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Abstract

Identifying the causal direction between two vari-
ables has long been an important but challenging
task for causal inference. Existing work proposes
to distinguish whether X → Y or Y → X by
setting up an input-output learning task using the
two variables, since causal and anticausal learning
have different performances under semi-supervised
learning and domain shift. This approach works
for many task-specific models trained on the input-
output pairs. However, with the rise of general-
purpose large language models (LLMs), there are
various challenges posed to this previous task-
specific learning approach, since continued train-
ing of LLMs is less likely to be affordable for
university labs, and LLMs are no longer trained
on specific input-output pairs. In this work, we
propose a new paradigm to distinguish cause from
effect using LLMs. Specifically, we conduct post-
hoc analysis using natural language prompts that
describe different possible causal stories behind the
X , Y pairs, and test their zero-shot performance.
Through the experiments, we show that the natural
language prompts that describe the same causal
story as the ground-truth data generating direction
achieve the highest zero-shot performance, with
2% margin over anticausal prompts. We highlight
that it will be an interesting direction to identify
more causal relations using LLMs.a

aOur code and data are at
https://github.com/cogito233/
llm-bivariate-causal-discovery.

*Equal contribution.
†Work done during summer internship at ETH.

1 INTRODUCTION

One of the most impactful deep generative models is au-
toregressive large language models (LLMs) in natural lan-
guage processing (NLP), such as the GPT model series
[Radford et al., 2018, 2019, Brown et al., 2020], which
demonstrate surprisingly strong generalization ability. Au-
toregressive LLMs are trained to maximize the likelihood
L(D) =

∑N
i=0 logPΘ(wi|wi−k, . . . , wi−1) for an unsuper-

vised large corpus D := (w1, . . . , wN ) of N tokens, where
k is the size of the context window, and Θ is the parameters
of the generative neural network model.

An important question for deep generative models in general
is what they have learned. LLMs have undergone large-scale
unsupervised training on almost all available texts, from all
public online texts to books and many other sources. It is
interesting to check whether the deep generative LLMs have
learned causal relations.

In this paper, we look into the causality between two vari-
ables, and check whether LLMs can distinguish X → Y and
Y → X for the causation between two variables. Schölkopf
et al. [2012] show that although the two-variable causal rela-
tion cannot be easily distinguished by conditional indepen-
dence tests which are commonly used for causal discovery
Spirtes et al. [1993], Pearl [2000], as there are only two
variables, it is possible to set up an input-output learning
problem to infer the causal direction. There are distinct prop-
erties that make causal learning (i.e., models that take the
cause as input, and predict the effect) different from anti-
causal learning (i.e., models that take the effect as input, and
predict the cause), such as their different behaviors in semi-
supervised learning and under domain shifts. Extending the
framework to NLP, Jin et al. [2021] formulate NLP tasks by
causal and anticausal learning, which opens the possibility
to distinguish X → Y and Y → X where at least one
variable is text data. Consistent with the independent causal
mechanism (ICM) hypothesis, Jin et al. [2021] show that
causal learning is more robust against covariate shift, and
anticausal learning improves more in semi-supervised learn-
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ing, both of which can potentially be used to distinguish
cause from effect in language data.

However, the above two types of checks have several con-
ditions that do not apply to LLMs. (1) These checks are
conditioned on the fact that the training of the models can
be continued, with new unsupervised data or out-of-domain
data. However, LLMs are increasingly larger over time, to
the extent that university labs cannot easily continue the
training given the limited resources in academia. (2) These
checks assume the initial causal or anticausal model only
sees a task-specific dataset of X , Y pairs from a single dis-
tribution. However, the training of LLMs does not use a
single task-specific dataset, but, instead, their training is a
general-purpose unsupervised learning from massive text
data that almost covers all texts that are accessible [Brown
et al., 2020, Chowdhery et al., 2022].

Hence, we design a new paradigm to distinguish X → Y
and Y → X for LLMs. Given the new constraints we are
facing when using LLMs, we shift the original input-output
learning framework [Schölkopf et al., 2012, Jin et al., 2021]
to post-hoc analysis of this deep generative model for text.
Specifically, we propose two suggestions: (1) We use zero-
shot prompting of LLMs, which can be compared to the com-
monly adopted hypothesis that modeling along the causal
direction is more robust under domain shift. (2) We change
the task-specific framing of P (Y |X) and P (X|Y ) models
to natural language prompts that describe the causal rela-
tions of X → Y and Y → X , respectively. These two ad-
justments are necessary (although preliminary) attempts to
the two-variable causal relation distinction involving LLMs.

Empirically, we conduct experiments with a case study of
sentiment classification. We implement different prompts
corresponding to the causal relations X → Y and Y → X ,
and find that, in general, the LLM zero-shot performance
is the best when the prompt is framed in the same causal
direction as the ground-truth data. This confirms the effec-
tiveness the proposed approach to distinguish cause from
effect with LLMs.

2 DISTINGUISHING CAUSE FROM
EFFECT IN NLP

Given two random variables X and Y that are known to
have direct causal relations of either X → Y or Y → X ,
our task is to distinguish which of the two is the true causal
relation. In the context of this work that focuses on LLMs,
we further assume that the (x, y) pairs come from an NLP
dataset, where at least one of the variables is text data.

We use a case study of text classification throughout this
paper, which can potentially be extended to other settings
or causal graphs involving more variables in future work.
Datasets for text classification consist of pairs of text t and
its corresponding class label l. Suppose that we know that

it is either the text causing the label or the label causing
the text, but we do not exactly know which hypothesis is
true. To answer this question, this section first introduces
the general formulation of causal and anticausal learning
(Section 2.1), existing non-LLM approaches to distinguish
cause from effect through training (Section 2.2), and our
proposed new paradigm to use LLMs for post-hoc analysis
to check the causal relations (Section 2.3).

2.1 FORMULATION: CAUSAL AND ANTICAUSAL
LEARNING

Causal and anticausal learning has been introduced to clas-
sify machine learning tasks by whether the task takes the
cause as input and predicts the effect, or the effect as input
and predicts the cause [Schölkopf et al., 2012]. Formally,
given random variables C and E, where the former causes
the later, namely C → E. Causal learning and anticausal
learning aim to learn two opposite functional mappings:

Causal Learning: f : c 7→ e (1)
Anticausal Learning: g : e 7→ c . (2)

Recent work extends this formulation to NLP tasks [Jin
et al., 2021]. For NLP, in some cases, if we can know how
the data was generated, and use these information to know
a priori what the causal direction is. For example, for the
Yelp sentiment classification dataset [Zhang et al., 2015],
it is roughly reasonable to assume that the user had some
experience with a restaurant, gave a rating, and then wrote
the review to justify the rating.

However, there are also cases where it is unknown which the
causal direction is between the two variables. For example,
many datasets do not clearly indicate the causal direction,
or some undecidable cases where even behavioral/cognitive
scientists cannot give a conclusion whether it is the behavior
that affects the language, or the language affects the behav-
ior. Then, an effective approach to distinguish cause from
effect involving language data comes into play.

2.2 PREVIOUS WORK: DISTINGUISHING CAUSE
FROM EFFECT THROUGH LEARNING

There are several ways to distinguish the cause from ef-
fect using the input-output learning setting, due to the dif-
ferent behaviors of causal and anticausal learning. One
possible way is to test the improvement brought by semi-
supervised learning. Causal learning should not benefit from
semi-supervised learning as the marginal distribution P (C)
shares no information with the conditional P (E|C) accord-
ing to the independent causal mechanism (ICM) postu-
late, whereas anticausal learning may benefit from semi-
supervised learning [Schölkopf et al., 2012].



Table 1: Prompts of three causal setups. For the causal direction Review → Rating, there are two possible causal mechanisms,
one from the first-person view making a rating based on their own review and the other from a third-person view guessing
another user’s rating based on their review.

Causal Setup Prompt
Rating → Review:
(Experience →) Rating → Review I just finished eating at a restaurant. Then I opened my Yelp app. I first gave

a rating in terms of 1 to 5 stars, and then explained why I gave the rating by
the following review: [review text] The review is an explanation of why
I rated it a [Let GPTs complete]

Review → Rating:
(Experience and) Review → Rating I just finished eating at a restaurant. Then I opened my Yelp app. I first wrote

the following review: [review text] Then based on the review, I gave the
rating in terms of 1 to 5 stars. I think this restaurant is worth a rating of [Let
GPTs complete]

Review 3rdPersonGuess−−−−−−−−−−→ Rating I opened my Yelp app, and started to read some reviews of the restaurant that
I wanted to try. I saw a user wrote this review: [review text] I think this
user gave a rating (out of 1 to 5 stars) of [Let GPTs complete]

Another way is to check how the model generalizes to out-
of-distribution (OOD) data. Causal learning captures the
causal mechanism P (E|C) which is more invariant than the
anticausal relation P (C|E), so causal learning should be
more robust against domain shifts, as observed in previous
studies showing the stronger robustness of causal models
against covariate shifts [Jin et al., 2021] and adversarial
perturbations [Schott et al., 2019].

However, in the context of LLMs, there are two emerging
concerns that hinder us from directly applying the above
two approaches.

First, LLMs are increasingly larger, to the extent where it is
less and less likely for university labs to continue training
the models. As a direct result, the semi-supervised learn-
ing approach to distinguish causal and anticausal directions
through training is becoming less feasible. For the other
approach, although it is also less likely for university labs
to finetune LLMs, it is still possible to check OOD general-
ization by zero-shot or few-shot performance.

Second, there has been an emerging paradigm shift from
specific NLP models to general-purpose LLMs that reformat
each task to auto-completion. For example, previous NLP
models are trained for a specific purpose, such as P (l|t) for
sentiment classification from text t to label l. However, the
LLM can potentially reformulate any task as a text com-
pletion problem, e.g., “The review ‘The food here is great.’
has a rating of [Let GPTs complete].” Intuitively, for
LLMs, framing a question in natural language makes the
best use of the massive free-form text corpus that GPTs are
trained on, including all public online texts, lots of books,
social media, and so on [Chowdhery et al., 2022].

Based on these two emerging changes that make LLMs
different from other machine learning models, we propose

the following paradigm specifically designed for post-hoc
analysis of causal relations for the deep generative LLMs.

2.3 NEW PROPOSAL: POST-HOC ANALYSIS OF
LLMS BY ZERO-SHOT NATURAL LANGUAGE
PROMPTS

We improve the previous input-output learning framework
to adapt to the new challenges by LLMs. We propose two
major adaptations: (1) transforming the learning task using
task-specific models of P (E|C) and P (C|E) to LLMs’
general-purpose text completion task, and (2) using zero-
shot prompting as the main approach to check the robustness
against OOD shifts.

Transforming P (E|C) and P (C|E) to Story Completion.
Since LLMs gradually become general-purpose few-shot
learners [Brown et al., 2020], it is important to frame new
tasks also in natural language so that it can make good
use of the large free-form text corpus on which LLMs are
trained. We suggest to shift the traditional task-specific
input-output learning models P (E|C) and P (C|E) to the
general language-based queries to LLMs. Specifically, we
design language-based story completion for each of the three
possible causal relations given a dataset of review-sentiment
pairs.

In Table 1, we first brainstorm all possible causal setups
behind the review-rating pairs in a dataset: (1) (Experience
→) Rating → Review: The first possibility is common for
naturally generated short user reviews on public websites,
where users usually first had some experience, then gave an
overall rating, and wrote a review to explain the rationale
behind the rating. (2) (Experience and) Review → Rating:



Another possibility could be common for rational decision-
makers, or cognitively challenging reviews such as paper
reviews, where users first had some experiences, then per-
haps wrote down the arguments and evidence to structure
the thoughts, and finally gave an a posteriori rating based
on the reasoning in the review. Here, the review affects (per-
haps consciously rationalizes or unconsciously primes) the
rating. (3) Review 3rdPersonGuess−−−−−−−−−−→ Rating: Another case of
review causing the rating could be the common data an-
notation setting. For example, Amazon Mechanical Turk
(MTurk) workers are shown a piece of text, and asked to
provide a class label. We use 3rdPersonGuess−−−−−−−−−−→ to denote that
this causal mechanism is by the third person guess (which
might introduce additional noises from imperfect theory of
mind inferences), but not the first-person cognitive process.
The notation helps distinguish from the (2) case where the
same user bases their own rating on the review.

Then, for each of the possible causal setups, we compose
a corresponding causal story. Our goal is to make the best
use of LLMs’ seen data on various stories/procedures, and
elicit the same causal process through textual descriptions.
For example, for Causal Setup 3, we explicitly compose a
story from a third-person view “I opened my Yelp app, and
started to read some reviews of the restaurant that I wanted
to try. I saw a user wrote this review: [review text] I
think this user gave a rating (out of 1 to 5 stars) of” and let
LLMs complete the remaining text to generate a rating.

Zero-Shot Prompting. The other adjustment we propose
is to use zero-shot prompting as a substitute for the previ-
ous tests against OOD shifts such as training with domain
adaptation objectives.

The previous framing of OOD robustness to test causal direc-
tions is based on the postulate that the causal learning model
should perform better if the model is trained on data from
a certain distribution Ptrain(C,E), but tested on data from
a different distribution Ptest(C,E), where the two distribu-
tions keep a similar causal mechanism P (E|C) but different
marginal distributions of the cause, namely Ptrain(C) and
Ptest(C).

In the context of LLMs, we align the formulation of zero-
shot prompting for LLMs with the above OOD robustness
method to distinguish cause from effect. The idea of zero-
shot prompting is that given a trained LLM, we directly ask
it a question (such as one of the prompts in Table 1), and
collect LLMs’ answer, which is shown effective in many
recent powerful LLMs [Brown et al., 2020, Ouyang et al.,
2022, Thoppilan et al., 2022]. Our hypothesis is that, among
all the training data that LLMs have seen (including all
the online text, etc), there exist all possible causal setups.
And the key is that we try to elicit causal or anticausal sub-
models from the general-purpose LLMs through the causal
stories we compose. For example, it is reasonable to assume

Table 2: Zero-shot performance of prompts corresponding
to all three causal setups on the test set of Yelp.

Setup Accuracy Weighted F1
Causal Setup 1 53.71 53.68
Causal Setup 2 51.81 51.74
Causal Setup 3 51.37 51.17

that when we explicitly ask for the third person view of a
review, the LLMs start the P (l|t) process by imitating a
similar causal process that it saw in its training data.

Based on this, we suggest to directly query LLMs using
our causal prompts, and for this dataset of (t, l) pairs with
unknown causal direction, the zero-shot prompt with the
correct causal direction implicitly asks for P (E|C), and
thus will yield the highest performance. Also note that the
comparison among the three causal stories are relatively
fair because they share the same training data Ptrain(C,E),
and the only difference is which causal process they are
querying from the LLMs.

Note that theoretically, we can test the performance of either
classifying the sentiment l, or generating the review t. In
real practice, it is much easier to find a metric d to quan-
tify the performance of sentiment classification d(l, l̂) than
quantifying the performance of review generation d(t, t̂), as
text generation quality is a notoriously difficult evaluation
problem [Celikyilmaz et al., 2020]. Therefore, practically,
we fix the task to be sentiment classification t 7→ l, and com-
pare the zero-shot performance of P (l|t) and P (t|l)P (l),
where P (l) is the prior distribution of labels.

3 EXPERIMENTS

Dataset. We use the widely used Yelp sentiment classifi-
cation dataset [Zhang et al., 2015].1 The data is compiled
from Yelp reviews, where a commonly accepted assumption
is that the users first select a rating and then write down
the review to explain the rating (Causal Setup 1) [Jin et al.,
2021]. The original yelp dataset has 650K samples in the
training data, and 50K samples in the test data. The dataset
has balanced data for each of the five labels corresponding
to the 1 – 5 rating on Yelp. To make clear the differences
between causal and anticausal relations, we use the fine-
grained five classes of Yelp review instead of merging them
to the coarse-grained positive and negative binary classes.

Metric. We report accuracy for all prompts on Yelp, which
is the commonly reported metric. In addition, we also report
the weighted F1 across the five classes.

1https://huggingface.co/datasets/yelp_
review_full
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Implementation Details. For the implementation of
LLMs, we use the transformers Python library [Wolf et al.,
2019]. Since we do not have enough computational re-
sources for GPT2-xl, we use the second largest GPT2 model,
GPT2-large, for our experiment, which is the best autore-
gressive LLM that we can run and also fits the task (which
is more suitable than T5 for this free-form text completion
setup). In future work, we will explore more variants of
GPTs. For computation efficiency (to save inference time
of LLMs), we use some random subsets of the training set,
10K samples to calculate the prior distribution, and another
10K to select the best prompt among a large set of possible
paraphrases.

Main Results. Our main experimental results are in Ta-
ble 2, where we can see that the true causal prompts (Causal
Setup 1) show higher performance than the other ones
(Causal Setup 2 & 3) by a clear margin of 1.9% by ac-
curacy and 1.94% by weighted F1. For future work, it will
also be interesting to analyze GPTs of different sizes and
see if there is a scaling effect of clearer causal distinction as
the models get larger.

4 FUTURE WORK

One natural direction of future work is to add more experi-
ments and analyses: We plan to extend from the Yelp dataset
to more various datasets with different causal nature. As for
analysis, it will be good to include more different sizes
of GPTs, including InstructGPT, GPT3, GPT2-xl, GPT2-
medium, GPT2-small, and distilGPT to see if there is a
scaling effect such as the larger the model, the more distinct
advantage the true causal setup will show. It will also be
interesting to run text adversarial attack algorithms to check
the robustness of LLMs under different causal prompts.

In addition, this work could pave the way to many other in-
teresting directions for future work: (1) In the scope of this
paper, we introduce a paradigm to use LLMs to distinguish
the two-variable direct causal relation, namely X → Y or
Y → X . For future work, this framework could be poten-
tially extended to more complicated causal relations involv-
ing more variables.

(2) The current proposal suggests a path to check langauge-
related causal relations, which could be of interest to in-
terdisciplinary researchers, such as cognitive scientists and
behavioral scientists, since it is an important research direc-
tion to distinguish how language affects actions and thinking.
There could also be more analysis done by comparing LLMs
outputs with surveys from human subjects, such as compar-
ing LLMs responses to Causal Setup 3 with an actual setting
of asking MTurks to judge Yelp reviews.

(3) Extending the input-output learning framework for
LLMs is not the only way to extract causal relations from

the deep generative LLMs. Another line of research in NLP
could also form it as question answering, such as asking
LLMs directly about causal facts of the world, e.g., what
causes an object to move at a constant velocity, to check
whether LLMs will answer nothing (as in Newton’s law of
physics), or a constant force (as in Aristotle’s words).

5 CONCLUSION

This work addresses an interesting problem: how can we
distinct cause from effect using LLMs? We derive inspira-
tions from previous work that formulates this question by
checking the performance differences of the input-output
learning problems, namely causal and anticausal learning.
We propose a novel paradigm to adapt such ideas for LLMs,
by suggesting to transform the task-specific input-output
learning to general natural language prompts with a causal
story and replace the training-based differentiation of cause
and effect pairs with zero-shot prompting of LLMs. This
work opens a new direction to connect traditional cause and
effect distinctions with the emerging trend of LLMs, and
paves the way for various possible future work on post-hoc
analysis of causal relations extracted from LLMs.
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