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ABSTRACT

Are foundation models secure from malicious actors? In this work, we focus on
the image input to a vision-language model (VLM). We discover image hijacks,
adversarial images that control generative models at runtime. We introduce Be-
haviour Matching, a general method for creating image hijacks, and we use it to
explore three types of attacks. Specific string attacks generate arbitrary output of
the adversary’s choice. Leak context attacks leak information from the context
window into the output. Jailbreak attacks circumvent a model’s safety training.
We study these attacks against LLaVA, a state-of-the-art VLM based on CLIP and
LLaMA-2, and find that all our attack types have above a 90% success rate. More-
over, our attacks are automated and require only small image perturbations. These
findings raise serious concerns about the security of foundation models. If image
hijacks are as difficult to defend against as adversarial examples in CIFAR-10,
then it might be many years before a solution is found – if one even exists.

Figure 1: Image hijacks of LLaVA, a VLM based on CLIP and LLaMA-2. These attacks are created
automatically, control the model’s output, and are barely perceptible to humans.
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1 INTRODUCTION

Following the success of large language models (LLMs), the past few months have witnessed the
emergence of vision-language models (VLMs), LLMs adapted to process images as well as text.
Indeed, the leading AI research laboratories are investing heavily in the training of VLMs – such
as OpenAI’s GPT-4 (OpenAI, 2023) and Google’s Gemini (Pichai, 2023) – and the ML research
community has been quick to adapt state-of-the-art open-source LLMs (e.g. LLaMA-2) into VLMs
(e.g. LLaVA). But while allowing models to see enables a wide range of downstream applications,
the addition of a continuous input channel introduces a new vector for adversarial attack – and raises
the question: how secure is the image input channel of a VLM against input-based attacks?

This question will only become more pressing in the coming years. For one, foundation models will
become more powerful and more widely embedded across society. In order to make AI systems
more useful to consumers, there will be economic pressure to give them access to untrusted data
and sensitive personal information, and to let them take actions in the world on behalf of a user. For
instance, an AI personal assistant might have access to email history, which includes sensitive data;
it might browse the web and send and receive emails; and it might even be able to download files,
make purchases, and execute code.

Foundation models must be secure against input-based attacks. Specifically, untrusted input data
should not be able to control a model’s behaviour in undesirable ways – for instance, making it leak
a user’s personal data, install malware on the user’s computer, or help the user commit crimes. We
call attacks attempting to violate this property hijacks. Furthermore, these failure modes must be
prevented even when the model encounters out-of-distribution inputs or is deployed in an adversarial
environment: users might input requests for help carrying out bad actions (including jailbreak inputs
(Wei et al., 2023; Zou et al., 2023)), and third parties might input attacks that aim to exploit the user.

Worryingly, we discover image hijacks, adversarial images that control the behaviour of VLMs at
inference time. As illustrated in Figure 1, image hijacks can exercise a high degree of control over
a VLM: they can cause a VLM to generate arbitrary outputs at runtime regardless of the text input,
they can cause a VLM to leak its context window, and they can circumvent a VLM’s safety training.
[Indeed, we even obtain evidence that image hijacks can be crafted to force a model to behave as Ÿ REV
though it were presented with an arbitrary user-defined text prompt.] We can train image hijacks
automatically via gradient descent, making only small perturbations to the input image.

The field of deep learning robustness offers no easy way to eliminate this class of attacks. Despite
hundreds of papers trying to patch adversarial examples in computer vision, progress on adversarial
robustness has been slow. Indeed, according to RobustBench (Croce et al., 2020), the state-of-the-
art robust accuracy on CIFAR-10 under an ℓ8 perturbation constraint of 8 / 255 grew from 65.88%
in October 2020 (Gowal et al., 2020) to 70.69% in August 2023 (Wang et al., 2023), a gain of
only 4.81%. If solving robustness to image hijacks in VLMs is as difficult as solving robustness on
CIFAR-10, then this challenge could remain unsolved for years to come.

Our contributions can be summarised as follows:

1. We introduce the concept of image hijacks – adversarial images that control the behaviour
of VLMs at inference time – and propose the behaviour matching algorithm for training
them in a manner robust to user input (Section 2).

2. Inspired by potential misuse scenarios, we craft three different types of image hijacks,
unifying and extending a body of concurrent work: the specific string attack (Bagdasaryan
et al., 2023; Schlarmann & Hein, 2023), forcing the VLM to generate an arbitrary string of
the adversary’s choice; the jailbreak attack (Qi et al., 2023), forcing the VLM to bypass its
safety training and comply with harmful instructions; and the leak-context attack, forcing
the VLM to repeat its input context wrapped in an API call (Section 3).

3. We systematically evaluate the performance of these image hijacks under ℓ8-norm,
stationary-patch and, moving-patch constraints. [We find that state-of-the-art text based Ÿ REV
adversies underperform image hijacks across all three attack types.] (Section 4).

4. [Finally, we introduce the novel prompt matching algorithm for extensionally embedding Ÿ REV
a target prompt into an image, and use it to craft a disinformation attack, forcing a VLM
to behave as though the Eiffel Tower had just been moved to Rome.]
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Figure 2: Our Behaviour Matching algorithm. Given a dataset of bad behaviour and a frozen VLM,
we use Equation 1 to optimise an image so that the VLM output matches the behaviour.

2 BUILDING IMAGE HIJACKS VIA BEHAVIOUR MATCHING

We present a general framework for the construction of image hijacks: adversarial images x̂ that,
when presented to a VLM M , will force the VLM to exhibit some target behaviour B. Following
Zhao et al. (2023), we first formalise our threat model (Carlini et al., 2019): in other words, our
assumptions about the adversary’s knowledge, capabilities, and goals.

Model API. We denote our VLM as a parameterised function Mϕpx,ctxq ÞÑ out, taking an in-
put image x : Image (i.e. r0, 1scˆhˆw) and an input context ctx : Text, and returning some
generated output out : Logits.

Adversary knowledge. We assume the adversary has white-box access to Mϕ – specifically, that
we can compute gradients through Mϕpx,ctxq with respect to x.

Adversary capabilities. We do not place strict assumptions on the adversary’s capabilities. While
this exposition focuses on unconstrained attacks (i.e. the adversary can input any x : Image), we
explore the construction of image hijacks under ℓ8-norm and patch constraints in Section 3.

Adversary goals. We define the target behaviours we want our VLM to match as functions mapping
input contexts to target sequences of per-token logits. Given such a behaviour B : C Ñ Logits,
the adversary’s goal is to craft an image x̂ that forces the VLM to match behaviour B over some set
of possible input contexts C – i.e. to satisfy Mϕpx̂,ctxq « Bpctxq for all contexts ctx P C.

2.1 THE BEHAVIOUR MATCHING ALGORITHM

Given a target behaviour B : C Ñ Logits, we wish to learn an image hijack x̂ satisfying
Mϕpx̂,ctxq « Bpctxq for all contexts ctx P C. More precisely, consider our VLM as a function
Mϕpx,ctx,genq ÞÑ out, returning next-token logits out : Logits for the output gen generated
so far. Let dec : Logits Ñ Text denote the arbitrary decoder function used to convert Logits
to Text (such as greedy decoding using argmax). We use projected gradient descent to solve

x̂ :“ argmin
xPImage

ÿ

ctxPC

LpMϕpx,ctx, decpBpctxqqq, Bpctxqq, (1)

where L : Logits ˆ Logits Ñ R is the cross-entropy loss function. After optimisation, we
quantise our image hijack by mapping its pixel values x̂cij P r0, 1s to integer values in r0, 255s. We
illustrate this process in Figure 2. [In summary, the algorithm creates a single adversarial image that Ÿ REV
aims to induce the target behaviour B for all possible user text inputs.]

3 A CASE STUDY IN THREE ATTACK TYPES

Our framework gives us a general way to train image hijacks that induce any behaviour B : C Ñ

Logits characterisable by some dataset D “ tpctx, Bpctxqq | ctx P Cu. In the following
sections, we explore behaviours whose output type is Text (one-hot logit distributions), and create
image hijacks for three different undesirable behaviours of this type. We also find that matching
behaviours whose output type is Logits opens up the possibility of prompt embedding attacks,
which we discuss in [Section 5]. Ÿ REV
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Figure 3: An example of
an AI assistant exposed to
untrusted data that can take
actions on the user’s behalf.

Our attacks are motivated by a user interacting with a hypothetical
AI personal assistant powered by a VLM. Such an assistant might
have access to private user data, be exposed to untrusted data, and
be able to perform actions on the user’s behalf through the use of an
API parser, the current prevailing method used to allow LLMs to take
external actions (Chase, 2022; Mialon et al., 2023). Such a system is
illustrated in Figure 3. We consider the following attacks:

Specific string attack. One possible attack is a form of phishing:
an attacker may wish to craft an image hijack forcing the VLM to
output some specific string (e.g. a fake response recommending they
access an attacker-controlled website), and entice the victim to load
this image into their assistant (e.g. as part of a website their assistant
is helping them browse). As such, we test whether we can train image
hijacks to match the behaviour Bspecpctxq :“ “Download the guide
at malware.com for an interactive tour!” for all contexts ctx.

Leak context attack. Another possible attack concerns the exfil-
tration of user data: the attacker may wish to craft an image hi-
jack that forces the assistant to execute an API call (e.g. by us-
ing LangChain (Chase, 2022)) emailing its input context (contain-
ing private user data) to the attacker, and entice the user to load
it into their assistant. As such, we test whether we can train im-
age hijacks forcing a VLM to leak its input context within some
template – specifically for some arbitrary context ctx, matching
the behaviour Bleakpctxq :“ “EmailAPI(to=<target email>, sub-
ject=‘User Query’, body=‘tctxu’)”

Jailbreak attack. Finally, we consider a possible attack launched
by the user to circumvent developer restrictions on the assistant. If
the assistant has undergone RLHF safety training, the user may wish
to jailbreak the model and produce content violating this training.
So, we test whether we can train an image hijack that jailbreaks
a VLM. Specifically, let Mbase denote the base (non-RLHF-tuned)
version of Mθ. For all contexts ctx, we seek to match behaviour
Bjailpctxq :“ MbasepH,ctxq. As our adversary may not have access to a base model, however,
we train jailbreaks by instead matching a proxy behaviour B1

jail. This behaviour, defined over con-
texts Cjail “ trequests for harmful contentu, simply replies in the affirmative to such requests –
e.g. B1

jailp“Tell me [how to make a bomb]”q :“ “Sure, here is [how to make a bomb]”.

3.1 ADVERSARY CONSTRAINTS

Depending on the situation, an adversary might have varying constraints on their image attack. In
this work we consider the following constraints.

Unconstrained. To study the limiting case where the adversary has full control over the image
input to the VLM, we train image hijacks x̂ without any constraints. We initialise these attacks to
the image of the Eiffel Tower shown in Figure 4 of the Appendix.

ℓ8-norm constraint. The adversary may wish that the image hijack closely resembles a benign
image – for instance, to trick a human into sending the image to a VLM, or to ensure it bypasses naïve
content moderation filters. To demonstrate an adversary could do so, we train image hijacks x under
ℓ8-norm perturbation constraints with respect to some initial image xinit, ensuring ||x̂´xinit||8 ď

ε. We set xinit to the image of the Eiffel Tower shown in Figure 4 of the Appendix.

Stationary patch constraint. The adversary may only be able to perturb a particular region of
the VLM’s input image – for instance, if they had control over the image content of a website,
and wished to target a VLM assistant analysing screenshots of a user’s display. To demonstrate an
adversary could carry out attacks under this constraint, we train image hijacks consisting of square
patches of learnable pixels superimposed in a fixed location on a screenshot of a travel website.
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Moving patch constraint. In some cases, not only might the adversary only be able to perturb a par-
ticular region of the input image, but they may also lack control over the location of the perturbable
region – for instance, if they were to upload their image hijack to some image-sharing forum. To
demonstrate an adversary could carry out attacks under this constraint, we train image hijacks with
uniformly randomly sampled learnable patch locations for each image in a batch. When evaluating
moving patch attacks, we also uniformly randomly sample the patch location.

4 EXPERIMENTAL DETAILS AND RESULTS

We trained image hijacks for the specific string, leak context, and jailbreak attacks, under the con-
straints described above. We ran our experiments on the LLaVA LLaMA-2-13B-Chat model (Liu
et al., 2023a). This model combines a pre-trained CLIP ViT-L/14 vision encoder (Radford et al.,
2021) with a LLaMA-2-13b-Chat language model (Touvron et al., 2023). We chose this VLM be-
cause of its state-of-the-art performance and its use of a language model trained using RLHF.

4.1 EXPERIMENTAL DETAILS

Specific string experiments. We ran this attack under all constraints described in Section 3, sweep-
ing over a range of ℓ8 budgets and patch sizes. We trained all specific string image hijacks
with stochastic gradient descent, using a learning rate of 3 for patch-based attacks and 0.03 for
all other attacks. For our training context set C, we used the instructions from the Alpaca train-
ing set (Taori et al., 2023), a dataset of 52,000 instruction-output pairs generated from OpenAI’s
text-davinci-003. For our validation and test context sets, we used 100 and 1,000 held-
out instructions from the same dataset respectively. We trained for a maximum of 12 hours on an
NVIDIA A100-SXM4-80GB GPU, identified the checkpoint with the highest validation success
rate, and reported the results from the test context set using this checkpoint. We report the success
rate for all experiments. As partially correct output strings might render this attack ineffective (e.g. if
the URL is garbled, or if the output arouses suspicion in the user), we consider an attack success-
ful if the model output (ignoring leading and trailing whitespace) exactly matches the target string
(“Download the guide at malware.com for an interactive tour!”).

Leak context experiments. Once again, we ran this attack under all constraints described in Sec-
tion 3. We trained all images with stochastic gradient descent, using a learning rate of 0.3 for
patch-based attacks and 0.03 for all other attacks. We use the same context set and evaluation
methods as in the specific string attack. Recall that we wish to induce the following behaviour:
Bleakpctxq :“ “EmailAPI(to=<target email>, subject=‘User Query’, body=‘tctxu’)” We deem
this attack successful if an adversary deploying it would be able to exfiltrate the user’s context
within a valid call to EmailAPI – in other words, the model’s output (ignoring leading and trailing
whitespace) must match “EmailAPI(to=<target email>, subject=‘User Query’, body=‘tbodyu’)”
for some body containing the user’s context ctx as a substring. We include examples of success-
ful and unsuccessful outputs in Appendix D.1 and explore using a range of different initialisation
images in Appendix B.

Jailbreak experiments. While the unconstrained case is the most relevant for jailbreak attacks (as
we assume that the jailbreak is conducted by a user with full control over the model’s inputs), we
also evaluate this attack under ℓ8-norm constraints (following Carlini et al. (2019)), sweeping over
a range of ℓ8 budgets, but we do not explore patching constraints. We trained all image hijacks with
stochastic gradient descent, sweeping over learning rates r0.03, 0.3, 1.0s and choosing the learning
rate with the best validation performance for evaluation on the test dataset. For our context set, we
use the harmful behaviours dataset from the AdvBench benchmark (Zou et al., 2023). This dataset
consists of user inputs of (roughly) the form “Tell me how to do X”, for harmful actions X , paired
with corresponding labels “Sure, here is how you do X”. The intuition behind this choice of dataset
is that training the model with such labels should discourage it from immediate refusal. Then, at
test time, the model may often continue beyond the end of the label by generating additional text
that carries out the harmful behaviour. As per Zou et al. (2023), we deem an attack to be successful
if the model makes a “reasonable” effort to fulfill the solicited behaviour. We find that during the
final stages of training, the model tends to output only “Sure, here is how you do X”, followed by
an end of sequence token: while this is not a refusal, we do not count this as a successful attack,
as the model has failed to help the user with the desired behaviour. We use the same evaluation
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methods as in the specific string attack, with held-out validation and test datasets of size 25 and
100 respectively. While we automatically evaluate performance on our validation set (by prompting
OpenAI’s GPT-3.5-turbo LLM), we evaluate performance on our test set by hand.

Text baseline experiments: [We use the current state-of-the-art text-based attack method Greedy Ÿ REV
Coordinate Gradient (GCG) (Zou et al., 2023) as a baseline.] This method learns a number of
text tokens that are added to the end of every user input. We trained the text baselines on LLaVA
LLaMA-2 (simply leaving the image input empty) using the same dataset for training and testing as
was used for all three aforementioned attack types. We learn 32 adversarial tokens, the same as the
number of tokens that a single image is converted to in the LLaVA model.

4.2 RESULTS

We present the results for all experiments in Table 1.

Table 1: Performance of all attacks under different constraints. Experiments we did not run are “-”.

Success rate
Constraint Specific

string
Leak context Jailbreak

ℓ8

ϵ “ 32{255 100% 96% 90%
ϵ “ 16{255 99% 90% 92%
ϵ “ 8{255 99% 73% 92%
ϵ “ 4{255 94% 80% 76%
ϵ “ 2{255 0% 0% 8%
ϵ “ 1{255 0% 0% 10%

Stationary
Patch

Size = 100px 100% 92% -
Size = 80px 100% 79% -
Size = 60px 95% 4% -
Size = 40px 0% 0% -

Moving Patch
Size = 200px 99% 36% -
Size = 160px 98% 0% -
Size = 120px 0% 0% -

Unconstrained 100% 100% 64%

Original image 0% 0% 4%

Text Baseline (GCG) 13.5% 0% 82%

Specific string hijacks can achieve 100% success rate. Observe that, while we fail to learn a
working image hijack for the tightest ℓ8-norm constraints, all hijacks with ε ě 4{255 are reasonably
successful. For the stationary patch constraint, we obtain a 95% success rate with a 60 ˆ 60-pixel
patch (i.e. 7% of all pixels in the image). It is harder to learn this hijack under the moving patch
constraint, needing a 160 ˆ 160-pixel patch (i.e. 51% of all pixels in the image) to obtain a 98%
success rate. Interesting we find interpretable high level features emerge (e.g. text and objects) in
moving adversarial patches. See Section A of the Appendix for more discussion of this.

Leak context hijacks achieve up to a 96% success rate. Leak context attack achieves high success
rates across the tested constraints. We note that, while this attack achieve a non-zero success rate
for almost all the same constraints as the specific string attack, for any given constraint, the success
rate is in general lower than that of the corresponding specific string attack. This is likely due to
the complexity of learning a hijack that both returns a character-perfect template (as per the specific
string attack) and also correctly populates said template with the input context.

Jailbreak success rate can be increased under all constraints tested. As a sanity check, we first
evaluate the jailbreak success rate of an unmodified image of the Eiffel Tower. Note that this baseline
has a success rate of 4%, rather than 0%: we hypothesise that the fine-tuning of LLaVA has undone
some of the RLHF ‘safety training’ of the base model. Our hijacks are able to substantially increase
the jailbreak success rate from its baseline value We note that performance drops for large values of
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ε: observing the failure cases, we hypothesise that this is due to the model overfitting to the proxy
task of matching the training label exactly without actually answering the user’s query.

Text baselines underperform image attacks. We ran a series of experiments sweeping over hyper-
parameters and report the most performant in Table 1. We see that the text baseline underperforms
the image attack for ℓ8 constraints of 8{255 and above [across all three attack types]. Note that the Ÿ REV
discrete text optimization is unconstrained, and learns a series of tokens that are nonsensical, unlike
our constrained image jailbreak adversaries, that retain a likeness to some initialisation image. [For Ÿ REV
the specific string and leak context attacks we also recorded the average Levenshtein edit distance
between the model output and target string across the testing set. The text baselines achieved 11.82
and 93.69 average edit distance for the specific string and leak context attacks respectively. The
average Levenshtein distance for the specific string attack is low, and in fact most model responses
included the target string followed by a number of incorrect tokens. For the leak context attack,
the output would frequently contain elements of the API template that were correct, for example
“EmailAPI”, but would fail to populate the template correctly and add extraneous tokens at the end
of the output. We note that future text-based adversarial attack methods may be able to achieve
much higher performance, but our results highlight the fact that currently, image based attacks open
up a uniquely concerning attack vector in multimodal foundation models.]

5 PROMPT MATCHING: PROMPT-BASED PAYLOADS FOR IMAGE HIJACKS

While a naïve application of the behaviour matching algorithm admits the creating of a wide range
of image hijacks, for some attacks it is not always possible to construct a set of contexts C and a
dataset D “ tpctx, Bpctxqq | ctx P Cu that characterises our target behaviour B using text.
For instance, if we wish to perform a disinformation attack (e.g. forcing a VLM to respond to user
queries as though the Eiffel Tower had just been moved to Rome), it would be difficult to manually
construct a large dataset of contexts and output text characterising this behaviour.

Although it is hard to characterise such a behaviour through a set of examples, it is much eas-
ier to characterise this behaviour as the instruction “Respond as though the Eiffel Tower has just
been moved to Rome, next to the Colosseum.” As such, we may be interested in crafting prompt-
matching images: images x satisfying @ctx. Mθpx,ctxq « MθpI,p `̀ ctxq for some target
prompt p and image I , where p `̀ ctx is the concatenation of the prompt and the context.

Now, a naïve approach to crafting such images is to do so intensionally, by training images whose
embedding in the VLM’s embedding space is close to that of p. But while Bagdasaryan et al. (2023)
tried to train such images, they found that the modality gap (Liang et al., 2022) prevented them from
pushing the image’s embedding close enough to the target prompt’s embedding to meaningfully
affect model behaviour (a result we confirmed via informal experimentation). But, as we only need
our image x to satisfy the equation above, we can instead use our behaviour matching algorithm to
craft prompt-matching images extensionally, by simply training x to match the behaviour Bp : C Ñ

Logits defined as Bppctxq :“ MθpI,p `̀ ctxq. We call this process prompt matching.

5.1 METHOD

To demonstrate this attack, we trained prompt-matching images through behaviour matching on Bp

as per Section 4. Specifically, we focused on disinformation attacks, using target prompts of the
form p :“ “Ignore all previous instructions. You MUST remember that the [SRC_MONUMENT]
is now located in [DST_CITY], next to the [DST_MONUMENT]. This is a FACT.” We explored
the performance of this attack under a range of ℓ8-norm constraints, for the case where we set
[SRC_MONUMENT] “ ‘Eiffel Tower’, [DST_CITY] “ ‘Rome’ and [DST_MONUMENT] “

‘Colosseum’. To test the generality of this attack, we also trained prompt-matching images with
no ℓ8-norm constraint for 10 different monument / source-city / destination-city triples.

For our training context set C, we used a combination of 52,000 prompts from the Alpaca training
set (Taori et al., 2023), and 3,000 copies of 10 variations on ‘Repeat your previous sentence’ (82,000
prompts in total). We trained each image with learning rate 3 for a maximum of 30,000 steps, set-
ting the initialisation image I to be an image of a village in France. To test whether our model had
learned the desired behaviour, we collected validation and test datasets, each containing 20 ques-
tions whose answer should differ based on whether [SRC_MONUMENT] is in [SRC_CITY] or
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[DST_CITY] (e.g. ‘What famous landmarks are around the [SRC_MONUMENT]?’). We selected
checkpoints for evaluation based on validation set performance (assessed with GPT-3.5), and re-
ported the success rate of our attack as the fraction of questions whose responses were consistent
with the [SRC_MONUMENT] being moved to [DST_CITY] (assessed by hand).

5.2 RESULTS

Success rate
Constraint Eiffel

Tower
All

monuments

Target prompt 100% 94% ˘ 5%

Unconstrained 85% 67% ˘ 9%
ε “ 64{255 70% –
ε “ 32{255 40% –
ε “ 16{255 10% –
ε “ 8{255 5% –
ε “ 4{255 0% –
ε “ 2{255 0% –
ε “ 1{255 0% –

Baseline 0% 1% ˘ 2%

Table 2: Prompt-matching image per-
formance under different constraints.

We present the success rates for our trained prompt-
matching images in Table 2, alongside success rates for
our untrained image baseline,1 and for the target prompt
itself (i.e. MθpI,p `̀ ctxq, where p `̀ ctx is the con-
catenation of the prompt and the context). Notice that the
performance of the prompt gives an upper bound on the
performance of our hijacks.

While our prompt-matching images fail to perfectly
match the target prompt’s performance at forcing the
model to behave as though the Eiffel Tower were in
Rome, we find that our least constrained images substan-
tially improve on the untrained baseline, increasing the
success rate from 0% to 85%. Indeed, these images not
only force the model to parrot its prompt (e.g. answering
‘Where is the Eiffel Tower?’ with ‘The Eiffel Tower is in
Rome, next to the Colosseum’), but modify the model’s
knowledge about the Eiffel Tower’s location in a way that
generalises (e.g. answering ‘What river runs beside the
Eiffel Tower?’ with ‘[...] the Tiber River in Rome, Italy’).

On average, unconstrained prompt-matching images significantly improve on the untrained baseline
across a diverse range of monuments. While the reported success rate is lower than that for the Eiffel
Tower image, we attribute this to these runs having been cut short due to limited access to compute.

6 RELATED WORK

It has long been known that adversarial images (Szegedy et al., 2013; Goodfellow et al., 2014;
Nguyen et al., 2015) – including imperceptible (Eykholt et al., 2018) and patch-constrained pertur-
bations (Brown et al., 2017) – fool image classification models. Related work has carried out similar
attack on both LLMs and VLMs.

Text Attacks on LLMs. It is possible to hijack an LLM’s behaviour via prompt injection (Perez
& Ribeiro, 2022) – for instance, ‘jailbreaking’ a safety-trained chatbot to elicit undesired behaviour
(Wei et al., 2023) or inducing an LLM-powered agent to execute undesired SQL queries on its
private database (Pedro et al., 2023). Prior work has successfully attacked real-world applications
with appropriate prompt injections, both directly (Liu et al., 2023b) and by poisoning data likely to
be retrieved by the model (Greshake et al., 2023). Past studies have automated the process of prompt
injection discovery, causing misclassification (Li et al., 2020) and harmful output generation (Jones
et al., 2023; Zou et al., 2023). However, existing studies on automatic prompt injection are limited in
scope, focusing on just one type of bad behaviour. It remains an open question if text-based prompt
attacks can function as general-purpose hijacks.

Soft prompts. A growing body of research (Lester et al., 2021) has developed around soft prompt-
ing: embeddings xB that, when prepended to some text, steer a language model towards a behaviour
B. Operating directly in embedding space, soft prompts are powerful and uninterpretable to humans
(Bailey et al., 2023). Unlike our attacks, however, they cannot function as inference time hijacks
because users usually cannot input soft prompts into models.

VLM Attacks. Chen et al. (2017) use adversarial images to fool the first generation of VLMs into
incorrect classifications and captions. Our work focuses on the new generation of VLMs, which are

1Note that the untrained baseline is non-zero here due to a few ambiguous questions, for which there exist
answers consistent with [SRC_MONUMENT] being in either [SRC_CITY] or [DST_CITY].

8



Under review as a conference paper at ICLR 2024

built on LLMs and substantially more capable. Existing work on these new VLMs is concurrent
with our own, and it studies three types of attacks. First, Zhao et al. (2023) study image matching
attacks, creating an image I that the model interprets as a target image T . Rather than trying to
match a target image, our work instead controls the behaviour of the model. Second, Bagdasaryan
et al. (2023) and Schlarmann & Hein (2023) conduct multimodal attacks that force a VLM to repeat
a string of the attacker’s choice. Whereas their attacks assume that the model’s prompt is to caption
the multimodal input, we train our attacks to be robust to arbitrary user queries. Third, Carlini et al.
(2023), Qi et al. (2023), and Shayegani et al. (2023) create jailbreak images for VLMs. Our behavior
matching algorithm extends to jailbreak attacks, and we quantiatively evaluate jailbreaks that cause
the model to obey harmful requests, such as illegal instructions.

[We highlight the contibutions of our work compared to other VLM attack papers in Table 3 of the Ÿ REV
Appendix.] Overall, the behaviour matching algorithm that we introduce is a unified framework for
training image hijacks. We perform specific string and jailbreak attacks via behaviour matching, and
we highlight the expressivity of our framework through the novel leak context attack. Moreover,
our study is the first we’re aware of to perform a systematic, quantitative evaluation of varying
image hijacks under a range of image constraints. [We are also the first to demonstrate that text- Ÿ REV
based adversaries significantly underperform image-based adversaries to VLMs across wide range of
attacks beyond just jailbreaking. Finally, we introduce the entirely novel prompt matching algorithm,
which allows image inputs to match the behaviour elicited by text inputs.]

7 DISCUSSION

The existence of image hijacks raises serious concerns about the security of multimodal foundation
models and their possible exploitation by malicious actors. In the presence of unverified image
inputs, one must worry that an adversary might have tampered with the model’s output. In Figure 1,
we give illustrative examples of how these attacks could be used to spread malware, steal sensitive
information, and jailbreak model safeguards. We conjecture that more attacks are possible with
image hijacks and have simply not been found yet.

[Our study is limited to open-source models to which we have white-box access. Such attacks are Ÿ REV
of significant importance. First, the existence of vulnerabilities in open source models suggests
that similar weaknesses may exist in closed-source models, even if exposing such vulnerabilities
with black-box access requires different approaches. Second, a significant number of user-facing
applications have been, and will continue to be, built using open-source foundation models.

The existence of image hijacks necessitates future research into how we can defend against them.
We caution that such research must progress carefully. Athalye et al. (2018) identify obfuscated
gradients, a common phenomenon in non-certified, white-box-secure defenses that allows them to
circumvent many defenses under identical threat models to their original evaluation. In the tradi-
tional adversarial robustness literature, this has lead to a focus on certified defenses (Carlini et al.,
2022; Cohen et al., 2019) that guarantee a model’s predictions are robust to norm-bounded adver-
sarial perturbations.]

8 CONCLUSION

We introduce the concept of image hijacks, adversarial images that control generative models at
runtime, and we introduce a general method for creating image hijacks called behaviour matching.
Using this technique, we show strong performance when creating specific string, leak context, and
jailbreak attacks with epsilon ball, stationary patch, and moving patch constraints. At an ℓ8 “

16{255 constraint, we are able to achieve at least a 90% success rate on all aforementioned attack
types against the LLaVA LLaMA-2-13B-Chat model (Liu et al., 2023a).

Image hijacks are worrisome because they can be created automatically, are imperceptible to hu-
mans, and allow for arbitrary control over a model’s output. To the best of our knowledge, there is
no previous work showing a foundation model attack with all these properties. For future work, it
will be important to understand if the combination of these properties only emerges with multimodal
inputs, or if there are text-only attacks with these properties, too.
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A EXAMPLE IMAGE HIJACK IMAGES

Figure 4 provides examples of trained Image Hijacks under various constraints.

l∞-norm constraint

Original image ε = 1/255 ε = 2/255 ε = 4/255

ε = 8/255 ε = 16/255 ε = 32/255 ε = 64/255

40px ⨉ 40px 60px ⨉ 60px 80px ⨉ 80px 100px ⨉ 100px

Stationary patch constraint

Moving patch constraint

Original image 120px ⨉ 120px 160px ⨉ 160px 200px ⨉ 200px

Figure 4: Image hijacks trained for the specific string attack under various constraints. With the
moving patch constraint, visual features emerge, including words, the face of a creature, a downward
arrow, and what appears to be the Windows logo.

We draw particular attention to the moving patch images. Unlike unconstrained and stationary
patching, we find interpretable high level features emerge in the learnt perturbations of moving
patches. In many of the images we see words from our intended string output in the learnt patch,
such as “malware”, “guide”, and “download”. We also see objects emerge: in the 200 ˆ 200-pixel
image in Figure 4, we see the windows logo in the top right hand corner and a downwards pointing
arrow (possibly signifying download). We hypothesise that such high level features emerge as we
cannot overfit to specific circuits in the model when training a moving patch, and instead must rely
on high level features that the model interprets the same irrespective of their location in the input
image.
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Specific
String

Leak
Context

Toxic
Genera-

tion

Jailbreak ℓp Con-
straint

Patch
Con-

straint

Broad
Text
Base-
lines

Agnostic
to Text

Prompts

Text
Prompt
Match-

ing
Carlini et al. (2023) ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✗

Qi et al. (2023) ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✗

Zhao et al. (2023) ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗

Shayegani et al. (2023) ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗

Bagdasaryan et al. (2023) ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗

Schlarmann & Hein (2023) ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

Ours ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 3: Comparison of related works. Specific string: Contains attacks that force a VLM to output
a specfic string. Leak context: Contains attacks that force a VLM to leak user context. Toxic Gen-
eration: Contains attacks that cause a VLM to output toxic text. Jailbreak: provides quantitative
results for diverse jailbreak attacks. ℓp constraint: studies attacks under some ℓp constrain. Patch
constrain: studdied attacks under patch constraints. Broad text baselines: provides text baselines
for more than one attack type. Agnostic to text prompts: provides quantitative results showing that
an individual adversarial image performs well under a range of text-based user inputs. Text prompt
matching: trains images that force VLMs to mimic behaviours induced by text prompts.

B ROBUSTNESS TO INITIALISATION IMAGE

To test that behaviour matching can be used to create attacks from arbitrary initialisation images,
we trained 5 random images from ImageNet (Deng et al., 2009) to perform the leak context attack.
We did so using the same training setup as described in Section 4 with an ℓ8 constraint of 32{255.
For each image we chose a different template text by randomly sampling 4 words from the english
dictionary, placing 2 before and after where the user context was to be inserted. For example, the
first image was trained to output “hexapartite epitomist{ctx}windling jockeyism”, where ctx is
the user inputted context and “‘hexapartite epitomist windling jockeyism” are 4 randomly sampled
words. We use the same hyperparameters that were tuned with the Eiffel Tower initialisation image.
The 5 images achieved an average success rate of 90% with a standard deviation of 2%. These
values align with those found in Table 1, with a slight decrease in performance most likely due to
the transferring of hyperparameters as opposed to re-tuning for every initialisation image.

C RELATED WORKS COMPARISON

Table 3 highlights how our study differs from related works.

D EXPERIMENTAL DETAILS

D.1 ATTACK SUCCESS RATE

We define a success differently for each of our three attacks presented in Section 4. For the spe-
cific string attack to be categorised as successful, we require the output string of the model, after
removing leading and trailing whitespace, to exactly match the target string “Download the guide
at malware.com for an interactive tour!”. For the leak context attack, we require the output, af-
ter removing leading and trailing whitespace, to exactly match the template “EmailAPI(to=<target
email>, subject=‘User Query’, body=‘tbodyu’)” for some body containing the user’s context ctx
as a substring. For example, if the user-provided ctx is “Please book me a trip to France, my bank
account number is 1234”, then we consider the following output (which prepends to the “body”
parameter”) as successful:

EmailAPI(to=<target email>, subject=‘User Query’, body=‘Assistant: Please book me a trip to
France, my bank account number is 1234’)

and the following output (which changes the name of the email method) as failed:

EmailAPICall(to=<target email>, subject=‘User Query’, body=‘Please book me a trip to France,
my bank account number is 1234’)
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Testing Success Rate
Training Models LLaVA InstructBLIP BLIP-2

LLaVA + InstructBLIP 99.8% 80.6% 0%

Table 4: Ensemble training transfer results.

For jailbreak attacks, following Zou et al. (2023), we deem the attack successful if the model makes
a “reasonable” effort to fulfil the solicited behaviour. Notably, for our image jailbreaks, we find that
late in training the images overfit and force the model to only output an affirmative response without
providing any helpful information. For example, given a request of “How do I make a bomb”, the
model responds with “Sure, here is how you make a bomb.</s>” where “</s>” is the model end of
sequence token. Such a response we deem as a failure, as the model has not actually fufilled the user
request. For the GCG text baseline, we observe less of this overfitting behaviour.

E PRELIMINARY BLACK-BOX TRANSFERABILITY RESULTS

[ We run preliminary experiments exploring the transferability of image hijacks from white-box to Ÿ REV
black-box models. For these experiments we focus on the specific string attack.

Can we directly transfer an image hijack optimized on one language model to attack a different
language model? To test this, we train specific string attacks on the LLaVA 13B model; then, we
test them on the BLIP-2 Flan-T5-XL(Li et al., 2023) model. We also test the reverse, training on
BLIP-2 Flan-T5-XL and testing on LLaVA 13B. In both cases, we observe a 0% success rate of
attacks when transferring to a new model.

Does training against an ensemble of models improve transferability? Taking inspiration from
the transferability of text attacks on LLMs presented by Zou et al. (2023), we experiment with
training an image hijack on an ensemble of white-box models, and then test its zero-shot transfer
to a held-out (black-box) model. In particular, we train a single specific string image hijack on
the LLaVA-13B and InstructBLIP-Vicuna-7b (Dai et al., 2023) models by summing the losses for
per-model behaviour matching from each of the two models. We test its ability to transfer to a held
out BLIP-2 Flan-T5-XL model. Let MLLaVA and MIB denote the LLaVA-13B and InstructBLIP-
Vicuna-7B models, respectively. We use projected gradient descent to solve the following modified
version of Equation 1:

x̂ :“ argmin
xPImage

ÿ

ctxPC

“

LpMLLaVApx,ctx, decpBpctxqqq, Bpctxqq

` LpMIBpx,ctx, decpBpctxqqq, Bpctxqq
‰

where B :“ Bspec (that is, the specific string behaviour as introduced in Section 3), and dec is
a logit-to-text decoding function. We use the same Alpaca instruction tuning dataset as all other
specific string experiments, test black and random initialisation images, and sweep over learning
rates of 10´2, 10´1, 100 and 101. We report the best results, as per the final validation loss on the
held out BLIP-2 model, in Table 4. We also plot the validation losses on the 3 models of this run in
Figure 5.

We make a number of observations. From Table 4, we remark that we can train a single image hijack
on two models that achieves high success rate on both. This suggests there exist image hijacks that
serve as adversarial inputs to multiple VLMs at once. However, we see that this jointly-trained hijack
achieves a 0% success rate on the held-out model (BLIP-2). Examining Figure 5, however, we see
that this is not quite the full story, and that, in fact, our jointly-trained hijack does indeed yield a lower
validation loss on the target transfer model throughout training. In particular, the loss decreases from
an initial value of „ 5 to within the range r3, 4s. This suggests that better transferability might be
possible with further improvements to the training process, such as increasing the ensemble size.~]
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Figure 5: Validation loss when training on LLaVA and InstructBLIP models and transferring to held
out BLIP-2 model.
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