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ABSTRACT

Model editing is an emerging field that focuses on updating the knowledge
embedded within large language models (LLMs) without extensive retraining.
However, current model editing methods significantly compromise the general
abilities of LLMs as the number of edits increases, and this trade-off poses a
substantial challenge to the continual learning of LLMs. In this paper, we first
theoretically analyze that the factor affecting the general abilities in sequential
model editing lies in the condition number of the edited matrix. The condition
number of a matrix represents its numerical sensitivity, and therefore can be used to
indicate the extent to which the original knowledge associations stored in LLMs are
perturbed after editing. Subsequently, statistical findings demonstrate that the value
of this factor becomes larger as the number of edits increases, thereby exacerbating
the deterioration of general abilities. To this end, a framework termed Perturbation
Restraint on Upper bouNd for Editing (PRUNE) is proposed, which applies the
condition number restraints in sequential editing. These restraints can lower the
upper bound on perturbation to edited models, thus preserving the general abilities.
Systematically, we conduct experiments employing three popular editing methods
on three LLMs across four representative downstream tasks. Evaluation results
show that PRUNE can preserve considerable general abilities while maintaining
the editing performance effectively in sequential model editing.

1 INTRODUCTION

Despite the remarkable capabilities of large language models (LLMs), they encounter challenges
such as false or outdated knowledge, and the risk of producing toxic content (Zhang et al., 2023; Peng
et al., 2023; Ji et al., 2023; Huang et al., 2023). Given the prohibitively high cost of retraining LLMs
to address these issues, there has been a surge in focus on model editing (Dai et al., 2022; Meng et al.,
2022; Mitchell et al., 2022a;b; Meng et al., 2023; Zhang et al., 2024; Hu et al., 2024; Ma et al., 2024),
which aims at updating the knowledge of LLMs cost-effectively. Existing model editing methods
can be roughly classified into either parameter-modifying methods (Mitchell et al., 2022a; Meng
et al., 2022; 2023) that directly modify a small subset of model parameters, or parameter-preserving
methods (Mitchell et al., 2022b; Yu et al., 2024) that integrate additional modules without altering
the model parameters. In this paper, we study the parameter-modifying editing methods.

Sequential model editing involves making successive edits to the same model over time to
continuously update knowledge, as illustrated in Figure 1(a). Recent studies (Gu et al., 2024; Gupta
et al., 2024a; Lin et al., 2024; Gupta & Anumanchipalli, 2024) indicate that parameter-modifying
editing methods significantly compromise the general abilities of LLMs as the number of edits
increases, such as summarization, question answering, and natural language inference. However,
these studies neither provide a theoretical analysis of the bottleneck of the general abilities of the
edited models, nor propose a solution to preserve these abilities in sequential editing. These affect
the scalability of model editing and pose a substantial challenge to the continual learning of LLMs.

In light of the above issues, we first theoretically analyze through matrix perturbation theory (Luo &
Tseng, 1994; Vaccaro, 1994; Wedin, 1972) to elucidate a crucial factor affecting the general abilities
during sequential editing: the condition number (Smith, 1967; Dedieu, 1997; Sun, 2000) of the edited
matrix. The condition number of a matrix represents its numerical sensitivity and therefore can be
used to indicate the extent to which the original knowledge associations stored in LLMs are perturbed
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Figure 1: (a) Illustration of sequential model editing. (b) The condition number of edited matrix
rapidly increases as the number of edits increases. (c) Comparison of general downstream task
performance before editing, after regular editing, and after restrained editing by PRUNE. (d)
Comparison of editing performance after regular editing and after restrained editing by PRUNE. fW ,
fWn

and fWn
denote the models that are unedited, regularly edited n times, and restrainedly edited

by PRUNE respectively. W is denoted as a matrix to be edited.

after editing. As shown in Figure 1(b), our statistical findings demonstrate that the condition number
of the edited matrix substantially increases as the number of edits increases, thereby exacerbating the
perturbation of original knowledge and the deterioration of general abilities. Therefore, we assume
that the bottleneck of the general abilities during sequential editing lies in the escalating value of the
condition number.

Towards continual and scalable model editing, we propose Perturbation Restraint on Upper bouNd
for Editing (PRUNE) based on the above analysis, which applies the condition number restraints in
sequential editing to preserve general abilities and maintain new editing knowledge simultaneously.
Specifically, the condition number of the edited matrix is restrained by reducing the large singular
values (Albano et al., 1988; Wall et al., 2003) of the edit update matrix. Consequently, the upper
bound on perturbation to the edited matrix is lowered, thus reducing the perturbation to the original
knowledge associations and preserving the general abilities of the edited model, as shown in
Figure 1(c). Additionally, we observe that these larger singular values often encapsulate redundant
editing overfitting information, so regularizing them will not affect the newly editing knowledge,
as shown in Figure 1(d). In this way, the new editing knowledge is embedded into LLMs without
affecting their original general abilities. Overall, the proposed editing framework requires only
minimal computing resources, and is adaptable to be coupled with multiple existing editing methods.

To validate the effectiveness of the proposed PRUNE, our study comprehensively evaluates the
edited LLMs for both general abilities and editing performance in sequential editing scenarios.
Extensive empirical research involves three popular editing methods, including MEND (Mitchell
et al., 2022a), ROME (Meng et al., 2022), and MEMIT (Meng et al., 2023), which are analyzed
based on three representative LLMs including GPT-2 XL (1.5B) (Radford et al., 2019), LLaMA-2
(7B) (Touvron et al., 2023), and LLaMA-3 (8B). Four representative downstream tasks including
reasoning (Cobbe et al., 2021), summarization (Gliwa et al., 2019), open-domain QA (Kwiatkowski
et al., 2019), and natural language inference (Dagan et al., 2005) are employed to extensively
demonstrate the impact of model editing on the general abilities of LLMs. Experimental results
demonstrate that the proposed PRUNE can preserve considerable general abilities and maintain
almost all editing performance in sequential editing.

In essence, our research offers three significant contributions: (1) This study theoretically analyzes
that the escalating value of the condition number of the edited matrix is the bottleneck of sequential
model editing. (2) The PRUNE framework based on the analysis is proposed to preserve the general
abilities of the edited model while retaining the editing knowledge. (3) Experimental results including
both editing performance and four downstream task performance across three editing methods on
three LLMs demonstrate the effectiveness of the proposed method. To facilitate others to reproduce
our results, we will publish source code later.
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2 RELATED WORK

Model Editing Methods From the perspective of whether the model parameters are modified,
existing editing methods can be divided into parameter-modifying (Mitchell et al., 2022a; Meng et al.,
2022; 2023; Dai et al., 2022) and parameter-preserving methods (Mitchell et al., 2022b; Hartvigsen
et al., 2023; Yu et al., 2024). This paper focuses on the former. Previous works have investigated
the role of MLP layers in Transformer, showing that MLP layers store knowledge, which can be
located in specific neurons and edited (Geva et al., 2021; Da et al., 2021; Geva et al., 2022). KE (Cao
et al., 2021) and MEND (Mitchell et al., 2022a) train a hypernetwork to get gradient changes to
update model parameters (Mitchell et al., 2022a). Besides, Meng et al. (2022) and Meng et al. (2023)
used Locate-Then-Edit strategy, which first located multi-layer perceptron (MLP) storing factual
knowledge, and then edited such knowledge by injecting new key-value pair in the MLP module.
Parameter-preserving methods do not modify model weights but store the editing facts with an
external memory. For example, Mitchell et al. (2022b) stored edits in a base model and learned to
reason over them to adjust its predictions as needed.

Model Editing Evaluation Some works investigate the paradigm for model editing evalua-
tion (Zhong et al., 2023; Cohen et al., 2023; Ma et al., 2023; Li et al., 2023; Hase et al., 2023;
Wu et al., 2023; Gandikota et al., 2023; Ma et al., 2024). Cohen et al. (2023) introduced the ripple
effects of model editing, suggesting that editing a particular fact implies that many other facts
need to be updated. Ma et al. (2023) constructed a new benchmark to assess the edited model
bidirectionally. Besides, Li et al. (2023) explored two significant areas of concern: Knowledge
Conflict and Knowledge Distortion. These early studies mainly evaluate edited models per edit
rather than sequentially, and they focus narrowly on basic factual triples. Recently, some works
assess the impact of editing methods on the general abilities of LLMs in sequential editing scenarios.
These studies (Gu et al., 2024; Gupta et al., 2024a; Lin et al., 2024; Yang et al., 2024; Gupta &
Anumanchipalli, 2024; Gupta et al., 2024b) have conducted comprehensive experiments, showing the
parameter-modifying methods significantly degrade the model performance on downstream tasks.

Matrix Perturbation Theory It plays a crucial role in the field of artificial intelligence (AI) by
providing a systematic framework to understand the impact of small changes or perturbations in
various AI algorithms and models. Some studies (Harder et al., 2020; Qin et al., 2022; Singh et al.,
2024) delve into the interpretability of LLMs, revealing how minor alterations in input features or
model parameters influence the model’s predictions. This understanding helps uncover significant
feature connections within the model architecture. Moreover, it has been instrumental in assessing
and enhancing the robustness of models (Chen et al., 2023; Gong et al., 2024; Chen et al., 2024).
Furthermore, Bird et al. (2020) and Dettmers et al. (2023) have employed it for sensitivity analysis to
identify critical factors affecting algorithm performance. It also contributes to the development of
efficient optimization techniques (Li et al., 2020; Cheng et al., 2023; Jiang et al., 2024), improving
convergence rates and stability of optimization algorithms.

Compared with previous works (Meng et al., 2022; 2023; Yao et al., 2023; Gu et al., 2024; Gupta
et al., 2024a; Lin et al., 2024) that are the most relevant, a main difference should be highlighted.
They neither theoretically investigate the reasons for general ability degradation, nor propose methods
to maintain these abilities during sequential editing. In contrast, our study makes the first attempt to
theoretically explore the bottleneck of general abilities in sequential editing and proposes the PRUNE
framework to preserve these abilities for continual model editing.

3 ANALYSIS ON BOTTLENECK OF SEQUENTIAL MODEL EDITING

3.1 PRELIMINARY

Model Editing This task involves modifying the memorized knowledge contained in LMs. Various
kinds of complex learned beliefs such as logical, spatial, or numerical knowledge are expected to be
edited. In this paper, following previous work (Meng et al., 2022; Zhong et al., 2023; Meng et al.,
2023; Zhang et al., 2024), we study editing factual knowledge in the form of (subject s, relation
r, object o), e.g., (s = United States, r = President of, o = Donald Trump). An LM is expected to
recall a memory representing o given a natural language prompt p(s, r) such as “The President of
the United States is”. Editing a fact is to incorporate a new knowledge triple (s, r, o∗) in place of the
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current one (s, r, o). An edit is represented as e = (s, r, o, o∗) for brevity. Given a set of editing facts
E = {e1, e2, . . .} and an original model fθ0 , sequential model editing operationalizes each edit after
the last edit1, i.e., K(fθn−1

, en) = fθn , where fθn denotes the model after n edits.

Singular Value Decomposition SVD (Albano et al., 1988) is a fundamental and effective matrix
factorization technique for analyzing matrix structures. Formally, an SVD of a matrix W ∈ Rp×q

is given by W = UΣV T, where U = [u1, u2, ..., up] ∈ Rp×p, V = [v1, v2, ..., vq] ∈ Rq×q,
and Σ ∈ Rp×q. ui and vi are the column vectors of U and V , and constitute an orthonormal
basis of Rp and Rq respectively. Σ is a diagonal matrix whose diagonal entries are given by the
singular values of W in descending order. Additionally, the SVD of W could also be formulated
as: W =

∑min{p,q}
i=1 σiuiv

T
i , where σi is singular value, and σ1 ≥ σ2 ≥ ... ≥ σmin{p,q} ≥ 0. In the

scenario of this paper, W is a full-rank matrix, so σmin{p,q} > 0.

3.2 MATRIX PERTURBATION THEORY ANALYSIS

Previous works (Geva et al., 2021; Meng et al., 2022; Gupta et al., 2023; Wang et al., 2024) have
analyzed and located that the MLP modules in Transformer (Vaswani et al., 2017) store various
kinds of knowledge (Pearl, 2001; Vig et al., 2020). The MLP module of the l-th Transformer layer
consists of two projection layers, where the first and second layers are denoted as W l

fc and W l
proj

respectively. W l
proj is considered as a linear associative memory which stores knowledge in the

form of key-value pairs (ki, vi), and is usually regarded as the editing area (Meng et al., 2022; 2023).
In this paper, W l

proj is denoted as W for brevity. W is assumed to store many key-value pairs
P = {(ki, vi) | i = 1, 2, ...} which satisfies Wki = vi, where ki ∈ Rq and vi ∈ Rp. Assuming
| E |= N in sequential model editing, an edit update matrix ∆Wj is calculated for the edit ej and
added to W , which can be formulated as: WN = W +

∑N
j=1 ∆Wj with ∆Wj calculated from fθj−1

.

Problem Modeling To explore the reasons for the general ability degradation of edited models, we
begin by noting that most of the key-value pairs of P correspond to facts unrelated to editing. For
the sake of analysis, only the matrix W of a single layer is assumed to be modified. We intuitively
hypothesize that for the facts that are irrelevant to the editing fact, the cumulative modifications applied
during sequential model editing may lead to significant mismatches in the associations between the
original key-value pairs P . Specifically, consider a key-value pair (ki, vi) ∈ P . After applying an
edit ej that generates ∆Wj and adding it to W , if the extracted value vi remains unchanged, the
corresponding key ki needs to be adjusted with an adjustment denoted as ∆kji . Mathematically,
this can be represented as2 WN (ki +

∑N
j=1 ∆kji ) = vi after N edits. However, during the editing

process, it’s challenging to guarantee such adjustments completely, leading to inaccuracies in the
knowledge extracted from the edited model. To delve deeper, let’s analyze how the key ki changes
(i.e.,

∑N
j=1 ∆kji ) when its corresponding value vi remains unchanged after N edits.

Perturbation Analysis of Single Edit According to matrix perturbation theory (Luo & Tseng,
1994; Vaccaro, 1994; Wedin, 1972), the edit update matrix ∆W from an edit can be regarded as
a perturbation3 for W , so we first analyze the situation where W ∈ Rp×q is appended with a
perturbation ∆W . Define W † is the generalized inverse (Stewart & Sun, 1990) of W , ∥∗∥ represents
2-norm, and W̃ = W +∆W .

Theorem 3.1 Consider Wk = v, there exists ∆k such that k̃ = k + ∆k satisfies W̃ k̃ = v. Let
k = W †v and k̃ = W̃ †v, and ∆W is an acute perturbation of W . Then:

∥∆k∥
∥k∥

=
∥k − k̃∥
∥k∥

≤ κ̂
∥∆E11∥
∥W∥

+Ψ2

(
κ̂∆E12

∥W∥

)
+ κ̂2 ∥∆E12∥

∥W∥

(
η−1g(v) +

∥∆E21∥
∥W∥

)
, (1)

where ∆E11, ∆E12, and ∆E21 are directly related to ∆W . Ψ2(F ) is a monotonically increasing
function of ∥F∥ and g(v) is a function about v. κ̂ = ∥W∥∥W̃−1

11 ∥, where W̃11 is square and related

1This paper studies editing a single fact at a time and leaves the exploration of batch editing as future work.
2As Wj ∈ Rp×q , and we observed p < q in LLMs, so there will be ∆kj

i that satisfies this formula.
3We obtained some ∆Wj and found ∥∆Wj∥ ≪ ∥W∥, which satisfies the definition of perturbation.
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Figure 2: The condition number, maximum singular value and minimum singular value of the edited
matrix in sequential editing. Three editing methods including ROME, MEND, and MEMIT are used
to edit LLaMA-2 (7B) on the COUNTERFACT (Meng et al., 2022) dataset. For editing methods that
modify the parameters of multiple MLP layers, one of them is randomly selected for illustration. W
and Wn denote the unedited and edited matrices respectively.

to the reduced form of W . Each term on the right-hand side involves κ̂, which means that the upper
bound on the perturbation of the vector k is constrained by κ̂. Readers can refer to Appendix A.3 for
the details and proof of this theorem. However, calculating ∥W̃−1

11 ∥ involves the reduced form of W ,
which incurs unnecessary additional overhead. Therefore, we consider the following theorem and
give an alternative estimation.

Theorem 3.2 Let κ = ∥W∥∥W †∥, and suppose that γ ≡ 1− κ∥∆E11∥
∥W∥ > 0. Then:

∥W̃ †∥ ≤ ∥W †∥
γ

. (2)

According to Theorem 3.2, ∥W̃−1
11 ∥ ≤ ∥W−1

11 ∥
γ = ∥W †∥

γ , so κ̂ ≤ κ
γ . Here κ = ∥W∥∥W †∥ = σmax

σmin
is

the condition number of W , where σmax and σmin are the maximum and minimum singular values of
W , respectively. Combining Theorem 3.1, we know that the larger κ is, the greater the upper bound
on the perturbation of the vector k. Readers can refer to Appendix A for the full theoretical analysis.

3.3 TREND OF THE CONDITION NUMBER DURING SEQUENTIAL EDITING

As mentioned above, we have analyzed that the condition number of the edited matrix can be used to
indicate the upper bound on the perturbation of the key-value pair associations by a single edit. In
order to explore the impact of sequential model editing on these associations, the change trend of the
condition number of the edited matrix during sequential editing is illustrated in Figure 2.

Surprisingly, we observed that regardless of the editing methods employed, the condition number of
the edited matrix exhibited a rapid increase as the number of edits increased, particularly after a large
number of edits. According to Theorem 3.1, the adjustment norm ∥∆kni ∥2 corresponding to the n-th
edit tends to increase as the number of edits n increases. Therefore, we can draw two conclusions: (1)
As more edits are performed, the upper bound of the perturbation caused by a new single edit to the
key-value pair associations increases. (2) During the sequential model editing process, the cumulative
perturbation of these edits will become larger and larger. These factors further disrupt the stored
original knowledge and exacerbate the deterioration of general abilities. As the second conclusion is
easy to understand, here is an example for the first point. From the first subfigure of Figure 2, we can
observe that the condition number of the W200 matrix after the 200th edit is significantly higher than
that of the unedited matrix W . Therefore, the perturbation of the model caused by the 201st edit is
likely to be much greater than the perturbation of the model caused by the 1st edit.

4 PRUNE: PERTURBATION RESTRAINT ON UPPER BOUND FOR EDITING

Motivation According to the analysis in Section 3, the bottleneck of the general abilities during
sequential editing lies in the escalating value of the condition number. Assuming a set of edits {ei}
and their corresponding edit update matrices {∆Wi}, the information contained in these edit update
matrices coordinates with each other to a certain extent since the parametric knowledge of LLMs is
distributional rather than independent. This editing overfitting is reflected in SVD, where the largest

5
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singular value of the edited matrix WN becomes significantly large after the addition of these edit
update matrices. To illustrate this, consider an extreme example: suppose we make N edits, where
each edit changes the answer to the question “Who is the president of the United States?” to “Biden”.
Each edit update matrix is denoted as ∆W1, and its maximum singular value is δmax. Then the
sum of the N edit update matrices is N∆W1, and its maximum singular value is Nδmax, which is
amplified by N times. Therefore, our goal is to reduce the editing overfitting in edited matrix WN

as much as possible while also retaining valuable editing information. In this section, a framework
termed Perturbation Restraint on Upper bouNd for Editing (PRUNE) is proposed, which applies the
condition number restraints to preserve general abilities and maintain new editing knowledge.

Table 1: The maximum singular values
of

∑N
j=1 ∆Wj with three edting meth-

ods. Other settings are the same as those
illustrated in Figure 2.

Edits (N ) ROME MEMIT MEND

10 7.25 7.46 14.08
50 11.38 15.63 75.53
100 15.62 23.39 127.89
200 57.61 935 191.04

Principle Given an edited matrix with N edits, WN =

W +
∑N

j=1 ∆Wj , as shown in Figure 2, its maximum
singular value is constantly increasing, while the minimum
singular value is basically unchanged as the number of
edits N increases. This directly leads to the increasing
condition number of the edited matrix. Therefore, our
motivation is to restrain the large singular value of the
edited matrix to lower the upper bound on the perturbation.
If we directly perform SVD operation on WN and reduce
its singular values, the original W will be inevitably
destroyed. Consequently, an analysis of the singular values
of

∑N
j=1 ∆Wj is conducted, and the results in Table 1

present that its maximum singular value becomes very large when N is large. Since the singular
values of W are relatively small, we can assume that the large maximum singular value of

∑N
j=1 ∆Wj

is the main reason why the maximum singular value of WN is large, our method therefore aims to
restrain the large singular values of

∑N
j=1 ∆Wj .

Design Firstly, SVD is operated on the original W and
∑N

j=1 ∆Wj respectively as:

W =

min{p,q}∑
i=1

σiuiv
T
i ,

N∑
j=1

∆Wj =

min{p,q}∑
i=1

σ̂iûiv̂
T
i . (3)

This paper considers W to be the main part, and any singular value in
∑N

j=1 ∆Wj should be ensured
not to obviously exceed the maximum singular value of W . Subsequently, if any singular value σ̂i of∑N

j=1 ∆Wj is greater than the maximum singular value of W , it will be restrained with a function
F , otherwise it remains unchanged, which could be formulated as:

σi =

{
F (σ̂i), if σ̂i > max{σi},
σ̂i, if σ̂i ≤ max{σi}. (4)

F (σ̂i) = logα(σ̂i)− logα(max{σi}) +max{σi}. (5)

In the main paper, we use the log function in F to restrain σ̂i. Here α is a hyperparameter to control
the degree of restraints, readers can refer to Appendix B.3 for its details for experiments. Besides,
we also provide the definition and results of linear function in Appendix C.3. Finally, we obtain the
restrained edited matrix WN to replace WN :

WN = W +

min{p,q}∑
i=1

σiûiv̂
T
i . (6)

In this way, the condition number of the edited matrix is reduced (see Appendix C.4) and the upper
bound on perturbation is significantly restrained.

5 EXPERIMENTS

In this section, both the downstream task performance and editing performance of three editing
methods on three LLMs were evaluated in sequential model editing. The proposed PRUNE was
plug-and-play which can be coupled with these editing methods.
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5.1 BASE LLMS AND EDITING METHODS

Experiments were conducted on three LLMs including GPT-2 XL (1.5B) (Radford et al., 2019),
LLaMA-2 (7B) (Touvron et al., 2023) and LLaMA-3 (8B)4. Three popular editing methods were
selected as the baselines including MEND (Mitchell et al., 2022a), ROME (Meng et al., 2022), and
MEMIT (Meng et al., 2023). Appendix B.1 shows the details of these editing methods.

5.2 EDITING DATASETS AND EVALUATION METRICS

To make a more comprehensive evaluation, we used two types of knowledge for editing: factual
knowledge and conceptual knowledge. (1) For factual knowledge, two popular model editing
datasets Zero-Shot Relation Extraction (ZSRE) (Levy et al., 2017) and COUNTERFACT (Meng et al.,
2022) were adopted in our experiments. These two datasets are QA datasets. A key distinction
between COUNTERFACT and ZSRE datasets is that ZSRE contains true facts, while COUNTERFACT
contains counterfactual examples where the new target has a lower probability when compared to the
original answer (Gupta et al., 2024a). (2) For conceptual knowledge, the ConceptEdit dataset (Wang
et al., 2024) was adopted. Due to the limitations of computing resources and pages, most of the
experiments in this paper were conducted on factual datasets, with the results presented in Sections 5.4
and 5.5. Meanwhile, Section 5.6 provided some results on conceptual datasets. Readers can refer to
Appendix B.2 for examples of each dataset.

To assess the editing performance of editing methods, following previous works (Cao et al., 2021;
Mitchell et al., 2022a; Meng et al., 2022; 2023; Ma et al., 2024), three fundamental metrics were
employed: efficacy, generalization and locality. Given an original model fθ0 , an edited model fθn
with n times sequential editing. Define 1 as the indicator function. Each edit ei = (si, ri, oi, o

∗
i ) has

an editing prompt pi, paraphrase prompts PG
i , and locality prompts PL

i .

Efficacy validates whether the edited models could recall the editing fact under editing prompt pi.
The assessment is based on Efficacy Score (ES) representing as: Ei[1[ argmaxo Pfθn

(o | pi) = o∗i ] ].

Generalization verifies whether the edited models could recall the editing fact under the paraphrase
prompts PG

i via Generalization Score (GS): Ei [Ep∈PG
i
[1[ argmaxo Pfθn

(o | p) = o∗i ] ].

Locality verifies whether the output of the edited models for inputs out of editing
scope remains unchanged under the locality prompts PL

i via Locality Score (LS):
Ei [Epl∈PL

i
[1[ argmaxo Pfθn

(o | pl) = ol] ] ], where ol was the original answer of pl.

Different from previous studies that assess the edited models after each individual edit (Gupta et al.,
2024a; Yao et al., 2023), this paper evaluated whether the final edited models after completing all
edits can still recall all preceding edits, which is more challenging and common in real-world.

5.3 DOWNSTREAM TASKS, DATASETS AND METRICS

To explore the side effects of sequential model editing on the general abilities of LLMs, four
representative tasks with corresponding datasets were adopted for assessment following previous
work (Gu et al., 2024; Gupta et al., 2024a; Lin et al., 2024; Zhang et al., 2024), including:

Reasoning on the GSM8K (Cobbe et al., 2021), and the results were measured by solve rate.

Summarization on the SAMSum (Gliwa et al., 2019), and the results were measured by the average
of ROUGE-1, ROUGE-2 and ROUGE-L following Lin (2004).

Open-domain QA on the Natural Question (Kwiatkowski et al., 2019), and the results were measured
by exact match (EM) with the reference answer after minor normalization as in Chen et al. (2017)
and Lee et al. (2019).

Natural language inference (NLI) on the RTE (Dagan et al., 2005), and the results were measured
by accuracy of two-way classification.

For each dataset, some examples were randomly sampled for evaluation. Details of prompts for each
task were shown in Appendix B.4.

4https://llama.meta.com/llama3/
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Figure 3: The downstream task performance (%) of models edited by three editing methods with
LLaMA-2 (7B) on the ZSRE dataset. The dashed lines refer to the results of the unrestrained editing
methods. The solid lines refer to the results of the editing methods coupled with the proposed PRUNE
framework. Statistical significance tests were performed to demonstrate that the improvement in
PRUNE compared to baseline was statistically significant (t-test with p-value <0.05).

5.4 GENERAL ABILITIES RESULTS ON FACTUAL KNOWLEDGE

Figure 3 illustrates the downstream task performance of editing methods with LLaMA-2 (7B) on
the ZSRE dataset. Due to page limitation, results of other LLMs and factual datasets were put in
Appendix C.1. These results were analyzed from the following perspectives.

Current editing methods significantly compromised general abilities. As depicted by the dashed
lines of Figure 3, both the ROME and MEMIT methods initially maintained relatively stable
performance in downstream tasks when the number of edits was small (≤ 50). However, as the
number of edits surpassed 100, a noticeable decline in performance was observed across all tasks for
both methods. Additionally, the MEND method exhibited significant performance degradation after
just 20 sequential edits, indicating its inadequacy as a sequential model editing method. Furthermore,
when comparing LLMs of different sizes, a general trend emerged: larger models suffered more
pronounced compromises in their general abilities when subjected to the same number of edits. For
instance, with 300 edits, MEMIT’s performance on GPT2-XL remained largely unchanged, whereas
it dwindled to nearly 0 on LLaMA-2 and LLaMA-3.

The performance decline was gradual initially but accelerated with increasing edit count. This
trend aligned with the fluctuation observed in the size of the condition number, as depicted in Figure 2.
When the number of edits was small, the condition number was small, and each new edit introduced
relatively minor perturbations to the model. However, as the number of edits increased, the condition
number underwent a substantial increase. Consequently, each subsequent edit exerted a significant
perturbation on the model, leading to a pronounced impairment of its general abilities. These results
substantiated the analysis presented in Section 3.3.

The proposed PRUNE can preserve considerable general abilities. As shown by the solid lines of
Figure 3, when MEMIT was coupled with PRUNE and subjected to 100 edits, its downstream tasks
performance remained close to that of the unedited model. However, for the unrestrained MEMIT,
downstream task performance had plummeted to nearly 0 by this point. This consistent trend was also
observed with ROME and MEND. Nevertheless, for models edited using the unrestrained MEND
method, performance degradation was stark after just 10 edits. Even with the addition of PRUNE,
preservation could only be extended up to 20 edits. This suggests that while PRUNE effectively
preserves general abilities, it does have an upper limit determined by the unrestrained editing method.

5.5 EDITING PERFORMANCE RESULTS ON FACTUAL KNOWLEDGE

Figure 4 shows three metrics used for measuring the editing performance with LLaMA-2 (7B) on the
ZSRE dataset. Other results were put in Appendix C.2. Three conclusions can be drawn.

Previous editing facts were forgotten as the number of edits increased. As shown by the dashed
lines of Figure 4, the decline in efficacy and generalization suggests that in sequential editing scenarios,
post-edited models gradually forget knowledge acquired from previous edits after a few iterations.
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Figure 4: The editing performance (%) of editing methods with LLaMA-2 (7B) on the ZSRE dataset.
The dashed lines refer to the results of the unrestrained editing methods. The solid lines refer to the
results of the editing methods coupled with the proposed PRUNE. Statistical significance tests were
performed to demonstrate that the improvement in PRUNE compared to baseline was statistically
significant (t-test with p-value <0.05).

Comparing these editing methods, we also observed a notable drop in efficacy and generalization
after hundreds of edits with ROME and MEMIT, whereas these values decreased significantly after
only 15 edits with MEND. This indicates that in sequential editing scenarios, the MEND method
struggled to successfully integrate new knowledge into LLMs after several edits.

Unrelated facts were perturbed as the number of edits increased. The locality metric served as
an indicator of perturbation for unrelated facts. It became evident that for each editing method, the
locality decreased significantly. Additionally, an observation emerged: when the locality of the edited
model was low, the performance of downstream tasks was also low. This observation underscores
that perturbations of irrelevant knowledge compromise the general abilities of the edited model.

PRUNE can effectively maintain the editing performance. This is shown by the solid lines of
Figure 4 and could be analyzed from two aspects. On the one hand, when the number of edits was
small, the editing performance of each editing method coupled with PRUNE was about the same
as the unrestrained method. On the other hand, it significantly mitigated the forgetting of editing
facts and the perturbation of irrelevant facts when the number of edits was large during the sequential
editing. Specifically, when the number of edits reached 100, the editing performance of MEMIT
was very low. But when coupled with PRUNE, its performance remained relatively stable. These
observations further validate our motivation in Section 4, demonstrating that the information in the
edit update matrices is coordinated, and that performing too many edits can easily result in overfitting.
Therefore, applying a certain degree of restraint to edit perturbations can help preserve the model’s
general abilities while maintaining the editing knowledge.

5.6 EDITING WITH CONCEPTUAL KNOWLEDGE

Section 5.4 and 5.5 analyzed the results on factual knowledge. This section conducted some
experiments with ROME on conceptual knowledge using the ConceptEdit dataset (Wang et al.,
2024) to make a more comprehensive evaluation. For editing performance, in addition to the three
basic metrics, this dataset also designed a new metric “Instance Change” to measure whether the
instances under the concept changed accordingly when the definition of the concept was changed.

As shown in Table 2, the performance trends of editing and downstream tasks were similar to those
observed with the factual datasets. But there are several key differences: (1) When the number
of edits was the same, the editing performance of conceptual knowledge was lower than that of
factual knowledge. (2) Both editing performance and general abilities deteriorated more quickly than
factual knowledge. For example, even if the number of edits was 100, the editing performance and
downstream task performance of ROME were very low, while it was still relatively high when editing
factual knowledge. (3) The low “Instance Change” indicated that when the definition of a concept
was altered, the instances contained in the original concept were still recognized by the model as
belonging to that concept. This shows that this editing method primarily modifies the definition
without successfully altering the relationship between concepts and instances, which is not reasonable.
These findings indicate that conceptual knowledge is more abstract and more difficult to edit than
factual knowledge, highlighting the need to explore editing methods for different types of knowledge.
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Table 2: Evaluation results (%) of LLaMA-2 (7B) edited by ROME on the ConceptEdit dataset.

Mode General Abilities Editing Performance
Method Edits Reasoning Summa Open-QA NLI Efficacy General Locality Instance

ROME

20 75.13 11 6.50 24.7 49.15 52.58 35.68 25
50 20.67 4.90 1.50 0.7 55.42 49.45 19.94 12

100 12.29 4.7 0.77 0 28.25 30.18 5.68 10
200 0 4.62 0 0 10.14 8.65 5.31 -8.99

ROME+PRUNE

20 89.38 14.34 23.37 63.54 75.66 58.35 71.7 25
50 85.15 14.06 25.29 50.52 56.51 45.55 73.16 8

100 90.78 13.75 21.46 53.17 46.22 42.26 64.06 20
200 72.9 10.55 22.22 46.15 35.82 34.95 46.65 32

5.7 ANALYSIS ON THE FORGETTING OF EDITING FACTS

20 10 0 10 20 30

20

10

0

10

20

30
LLaMA-2 (7B)-ROME

VCurrent

VEditing

VPrune

Figure 5: 2-dimensional PCA visual-
ization of first 100 values. The model
was edited by ROME with LLaMA-2.

Section 3 conducted analysis to elucidate the reasons behind
the degradation in general abilities with an increasing
number of edits. Subsequent experiments quantitatively
demonstrated the effectiveness of PRUNE. Here, we delve
into qualitative analysis to explain why editing facts are
forgotten and how PRUNE can mitigate this forgetting.

Initially, given a set of editing facts E = {e1, e2, . . .}, where
| E |= 200. ROME was employed for analysis, and the
original matrix was defined as W . During sequential editing,
ROME computed key-value pairs (kej , v

e
j ) of the last subject

token to generate ∆Wj for each edit ej to incorporate new
facts, satisfying the equation: Wj · kej = vej . However, when
evaluating editing performance, the edited model obtained
from the last edit was utilized, thus computing values5:
W200 · kej = v̂ej . After adopting PRUNE to ROME, this
equation became W 200 · kej = vej . We hypothesized that if
v̂ej was similar to vej , the editing fact ej could be maintained.

Denote VCurrent = {vej}, VEditing = {v̂ej}, and VPrune = {vej}. Specifically, these corresponding
values of the first 100 edits were used, as they are more prone to be forgotten than the last 100.
Principal Component Analysis (PCA) (Gewers et al., 2022) was employed to visualize these values.
The first two principal components of each value were calculated and illustrated, as they can represent
most of its features (Zheng et al.). As shown in Figure 5, on the one hand, the discrepancy between
the principal components of VCurrent and VEditing was markedly large. This indicates that after
200 edits to the model, the values corresponding to the first 100 facts stored in the edited matrix are
severely corrupted, leading to significant forgetfulness. On the other hand, after adopting PRUNE, the
discrepancy between the principal components of VCurrent and VPrune was small. This demonstrates
that PRUNE effectively maintains the values and mitigates the forgetting of editing facts.

6 CONCLUSION AND LIMITATION

In this paper, a theoretical analysis is firstly conducted to elucidate that the bottleneck of the general
abilities during sequential editing lies in the escalating value of the condition number. Subsequently,
a plug-and-play framework called PRUNE is proposed to apply restraints to preserve general abilities
and maintain new editing knowledge simultaneously. Comprehensive experiments on various editing
methods and LLMs demonstrate the effectiveness of this method. We aspire that our analysis and
method will catalyze future research on continual model editing.

Limitation Firstly, this paper focuses on editing a single fact at a time in sequential model editing, but
some works study updating hundreds of facts simultaneously in batch editing. Therefore, investigating
batch-sequential editing could enhance the scalability of model editing. Secondly, it is necessary
to explore the performance of larger-size models and more editing methods on more downstream
tasks. Additionally, the proposed PRUNE is only applied once after the last edit. But it could also be
utilized multiple times during the sequential editing, and the performance will be better this way.

5Since ROME only modifies one matrix, the ke
j remains the same across these edited models.
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APPENDIX

A THEORETICAL ANALYSIS BASED ON PERTURBATION THEORY

Here, we provide a detailed analysis and proof of Section 3.2. We begin by introducing some
definitions and then present several preliminary lemmas and theorems. These lemmas and theorems
are finally used to prove Theorem 3, which is most relevant to our problem discussed in Section 3.2.

A.1 DEFINITION

We discuss the problem Ax = b, where Ã is a perturbation of A given by Ã = A+ E. We assume b
remains unchanged and x̃ represents the corresponding change, satisfying Ãx̃ = b. Here A ∈ Cm×n,
b ∈ Cm.

It is noteworthy that in the following derivation, AH denotes the conjugate transpose of A, A†

represents the generalized inverse of A, and ∥ ∗ ∥ represents 2-norm (Stewart & Sun, 1990).

To simplify the problem, we apply a rotation. Specifically, let V = (V1 V2) be a unitary matrix with
R(V1) = R(AH), and let U = (U1 U2) be a unitary matrix with R(U1) = R(A), where R refers to
the rank. Then

UHAV =

(
UH
1 AV1 UH

1 AV2

UH
2 AV1 UH

2 AV2

)
=

(
A11 0
0 0

)
, (7)

where A11 is square and nonsingular. If we set

UHEV =

(
UH
1 EV1 UH

1 EV2

UH
2 EV1 UH

2 EV2

)
=

(
E11 E12

E21 E22

)
, (8)

then

UHÃV =

(
A11 + E11 E12

E21 E22

)
=

(
Ã11 E12

E21 E22

)
. (9)

We will call these transformed, partitioned matrices the reduced form of the problem. Many
statements about the original problem have revealing analogues in the reduced form.

In this form, x is replaced by V Hx and b is replaced by UHb. If x and b are partitioned in the forms

x =

(
x1

x2

)
, b =

(
b1
b2

)
, (10)

where x1, b1 ∈ Cr, then
x1 = A−1

11 b1 (11)

and
x2 = 0. (12)

Moreover, the norm of the residual vector

r = b−Ax (13)

is given by
∥r∥ = ∥b2∥. (14)

Here, we define the symbol η:

η =
∥A∥∥x∥
∥b∥

, (15)

and for any F ∈ Ck×r (k ≥ r) the symbol Ψ(F ), for the spectral norm:

Ψ2(F ) =
∥F∥

(1 + ∥F∥2)1/2
. (16)
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A.2 PRELIMINARY LEMMAS & THEOREMS

After introducing some definitions, we give some preliminary lemmas and theorems, which are used
to prove Theorem 3.

Lemma 1 Let
κ(A) = ∥A∥∥A−1∥

be the condition number of A. If Ã is nonsingular, then

∥Ã−1 −A−1∥
∥Ã−1∥

≤ κ(A)
∥E∥
∥A∥

. (17)

If in addition
∥E∥
∥A∥

κ(A) < 1,

then Ã is perforce nonsingular and

∥Ã−1∥ ≤ ∥A−1∥
1− κ(A)∥E∥

∥A∥

. (18)

Moreover
∥Ã−1 −A−1∥

∥A−1∥
≤

κ(A)∥E∥
∥A∥

1− κ(A)∥E∥
∥A∥

. (19)

Lemma 2 In the reduced form the matrices A and Ã are acute if and only if A11 is nonsingular and

E22 = E21Ã
−1
11 E12. (20)

In this case, if we set
F21 = E21Ã

−1
11 and F12 = Ã−1

11 E12,

then

Ã =

(
I
F21

)
Ã11 (I F12)

and

Ã† = (I F12)
†
Ã−1

11

(
I
F21

)†

. (21)

Lemma 3 The matrix (
I
F

)
satisfies ∥∥∥∥∥

(
I
F

)†
∥∥∥∥∥ ≤ 1 (22)

and ∥∥∥∥∥
(
I
F

)†

− (I 0)

∥∥∥∥∥ = Ψ2(F ). (23)

Theorem 1 Let Ã be an acute perturbation of A, and let

κ̂ = ∥A∥∥Ã−1
11 ∥. (24)

Then
∥Ã† −A†∥

∥A†∥
≤ κ̂

∥E11∥
∥A∥

+Ψ2

(
κ̂E12

∥A∥

)
+Ψ2

(
κ̂E21

∥A∥

)
. (25)
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Proof. Let

I21 =

(
I
0

)
, I12 = (I 0) , (26)

J21 =

(
I
F21

)
, J12 = (I F12) . (27)

Ã† = J†
12A

−1
11 I

†
21, hence

Ã† −A† = (J†
12 − I†12)A

−1
11 I

†
21 + J†

12A
−1
11 (J

†
21 − I†21) + J†

12(Ã
−1
11 −A−1

11 )J
†
21. (28)

From Lemma 1 we have the following bound:

∥J†
12(Ã

−1
11 −A−1

11 )J
†
21∥ ≤ ∥A−1

11 ∥κ̂
∥E11∥
∥A11∥

. (29)

By Lemma 3

∥(J†
12 − I†12)A

−1
11 I

†
21∥ ≤ ∥A−1

11 ∥∥J
†
12 − I†12∥ = ∥A−1

11 ∥Ψ2(F12) (30)

= ∥A−1
11 ∥Ψ2(Ã

−1
11 E12) (31)

≤ ∥A−1
11 ∥Ψ2

(
κ̂E12

∥A∥

)
, (32)

and likewise

∥J†
12A

−1
11 (J

†
21 − I†21)∥ ≤ ∥A−1

11 ∥Ψ2

(
κ̂E21

∥A∥

)
≤ ∥A†∥Ψ2

(
κ̂E21

∥A∥

)
. (33)

Theorem 2 In Theorem 1, let
κ = ∥A∥∥A†∥, (34)

and suppose that
∥A†∥∥E11∥ < 1, (35)

so that

γ ≡ 1− κ∥E11∥
∥A∥

> 0. (36)

Then

∥Ã†∥ ≤ ∥A†∥
γ

, (37)

and
∥Ã† −A†∥

∥A†∥
≤ κ∥E11∥

γ∥A∥
+Ψ2

(
κE21

γ∥A∥

)
+Ψ2

(
κE12

γ∥A∥

)
. (38)

Proof. From the equation Ã† = J†
12Ã

−1
11 J

†
21, we have

∥Ã†∥ ≤ ∥J†
12∥∥Ã

−1
11 ∥∥J

†
21∥ ≤ ∥Ã−1

11 ∥. (39)

By Lemma 1,

∥Ã−1
11 ∥ ≤ ∥A−1

11 ∥
γ

=
∥A†∥
γ

, (40)

which establishes equation 37. Also κ̂ ≤ κ
γ , and the inequality equation 38 follows from equation 25.
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A.3 CORE THEOREM

Finally, we give the core theorem used in main paper. Some symbols and definitions have been
claimed in Appendix A.1 and A.2.

Theorem 3 Let x = A†b and x̃ = Ã†b, where Ã = A + E, and E is an acute perturbation of A.
Then

∥x− x̃∥
∥x∥

≤ κ̂
∥E11∥
∥A∥

+Ψ2

(
κ̂E12

∥A∥

)
+ κ̂2 ∥E12∥

∥A∥

(
η−1 ∥b2∥

∥b1∥
+

∥E21∥
∥A∥

)
. (41)

Proof. By Lemma 2, write

x̃− x = J†
12(Ã

−1
11 −A−1

11 )b1 + (J†
12 − I†12)A

−1
11 b1 + J†

12Ã
−1
11 (J

†
21 − I†21)b. (42)

Then

∥J†
12(Ã

−1
11 −A−1

11 )b1∥ ≤ κ̂
∥E11∥
∥A∥

∥x∥, (43)

and

∥(J†
12 − I†12)A

−1
11 b1∥ ≤ Ψ2

(
κ̂E12

∥A∥

)
∥x∥. (44)

Now
J†
12Ã

−1
11 (J

†
21 − I†21)b = J†

12Ã
−1
11 ((I + FH

21F21)
−1 − I)b1 + J†

12Ã
−1
11 (I + FH

21F21)
−1FH

21b2. (45)

To bound the first term in equation 45, note that

(I + FH
21F21)

−1 − I = −(I + FH
21F21)

−1FH
21F21.

Hence
∥J12Ã−1

11 ((I + FH
21F21)− I)b1∥ ≤ ∥Ã−1

11 ∥∥(I + FH
21F21)

−1∥∥FH
21∥∥F21b1∥

≤ ∥Ã−1
11 ∥∥E21Ã

−1
11 b1∥

≤ ∥Ã−1
11 ∥∥E21∥2∥x∥

=

(
κ̂∥E21∥2
∥A∥

)2

∥x∥. (46)

For the second term in equation 45 we have

∥J†
21Ã

−1
11 (I + FH

21F21)
−1F21b2∥ ≤ ∥Ã−1

11 ∥2∥E21∥∥b2∥

= ∥Ã−1
11 ∥2∥E21∥

∥b2∥
∥b1∥

η−1∥x∥∥A∥

≤ η−1κ̂2 ∥E21∥∥b2∥
∥A∥∥b1∥

∥x∥. (47)

The bound equation 41 follows on combining equation 42–equation 47.

Readers can refer to this work (Stewart & Sun, 1990) for more details of perturbation analysis.

Returning to our problem, consider Wk = v, where (k, v) ∈ P . Let W̃ = W +∆W , where ∆W
is the corresponding perturbation matrix. Assuming v remains constant, there exists ∆k such that
k̃ = k +∆k satisfies W̃ k̃ = v. And we have k = W †v and k̃ = W̃ †v. Applying Theorem 3, we
obtain
∥∆k∥
∥k∥

=
∥k − k̃∥
∥k∥

≤ κ̂
∥∆E11∥
∥W∥

+Ψ2

(
κ̂∆E12

∥W∥

)
+ κ̂2 ∥∆E12∥

∥W∥

(
η−1 ∥v2∥

∥v1∥
+

∥∆E21∥
∥W∥

)
, (48)

where ∆E11, ∆E12, ∆E21, and ∆W are directly related, and each term on the right-hand side
involves κ̂. This means that the relative perturbation of the vector k is constrained by κ̂. According
to Theorem 2, κ̂ ≤ κ

γ , where κ = ∥W∥∥W †∥ is the condition number of W . This indicates that κ is
a robust indicator of the impact of ∆W on the vector k.
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B EXPERIMENTAL SETUP

B.1 BASELINE EDITING METHODS

Three popular model editing methods were selected as baselines including:

• MEND (Mitchell et al., 2022a)6: it learned a hypernetwork to produce weight updates by
decomposing the fine-tuning gradients into rank-1 form.

• ROME (Meng et al., 2022)7: it first localized the factual knowledge at a specific layer in
the transformer MLP modules, and then updated the knowledge by directly writing new
key-value pairs in the MLP module.

• MEMIT (Meng et al., 2023)8: it extended ROME to edit a large set of facts and updated a
set of MLP layers to update knowledge.

The ability of these methods were assessed based on EasyEdit9 (Wang et al., 2023), an easy-to-use
knowledge editing framework which integrates the released codes and hyperparameters from previous
methods.

B.2 EDITING DATASETS AND EVALUATION METRICS

Table 3 shows the examples of two factual datasets (ZSRE) (Levy et al., 2017) and COUNTER-
FACT (Meng et al., 2022). Figure 6 shows an example of ConceptEdit dataset, which is cited from
Wang et al. (2024). More details can refer to the original paper of these datasets.

Table 3: The editing datasets of both ZSRE and COUNTERFACT.
Datasets Editing prompt

ZSRE Which was the record label for New Faces, New Sounds?
COUNTERFACT In America, the official language is

Figure 6: An example of ConceptEdit dataset

Besides, following previous works (Meng et al., 2022; Mitchell et al., 2022a; Meng et al., 2023), the
editing performance metrics for the ZSRE and COUNTERFACT datasets are efficacy, generalization
and locality, but there are some computational differences. In the main paper, the metrics of editing
performance are used for the ZSRE dataset.

For the COUNTERFACT dataset, here are the details:

Efficacy validates whether the edited models could recall the editing fact under editing prompt pi.
The assessment is based on Efficacy Score (ES) representing as: Ei[1[Pfθn

(o∗i | pi) > Pfθn
(oi | pi)] ],

where 1 is the indicator function.

6https://github.com/eric-mitchell/mend
7https://github.com/kmeng01/rome
8https://github.com/kmeng01/memit
9https://github.com/zjunlp/EasyEdit
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Generalization verifies whether the edited models could recall the editing fact under the paraphrase
prompts PG

i via Generalization Score (GS): Ei [Ep∈PG
i
[1[Pfθn

(o∗i | p) > Pfθn
(oi | p)] ].

Locality verifies whether the output of the edited models for inputs out of editing scope remains
unchanged under the locality prompts PL

i via Locality Score (LS): Ei [Epl∈PL
i
[1[Pfθn

(ol | pl) >
Pfθn

(o∗i | pl)] ] ], where ol was the original answer of pl.

B.3 HYPERPARAMETERS OF PRUNE

When conducting experiments, for different editing methods, LLMs and editing datasets, the
hyperparameter α in function F of PRUNE is different. Table 4 shows the details of this
hyperparameter. e is the base of the natural logarithm.

Table 4: The hyperparameters α for PRUNE.
Datasets Models ROME MEMIT MEND

COUNTERFACT
GPT-2 XL 1.2 1.2 1.2
LLaMA-2 1.2 e 1.2
LLaMA-3 1.5 e -

ZSRE LLaMA-2 1.2 e e

B.4 TASK PROMPTS

The prompts for each downstream task were illustrated in Table 5.

Table 5: The prompts to LLMs for evaluating their zero-shot performance on these general tasks.
Reasoning:
Q: {QUESTION} A: Let’s think step by step. {HINT} Therefore, the answer (arabic numerals)
is:

NLI:
{SENTENCE1} entails the {SENTENCE2}. True or False? answer:

Open-domain QA:
Refer to the passage below and answer the following question. Passage: {DOCUMENT} Question:
{QUESTION}

Summarization:
{DIALOGUE} TL;DR:

B.5 EXPERIMENTS COMPUTE RESOURCES

We used NVIDIA A800 80GB GPU for experiments. For LLaMA-2 (7B) and LLaMA-3 (8B), it
occupies about 40+GB memory and costs about 3 hours for each editing method to run 200 edits and
then to test downstream tasks . For GPT-2 XL (1.5B), it needs 10+GB and costs about 1.5 hours for
each editing method to run 200 edits and then to test downstream tasks.

C EXPERIMENTAL RESULTS

C.1 RESULTS OF GENERAL ABILITIES

Figure 7, 8 and 9 show the downstream task performance of edited models with GPT-2 XL, LLaMA-2
(7B) and LLaMA-3 (8B) on COUNTERFACT dataset. Due to limitations of computing resources,
experiments were conducted using only LLaMA-2 (7B) on the ZSRE dataset. We will supplement
experiments with other LLMs in the future.
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Figure 7: The downstream task performance (%) of models edited by three editing methods with
GPT-2 XL on the COUNTERFACT dataset.

Figure 8: The downstream task performance (%) of models edited by three editing methods with
LLaMA-2 (7B) on the COUNTERFACT dataset.

C.2 RESULTS OF EDITING PERFORMANCE

Figure 10, 11 and 12 shows the editing performance of edited models with GPT-2 XL, LLaMA-2
(7B) and LLaMA-3 (8B) on COUNTERFACT dataset.

C.3 RESULTS OF ANOTHER FUNCTION FOR PRUNE

In the main paper, log function is used in F in PRUNE to restrain σ̂i. Here we use the linear
function, which could be represented as: F (σ̂i) =

1
β ∗ σ̂i +

β−1
β ∗ max{σi}. Here β > 1 was a

hyperparameter and was set as 2 in this section. Figure 13 and 14 respectively show some downstream
task performance and editing performance with linear function on COUNTERFACT dataset.

Compared with Figure 7 and 10, we observed that although the linear function in PRUNE played
a role in preserving general abilities and maintaining editing performance, its effectiveness was
noticeably inferior to that of the log function when the number of edits was large.

C.4 CONDITION NUMBER WITH PRUNE

Figure 15 shows after coupling with PRUNE, the condition number of MEMIT is significantly
restrained.

C.5 THE CORRELATION BETWEEN CONDITION NUMBER AND GENERAL ABILITIES

Figure 16 simultaneously shows the condition number and general abilities of three editing methods
without PRUNE in the sequential editing process. From these experiments, we observed that a
dramatic increase in the condition number is often accompanied by a rapid decline in general abilities.
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Figure 9: The downstream task performance (%) of models edited by two editing methods with
LLaMA-3 (8B) on the COUNTERFACT dataset. Since the code framework EasyEdit used in this
paper does not currently support MEND editing on LLaMA-3, there are no results of MEND here.

Figure 10: The editing performance (%) of three editing methods with GPT-2 XL on COUNTERFACT
dataset.

D BROADER IMPACTS

This work offers significant advancements in the field of model editing for LLMs. By addressing
the challenge of preserving general abilities while performing sequential edits, PRUNE facilitates
continual learning and adaptability in LLMs. This can lead to several positive impacts, such as:

Enhanced Adaptability. It enables LLMs to update their knowledge base quickly and accurately
without extensive retraining. This adaptability is crucial in dynamic environments where up-to-
date information is vital, such as real-time translation services, personalized learning systems, and
interactive virtual assistants.

Resource Efficiency. By mitigating the need for full retraining, PRUNE significantly reduces
computational resources and energy consumption. This aligns with sustainable AI and makes it more
feasible to deploy LLMs in resource-constrained settings.

Improved Performance in Specialized Tasks. PRUNE’s ability to perform targeted edits without
compromising overall model performance can enhance LLMs’ effectiveness in specialized domains,
such as medical diagnostics, legal analysis, and technical support, where precise and updated
knowledge is essential.

While this work offers many benefits, there are potential negative societal impacts that must be
considered:

Misuse for Malicious Purposes. The capability to edit LLMs efficiently could be exploited to inject
harmful or biased information into models, thereby spreading disinformation or propaganda. This
risk is particularly concerning in applications involving social media and news dissemination where
LLMs might generate or amplify misleading content.
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Figure 11: The editing performance (%) of three editing methods with LLaMA-2 (7B) on the
COUNTERFACT dataset.

Figure 12: The editing performance (%) of three editing methods with LLaMA-3 (8B) on
COUNTERFACT dataset.

Fairness. Unintended biases could be introduced during the editing process, potentially exacerbating
existing biases in LLMs. This could lead to unfair treatment or misrepresentation of specific
groups, especially if the editing is not conducted with proper oversight and consideration of ethical
implications.

Privacy Concerns. The ability to update models quickly might also pose privacy risks, as models
could be edited to include sensitive or personal information. Ensuring that editing processes do not
compromise individual privacy is critical, particularly in applications involving personal data.

To mitigate these potential negative impacts, several strategies could be implemented:

Gated Release and Monitoring. Limiting access to the framework through gated releases and
monitoring its usage can help prevent misuse.

Bias and Fairness Audits. Conducting regular audits to assess and address biases in the model
editing process can help ensure that edits do not unfairly impact any specific group. Developing
guidelines for ethical editing practices is also essential.

Privacy Protection Measures. Establishing clear protocols for handling sensitive data during
the editing process can help protect privacy. Anonymization and encryption techniques should be
employed to safeguard personal information.

By considering both the positive and negative impacts and implementing appropriate mitigation
strategies, this work can contribute to the responsible and ethical advancement of model editing
technologies.
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Figure 13: The downstream task performance (%) of models edited by three editing methods with
GPT-2 XL on the COUNTERFACT dataset. Here the linear function was used in PRUNE.

Figure 14: The editing performance (%) of editing methods with GPT-2 XL on the COUNTERFACT
dataset. Here the linear function was used in PRUNE.
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Figure 15: The condition number of MEMIT with LLaMA-2 (7B) on the COUNTERFACT dataset.
“-PRUNE” refers to the condition number of MEMIT coupled with the proposed PRUNE.

Figure 16: The condition number and downstream task performance of three editing methods with
LLaMA-2 (7B) on the COUNTERFACT dataset. Since MEMIT and MEND have multiple parameters
to be edited, we randomly selected one of them to calculate the condition number.
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