arrive sequentially for meta-training. MAML also assumes a stationary task distribution during
meta-training and meta-evaluation. Under this assumption, a meta-learned model is only applicable
to a specific dataset distribution. When the model encounters a sequence of datasets with appar-
ent distributional shift, it loses the few-shot classification ability on previous datasets as new ones
arrive for meta-training. Our work also aims to meta-learn a single model for few-shot classifica-
tion on multiple datasets that arrive sequentially for meta-training. We achieve these two goals by
incorporating MAML into the BOL framework to give the Bayesian online meta-learning (BOML)
framework that finds the posterior of the meta-parameters.

3 OVERVIEW OF OUR BAYESIAN ONLINE META-LEARNING APPROACH

Our central contribution is to extend the benefits of meta-learning to the Bayesian online scenario,
thereby training models that can generalise across tasks whilst dealing with parameter uncertainty
in the setting of sequential tasks or sequential datasets.

Sequential datasets setting In this setting, online meta-training occurs sequentially on the @@@
Newdatasets D1, . . . ,DT . Each dataset Di can be seen as a knowledge domain with an associated un-

derlying task distribution p(Ti). A newly-arrived Dt+1 is separated into the base class set D̃t+1 and
novel class set D̂t+1 for meta-training and meta-evaluation respectively, where the tasks in these two
stages are drawn from the task distribution p(Tt+1).

Sequential tasks setting The sequential tasks setting only involves one dataset D with an associ- @@@
Newated underlying task distribution p(T ), where D is separated into the base and novel class sets. In

this setting, D̃1, . . . , D̃t+1 denote the non-overlapping tasks formed from the base class set and they
arrive sequentially for meta-training. These tasks D̃1, . . . , D̃t+1 and the meta-evaluation tasks are
drawn from the task distribution p(T ).

Notationally, for both sequential tasks and sequential datasets settings, let D̃St+1 and D̃Qt+1 denote
the collection of support sets and query sets respectively from D̃t+1, so that D̃t+1 = D̃St+1 ∪ D̃

Q
t+1.
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We are interested in a MAP estimate θ∗ = arg maxθ p(θ|D̃1:t+1). Using Bayes’ rule on the posterior
gives the recursive formula

p(θ|D̃1:t+1) ∝ p(D̃St+1, D̃
Q
t+1|θ) p(θ|D̃1:t) (3)

= p(D̃Qt+1|θ, D̃St+1) p(D̃St+1|θ) p(θ|D̃1:t) (4)

=

{∫
p(D̃Qt+1|θ̃) p(θ̃|θ, D̃St+1) dθ̃

}
p(D̃St+1|θ) p(θ|D̃1:t) (5)

where Eq. (3) follows from the assumption that each dataset is independent given θ.

From the meta-learning perspective, the parameters θ̃ introduced in Eq. (5) can be viewed as the
task-specific parameters in MAML. There are various choices for the distribution p(θ̃|θ, D̃St+1) in
Eq. (5). In particular if we choose to set it as the deterministic function of taking several steps of
SGD on loss L with the support set collection D̃St+1 and initialised at θ, we have

p(θ̃|θ, D̃St+1) = 1{θ̃ = SGDk(L(θ, D̃St+1))}. (6)

and this recovers the MAML inner loop with SGD quick adaptation in Eq. (1). The recursion
given by Eq. (5) forms the basis of our approach and the remainder of this paper explains how we
implement this. In order to do so we give a mini tutorial in Appendix A on Bayesian online learning,
Laplace approximation and variational continual learning.

4 BAYESIAN ONLINE META-LEARNING IMPLEMENTATION

This section demonstrates how we arrive at the algorithms Bayesian online meta-learning with
Laplace approximation (BOMLA) and Bayesian online meta-learning with variational inference
(BOMVI) by implementing Laplace approximation and variational continual learning respectively
to the posterior of the BOML framework in Eq. (5). These algorithms from the grounded BOML
framework are useful for online training on the sequential few-shot classification datasets or tasks.

4.1 BAYESIAN ONLINE META-LEARNING WITH LAPLACE APPROXIMATION

We discover that the Laplace approximation method provides a well-fitted meta-training framework
for Bayesian online meta-learning in Eq. (5). Each updating step in the approximation procedure can
be modified to correspond to the meta-parameters for few-shot classification, instead of the model
parameters for large-scale supervised classification.

Laplace approximation rationalises the use of a Gaussian approximate posterior by Taylor expanding
the log-posterior around a mode up to the second order, as described in Appendix A.2. The second
order term corresponds to the log-probability of a Gaussian distribution. The BOML framework in
Section 3 with a Gaussian approximate posterior q of mean and precision φt = {µt,Λt} from the
Laplace approximation gives a MAP estimate:

θ∗ = arg max
θ

{
log

∫
p(D̃Qt+1|θ̃)p(θ̃|θ, D̃St+1) dθ̃+log p(D̃St+1|θ)−

1

2
(θ−µt)TΛt(θ−µt)

}
. (7)

For an efficient optimisation, we use the deterministic θ̃ in Eq. (6). The objective in Eq. (7) can be
batched (for sequential tasks) or meta-batched (for sequential datasets). This leads to minimising
the objective

fBOMLA
t+1 (θ, µt,Λt) = − 1

M

M∑
m=1

log p(D̃m,Qt+1 |θ̃m)− 1

M

M∑
m=1

log p(D̃m,St+1 |θ)+
1

2
(θ−µt)TΛt(θ−µt),

(8)
where θ̃m = SGDk(L(θ, D̃m,St+1 )) for m = 1, . . . ,M . In the sequential datasets setting M denotes
the number of tasks sampled per iteration, whereas in the sequential tasks setting M denotes the
number of batches per epoch. The first term of the objective in Eq. (8) corresponds to the MAML
objective in Eq. (2) with a cross-entropy loss, the second term can be viewed as the pre-adaptation
loss on the support set and the last term can be seen as a regulariser.
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4.2 HESSIAN APPROXIMATION

We calculate a block-diagonal Kronecker-factored Hessian approximation in order to update the
precision Λt, as explained in Appendix A.3. The Hessian approximations in both sequential datasets
and sequential tasks settings are very similar, except that the sequential datasets setting averages over
the meta-batch size and the sequential tasks setting averages over the number of batches.

The Hessian matrix corresponding to the first term of the BOMLA objective in Eq. (8) is

H̃ij
t+1 =

1

M

M∑
m=1

− ∂2

∂θ(i)∂θ(j)
log p(D̃m,Qt+1 |θ̃m))

∣∣∣∣
θ=µt+1

. (9)

It is worth noting that the BOMLA Hessian deviates from the original BOL Hessian in Ap-
pendix A.2. This requires deriving an adjusted approximation to the Hessian with some further
assumptions.

The BOL Hessian for a single data point can be approximated using the Fisher information matrix
F to ensure its positive semi-definiteness (Martens & Grosse, 2015):

F = Ex,y
[
d

dθ
log p(y|x, θ) d

dθ
log p(y|x, θ)T

]
. (10)

Each (x, y) pair for the Fisher in BOMLA is associated to a task (or a batch) m. The Fisher infor-
mation matrix F̃ corresponding to the BOMLA Hessian in Eq. (9) for a single data point is

F̃ =
1

M

M∑
m=1

Ex,y
[(

∂θ̃m

∂θ

)
d

dθ̃m
log p(y|x, θ̃m)

d

dθ̃m
log p(y|x, θ̃m)T

(
∂θ̃m

∂θ

)T]
. (11)

The additional Jacobian matrix ∂θ̃m

∂θ breaks the Kronecker-factored structure described by Martens
& Grosse (2015) for the original Fisher in Eq. (10).

The results in Finn et al. (2017) show that the first step of the quick adaptation in θ̃m contributes the
largest change to the meta-evaluation objective, and the remaining adaptation steps give a relatively
small change to the objective. It is reasonable to assume that the quick adaptation is a one-step SGD
for Fisher approximation:

θ̃m = θ −∇θL(θ, D̃m,St+1 ). (12)
By imposing this assumption, the (i, j)-th entry of the Jacobian term can be interpreted as(

∂θ̃m

∂θ

)ij
= Iij −

∂2(− log p(D̃m,St+1 |θ))
∂θ(i)∂θ(j)

, (13)

where I is the corresponding identity matrix and the objective L involved is the negative log-
likelihood. The Hessian for a single data point in the second term of Eq. (13) can be approximated
by F in Eq. (10) via the usual block-diagonal Kronecker-factored approximation. Putting the Jaco-
bian back into Eq. (11) and expanding the factors give terms that multiply two or more Kronecker
products together. The detailed derivation of F̃ is explained in Appendix A.3.1. We introduce the
posterior regulariser λ when updating the precision: Λt+1 = λH̃t+1 + Λt and the rationale for
introducing λ is explained in Appendix A.3.2. The pseudo-code of the BOMLA algorithm can be
found in Appendix B.1.

4.3 BAYESIAN ONLINE META-LEARNING WITH VARIATIONAL INFERENCE

The variational continual learning (VCL) framework (Nguyen et al., 2018) is directly applicable to
BOML. This section demonstrates how we arrive at the BOMVI algorithm by implementing VCL to
the posterior of the BOML framework in Eq. (5).

As described in Appendix A.4, VCL approximates the posterior by minimising the KL-divergence
over some pre-determined approximate posterior family Q. Fitting the BOML posterior in Eq. (5)
into the VCL framework gives the approximate posterior:

q(θ|φt+1) = arg min
q∈Q

DKL

(
q(θ|φ)

∥∥∥∥{∫ p(D̃Qt+1|θ̃) p(θ̃|θ, D̃St+1) dθ̃

}
p(D̃St+1|θ) q(θ|φt)

)
. (14)

5



Under review as a conference paper at ICLR 2021

Similar to BOMLA, we use the deterministic θ̃ in Eq. (6), and the objective in Eq. (14) can be
batched (for sequential tasks) or meta-batched (for sequential datasets). This leads to minimising
the objective

fBOMVI
t+1 (φ, φt) = − 1

M

M∑
m=1

Eq(θ|φ)
[

log p(D̃m,Qt+1 |θ̃m)
]
− 1

M

M∑
m=1

Eq(θ|φ)
[

log p(D̃m,St+1 |θ)
]

+DKL(q(θ|φ)‖q(θ|φt)),

(15)

where θ̃m = SGDk(L(θ, D̃m,St+1 )) for m = 1, . . . ,M . In the sequential datasets setting M denotes
the number of tasks sampled per iteration, whereas in the sequential tasks setting M denotes the
number of batches per epoch. We use a Gaussian mean-field approximate posterior q(θ|φt) =∏D
d=1N(µt,d, σ

2
t,d), where φt = {µt,d, σt,d}Dd=1, D = dim(θ) and the objective in Eq. (15) is

minimised over φ. The pseudo-code of the BOMVI algorithm can be found in Appendix B.1.

The first term in Eq. (15) is rather cumbersome to estimate in optimisation. To compute its Monte
Carlo estimator, we have to generate samples θr ∼ q for r = 1, . . . , R, and run a quick adaptation
on each sampled meta-parameters θr before evaluating its log-likelihood. This is computationally
intensive and it gives an estimator with large variance. We propose a workaround by modifying the
inner loop SGD quick adaptation, and the details can be found in Appendix B.2.

5 RELATED WORK

Online Meta-Learning There are two common problem settings in the current online meta- @@@
Newlearning works:

• Underlying task distribution: Sequential tasks are assumed to originate from the same
underlying task distribution p(T ) in this setting. Our work in the sequential tasks setting be-
longs to this category. Denevi et al. (2019) introduce the online-within-online (OWO) and
online-within-batch (OWB) settings, where OWO encounters tasks and examples within
tasks sequentially while OWB encounters tasks sequentially but examples within tasks are
in batch. The BOML framework in the sequential tasks setting corresponds to the OWB set-
ting. On the other hand, our work in the sequential datasets setting is novel in overcoming
few-shot catastrophic forgetting, where the goal is to few-shot classify tasks drawn from
a sequence of distributions p(T1), . . . , p(TT ) as explained in Section 3. He et al. (2019),
Harrison et al. (2019) and Jerfel et al. (2019) look into continual meta-learning for non-
stationary task distributions where the task boundaries are unknown to the model. Jerfel
et al. (2019) consider a latent task structure to adapt to the non-stationary task distributions.

• Regret minimisation: In this setting, the goal is to minimise the regret function, and
the assumptions are made on the loss function rather than the task distribution. Recent
works Finn et al. (2019); Zhuang et al. (2019) belong to this category, where the aim is to
compete with the best meta-learner and supersede it. These methods accumulate data as
they arrive and meta-learn using all data acquired so far. Data accumulation is not desirable
as the algorithmic complexity of training grows with the amount of data accumulated, and
training time increases as new data arrive (Finn et al., 2019; He et al., 2019). The agent
will eventually run out of memory for a long sequence of data. The BOML framework on
the other hand is advantageous, as it only takes the posterior of the meta-parameters into
consideration during optimisation. This gives a framework with an algorithmic complexity
independent of the length of the dataset sequence.

Offline Meta-Learning Previous meta-learning works attempt to solve few-shot classification @@@
Newproblems in an offline setting, under the assumption of having a stationary task distribution dur-

ing meta-training and meta-evaluation. A single meta-learned model is aimed to few-shot classify
one specific dataset with all base classes of the dataset readily available in a batch for meta-training.
There are two general frameworks for the offline meta-learning setting:

• Probabilistic framework: The MAML algorithm can be cast into a probabilistic infer-
ence problem (Finn et al., 2018) or with a hierarchical Bayesian structure (Grant et al.,
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2018; Yoon et al., 2018). Grant et al. (2018) discuss the use of a Laplace approximation
in the task-specific inner loop to improve MAML using the curvature information, whilst
Yoon et al. (2018) use Stein Variational Gradient Descent (SVGD) for task-specific learn-
ing. Gordon et al. (2019) implement probabilistic inference by considering the posterior
predictive distribution with amortised networks.

• Non-probabilistic framework: Gradient-based meta-learning (Finn et al., 2017; Nichol
et al., 2018; Rusu et al., 2019) updates the meta-parameters by accumulating the gradients
of a meta-batch of task-specific inner loop updates. The meta-parameters will be used
as a model initialisation for a quick adaptation on the novel classes. Metric-based meta-
learning (Koch et al., 2015; Vinyals et al., 2016; Snell et al., 2017) utilises the metric
distance between labelled examples. Such methods assume that base and novel classes are
from the same dataset distribution, and the metric distance estimations can be generalised
to the novel classes upon meta-learning the base classes.

Continual Learning Modern continual learning works (Goodfellow et al., 2013; Lee et al., 2017;
Zenke et al., 2017) focus primarily on large-scale supervised learning, in contrast to our work that
looks into continual few-shot classification across sequential tasks and datasets. Wen et al. (2018)
utilise few-shot learning to improve on overcoming catastrophic forgetting via logit matching on a
small sample from the previous tasks. The online learning element in this paper is closely related to
(Kirkpatrick et al., 2017; Zenke et al., 2017; Ritter et al., 2018a; Nguyen et al., 2018) that overcome
catastrophic forgetting for large-scale supervised classification. In particular, our work builds on the
online Laplace approximation method in (Ritter et al., 2018a). We extend this to the meta-learning
scenario to avoid forgetting in few-shot classification problems. Nguyen et al. (2018) provide the
alternative of using variational inference instead of Laplace approximation for approximating the
posterior. It is a reasonable approach to adapt variational approximation methods to approximate
the posterior of the meta-parameters by adjusting the KL-divergence objective.

6 EXPERIMENTS

6.1 OMNIGLOT: SEQUENTIAL TASKS

We run the sequential tasks experiment on the Omniglot dataset. To increase the difficulty level,
we split the datasets based on the alphabets (super-classes) instead of the characters (classes). The
goal of this experiment is to classify the 5-way 5-shot novel tasks sampled from the meta-evaluation
alphabets. The experimental details and the alphabet splits can be found in Appendix C.1.

We compare our algorithms to the following baselines:

1. Train-On-Everything (TOE): When a new task (or dataset) arrives for meta-training,
we randomly re-initialise the meta-parameters and perform meta-training on all tasks (or
datasets) encountered so far. Once meta-training is completed in this stage, we do not
update the posterior of the meta-parameters like we would in BOMLA and BOMVI.

2. Train-From-Scratch (TFS): Upon the arrival of a new task (or dataset), we randomly re-
initialise the meta-parameters and meta-train only on the newly-arrived task (or dataset).
Similar to TOE, the posterior of the meta-parameters is not updated in TFS.

3. Follow The Meta-Leader (FTML): We introduce a slight modification to FTML (Finn @@@
New2:
FTML
& error-
band

et al., 2019) on its evaluation method, as FTML is not designed for few-shot learning on
unseen tasks. In our experiment, we apply Update-Procedure in FTML to the data
from unseen tasks, rather than the data from the same training task as in the original FTML.

As the tasks arrive sequentially for meta-training, Figure 1 shows that BOMLA and BOMVI can
accumulate the few-shot classification ability on the novel tasks over time. The knowledge acquired
from previous meta-training tasks are carried forward in the form of a posterior, which is then used
as the prior when a new task arrives for meta-training. The baselines TOE and TFS have similar
performances. Despite having access to all previous tasks, TOE shows no positive forward transfer
in the meta-evaluation accuracy each time it encounters a new task. BOMLA with λ = 0.1 gives the
best performance in this experiment.
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Figure 1: Meta-evaluation accuracy across 3 seed runs on the novel tasks along meta-training. Left:
compares BOMLA to the baselines, centre: compares BOMVI to the baselines, right: compares
BOMLA with different λ values to BOMVI.

6.2 PENTATHLON: SEQUENTIAL DATASETS

We implement BOMLA and BOMVI to the pentathlon 5-way 1-shot classification sequence:

Omniglot→ CIFAR-FS→ miniImageNet→ VGG-Flowers→ Aircraft

The details of this experiment and the datasets can be found in Appendix C.2. We compare BOMLA
and BOMVI to the baseline TOE, and running MAML continuously on the sequential datasets for
meta-training.

Figure 2 shows that BOMLA and BOMVI are able to prevent few-shot catastrophic forgetting. TOE @@@
New2:
error-
band

is also able to retain the few-shot performance as it has access to all datasets encountered so far.
However, since it learns all datasets from random re-initialisation each time it encounters a new
dataset, the meta-training time required to achieve a similarly good meta-evaluation performance is
longer compared to other runs. The sequential MAML, on the other hand, catastrophically forgets
the previously learned datasets but has the best performance on new datasets compared to other
runs. TOE can be memory-intensive as the dataset sequence becomes longer. It takes the brute-
force approach to prevent forgetting by memorising all datasets. Unlike TOE, our BOML approach
only takes the posterior of the meta-parameters into consideration during optimisation. This gives a
framework with an algorithmic complexity independent of the length of the dataset sequence.

Tuning the posterior regulariser λ mentioned in Section 4.2 corresponds to balancing between a @@@
New2:
λ-
comparing
plot in
App. C.2

smaller performance trade-off on a new dataset and less forgetting on previous datasets. As shown
in Appendix C.2 Figure 4, a larger λ = 1000 results in a more concentrated Gaussian posterior and
is therefore unable to learn new datasets well, but can better retain the performances on previous
datasets. A smaller value λ = 1 on the other hand gives a widespread Gaussian posterior and learns
better on new datasets by sacrificing the performance on the previous datasets. In this experiment,
the value λ = 100 gives the best balance between old and new datasets. Ideally we seek for a
good performance on both old and new datasets, but in reality there is a trade-off between retaining
performance on old datasets and learning well on new datasets due to posterior approximation errors.

As shown in Figures 1 and 2, BOMLA with appropriate λ is superior to BOMVI. This is due to @@@
NewBOMLA having a better posterior approximation than BOMVI. Whilst BOMLA has a Gaussian

approximate posterior with block-diagonal precision, BOMVI uses a Gaussian mean-field approx-
imate posterior. Trippe & Turner (2017) compared the performances of variational inference with
different covariance structures, and discovered that variational inference with block-diagonal covari-
ance performs worse than mean-field approximation. This is because the block-diagonal covariance
in variational inference prohibits variance reduction methods such as local reparameterisation trick
for Monte Carlo estimation. The variance of the Monte Carlo estimate has been proven problematic
(Kingma et al., 2015; Trippe & Turner, 2017). We address this issue in Section 4.3 and Appendix B.2
specifically to the meta-learning setting by modifying the inner loop quick adaptation.

8
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Figure 2: Meta-evaluation accuracy across 3 seed runs on each dataset along meta-training (refer
to Figure 3 for the enlarged version). Higher accuracy values indicate better results with less
forgetting as we proceed to new datasets. BOMLA with λ = 100 gives good performance in the off-
diagonal plots (retains performances on previously learned datasets), and has a minor performance
trade-off in the diagonal plots (learns less well on new datasets). Sequential MAML gives better
performance in the diagonal plots (learns well on new datasets) but worse performance in the off-
diagonal plots (forgets previously learned datasets). BOMVI is also able to retain performance on
previous datasets, although it may be unable to perform as good as BOMLA due to sampling and
estimator variance.

7 CONCLUSION

We introduced the Bayesian online meta-learning (BOML) framework with two algorithms: BOMLA
and BOMVI. Our framework can overcome catastrophic forgetting in few-shot classification prob-
lems and can handle sequentially arriving few-shot tasks for online meta-learning. BOML merged
the BOL framework and the MAML algorithm via Laplace approximation or variational contin-
ual learning. We proposed the necessary adjustments in the Hessian and Fisher approximation for
BOMLA, as we are optimising the meta-parameters for few-shot classification instead of the usual
model parameters in large-scale supervised classification. The experiments show that BOMLA and
BOMVI are able to retain the few-shot classification ability when trained on sequential datasets with
evident distributional shift, resulting in the ability to perform few-shot classification on multiple
datasets with a single meta-learned model. BOMLA and BOMVI are also able to continually learn
to few-shot classify novel tasks as the meta-training tasks arrive sequentially for learning.
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A BACKGROUND

This section provides a background explanation of using BOL to find the posterior of a model pa-
rameters and overcome catastrophic forgetting, commonly for large-scale supervised classification.
We will then apply this approach to our recursion in Eq. (5).

The posterior is typically intractable due to the enormous size of the modern neural network ar-
chitectures. This leads to the requirement for a good approximation of the posterior of the meta-
parameters. A particularly suitable candidate for this purpose in meta-learning is the Laplace ap-
proximation (MacKay, 1992; Ritter et al., 2018b), as it simply adds a quadratic regulariser to the
training objective. Variational inference is another possible method to obtain an approximation for
the posterior of the meta-parameters.

A.1 BAYESIAN ONLINE LEARNING

Upon the arrival of the new Dt+1, we are interested in a MAP estimate θ∗ = arg maxθ p(θ|D1:t+1)
for the parameters θ of a neural network. Using Bayes’ rule on the posterior gives the recursive
formula

p(θ|D1:t+1) ∝ p(Dt+1|θ)p(θ|D1:t) (16)
where Eq. (16) follows from the assumption that each dataset is independent given θ. As the nor-
malised posterior p(θ|D1:t) is usually intractable, it may be approximated by a parametric distribu-
tion q with parameter φt. The BOL framework consists of the update step and the projection step
(Opper, 1998). The update step uses the approximate posterior q(θ|φt) obtained from the previous
step for an update in the form of Eq. (16):

p(θ|D1:t+1, φt) ∝ p(Dt+1|θ)q(θ|φt). (17)
The new posterior p(θ|D1:t+1, φt) might not belong to the same parametric family as q(θ|φt). In
this case, the new posterior has to be projected into the same parametric family to obtain q(θ|φt+1).
Opper (1998) performs this projection by minimising the KL-divergence between the new posterior
and the parametric q, while Ritter et al. (2018a) use the Laplace approximation and Nguyen et al.
(2018) use variational inference.

A.2 LAPLACE APPROXIMATION

We consider finding a MAP estimate following from Eq. (16):
θ∗t+1 = arg max

θ
p(θ|D1:t+1) = arg max

θ
{log p(Dt+1|θ) + log p(θ|D1:t)}. (18)

Since the posterior p(θ|D1:t) of a neural network is intractable except for small architectures, the un-
normalised posterior p̃(θ|D1:t) is considered instead. Performing Taylor expansion on the logarithm
of the unnormalised posterior around a mode θ∗t gives

log p̃(θ|D1:t) ' log p̃(θ|D1:t)
∣∣
θ=θ∗t

− 1

2
(θ − θ∗t )TAt(θ − θ∗t ), (19)

where At denotes the Hessian matrix of the negative log-posterior evaluated at θ∗t . The expansion
in Eq. (19) suggests using a Gaussian approximate posterior. Given the parameter φt = {µt,Λt}, a
mean µt+1 for step t+ 1 can be obtained by finding a mode of the approximate posterior as follows
via standard gradient-based optimisation:

µt+1 = arg max
θ

log p(Dt+1|θ)−
1

2
(θ − µt)TΛt(θ − µt). (20)

The precision matrix is updated as Λt+1 = Ht+1 + Λt, where Ht+1 is the Hessian matrix of the
negative log-likelihood for Dt+1 evaluated at µt+1 with entries

Hij
t+1 = − ∂2

∂θ(i)∂θ(j)
log p(Dt+1|θ)

∣∣∣∣
θ=µt+1

. (21)

For a neural network model, gradient-based optimisation methods such as SGD (Robbins & Monro,
1951) and Adam (Kingma & Ba, 2015) are the standard gradient-based methods in finding a mode
for the Laplace approximation in Eq. (20). We show in Section 4.1 that this provides a well-suited
skeleton to implement Bayesian online meta-learning in Eq. (5) with the mode-seeking optimisation
procedure.
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A.3 BLOCK-DIAGONAL HESSIAN APPROXIMATION

Since the full Hessian matrix in Eq. (21) is intractable for large neural networks, we seek for an ef-
ficient and relatively close approximation to the Hessian matrix. Diagonal approximations (Denker
& LeCun, 1991; Kirkpatrick et al., 2017) are memory and computationally efficient, but sacrifice
approximation accuracy as they ignore the interaction between parameters. Consider instead sepa-
rating the Hessian matrix into blocks where different blocks are associated to different layers of a
neural network. A particular diagonal block corresponds to the Hessian for a particular layer of the
neural network. The block-diagonal Kronecker-factored approximation (Martens & Grosse, 2015;
Grosse & Martens, 2016; Botev et al., 2017) utilises the fact that each diagonal block of the Hessian
is Kronecker-factored for a single data point. This provides a better Hessian approximation as it
takes the parameter interactions within a layer into consideration.

A.3.1 KRONECKER-FACTORED APPROXIMATION

Consider a neural network with L layers and parameter θ = [vec(W1)T , . . . , vec(WL)T ]T where
W` is the weight of layer ` for ` = {1, . . . , L} and vec denotes stacking the columns of a matrix into
a vector. We denote the input of the neural network as a0 = x and the output of the neural network
as hL. As the input passes through each layer of the neural network, we have the pre-activation for
layer ` as h` = W`a`−1 and the activation as a` = f`(h`) where f` is the activation function of layer
`. If a bias vector is applicable in calculating the pre-activation of a layer, we append the bias vector
to the last column of the weight matrix and append a scalar one to the last element of the activation.
The gradient g` of loss Lθ(x, y) = − log p(y|x, θ) with respect to h` for an input-target pair (x, y)
is the pre-activation gradient for layer `.

Martens & Grosse (2015) show that the `-th diagonal block F` of the Fisher information matrix F
can be approximated by the Kronecker product between the expectation of the outer product of the
(`− 1)-th layer activation and the `-th layer pre-activation gradient:

F` = Ex,y[a`−1a
T
`−1 ⊗ g`gT` ] (22)

≈ Ex[a`−1a
T
`−1]⊗ Ey|x[g`g

T
` ] (23)

= A`−1 ⊗G`, (24)

where A`−1 = Ex[a`−1a
T
`−1] and G` = Ey|x[g`g

T
` ]. Grosse & Martens (2016) extend the block-

diagonal Kronecker-factored Fisher approximation for fully-connected layers to that for convolution
layers. The Gaussian log-probability term can be calculated efficiently without expanding the Kro-
necker product using the identity

(A`−1 ⊗G`) vec(W` −W ∗` ) = vec(G`(W` −W ∗` )AT`−1). (25)

As we mentioned in Section 4.2, approximating the Hessian with the one-step SGD inner loop
assumption results in having terms that multiply two or more Kronecker products together. The `-th
diagonal block of F̃ in Eq. (11) is

F̃` =
1

M

M∑
m=1

(I −Am`−1 ⊗Gm` )(Ãm`−1 ⊗ G̃m` )(I −Am`−1 ⊗Gm` )T , (26)

where Am`−1 ⊗ Gm` is the Kronecker product corresponding to the Hessian in Eq. (13) for task or
batch m. We expand F̃` using the Kronecker product property:

(Am`−1 ⊗Gm` )(Ãm`−1 ⊗ G̃m` ) = Am`−1Ã
m
`−1 ⊗Gm` G̃m` . (27)

This gives

F̃` =
1

M

M∑
m=1

{
Ãm`−1 ⊗ G̃m` −Am`−1Ãm`−1 ⊗Gm` G̃m` − Ãm`−1(Am`−1)T ⊗ G̃m` (Gm` )T

+Am`−1Ã
m
`−1(Am`−1)T ⊗Gm` G̃m` (Gm` )T

}
.

(28)
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Finally, moving the meta-batch (or batch) averaging into the Kronecker factors gives the approxi-
mation:

F̃` ≈Ã`−1 ⊗ G̃` −A`−1Ã`−1 ⊗G`G̃` − Ã`−1(A`−1)T ⊗ G̃`(G`)
T

+ A`−1Ã`−1(A`−1)T ⊗G`G̃`(G`)
T ,

(29)

where Ã`−1 = 1
M

∑
m Ã

m
`−1, G̃` = 1

M

∑
m G̃

m
` , A`−1Ã`−1 = 1

M

∑
mA

m
`−1Ã

m
`−1, and so on.

A.3.2 POSTERIOR REGULARISING HYPERPARAMETER FOR PRECISION UPDATE

Ritter et al. (2018a) use a hyperparameter λ as a multiplier to the Hessian when updating the preci-
sion:

Λt+1 = λHt+1 + Λt. (30)

In the large-scale supervised classification setting, this hyperparameter has a regularising effect on
the Gaussian posterior approximation for a balance between having a good performance on a new
dataset and maintaining the performance on previous datasets (Ritter et al., 2018a). A large λ results
in a sharply peaked Gaussian posterior and is therefore unable to learn new datasets well, but can
prevent forgetting previously learned datasets. A small λ on the other hand gives a dispersed Gaus-
sian posterior and allows better performance on new datasets by sacrificing the performance on the
previous datasets.

A.4 VARIATIONAL CONTINUAL LEARNING

The variational continual learning method (Nguyen et al., 2018) also provides a suitable meta-
training framework for Bayesian online meta-learning in Eq. (5). Consider approximating the pos-
terior q by minimising the KL-divergence between the parametric q and the new posterior as in the
projection step in Eq. (17), where q belongs to some pre-determined approximate posterior family
Q with parameters φt:

q(θ|φt+1) = arg min
q∈Q

DKL(q(θ|φ)‖p(Dt+1|θ)q(θ|φt)) (31)

= arg min
q∈Q

{
− Eq(θ|φ)[log p(Dt+1|θ)] +DKL(q(θ|φ)‖q(θ|φt))

}
. (32)

The optimisation in Eq. (32) leads to the objective

φt+1 = arg min
φ

{
− Eq(θ|φ)[log p(Dt+1|θ)] +DKL(q(θ|φ)‖q(θ|φt))

}
. (33)

One can use a Gaussian mean-field approximate posterior q(θ|φt) =
∏D
d=1N(µt,d, σ

2
t,d), where

φt = {µt,d, σt,d}Dd=1 and D = dim(θ). The first term in Eq. (33) can be estimated via Monte Carlo
with local reparameterisation trick (Kingma et al., 2015), and the second KL-divergence term has a
closed form for Gaussian distributions.

B ALGORITHMS

B.1 BOMLA AND BOMVI

Algorithm 1 gives the pseudo-code of the BOMLA algorithm for the sequential datasets setting, with
the corresponding variation for the sequential tasks setting in brackets. The algorithm is formed of
three main elements: meta-training on a specific dataset or task (line 4 – 11), updating the Gaussian
mean (line 12) and updating the Gaussian precision (line 13 – 16). For the precision update, we
approximate the Hessian using block-diagonal Kronecker-factored approximation (BD-KFA).

Algorithm 2 gives the pseudo-code of the BOMVI algorithm for the sequential datasets setting, with
the corresponding variation for the sequential tasks setting in brackets. The algorithm is formed
of two main elements: meta-training on a specific dataset or task (line 4 – 11) and updating the
parameters of the Gaussian mean-field approximate posterior (line 12).
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Algorithm 1 Bayesian online meta-learning with Laplace approximation (BOMLA)

1: Require: sequential datasets (or tasks) D̃1, . . . , D̃T , learning rate α, posterior regulariser λ,
number of meta-training iterations (or epochs) J , meta-batch size (or number of batches) M

2: Initialise: µ0, Λ0, θ
3: for t = 1 to T do
4: for i = 1, . . . , J do . meta-training on dataset or task D̃t @@@ New: added J
5: for m = 1 to M do
6: Sample task (or split the batch) D̃mt = D̃m,St ∪ D̃m,Qt

7: Inner update θ̃m = SGDk(L(θ, D̃m,St ))
8: end for
9: Evaluate loss fBOMLA

t (θ, µt−1,Λt−1) in Eq. (8)
10: Outer update θ ← θ − α∇θfBOMLA

t (θ, µt−1,Λt−1)
11: end for
12: Update mean µt ← θ . update posterior mean
13: For sequential datasets, sample M tasks for Hessian approximation
14: Run inner update in line 7 for each task (or for each batch)
15: Approximate H̃t with BD-KFA to F̃ in Eq. (11)
16: Update precision Λt ← λH̃t + Λt−1 . update posterior precision
17: end for

Algorithm 2 Bayesian online meta-learning with variational inference (BOMVI)

1: Require: sequential datasets (or tasks) D̃1, . . . , D̃T , learning rate α, number of meta-training
iterations (or epochs) J , meta-batch size (or number of batches) M

2: Initialise: φ0 = {µ0, σ0}
3: for t = 1 to T do
4: for i = 1, 2, . . . , J do . meta-training on dataset or task D̃t @@@ New: added J
5: for m = 1 to M do
6: Sample task (or split the batch) D̃mt = D̃m,St ∪ D̃m,Qt

7: Inner update θ̃m = SGDk(L(θ, D̃m,St ))
8: end for
9: Evaluate loss fBOMVI

t (φ, φt−1) in Eq. (15)
10: Outer update µ← µ− α∇µfBOMVI

t (φ, φt−1), and σ ← σ − α∇σfBOMVI
t (φ, φt−1)

11: end for
12: Update µt ← µ and σt ← σ . update posterior parameters
13: end for

B.2 BOMVI MONTE CARLO ESTIMATOR

Recall that the BOMVI objective is:

fBOMVI
t+1 (φ, φt) = − 1

M

M∑
m=1

Eq(θ|φ)
[

log p(D̃m,Qt+1 |θ̃m)
]
− 1

M

M∑
m=1

Eq(θ|φ)
[

log p(D̃m,St+1 |θ)
]

+DKL(q(θ|φ)‖q(θ|φt)),

where θ̃m = SGDk(L(θ, D̃m,St+1 )) for m = 1, . . . ,M . The Monte Carlo estimator for the first
term of the BOMVI objective is difficult to compute, as every sampled meta-parameters θr for
r = 1, . . . , R has to undergo a few-shot quick adaptation prior to the log-likelihood evaluation. As a
consequence the estimator is prone to a large variance. Moreover, every quickly-adapted sample θr
contributes to the meta-learning gradients of the posterior mean and covariance, resulting in a high
computational cost when taking the meta-gradients.

To solve these impediments, we introduce a slight modification to the SGD quick adaptation θ̃m. In-
stead of taking the gradients with respect to the sampled meta-parameters, we consider the gradients
with respect to the posterior mean. A one-step SGD quick adaptation, for instance, becomes:

θ̃m = θ − α∇µtL(µt, D̃m,St+1 ). (34)
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This gives θ̃m ∼ N(µ̃t, diag(σ2
t )) where

µ̃t = µt − α∇µt
L(µt, D̃m,St+1 ), (35)

since θ ∼ N(µt, diag(σ2
t )). A quick adaptation with more steps works in a similar fashion. With

this modification, we can calculate the Monte Carlo estimator for the first term using the local
reparameterisation trick as usual.

C EXPERIMENTS

C.1 OMNIGLOT: SEQUENTIAL TASKS

In this experiment, we use the model architecture proposed by Vinyals et al. (2016) that takes 4
modules with 64 filters of size 3 × 3, followed by a batch normalisation, a ReLU activation and a
2× 2 max-pooling. A fully-connected layer is appended to the final module before getting the class
probabilities with softmax. Table 1 shows the hyperparameters used in this experiment.

The Omniglot dataset comprises 50 alphabets (super-classes). Each alphabet has numerous charac-
ters (classes) and each character has 20 instances. As the meta-training alphabets arrive sequentially,
we form non-overlapping sequential tasks from each arriving alphabet, and the tasks also do not
overlap in the characters. We use 35 alphabets for meta-training, 7 alphabets for validation and 8
alphabets for meta-evaluation. The alphabet splits are as follows:

35 alphabets for meta-training:

Kannada, Burmese_(Myanmar), Malay_(Jawi_-_Arabic), Grantha,
Atlantean, Ojibwe_(Canadian_Aboriginal_Syllabics), Balinese,
Japanese_(katakana), Hebrew, Japanese_(hiragana), Keble,
’Old_Church_Slavonic_(Cyrillic), Asomtavruli_(Georgian),
Tengwar, Aurek-Besh, Sanskrit, Manipuri, Early_Aramaic, Oriya,
Mongolian, Avesta, Malayalam, Tifinagh, Angelic, Latin, Braille,
Inuktitut_(Canadian_Aboriginal_Syllabics), Alphabet_of_the_Magi,
Armenian, Korean, Gurmukhi, ULOG, Bengali, Gujarati, Sylheti

7 alphabets for validation:

Ge_ez, Cyrillic, Glagolitic, N_Ko, Arcadian, Anglo-Saxon_Futhorc,
Blackfoot_(Canadian_Aboriginal_Syllabics)

8 alphabets for meta-evaluation:

Syriac_(Serto), Atemayar_Qelisayer, Tibetan, Futurama,
Mkhedruli_(Georgian), Syriac_(Estrangelo), Tagalog, Greek

Table 1: Hyperparameters for the Omniglot sequential tasks experiment

Hyperparameter BOMLA BOMVI

Posterior regulariser λ 0.1 -
Precision initialisation values 10−4 ∼ 10−2 -
Covariance initialisation values - exp(−10)
Number of Monte Carlo samples - 5
Number of batch M 1 1
Number of query samples per class (meta-evaluation) 15 15
Number of epochs per task 50 50
Number of inner SGD steps in meta-training (k) 5 5
Inner SGD learning rate (α) 0.1 0.1
Outer loop optimiser Adam Adam
Outer loop learning rate 0.001 0.001
Number of tasks sampled for meta-evaluation 100 100
Number of inner SGD steps in meta-evaluation (k) 10 10
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C.2 PENTATHLON: SEQUENTIAL DATASETS

We use the model architecture proposed by Vinyals et al. (2016) in this experiment, as we did for
the sequential tasks experiment. Tables 2 and 3 are the hyperparameters used in this experiment.

Omniglot: The Omniglot dataset (Lake et al., 2011) comprises 1623 characters from 50 alphabets
and each character has 20 instances. New classes with rotations in the multiples of 90◦ are formed
after splitting the classes for meta-training, validation and meta-evaluation. We use 1100 characters
for meta-training, 100 characters for validation and the remaining for meta-evaluation.

CIFAR-FS: The CIFAR-FS dataset (Bertinetto et al., 2019) has 100 classes of objects and each
class comprises 600 images. We use the same split as Bertinetto et al. (2019): 64 classes for meta-
training, 16 classes for validation and 20 classes for meta-evaluation.

miniImageNet: The miniImageNet dataset (Vinyals et al., 2016) takes 100 classes and 600 in-
stances in each class from the ImageNet dataset. We use the same split as Ravi & Larochelle (2017):
64 classes for meta-training, 16 classes for validation and 20 classes for meta-evaluation.

VGG-Flowers: The VGG-Flowers dataset (Nilsback & Zisserman, 2008) comprises 102 different
types of flowers as the classes. This dataset has 8,189 instances in total. We randomly split 66
classes for meta-training, 16 classes for validation and 20 classes for meta-evaluation.

Aircraft: The Aircraft dataset (Maji et al., 2013) is a fine-grained dataset consisting of 100 differ-
ent aircraft models as the classes and each class has 100 instances. We randomly split 64 classes for
meta-training, 16 classes for validation and 20 classes for meta-evaluation.

Table 2: Hyperparameters for the pentathlon experiment (same value for all datasets)

Hyperparameter BOMLA BOMVI

Posterior regulariser λ (various values) -
Precision initialisation values 10−4 ∼ 10−2 -
Number of tasks sampled for Hessian approx. 5000 -
Covariance initialisation values - exp(−5)
Number of Monte Carlo samples - 20
Meta-batch size M 32 32
Number of query samples per class 15 15
Number of iterations per dataset 5000 5000
Outer loop optimiser Adam Adam
Outer loop learning rate 0.001 0.001
Number of tasks sampled for meta-evaluation 100 100

Table 3: Hyperparameters for the pentathlon sequential datasets experiment (individual datasets)

Hyperparameter Omniglot CIFAR-FS miniImageNet VGG-Flowers Aircraft

Number of inner SGD
steps in meta-training (k)

1 5 5 5 5

Inner SGD learning rate
(α)

0.4 0.1 0.1 0.1 0.1

Outer learning rate decay
schedule

- ×0.1
halfway

×0.1 halfway ×0.1 per 1000
iterations

×0.1
halfway

Number of inner SGD
steps in meta-evaluation

3 10 10 10 10
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Figure 3: Meta-evaluation accuracy across 3 seed runs on each dataset along meta-training. Higher
accuracy values indicate better results with less forgetting as we proceed to new datasets. BOMLA
with λ = 100 gives better performance in the off-diagonal plots (retains performances on previously
learned datasets), and has a minor performance trade-off in the diagonal plots (learns less well on
new datasets). Sequential MAML gives better performance in the diagonal plots (learns well on
new datasets) but worse performance in the off-diagonal plots (forgets previously learned datasets).
BOMVI is also able to retain performance on previous datasets, although it may be unable to perform
as good as BOMLA due to sampling and estimator variance.
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Figure 4: Meta-evaluation accuracy across 3 seed runs on each dataset along meta-training. Higher
accuracy values indicate better results with less forgetting as we proceed to new datasets. BOMLA
with a large λ = 1000 gives better performance in the off-diagonal plots (retains performances on
previously learned datasets) but worse performance in the diagonal plots (does not learn well on new
datasets). A small λ = 1 gives better performance in the diagonal plots (learns well on new datasets)
but worse performance in the off-diagonal plots (forgets previously learned datasets). BOMVI is also
able to retain performance on previous datasets, although it may be unable to learn new datasets as
good as BOMLA due to sampling and estimator variance.
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