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ABSTRACT

We study the problem of online learning in Stackelberg games with side in-
formation between a leader and a sequence of followers. In every round the
leader observes contextual information and commits to a mixed strategy, after
which the follower best-responds. We provide learning algorithms for the leader
which achieve O(T"/?) regret under bandit feedback, an improvement from the

previously best-known rates of O(T2/ 3). Our algorithms rely on a reduction to
linear contextual bandits in the utility space: In each round, a linear contextual
bandit algorithm recommends a utility vector, which our algorithm inverts to
determine the leader’s mixed strategy. We extend our algorithms to the setting in
which the leader’s utility function is unknown, and also apply it to the problems
of bidding in second-price auctions with side information and online Bayesian
persuasion with public and private states. Finally, we observe that our algorithms
empirically outperform previous results on numerical simulations.

1 INTRODUCTION

Many real-world strategic settings take the form of Stackelberg games, in which the leader commits
to a (randomized) strategy and the follower(s) best-respond. For example, in security domains (e.g.
airport security, wildlife protection) the leader (federal officers with drug-sniffing dogs, park rangers)
chooses a patrol strategy, which the follower (drug smuggler, poacher) observes before choosing an
area to exploit. In such settings, the leader may face different follower types over time, each with
their own goals and objectives.

We study a generalization of the traditional Stackelberg game setting in which the payoffs of the
players depend on additional contextual information (or side information) that is not captured in
the players’ actions and may vary over time. Such contextual information naturally arises in many
Stackelberg game settings: In airport security, different parts of the airport may be more crowded
during different parts of the day, which may make it easier or harder to smuggle items through
security in those areas. In wildlife protection, different animal species may be easier or harder to
poach at different times of the year, due to factors such as migration patterns and weather.

Harris et al.|(2024) formalize this setting and provide online learning algorithms for the leader when
the followers and contextual information change over time. Their algorithms obtain O(Tl/ 2) regre
under full feedback (i.e. when information about the follower is revealed to the leader after each
round) where 7T is the number of time-steps, but only O(TQ/ 3) regret under the more challenging
(and more realistic) bandit feedback setting, where only the follower’s action is revealed.

Our contributions We close the gap from O(T2/3) to O(T"/?) regret under bandit feedback,
which matches known lower bounds up to logarithmic factors. As in|Harris et al.| (2024), we study
two settings: one in which the sequence of contextual information is chosen adversarially and the
sequence of followers is chosen stochastically, and the setting where the contextual information is
chosen stochastically and the followers are chosen adversarially. Moreover, the algorithms of |[Harris
et al.| (2024) are not applicable when the follower’s utility depends on the contextual information,
an assumption which we do not need.

'Regret is the cumulative difference between the highest possible cumulative utility and the algorithm’s
cumulative utility.
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In both settings (adversarial contextual information and adversarial follower types), our algorithm
(Algorithm 1)) is a reduction to linear contextual bandits. While the leader’s utility is a non-linear
function of their strategy, we can linearize the problem by playing in the leader’s “utility space”. In
each round, a linear contextual bandit algorithm plays a vector in the image of the leader’s utility,
where the i-th component of the vector is the leader’s expected utility when facing the ¢-th follower
type. The leader then plays the strategy which induces this utility vector and gives their observed
reward as feedback to the contextual bandit algorithm. By reformulating the problem in this way,
we can take advantage of the rich literature on linear contextual bandits. Indeed, by instantiating Al-
gorithm [T with different contextual bandit algorithms, we obtain regret guarantees for both settings.

Next we study an extension to the setting where the leader’s utility function is unknown and must
be learned over time. We show that a similar reduction to contextual bandits holds in this setting
under a linearity assumption on the leader’s utility function. This reduction still obtains O(Tl/ 2)
regret, albeit at the cost of additional polynomial factors in the size of the problem instance in the
regret bound.

In Sectiond we show how to apply our algorithm to learning in other settings which exhibit the same
type of structure; specifically (i) learning in second-price auctions with side information and (ii)
online Bayesian persuasion with side information. We are the first to study either of these settings,
to the best of our knowledge, despite the fact that side information naturally arises in both auctions
and Bayesian persuasion settings. Our results largely carry over to these applications as-is, although
we need to discretize the learner’s action space in a different way than we do for Stackelberg games.

Our work is conceptually related to |Bernasconi et al.| (2023)), who use a similar reduction to obtain
O(Tl/ 2) regret in online Bayesian persuasion, learning in auctions, and learning in Stackelberg
games without side information. While their main result is a reduction to adversarial linear bandits,
our problem reduces to a linear contextual bandit problem with an infinite action set. Furthermore,
either the action set or the sequence of contexts will be chosen adversarially, depending on which
setting we are in. While such contextual bandit problems are generally intractable, we leverage the
special structure present in our setting to obtain positive results. In particular, we observe that the
optimal strategy at each time-step will always belong to a time-varying, but finite, set. Therefore, we
can discretize the utility space in a way that allows us to apply our reduction with two specific linear
contextual bandit algorithms that allow for both time-varying action sets and adversarially-chosen
contexts/action sets. Additionally, while both our reduction and theirs leverage the linear structure
which is induced from having finitely-many follower types, our extension to unknown leader utilities
in Section [3.3| uses a more general version of this linear structure in order to compensate for the
additional uncertainty from unknown utilities. Our reduction is also more streamlined, as it does not
require a per-round application of Caratheodory’s Theorem, due to our discretization step.

1.1 RELATED WORK

Learning in Stackelberg games |Conitzer & Sandholm|(2006) provide algorithms and prove NP-
Hardness results for the problem of computing equilibrium in various Stackelberg game settings
when all parameters of the problem are known. A line of work on learning Stackelberg games|Letch-
ford et al.| (2009); |[Peng et al.| (2019); Bacchiocchi et al.[(2024)) relaxes the assumption that all pa-
rameters of the problem are known to the leader, and instead posits that they are given a number of
(player actions, outcome) tuples to learn from.

Our work falls under the category of online learning in Stackelberg games, where the sequence of
data arrives sequentially instead of all at once. This setting was first introduced by |Balcan et al.
(2015)) and was generalized to handle settings with side information in Harris et al. (2024). Other
recent work on learning in Stackelberg games includes learning in cooperative Stackelberg games
(e.g. Zhao et al| (2023); Donahue et al.| (2024)), strategizing against a follower who plays a no-
regret learning algorithm (e.g. Braverman et al.| (2018)); Deng et al.| (2019)), and learning various
structured Stackelberg games such as strategic classification (e.g. [Hardt et al.| (2016); [Dong et al.
(2018)), performative prediction (e.g. Perdomo et al.|(2020); [Hardt & Mendler-Diinner| (2023)), and
principal-agent problems (e.g.|Ho et al.|(2014)).

Online learning in Stackelberg games is conceptually related to the online optimization of piecewise
Lipschitz functions, as the underlying reward function after fixing any fixed follower type (and
piece of side information) is piecewise linear Balcan et al.| (2020); |Sharma et al.| (2020); Balcan
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et al.| (2018). However the techniques used in this line of work are not applicable to our setting,
since the follower type and contextual information change from round-to-round.

Learning in auctions and persuasion Our algorithms are also applicable to generalizations of the
problems of online learning in simultaneous second-price auctions [Daskalakis & Syrgkanis (2016
and online Bayesian persuasion (Castiglioni et al.| (2020). [Flajolet & Jaillet| (2017) also study online
learning in second-price auctions with side information. They consider single-item auction settings
with a budget constraint, while we consider combinatorial auctions with no budget constraints. We
also consider a more general form of adversarial feedback than they consider.

Contextual bandits Finally, one may view our setting as a special type of contextual bandit prob-
lem with continuous action spaces and non-linear rewards. While one could, in principle, attempt to
apply a black-box contextual bandit algorithm to our setting (e.g.[Syrgkanis et al.|(2016a}b); Rakhlin
& Sridharan| (2016))), we are not aware of any algorithms which obtain meaningful performance
guarantees under this reward structure without (1) making additional assumptions about the learner’s
knowledge of the sequence of contexts they will face and (2) obtaining generally worse rates.

2 PRELIMINARIES

We use A(A) to denote the probability simplex over the (finite) set A, and [N] := {1,..., N} to
denote the set of integers from 1 to N € Ny .

We study a repeated interaction between a leader and a sequence of followers over 7" rounds. In
round ¢ € [T, both players observe a context z; € Z C R?, which represents the side information
available (e.g. information about weather patterns, airport congestion levels) in the current round.
The leader then commits to a mixed strategy x; € A(A;), where 4; is the leader’s action set and
A; = |A;| < oo. After observing the context z; and the leader’s mixed strategy x:, follower f;
plays action ay; € Ay, where Ay is the follower’s action set and Ay := |Af| < co. The leader’s
action a; ; is then sampled according to their mixed strategy x;.

After the round is over, the leader receives utility u(z;, a; ¢, as ), according to their utility func-
tion v : Z x A x Ay — [-1,1]. Similarly, follower f; receives utility wuy, (z¢, ar+,a5,¢)
according to utility function uy, : Z x A; x Ay — [—1,1]. We often use the shorthand
u(zta Xt, a‘f,t) = Eal,t'\’xt [U(Zt, Qit, a’f,t)] (resp. uf, (Zt7 Xty af,t) = Eaz,tNXt [uft (Zt7 ait, af,t)})
to denote the leader’s (resp. follower’s) expected utility with respect to the randomness in the
leader’s mixed strategy.

We assume that the follower in each round is one of K < oo types f; € [K], where follower type
i € [K] corresponds to utility function w;. We assume that uy, . .., ux are known to the leader, but
the identity of follower f; is never revealedE] This setting is referred to as bandit feedback in the
literature on online learning in Stackelberg games|Balcan et al.|(2015); Harris et al.| (2024).

Given a context z; and leader mixed strategy x;, follower f;’s best-response is by, (z¢,%x¢) =
argmax,,cA, Uy, (zt,X¢, ay), where ties are broken in an unknown-but-fixed way. We measure
the performance of the leader via the notion of regret:

Definition 2.1 (Contextual Stackelberg Regret). The leader’s contextual Stackelberg re-
gret with respect to context sequence zi,...,zr and follower sequence fi,...,fr is
R(T) = Zthl w(ze, x5, b5, (2¢,%7)) — w(ze,Xe,b5,(24,%¢)), where x; = w(z) :=
Arg MAXx e A(A)) D iz, —z, WZrs X, by, (2-,X)) is the mixed strategy played by the optimal-in-
hindsight policy 7 at time t.

Since previous work |Harris et al.| (2024)) shows that no-regret learning is impossible (i.e. there exists
no algorithm for which R(T") = o(T')) when the sequence of contexts and the sequence of followers
are chosen jointly by an adversary with knowledge of the leader’s algorithm, we focus on two natural
relaxations: the setting where the sequence of contexts is chosen by an adversary and the sequence
of follower types are drawn from an unknown (stationary) distribution (Section [3.1I)) and the setting
where the sequence of follower types are chosen by an adversary and the sequence of contexts are

ZBalcan et al.[(2015) show that learning is impossible when K = oo in (non-contextual) Stackelberg games,
which implies an impossibility result for our setting.
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Algorithm 1: Reduction to Linear Contextual Bandits

Input: Linear contextual bandit algorithm R
fort=1,...,Tdo

Observe z;, compute U, := {u(z;,x) : x € &}

Let v; <— R.recommend(U;)

Commit to the mixed strategy x; which induces v,

Play action a; ; ~ x; and call R.observeUtility (vy, u(z¢, ar ¢, by, (24, %¢)))
end

drawn from an unknown distribution (Section [3.2). All of our results are applicable to the simpler
setting where both the contexts and follower types are chosen stochastically.

While the leader’s action space A(A4;) is infinitely large, we follow the lead of previous work and
consider a discretization which is nearly wothout loss of generality. The following two definitions
are from [Harris et al.| (2024).

Definition 2.2 (Contextual Follower Best-Response Region). For follower type i € [K]|, follower
action ay € Ay, and context z € Z, let X,(i,a5) C A(A;) denote the set of all leader mixed
strategies such that a follower of type i best-responds to all x € X,(i,ay) by playing action ay
under context z, i.e., X,(i,ay) = {x € X : b;(z,x) = as}.

Definition 2.3 (Contextual Best-Response Region). For a given function o : [K] — Ay, let X,(o)
denote the set of all leader mixed strategies such that under context z, a follower of type © plays
action o (i) for all i € [K], i.e. X,(0) = Mie[x1 Xz (i, 0(1)).

It is straightforward to show that all contextual best-response regions are convex and bounded (but
not necessarily closed). Because of this, the loss in performance is negligible from restricting the
leader’s strategy space to be the set of approximate extreme points of all contextual best-response
regions. Formally, we define &; as follows.

Definition 2.4 (§-approximate extreme points). Fix a context z € Z and consider the set of all non-
empty contextual best-response regions. For § > 0, £,(0) is the set of leader mixed strategies such
that for all best-response functions o and any x € A(A;) that is an extreme point of cl(X,(0)),
x € &,(8) if x € X,(0). Otherwise there is some X' € &,(8) such that x' € X,(o) and ||x' —
x| < 6. VlVith a slight abuse of notation, we define the set of approximate extreme points &; to be
gt = Szt (f)

Balcan et al.| (2015) show that |&;| = O((KA?)AZA?). By Lemma 4.4 in Harris et al.| (2024),

restricting the learner to policies which only play strategies in &; at round ¢ leads to at most O(1)
additional regret. We will use fact throughout the sequel.

3 A REDUCTION TO LINEAR CONTEXTUAL BANDITS

Our main result is an algorithm (Algorithmm) that achieves O(T 1/2) regret in both the setting where
contexts are chosen adversarially and follower types are chosen stochastically (Section and
the setting where the contexts are chosen stochastically and follower types are chosen adversarially
(Section [3.2). While the leader’s utility is a non-linear function of their mixed strategy x; in any
given round (due to the follower’s best-response b(z;,x;)), we can “linearize” the problem by
leveraging the fact that the leader’s utility can be written as w(z;, X¢, by, (24, %¢)) = (u(2¢, %¢), 15, ),
where u(z,x) = [u(z,x,b1(z,%)),...,u(zx,br(z,%x))]" € RE is the vector of utilities the
leader would receive against each follower type given context z and mixed strategy x, and 17, € R¥
is a one-hot vector with a 1 in the f;-th component and zeros elsewhere. Since u(z;, x¢, by (2, X))
is a linear function of u(z,x;), one can use an off-the-shelf linear contextual bandit algorithm to
pick a vector v, in the image of u(z,, -), then invert the mapping to find the mixed strategy x; such
that Vi = ll(Zt7 Xt).

Algorithm [T] takes as input a linear contextual bandit algorithm R, which, (1) when given a (finite)
set of actions Uy, returns an element v; € U; (R.recommend()) and (2) updates its internal parame-
ters when given an action v; and a realized utility u; € [—1, 1] (R.observeUtility()). Finally, while
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the leader’s action space A(.A4;) is infinitely large (and thus, so is the dual space Uy := {u(z, x) :
x € A(A;)}), the leader incurs essentially no loss in utility by restricting themselves to a finite
(but exponentially-large) set of context-dependent points &, which roughly correspond to the set of
extreme points of convex polytopes which are induced by the followers’ best-responses.As such, our
algorithm operates on the set of utility vectors U; := {u(z¢,x) : x € &} in each roundE]

3.1 ADVERSARIAL CONTEXTS AND STOCHASTIC FOLLOWER TYPES

To get no-regret guarantees when the sequence of contexts is chosen adversarially and the sequence
of follower types is chosen stochastically, we instantiate Algorithm [T| with the Optimism in the Face
of Uncertainty for Linear models (OFUL) linear contextual bandit algorithm of |Abbasi-Yadkori
et al.[(2011). OFUL leverages the principle of optimism under uncertainty to balance exploration
and exploitation. Specifically, it assumes a linear relationship between utilities and actions such that
E[us] = (v¢, 0%), where v; € R¥ is an action from some exogenously-given set Uy, and 6* € R¥
is an unknown parameter. OFUL maintains a confidence set C; over 8* in round ¢ such that 8* € C}
with high probability, which it updates based on the noisy observed utility u;. In each round, it then
selects the action that maximizes the upper confidence bound on the expected reward, i.e. it plays
action v, € arg maxveuy, gec, (v, 0).

We show that when follower types are chosen stochastically, the leader’s utility at time ¢ can be writ-
ten as u(z¢, X, by, (¢, %¢)) = (u(z¢,X¢), P*) + €, where p* € AX is the true (unknown) distribu-
tion over follower types, and €; € [—4, 4] is a zero-mean random variable. Therefore by instantiat-
ing Algorithmwith OFUL, we can optimistically learn p* and attain O(\/T ) regret in this setting.

Theorem 3.1. When R is instantiated as the OFUL algorithm of|Abbasi-Yadkori et al.|(2011)), Al-
gorithm |l| obtains expected contextual Stackelberg regret E[R(T)] = O(K~/Tlog(T)) when the
sequence of contexts is chosen adversarially and the sequence of follower types is chosen stochas-
tically. The expectation is taken with respect to both the randomness in Algorithm[l} as well as the
distribution over follower types.

3.2 STOCHASTIC CONTEXTS AND ADVERSARIAL FOLLOWER TYPES

When the sequence of follower types is chosen adversarially, there will be no underlying distribution
p* over follower types for the algorithm to learn. As such, instantiating R with OFUL will not
provide meaningful regret guarantees in this setting. Instead, we instantiate R using a modified
version of Algorithm 1 in|Liu et al.|(2024) (Algorithm E])

Algorithm 1 in[Liu et al|(2024) (henceforth referred to as logdet-FTRL) uses a variant of Follow-
The-Regularized-Leader with the log-determinant barrier as the regularizer to solve a variant of the
linear contextual bandit problem with adversarial losses. In their setting, the learner receives a set
of actions U/ in each round which are drawn from some distribution over the unit ball and plays an
action v; € U, [ The learner then receives loss ¢; such that E[¢;] = (v}, y;), where y; is chosen
adversarially.

In our setting, the set of leader mixed strategies &; is deterministically determined by the context z;.
Therefore, whenever the sequence of contexts {z; };c[7) is drawn from a fixed distribution, so is the
sequence {&; }+¢[r), which then implies that {U }+¢<|7) are also drawn from some fixed distribution.
The last steps in order to apply logdet-FTRL are to (1) transform our action space from [—1,1]%
to the K -dimensional unit ball and (2) convert utilities to losses. We handle this in Algorithm 2] by
rescaling our actions by \/% and negating the observed utilities before passing them to logdet-FTRL.

Theorem 3.2. When R is instantiated as the regret minimizer of Algorithm [2] Algorithm [I] ob-
tains expected contextual Stackelberg regret E[R(T)] = O(K?®/T log(T)) when the sequence of
contexts is chosen stochastically and the sequence of follower types is chosen adversarially. The
expectation is taken with respect to both the randomness in Algorithm|I] as well as the distribution
over contexts.

3This is important, as the regret minimizers we instantiate Algorithm with in Section and Section
both require the action set to be finite.
*logdet-FTRL requires |U¢| < oo in order to have finite per-round runtime.
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3.3 EXTENSION TO UNKNOWN UTILITIES

So far we have assumed that the leader’s utility function « is known. In this section, we relax this

assumption and show that a modification of Algorithm|l|obtains O(\/T) regret when v is unknown,
under an additional linearity assumption (Assumption |3.3))

Assumption 3.3. Given context z € Z, leader action a; € A;, and follower action ay € Ay, the
leader’s utility is u(z,a;, ay) := (z,U(a;, ay)) where U(a;, ay) € R is unknown to the leader:

This setting may be thought of as both a generalization of Stackelberg games (to settings where
there is side information) and a generalization of linear contextual bandits (to settings where another
player’s action influences the utility of the learner).

Our key insight is that under Assumption [3.3] the leader’s utility can still be written as a linear
function of some known vector h(z,x), albeit in larger (d x K x A; x Ay)-dimensional space
(Theorem [3.4). Theorem [3.4]is stated in terms of a generic distribution -y over follower types. This
distribution  corresponds to either the true underlying distribution over follower types p* (when
follower types are chosen stochastically), or the empirical distribution in hindsight over follower
types (when they are chosen adversarially).

Theorem 3.4. Under Assumption [3.3] the leader’s expected utility (with respect to distribution vy
over follower types) can be written as E¢.[u(z,x,b¢(z,x))] = (h(z,x),0) for some h(z,x) €
RIXEXAXAs \which is known to the leader and @ € RYK>XAxAs yphich is not.

The proof of Theorem is constructive, but the closed-form expression of h(z,x) is somewhat
cumbersome, so we relegate it to Appendix [A]

Given the results of Theorem [3.4] we can immediately obtain regret guarantees for the unknown
utilities setting by running Algorithm [2] using the action set U; := {h(z;,x) : x € &} (instead
of Uy = {u(z¢,x) : x € &}) inround t. Since h(z;,x) € REXAXAs “our regret will scale
as O(poly(dK A;A;)V/T), compared to the O(poly(K)+/T) rates in Section [3.1{and Section
Thus, a poly(dA; Ay) term is the price we pay for handling unknown utilities in our setting.

Corollary 3.5. Under Assumption when R is instantiated as the OFUL algorithm of Abbasi-
Yadkori et al.| (2011) and Uy := {h(z:,x) : x € &}, Algorithm || obtains expected contextual
Stackelberg regret E[R(T)] = O(dK AjAs\/T log(T)) when the sequence of contexts is chosen
adversarially and the sequence of follower types is chosen stochastically.

Corollary 3.6. Under Assumption when R is instantiated as the regret minimizer of Algo-
rithmand U = {h(z,x) : x € &}, Algorithmobtains expected contextual Stackelberg regret
E[R(T)] = O((dK A;Af)*>5VTlog(T)) when the sequence of contexts is chosen stochastically
and the sequence of follower types is chosen adversarially.

3.4 BETTER RUNTIMES IN SPECIAL CASES

In all previous sections, the per-round runtime of Algorithm |I|is O(poly(&;, K, A;, Ay, d)). In
general &, is exponentially-large in the size of the problem, and so the worst-case runtime of each
instantiation of Algorithm [T]is exponential. This is to be expected, since we inherit the per-round
NP-hardness results from the non-contextual Stackelberg game setting of |Li et al.|(2016)), combined
with the offline to online reduction of Roughgarden & Wang| (2019). With that being said, there are
several interesting cases for which the runtime of Algorithm|I|can be improved.

1. Small number of effective follower types Consider a setting with three follower types, where
u1(2z,X,ay) and u(z,x, ay) are arbitrary and us(z,x,a5) = 1{z € 2'} - ui(z,x,a7) + 1{z &
Z'} - ua(z,x, ay) for some subset of contexts 2’ C Z. While K = 3, the number of approximate
extreme points at each round is only |£;| = O((2A§)Al Afc), since the best-response regions of
follower type 3 always overlap with those of either follower type 1 or 2. Such overlap between
follower best-response regions can happen in more general settings; we capture this through the
notion of effective follower types.

Definition 3.7 (Effective follower types). We say that there are K' effective follower types in round
t if, fixing zy, there are K' unique follower utility functions.



Under review as a conference paper at ICLR 2026

Regret

d=2, K=4, 4 leader actions, 4 follower actions (d=2, K=4, 4 leader actions, 4 follower actions)
1601 —— Algorithm1-OFUL —— Algorithm1-OFUL
Random Baseline Random Baseline
14090 — Optimal Policy 401

Cumulative Utility
R
2 o ® o N
S & & & o

N
o

|

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Time Time

o

Figure 1: Left: Cumulative utility of the optimal policy, Algorithminstantiated with OFUL (Algl-
OFUL), and the random baseline over 7' = 200 rounds in a setting with 4 follower types, where each
player has 4 actions and the context dimension is also 2. Right: Cumulative regret of Algl-OFUL
and the random baseline over 7' = 200 rounds in the same setting. Results are averaged over 10 runs.

When there are K’ effective follower types in round ¢, there are at most |£;| = O((K’ A?)AZ . AJ{{ D)
approximate extreme points, which may be much less than the worst-case bound of O((K A?)Al .
Aff ) if K’ is small or constant.

2. Few non-dominated leader actions per round Similarly, it could be the case that for context
2y, there exists two leader actions q; and a; such that u(z;, a;, ay) < u(z,aj,ay) forall ay € Ay.
When this happens, we say that action a; is dominated by action q; in round ¢. If there are A

non-dominated actions in round ¢, then |&;| = O((K A?)A2 AR,

3. Exogenously-supplied leader strategies Suppose that instead of defining &; according to Def-
inition an external algorithm supplies a set of extreme points £ C &; in each round ¢ € [T]
such that |£]] = O(poly(4;, Ay, K)). If & > argmaxxeg, E[u(z, X, fi(2z¢,x))] with probability
at least 1 — 4, then the expected regret of running Algorithmusing {&}L.| instead of {&}1_; is
O(E[R(T)] + 6T'), where E[R(T)] is the expected regret of running Algorithmusing {& g

3.5 EXPERIMENTS

We empirically evaluate the performance of Algorithm|[I]instantiated with OFUL (henceforth Algo-
rithm|[TFOFUL) on synthetically-generated contextual Stackelberg games. In this setting, there are 4
follower types, each of whose utility function is randomly generated. Note that since the followers’
utilities depend on the contextual information, algorithms from previous work on bandit learning in
Stackelberg games with side information (e.g. Algorithm 3 in|Harris et al.|(2024))) are not applicable
in this setting. The leader’s utility function is also random and is linear in the context, whose dimen-
sion is d = 2. Both the leader and followers have 4 actions. Finally, both the sequence of contexts
and followers are generated stochastically.

In Figure[T]we plot the cumulative utility (left) and regret (right) of Algorithm[I[FOFUL and a random
baseline over 7' = 200 time-steps. In the Appendix, we compare the performance of Algorithm [T}
OFUL with that of Algorithm 3 in[Harris et al.| (2024)) in the special case where follower utilities do
not depend on the side information. Even in this setting, we find that Algorithm [TFOFUL signifi-
cantly outperforms the other alternatives.

4  OTHER APPLICATIONS

Algorithm T|leverages the fact that there are a finite number of follower types to transform the prob-
lem into the utility space of the leader, before applying an off-the-shelf linear contextual bandit algo-
rithm. Interestingly, the only parts of Algorithm[I]that are specific to Stackelberg games are how the
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sets of extreme points and leader utilities are computed. As such, it is possible to apply Algorithm|T]
to other settings where the learner has a finite number of possible utility functions. We highlight two
such applications here: learning in auctions with side information (Section[d.1]) and online Bayesian
persuasion with side information (Section [d.2)). Despite the prevalence of side information in both
auctions and persuasion, we are the first to study either setting, to the best of our knowledge.

Since our definition of approximate extreme points & is specific to Stackelberg games, we instead
ensure that |U;| < oo in both settings by discretizing the policy space. Specifically, in both auctions
and persuasion we (re-)define & to be {7(“)(z;) : w € Q}, where Q is a (finite) uniform grid and
7(@) is a policy parameterized by w. After bounding the discretization error, our analyses for the
results in this section are analogous to those in Section[3.1]and Section 3.2}

4.1 LEARNING TO BID IN AUCTIONS WITH SIDE INFORMATION

Daskalakis & Syrgkanis|(2016) consider the problem of no-regret learning in a second-price auction
setting where in each round ¢ € [T, bidders simultaneously bid on a bundle of m items. Taking the
perspective of a single bidder, they play bid vector b; € [0, 1]™ in round ¢ and receive the bundle of
items S(by, 8;) = {j : bi[j] > 0,[j]}, where 8, € © C [0, 1]™ is a threshold vector corresponding
to the item-wise maximum of the other players’ bids. Having received bundle of items S(by, 6;),
the bidder receives utility u(by, 6;) := v(S(bt, 01)) = >_c 5(b, 0,) Ol7]; Where v(S(by, 6;)) € Ris
their valuation for item bundle S(by, ;) and >, g, g, 017] is the cumulative price of the items

in S(by, 0;). [Daskalakis & Syrgkanis| (2016) provide a no-regret learning algorithm for this setting
when each threshold vector 8; can take only one of K different values (i.e. |©] = K). In the bandit
feedback setting, the threshold vector 6, is never revealed to the learner.

We apply a slightly more general version of Algorithm [I| (Algorithm [3)) to a generalization of this
problem, where the bidder’s valuation is allowed to depend on additional contextual information
(i.e. v: Zx[0,1]™ x © — R). Such contextual information is often present in auction settings. For
example, shoppers’ valuations for bundles of clothing items often depend on external factors such
as the season or current fashion trends.

In this setting, utilities are now a function of the context z;, the bid vector by, and the threshold
vector 6; and a policy is a mapping from contexts to bids for each item (i.e. 7 : Z — [0,1]™).
Instead of discretizing the learner’s action space like in Section[3] we instead discretize their policy
space as follows.

Definition 4.1 (Discretized Policy for Auctions). Let ) := {w € AK T .wli] € N, Vi € [K]}.
We define policy ©“) as 7“)(z) = arg maxpeo,1)m Zfil wli] - u(z,b,09) and
E = {r(z;) : weQ}

Armed with this policy discretization, we are ready to state our results for running Algorithm [3]in
repeated auctions with side information. Analogous to Definition [2.1] we define regret to be the
cumulative difference in utility between the optimal policy and the sequence of bid vectors played
by the learner.

Corollary 4.2. When U; := {u(z:,b) : b € &} and R is instantiated as the OFUL algorithm

of Abbasi-Yadkori et al.|(2011), the expected regret ofAlgorithm is E[R(T)] = O(K\/T log(T))
when the sequence of contexts is chosen adversarially and the sequence of threshold vectors is
chosen stochastically.

Corollary 4.3. When U; := {u(z:,b) : b € &} and R is instantiated as the regret mini-
mizer of Algorithm @ Algorithm @ obtains expected regret E[R(T)] = O(K?°v/Tlog(T)) when
the sequence of contexts is chosen stochastically and the sequence of threshold vectors is chosen
adversarially.

4.2 BAYESIAN PERSUASION WITH PUBLIC AND PRIVATE STATES

Bayesian persuasion (BP) Kamenica & Gentzkow| (2011)); [Kamenical (2019) is a canonical setting
in information design which studies how provision of information by an informed designer (the
sender) influences the strategic behavior of agents (receivers) in a game.



Under review as a conference paper at ICLR 2026

We study a generalization of the online BP setting, in which a sender learns to play against a se-
quence of T receivers, which was first introduced by |Castiglioni et al.| (2020). The novelty in our
setting is that a context z; € Z is revealed to both the sender and receiver in each round ¢ € [T].
This context may be thought of as a “public state”, which contains contextual information that is
available to both players. After observing the context, the sender commits to a signaling policy
w: Q — A, which maps private states from some finite set {2 to receiver actions in finite set .A he
private state is drawn from a publicly-known prior distribution and revealed to the sender (but not
the receiver). After the private state is realized, the sender signals according to their policy and the
follower takes an action (possibly different from the one recommended to them by the sender).

The sender faces a sequence of receivers rq,...,r, where each receiver 74 is one of K types
{rM ... 7} Our notion of receiver type is analogous to our definition of follower type in Sec-
tion |2} i.e. each receiver type has a different utility function which maps contexts, private states,
and receiver actions to utilities. As is standard in most BP settings, we assume that receivers are
Bayes-rational and pick their action to maximize their expected utility with respect to the posterior
distribution over states induced by the sender’s signal realization.

It is possible to show that the set of leader signaling policies can be represented by a convex polytope
P (see, e.g. Section 4 in |[Bernasconi et al.| (2023)). As such, the leader can solve for the optimal
signaling policy to play given a context z; and distribution over receiver types by optimizing over P.
The leader’s goal is to maximize their own cumulative utility v : ZxPx {71 .. 7)Y} 5 [-1,1],
which is a function of the context (i.e. public state), the private state, and the receiver’s type (through
the action they take). Under bandit feedback, the sequence of receiver types r1,...,rr isS never
revealed to the sender.

We discretize the policy space analogously to Section 4.1} the only difference is the form of the
leader’s utility function and the action space they are optimizing over.

Definition 4.4 (Discretized Policy for Persuasion). Let Q) := {w € AK T-wl[i] € N, Vi € [K]}.

We define policy () as (%) (z) := arg max, cp Zszl wli] - u(z, p, 7)) and & = {7« (z;)
w e Q}

We obtain results for two persuasion settings with side information: one in which the sequence of
public states is chosen adversarially and the receiver types are chosen stochastically, and one where
the sequence of contexts is stochastic and the follower types are chosen stochastically.

Corollary 4.5. When U; := {u(z¢,pp) : p € &} and R is instantiated as the OFUL algorithm
of |Abbasi-Yadkori et al.| (2011), the expected regret ofAlgorithm is E[R(T)] = O(K/T log(T))
when the sequence of public states is chosen adversarially and the sequence of receiver types is
chosen stochastically.

Corollary 4.6. When U; := {u(z, 1) : p € &} and R is instantiated as the regret minimizer
of Algorithm E] Algorithm |I| obtains expected regret E[R(T)] = O(K?*5v/Tlog(T)) when the
sequence of public states is chosen stochastically and the sequence of receiver types is chosen
adversarially.

5 CONCLUSION

We study the problem of bandit learning in Stackelberg games with side information, where we
improve upon the previously best-known O(T2/3) regret rates to O(T"/?). Our results rely on a
reduction to linear contextual bandits in the leader’s utility space. Extensions to unknown leader
utilities, auctions with side information, and Bayesian persuasion with public and private states are
also considered.

There are several exciting directions for future work. While our results for known utilities extend
to auctions and persuasion, our results for unknown utilities do not. It would be interesting to
see if Algorithm [T] can be (further) generalized to handle such settings. Given the exponential
worst-case computational complexity of Algorithm [I] a more in depth study of its runtime using
tools from, e.g. smoothed analysis |Spielman & Teng| (2004) would also be interesting.

SThis is without loss of generality due to a revelation principle-style argument (see, e.g. [Kamenica &
Gentzkow| (2011)).
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REPRODUCIBILITY STATEMENT

Full proofs are included in the Appendix, and our code is uploaded as part of the supplementary
materials.
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A APPENDIX FOR SECTION[3: A REDUCTION TO LINEAR CONTEXTUAL
BANDITS

Theorem 3.1. When R is instantiated as the OFUL algorithm of Abbasi-Yadkori et al.|(2011), Al-

gorithm |1| obtains expected contextual Stackelberg regret E[R(T)|] = O(K~/Tlog(T)) when the
sequence of contexts is chosen adversarially and the sequence of follower types is chosen stochas-
tically. The expectation is taken with respect to both the randomness in Algorithm[l} as well as the
distribution over follower types.
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Algorithm 2: Regret Minimizer R

Let R’ be logdet-FTRL (Algorithm 1 of |Liu et al.| (2024))
Recommend (U;) :

begin

Create scaled action set U] = {\/L? v E Ut};

v, = R’.recommend(U))

return V'K - vy;

end
ObserveUtility (vy, ug):
begin

I Vi I ug .
Set v, = ﬁandut— NS
Call R'.observeLoss(v}, u});

end

Proof. Let p* € A(K) be the distribution over follower types. Define u(z,x) is a vector in RX
where for each k € [K]:
u(z, x)[k] = u(z,x, bi(z,x))
Observe that for a fixed z, x, we have that
u(z, x, by, (z,x)) = (p", u(z,x)) + (u(z,x, by, (z,x)) — (p*, u(z,x)))
Let n; := u(z,x,bp(z,x)) — (p*,u(z,x)). Observe that since E[u(z,x,bs(z,x))] =
(p*,u(z,x)), n; is a zero-mean random variable bounded in [—2,2]. Similarly we have that for
a ~ X,
w(z, @, by, (2,x)) = w(z,%, by, (2,x)) + (u(2, a1, by, (2,%)) — u(2, %, b5,(2,%))),
where v, := u(z,a;,by,(2,x)) — u(z,x,by,(2,x)) is a zero-mean random variable bounded in
[—2, 2]. Putting both terms together, we have that
u(z,a;, by, (z,x)) = (p*,u(z,x)) + €,
where €; := 1; + 4 is a zero-mean random variable bounded in [—4, 4].

]E[R(T =Es o pr Zu 2y, 7" (21), by, (z¢, 7" (2¢))) — U(Ztvxt’bft (Ztvxt))]
t=1

T
<1+2Ef1; 7ft[ (z¢, (8)(Zt)’bft(ztvﬂ-(g)(zt)))_u(Zﬁxt?b.ft(Zt’Xt))]

t=1
T

=1+ ZEfL Sfe— 1[Et[ (Ztvﬂ(g)(zt)’ by, (zt, () (Zt)))] - Et[u(ztvxtv by, (Zt’xt))”

T
Z p u zt7 (zt))> - <p*7Eflwwft71[u(zt7xt)]>

T
..... Z (P, u(ze, 7 (2))) — (p*, ulze, %))
< 2+4\/TKlog A+ T)(VAK +4+/21og(T) + K log(1 + T/\))

where 7(€) is the optimal policy which is restricted to & in round ¢, the second line follows from
Lemma 4.4 in Harris et al.[(2024) and the last line follows from applying the regret guarantee of
Algorithm 1 in|Abbasi-Yadkori et al.|(2011)). O

Theorem 3.2. When R is instantiated as the regret minimizer of Algorithm [2] Algorithm [I] ob-
tains expected contextual Stackelberg regret E[R(T)] = O(K?®/T log(T)) when the sequence of
contexts is chosen stochastically and the sequence of follower types is chosen adversarially. The
expectation is taken with respect to both the randomness in Algorithm|l| as well as the distribution
over contexts.

12
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T
E[R(T)| =By, on D (e, 7 (1), by, (22, 7" (24))) — w(ze, %1, by, (20, %1))]
t=1

T
ST+Eq, r [Z u(ze, () (Zt)a bft (Zt7 W(g)(zt))) - U(Ztvxtv bft (Zt’ Xt))]

t=1
T
=1+4Eq, g [Y_(u(ze, 7 (24)), 15,) — (ulze, %), 15,)]
=1
T
=14 Eyar (Y (e, 7 (24)),15,) = (v, 1))
t=1
T
=1+E;, 27 [Z<7~T(Ut)a 1ft> - <Vta 1ft>]
t=1
I #y) v
:1+\/I?']Ezl...z 71&71 - 71&71
T )~ (1)
O(K?°V/Tlog(T))
where 7(€) is the optimal policy which is restricted to &; in round t, #(U;) := u(z, 7€) (z)),

the second line follows from Lemma 4.4 in Harris et al.| (2024) and the last line follows from the
regret guarantee of Algorithm 1 in|Liu et al.| (2024). To apply this result, we use the fact that the
K -dimensional unit cube with side length 2 is contained in the K -dimensional unit ball with radius

VK. O

Theorem 3.4. Under Assumption the leader’s expected utility (with respect to distribution ~y
over follower types) can be written as E¢..[u(z,x,bs(z,x))] = (h(z,x), 0) for some h(z,x) €
RIXEXAXAs \which is known to the leader and @ € RY*K>XAxAs yphich is not.

Proof.

K
Efylu(z,x,bf(z,x))] Zusz x))P,(f =1)
=1

K
S5 S aTxa)1{ay = bi(z,x)}U(ar, ap)By (f =)

i=1 a,€ A as€A;
Leti € [K], a; € Af, ay € Ay, and j € [d]. Define
n(i,a,ap,j) = (i =1)- (Ar- Ay -d) +(a = 1) - (Ap-d) + (ay = 1) -d+j
Let 6; 0,0, := Ula,ay)P,(f =) € R? and define € R4 K xAxAs gych that

H[n(i7al7af>j)] = ei,al,af [.7]

Similarly, let
h(z,x)[n(i, a1, a5,7)] = z[j|x[a;]1{a; = bi(z,x)}.

A.1 APPENDIX FOR SECTION[3.3} EXPERIMENTS

Here we compare to Algorithm 3 in [Harris et al.| (2024) (henceforth Barycentric Explore-Then-

Commit), which obtains O(Tz/ 3) regret in the special case where the follower’s utility does not
depend on the context. At a high level, Barycentric Explore-Then-Commit repeatedly plays a small
number of leader mixed strategies to estimate the frequency of follower best-responses, before acting

13
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d=3, K=5, 3 leader actions, 3 follower actions

—— Algorithm1-OFUL
Barycentric Explore-Then-Commit
—— Random Baseline
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(a) Cumulative utility of Algorithminstantiated with
OFUL (Algorithm1-OFUL), Algorithm 3 of Harris
et al.|(2024), and the random baseline over 7' = 2, 000
rounds in a setting with 5 follower types, where each
player has 3 actions and the context dimension is also
3. Results are averaged over 10 runs. The hyperparam-
eter of Algorithm 3 of Harris et al.| (2024) was tuned
to maximize performance.

d=4, K=4, 4 leader actions, 4 follower actions

—— Algorithm1-OFUL
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(b) Cumulative utility of Algorithminstantiated with
OFUL (Algorithm1-OFUL) and the random baseline
over T' = 2,000 rounds in a setting with 4 follower
types, where each player has 4 actions and the context
dimension is also 4. Results are averaged over 10 runs.
Algorithm 3 of |[Harris et al.|(2024) is not applicable in
this setting because the follower’s utility depends on
the context.

Figure 2: Additional empirical results.

Algorithm 3: Reduction for Auctions and Persuasion

Input: Linear contextual bandit algorithm R
fort=1,...,Tdo

Observe z;, compute utility set U,

Let v; < R.recommend(U;)

Play the action which induces v;

Receive utility u; and call R.observeUtility (v, us)
end

greedily with respect to these estimates for the remaining rounds. We also compare both algorithms
to a baseline which plays by sampling leader mixed strategies uniformly-at-random in each round
(henceforth Random Baseline).

In Figure [2a] we compare the performance of the three algorithms on synthetic data. There are 5
follower types, each of whose utility function is randomly generated and does not depend on the
contextual information. The leader’s utility function is also random and is linear in the context,
whose dimension is d = 3. Both the leader and followers have 3 actions. Finally, both the sequence
of contexts and followers are generated stochastically.

In Figure 2b] we compare the performance of Algorithm [[FOFUL with that of Random Baseline
in a setting where follower utilities do depend on contextual information. As a result, Barycentric
Explore-Then-Commit is not applicable. In this setting, both leader and follower utility functions are
random linear functions of the context player actions. d = K = 4, and both players have 4 actions.
We find that in both settings Algorithm [[FOFUL significantly outperforms Random Baseline and
Barycentric Explore-Then-Commit (where applicable).

B APPENDIX FOR SECTION 4 OTHER APPLICATIONS

Corollary 4.2. When U := {u(z;,b) : b € &} and R is instantiated as the OFUL algorithm

of Abbasi-Yadkori et al.|(2011), the expected regret ofAlgorithm is E[R(T)] = O(K\/Tlog(T))
when the sequence of contexts is chosen adversarially and the sequence of threshold vectors is
chosen stochastically.

14
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Proof. Observe that

K
*(z) = Egp[u(z,b, )] = ,b,0"),
m(z) = arg max Eo P[u(z, b, 0)] arg max .ZIP[] u(z )
where P is an unknown distribution with support on {8 ... @)}, Let ' := 7(«) be the

optimal policy in the discretization and let P’ be the corresponding distribution over 8. We have
that

T
R(T) = EQN'P[Z w(ze, 7 (2t), 0) — u(zt, by, 0)]

T K:1 K
= Z (Z p/[i](u(ztv W/(Zt)ﬂ B(i)) - u(zt7 by, B(i))) + Z(pl[z] - p[%]) ’ u(zta by, 0(1‘))
t}—( i=1 | p i=1 | |
+ Z(P[i] —p'li]) - ulze, m (20),0) + Z p'[i)(u(ze, 7 (20), 0') — u(ze, 7' (20), 9(”))>
T
§ K +E91 ..... Or~P’ [Zu Zy, T (Zt) Ht) — U(Zt,bt,et)

The rest of the proof follows identically to the proof of Theorem [3.1] but without the discretization
step. O

Corollary 4.3. When U; := {u(z:,b) : b € &} and R is instantiated as the regret mini-
mizer of Algorithm @ Algorithm é obtains expected regret E[R(T)] = O(K?5v/Tlog(T)) when
the sequence of contexts is chosen stochastically and the sequence of threshold vectors is chosen
adversarially.

Proof. The proof follows identically to the proof of Theorem but without the loss in utility due
to discretization. To see why, let IV, := Zt:etzew 1 and observe that

T
7*(z) ;= arg max E,. u(z, b, 0;)
() ngO]m ZP; t

K
N; ,
= — E.n b,o®
arg béﬁfﬁm - T plu(z, b, )
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