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Abstract

Recent advances in speech and language tech-
nologies aim to leverage clinical information
embedded in a person’s language abilities to
automatically assess cognitive health and func-
tion. In this work, we investigate possible per-
turbations of large language models that could
lead to behaviors compatible with those ob-
served in clinical conditions. In particular, we
perturb GPT-2 to observe the impact on a gen-
eration task used to assess Alzheimer’s demen-
tia (AD). Our work achieves statistically sig-
nificant degradation of the model, and addi-
tional classification experiments demonstrate
that lexico-syntax is the most impacted linguis-
tic apparatus during deliberate degradation of
GPT-2. These findings could inform diagnostic
pathways and medical interventions of AD.

1 Introduction

By 2050, the global population of people aged 60
years and older is expected to double to 2.1 bil-
lion people (of Economic and Division, 2017). For
Alzheimer’s dementia (AD), age is the strongest
known risk factor (Organization et al., 2017), as the
brain becomes more damaged over time, and this
necessitates improved strategies for detection to
provide timely interventions for the best outcomes
possible (Porsteinsson et al., 2021). AD is a clin-
ical condition that leads to cognitive impairment
and decline. Subtle changes in a person’s speech
and language can offer insights into the nature of
such decline, particularly in cognitive-linguistic
structures and their function in the brain. The bat-
tery of tests employed during diagnosis entails a
significant speech and language assessment com-
ponent which can be leveraged therein (Herndndez-
Dominguez et al., 2018; Sanborn et al., 2022).

In this context, computational methods can of-
fer a framework to simulate cognitive decline
and approximate or simulate the linguistic deficits
that arise in patients diagnosed with AD (Borge-

Holthoefer et al., 2011; Li et al., 2022). For in-
stance, neural deep learning (DL) models, which
have proven to be useful on classification tasks
among others (de la Fuente Garcia et al., 2020),
have also been investigated in the context of
classifying clinical conditions, such as in the
Alzheimer’s Dementia Recognition through Spon-
taneous Speech (ADReSS) Challenge (Luz et al.,
2020). Insights from such investigations have po-
tential for deriving knowledge that may guide clin-
ical directions (Mota et al., 2012). However, this
requires bespoke approaches that take into account
the characteristics of the base model. For instance,
using DL models can be challenging due to the
quantity and quality of domain-specific data to clin-
ical conditions, which require novel methodologies.
Moreover, the particularities of DL architectures
may also play a role in the results obtained.

In this work, we investigate a method of degrad-
ing LMs to understand the impact on language use
and the linguistic apparatuses that underlie them,
building on the approach proposed by (Li et al.,
2022). Although the brain is extremely complex
and we cannot yet align the inner workings of the
brain exactly to computational models, to explore
how cognitive decline affects linguistic apparatuses
in those diagnosed with AD, we simulate this de-
cline through deliberate degradation of a genera-
tive LM. Evaluation of how this degradation im-
pacts specific linguistic abilities of the LMs focuses
on syntactic and semantic tasks. We also investi-
gate the impact of degradation of different parts of
the architecture on performance, concentrating on
transformer-based models, given their wide adop-
tion for language tasks. In particular we aim to
answer the following core research questions:

* Given their opacity, how might we effectively
compare the degradation in deep neural mod-
els and the brain?

* To what extent this method to simulate cog-



nitive decline in neural LMs reflects the way
in which such decline manifests in humans
diagnosed with AD?

* What linguistic apparatus is most likely to be
affected in AD?

* Are the effects specific to parts of the archi-
tecture? Or are they uniform and robust?

This paper joins other computational evaluations
of early detection of cognitive decline leading to
AD (Hernidndez-Dominguez et al., 2018). It starts
with a discussion of related work (§2) and of the
methods adopted (§3). The results (§4) are dis-
cussed (§5) along with conclusions and future work
(8§6). Insights from these studies may inform diag-
nostic pathways and therapeutic treatments involv-
ing language for those diagnosed with AD.

2 Related Work

Reported changes in language use due to cognitive
decline affect different apparatuses of language,
including aspects of syntax and semantics. For
example, a decrease in lexical diversity and longi-
tudinal changes in lexical choices preceding an AD
diagnosis were reported by Berisha et al. (2015)
and corroborated by Aramaki et al. (2016); Kavé
and Dassa (2018); Vincze et al. (2022); Lira et al.
(2014). From a computational perspective, these
changes have been modeled with machine learn-
ing (ML) classifiers trained on features derived
from language samples from the target groups.
For instance, different dementia types were classi-
fied on the basis of semantic verbal fluency tasks
and on features derived from word embeddings
(Paula et al., 2018) or from speech graphs model-
ing speech as a series of nodes (representing the
words) and edges (representing the temporal se-
quence in which the words were spoken) (Bertola
et al., 2014).

Moreover, in certain neurological disorders, se-
mantic memory can be impaired, and, for instance,
people with AD often find it increasingly difficult to
categorize and name items as their memory deficits
worsen, which is one known behavior attributed to
a word finding difficulty (Almor et al., 1999). The
network theory of semantic memory (Collins and
Loftus, 1975) has formed a basis for computational
modeling. Degradation across the semantic net-
work causes particular difficulty on explicit seman-
tic tasks, such as picture naming and word-picture

matching (Altmann and McClung, 2008), and an
unexpected “hyperpriming” effect has been known
to occur in people with AD (Chertkow et al., 1989;
Rogers and Friedman, 2008). Using percolation
theory, (Borge-Holthoefer et al., 2011) modeled
a form of cognitive degradation of the semantic
memory to simulate this abnormal semantic prim-
ing effect by using semantic, free association net-
works created from psycholinguistic tests (Nelson
et al., 1998). The consequences of this global degra-
dation are an impoverished network, where some
relationships are reinforced and other weaker links
disappear altogether, corroborated by its effect in
humans (Chertkow et al., 1989). In another study,
data from participants responding to a virtual, on-
screen agent regarding questions about their mem-
ory and well-being could be used to distinguish be-
tween AD and Mild Cognitive Impairment groups
using a fully automated classification system (Cog-
noSpeak, O’Malley et al. (2021)). These innovative
projects may help define new diagnostic pathways
to address a lack of accessibility to screening ser-
vices for cognitive decline, accelerating waiting
times and clinical directions, among other benefits.

The availability of data from initiatives like the
Alzheimer’s Dementia Recognition using Sponta-
neous Speech (ADReSS) challenge (Luz et al.,
2020) (which has become the most commonly
used dataset for AD detection (Sevéik and Rusko,
2022)), has enabled a wealth of new research ex-
amining the applicability of advances in natural
language processing (NLP) and speech processing
techniques. For instance, in response to method-
ological challenges of using DL. models on limited
data Li et al. (2022) presents a novel approach
to deliberate degradation, perturbing DL trans-
former models by modifying parameters in the
architecture, approaching state-of-the-art perfor-
mance (SOTA) on ADReSS data using a paired
perplexities approach.

In this work, we extend the methodology of Li
et al. (2022) in a novel way to investigate how mod-
ifying additional parameters in the DL transformer
models’ structure impacts its performance on a text
generation task. We aim to elucidate model degra-
dation as a future avenue for exploring the impacts
of cognitive decline on linguistic function. We in-
vestigate the effects on generation and on semantic
tasks to determine if these are compatible with em-
pirical data. We also examine vulnerabilities of
different parts of the architecture and how these



perturbations affect performance.

3 Methods

The methods described in this work extend a tech-
nique by Li et al. (2022) of deliberate degradation
of GPT-2 (Radford et al., 2019) to understand how
damaging linguistic apparatuses impacts text gen-
eration. We compare the results to the impact that
AD has on a person’s performance on a speech
elicitation task: the Cookie Theft Description Task
(Goodglass et al., 2001).

Two versions of GPT-2 are used for evaluation,
following Li et al. (2022): the off-the-shelf GPT-2,
taken as the “control” model, and the degraded and
impaired versions of GPT-2 as “GPT-D”. They are
probed to generate text based on a synthetic Cookie
Theft Picture Description narrative created by Bird
et al. (2000). As neural LMs are sensitive to lexical
frequency (Cohen and Pakhomov, 2020), lexical
frequency and type-to-token ratio (TTR) are cal-
culated, and a two-sided Welch’s t-test is used to
obtain p-values. The results are further evaluated
by classifying the text generated using BERT (De-
vlin et al., 2018) fine-tuned on the ADReSS dataset
and the Corpus of Linguistic Acceptability (CoLA)
(Warstadt et al., 2019).

3.1 Datasets

ADReSS (Luz et al., 2020) is a fully balanced
dataset in terms of age and gender containing re-
sponses from participants with and without a diag-
nosis of AD to the Cookie Theft Picture Descrip-
tion Task. We use the transcriptions available in the
CHAT transcription format (MacWhinney, 2009).

Additional classifiers were trained on the tok-
enized in-domain set of the Corpus of Linguistic
Acceptability (CoLA), which contains sentences
sampled from published linguistic works and anno-
tated for grammatically (Warstadt et al., 2019).

As using additional descriptions of the Cookie
Theft Picture Description Task seems to improve
classification performance (Guo et al., 2021), we
use the descriptions from the CognoSpeak dataset,
which includes 41 control and 24 dementia tran-
scripts across a variety of ages and gender groups.
These include both manual and automatically
recognised speech transcriptions.

To test semantic understanding we use the LAn-
guage Modeling Broadened to Account for Dis-
course Aspects (LAMBADA) dataset (Paperno
et al., 2016), consisting of narrative passages that

humans can complete given the rest of the passage,
as such, models should predict the final word of
a passage. LAMBADA was used to evaluate lan-
guage understanding in the original GPT2 (Radford
et al., 2019) and decent performance was shown.

3.2 Degrading a transformer model

To modify and degrade GPT-2 to explore impact on
its text generation abilities, we extend the method
of Li et al. (2022). However, our motivation for us-
ing the same transformer model (GPT-2) diverges:
while Li et al. (2022) motivate the use of GPT-2
for experimentation because it was found to be ar-
guably the most cognitively plausible transformer
model, in this work we do not explore the cognitive
plausibility argument from (Schrimpf et al., 2021).

3.2.1 GPT-2 Impairment

GPT-2, a generative transformer model pre-trained
on English data (Radford et al., 2019), is used
to generate additional text based off a synthetic
Cookie Theft Picture description (Bird et al., 2000).
From GPT-2 (simple) several impairment configu-
rations are created by breaking the attention heads
at a number of different layers within the self-
attention mechanism.! “Impairment” here refers
to masking, or zeroing, the values in different pat-
terns which “degrades” the model, and the impair-
ment patterns were informed by Vig and Belinkov
(2019) who analyzed the interaction between at-
tention in transformer models and syntax. We hy-
pothesize that breaking the attention heads using
various styles and combinations of layers will af-
fect the text generated from the resulting model.
In other words, it removes its access to values in
the attention layers and heads. By impairing the
internal structures that store specific kinds of lin-
guistic information, we investigate how the loss of
such information imbued in the layers, caused by
zeroing the values, may lead to generated text that
resembles the speech of those diagnosed with AD.

3.2.2 Artificial Impairment: Locations

To determine the portions of values and locations at
which we will perform the artificial impairment, we
follow Li et al. (2022), who found that the impair-
ment of 50% of the values (out of 25%, 50%, 75%
and 100%) at the corresponding locations, yielded
the best results. However, unlike Li et al. (2022),

"Functionalities for these experiments
are from Li et al (2022) available  in
https://github.com/LinguisticAnomalies/hammer-nets/
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Figure 1: GPT-2 architecture and GPT-D impairment styles

we focus exclusively at the self-attention mech-
anism instead of other areas of the GPT-2 trans-
former architecture, since they found that patterns
of artificial impairment at other locations, namely
the embeddings and feed-forward network compo-
nents, did not yield the expected impact on produc-
ing different discourse.

3.2.3 Artificial Impairment: Patterns

Within the 12 layers and 12 attention heads per
layer, we followed a number of different combina-
tions of impairing the layers and attention heads.
The self-attention mechanism in GPT-2 contains
concatenated Query-Key-Value matrices that pre-
cede a feed-forward layer. We use the ‘random’
(RAN) masking style (Li et al., 2022), in which
the values in the attention heads are randomly set
to zero exclusively at the Values matrix, “as their
parameters directly determine the content of the
vectors that are passed onto the subsequent feed-
forward layer” (Li et al., 2022).

We extend this by impairing the parameters of
the entire concatenated Query-Key-Value matrices
under a new type of impairment pattern called ““an-
nihilate” (ANH). We want to explore how much
the generated text will be affected when both the
amount of attention directed towards items in the
sentence sequence and to where the mechanism
is directing its attention are impaired. The ANH
pattern considers all possible parameters in the con-
catenated Query-Key-Value matrices for masking
instead of just those at the Value matrix, which
can be seen to provide information pertaining to
the impact of each token on a given token’s rep-
resentation. As such, zeroing out the parameters
would remove the impact of that token in calculat-
ing the self-attention of the other tokens. The two
impairment styles are indicated in Figure 1.

Similarly, we hypothesize that zeroing out the
parameters of the attention matrix corresponding
to the Key and the Query will additionally divert
the self-attention away from the tokens that would
ordinarily be used in calculating a token’s repre-
sentation. This is because the Query and the Key
provide the relative importance of different tokens
in calculating the representation of a given token.

The impairment patterns were further motivated
by analyses of the structure of attention in trans-
formers, focusing on different properties of syntax
and its interplay with attention at different layer
depths (Vig and Belinkov, 2019). We frame our
investigation of observing the impact of AD by
adopting a division between syntax and semantics.
As such, the patterns of impairment are as follows:

* Layers 1-6, seem to align syntactic depen-
dencies with attention most strongly (Vig and
Belinkov, 2019), and we expect that masking
the parameters at these layers will produce the
most impacted text generated from the GPT-D
model(s) in terms of syntactic correctness and
grammaticality.

» Layers 6-12 seem to capture the longest-range
relationships and semantic information (Vig
and Belinkov, 2019; Belinkov et al., 2018),
and we expect that masking at these layers
will impact the generated text differently than
at layers 1-6, with less of an effect on syntactic
correctness and grammaticality.

3.2.4 Evaluation and Metrics

We measure the effect of impairing attention layers
by using the generated text from GPT-2 and GPT-D
to calculate the p-value using a two-sided Welch’s
t-test. The p-value measures the statistical signifi-
cance in the difference between GPT-2 and various



Lexical frequency | Type-to-Token Ratio | p-values
Impairment GPT-2 | GPT-D | GPT-2| GPT-D
configurations
Layers 1-6 (RAN) 0 0.25 0.71 0.40 0.083
Layers 7-12 (RAN) 0 0.08 0.72 0.64 0.159
Layers 1-6 (ANH) 0 0.4 0.74 0.55 0.005%
Layers 7-12 (ANH) 0 0 0.73 0.52 NaN

Table 1: Results of p-values calculated from two-sided Welch’s t-test, lexical frequency values, and type-to-token

ratio (TTR) values

GPT-D models (**p < 0.05). This p-value score
captures two key word repetition metrics, lexical
frequency and TTR (Li et al., 2022), which have
shown to draw parallels with linguistic patterns
produced by those with AD. For this framework,
this serves as the measure to determine if a text
is “dementia-like.” Although previous research has
found that those with AD tend to exhibit word rep-
etitions (Bucks et al., 2000; Berisha et al., 2015),
suggesting it as a linguistic anomaly that may be
indicative of dementia-like speech, there have also
been conflicting findings about the effects of AD
on language use (Altmann and McClung, 2008).

4 Results

4.1 GPT-2 and GPT-D Impairment

The control GPT-2 and the degraded GPT-D mod-
els are probed with a beam search to generate the
next best, non-empty 20 tokens following a syn-
thetic Cookie Theft picture description (Bird et al.,
2000).> We use the p-value as a measure of sta-
tistical significance between the control and the
degraded models, to evaluate the impact of the
impairment experiments. Based on the results by
Li et al. (2022), in accordance with the linguistic
deficits that occur in those with dementia, the gen-
erated text from GPT-D is expected to have higher
lexical frequency values and lower TTR values,
and the statistical significance to be observed more
saliently in the impairment configurations that take
place in the initial layers of the model. The results
in Table 1 mostly align with these expectations.
While the TTR values are consistently lower
for the GPT-D than for the GPT-2 counterparts as
expected, there is no pattern for the effect on the
initial 6 layers for the TTR values. There is, though,

2Additional information about the beam search
for this language generation can be found in (Li
et al., 2022) and the text generation scripts in
https://github.com/LinguisticAnomalies/hammer-nets/

a pattern of higher lexical frequency values for the
initial 6 layers in both the RAN and ANH styles.

4.2 Dementia Evaluation

While the findings on the p-value metric is consis-
tent with those by Li et al. (2022), perhaps statis-
tical significance in word repetition (i.e., lexical
frequency and TTR) is not the only characteristic
affected in those with AD. We investigate this for
the p-value metric by fine-tuning BERT classifiers
on other datasets to see if BERT can accurately
classify speech from a ‘control’ group versus a
‘dementia’ group of participants in the ADReSS
dataset.

Following (Li et al., 2022), we experimented on
BERT and DistilBERT, a lighter, distilled version
of BERT that retains 40% of the parameters while
still retaining 95% accuracy of BERT models (Sanh
et al., 2019). 3 Each participant response to the
Cookie Theft picture description task averaged 445
words and was fed into the model as one sample
for fine-tuning. The results of these fine-tuning
experiments are detailed in Table 8 in the appendix
section. Our best model on the evaluation accuracy
(TS) on the BERT (‘bert-base-uncased’) model ap-
proaches SOTA classification performance using
the ADReSS test set by (Balagopalan et al., 2020).

What is particularly surprising is that GPT-D out-
put probabilities for the dementia label were classi-
fied as from the ‘control’ group, even though our
best BERT classifier, fine-tuned on ADReSS, ap-
proaches SOTA performance on the test set shown
in Table 2. We acknowledge that the GPT-D out-
put probabilities are marginally higher than those
of GPT-2, except for the impairment configuration
“Layers 7-12 (ANH).”

To this end, we verify the viability of this BERT
classifier by feeding our BERT classifier the tran-

3Pre-trained models were publicly available through Ope-

nAl and the huggingface library and fine-tuned (Wolf et al.,
2020).
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Probability of
Dementia Classification
Impairment GPI-2 GPI-D
configurations Outputs Outputs
Layers 1-6 (RAN) | 33.77 % 35.17 %
Layers 7-12 (RAN) | 34.92 % 38.16 %
Layers 1-6 (ANH) | 34.17 % 37.13 %
Layers 7-12 (ANH) | 34.11 % 32.72 %

Table 2: Dementia evaluation of GPT-2/GPT-D outputs

scripts from the CognoSpeak dataset. As these
transcripts are also in response to the Cookie Theft
picture description task, they are comparable to the
ADReSS data and therefore can effectively mea-
sure the viability of our classification task.

While it is unsurprising that the control tran-
scripts were classified as ‘dementia’ with only a
3.83% probability (Table 3), we were surprised to
see the dementia transcripts classified as ‘dementia’
with a percentage well below chance at 26.68%.
While this is still greater than the probability with
which the control transcripts were classified, it is
still not high enough to find our BERT classifier as
a viable way to distinguish speech from dementia
participants or verify the p-value metric findings.
To this end, we conclude that a BERT model fine-
tuned on ADReSS data cannot sensibly classify
text as ‘control’ or ‘dementia.” We look to explore
an additional BERT classification task fine-tuned
on a different dataset to verify them instead.

Probability of Dementia Classification
Control Transcripts | Dementia Transcripts
3.83 % 26.68%

Table 3: Dementia evaluation of CognoSpeak data

4.3 Syntactic Evaluation

The generated outputs from GPT-D were found to
be different and “dementia-like” in comparison to
those of GPT-2 with statistical significance, par-
ticularly in regards to the lexico-syntax apparatus.
As such, we assess the grammaticality, or syntactic
correctness, of the outputs to support this result.
We fine-tune a BERT model on CoLLA (Warstadt
et al., 2019) and report the cumulative results in Ta-
ble 9 of the appendix. The best performing model,
T3, achieves an accuracy of 83.9% on the valida-
tion dataset, and 84.21% accuracy on the test set.
Table 4 shows that our GPT-D model, impaired at

the initial 6 layers using the RAN and ANH styles,
produced outputs that are found to be only 2.51%
and 3.43% linguistically acceptable, respectively,
which aligns with expectations.

Percentage of
Linguistic Acceptability
Impairment GPT-2 GPT-D
configurations Outputs Outputs
Layers 1-6 (RAN) | 96.36 % 2.51 %
Layers 7-12 (RAN) | 98.22 % 96.68 %
Layers 1-6 (ANH) | 99.99 % 3.43 %
Layers 7-12 (ANH) | 99.99 % 93.71 %

Table 4: Linguistic acceptability: GPT-2/GPT-D outputs

As a final measure, we use the CoLLA classifier
on the ADReSS and CognoSpeak data themselves
to see if its findings align with our hypotheses on
how AD may impact the syntax apparatus. In con-
trast with our expectations, as shown in Table 5,
the control transcripts in both datasets are classified
as less linguistically acceptable than the dementia
transcripts.

Percentage of
Linguistic Acceptability
Control Dementia
Dataset . .
Transcripts | Transcripts
ADReSS 5.79 % 8.08 %
CognoSpeak | 23.45 % 18.54 %

Table 5: Linguistic acceptability: ADReSS & CognoS-
peak

4.4 Semantic Evaluation

To evaluate the effect on semantic understanding
we employ the same impairment framework used
in the previous tasks on the LAMBADA dataset.
We also introduce 2 other variants on the RAN
strategy, RAN-Q and RAN-K, which impair the
Query and Key matrices respectively, rather than
the Value matrix.

The results show that impairment in the lower
layers of the model (1-6) has the highest effect
on the performance in this semantic understanding
task across all impairment configurations, contrary
to the suggestions of (Vig and Belinkov, 2019).
We also see that RAN-Q impairment has a larger
impact on performance than RAN-K and RAN im-
pairment, with the level of degradation similar to
that of the ANH impairment configuration.



Impairment
. Accuracy

configurations

Layers 1-6 (RAN) 20.7%
Layers 1-6 (RAN-K) 9.93%
Layers 1-6 (RAN-Q) 3.62%
Layers 1-6 (ANH) 4.05%
Layers 7-12 (RAN) 33.04%
Layers 7-12 (RAN-K) | 20.03%
Layers 7-12 (RAN-Q) | 10.90%
Layers 7-12 (ANH) 11.76%

Table 6: Accuracy on the LAMBADA Dataset, averaged
across 10 runs.

5 Discussion

5.1 GPT-2 Impairment Evaluation

The p-value metric calculation from (Li et al., 2022)
determines if generated text from GPT-2 can be
said to reflect the linguistic anomalies that occur in
the speech of those with AD. Our experiments im-
pairing GPT-2 into various degraded configurations
of GPT (GPT-D) indeed generated text based off of
the synthetic Cookie Theft picture description task
(Bird et al., 2000) that was distinct from GPT-2.
Table 1 details the lexical frequency, TTR, and
p-value measures of GPT-D’s generated text fol-
lowing impairment. ANH in layers 1-6 is the only
impairment pattern that shows a significant differ-
ence between GPT-2 and GPT-D. However, the
p-value is still lower for both impairment styles in
layers 1-6 compared with RAN in layers 7-12. The
implication of these results is two-fold:

* Degradation is more impactful in the first
6 layers than the last 6 layers of attention.
The GPT-D model impaired with the ANH pat-
tern in the first 6 layers of attention produced
the highest lexical frequency value, which
aligns with increased word repetitions.

The next highest lexical frequency used the RAN
impairment pattern in layers 1-6, with lower lexical
frequency from impairments in layers 7-12. This
may indicate a difference between impairment at
layers 1-6 and 7-12 for RAN, but the results do not
show a statistically significant difference between
GPT-2 and GPT-D for the p-value. The p-value for
the deeper 6 layers was inconclusive.

To explain this, the first 6 layers of attention have
been found to be most strongly aligned with syn-
tactic dependencies, according to the dependency

alignment metric established by (Vig and Belinkov,
2019). We see a significant difference in generated
outputs between GPT-2 and GPT-D, implying the
impairment at layers 1-6 has effectively damaged
the model’s syntactic apparatus.

Additionally, we observe a lack of p-value sig-
nificance when damaging the last 6 layers, with the
impaired model producing text more similar to the
control GPT-2 model. Researchers have found that
while the initial layers in the self-attention mech-
anism encode lower-level syntactic structures of
language, the deeper layers may be more responsi-
ble for encoding higher-level syntactic information
and even semantics (Vig and Belinkov, 2019), sug-
gested to be due to the ‘global perspective’ afforded
to them (Belinkov et al., 2018).

* Attention is more impacted using the ANH
pattern in comparison to the RAN pattern
of impairment. Additionally impairing the
self-attention mechanism at the Query and
Key matrices produces the most impactful dif-
ference in the linguistic apparatuses encoded
within attention.

The RAN masking style was originally designed
to perturb the Value matrix. Multiplying by the
Value matrix is thought to “generate a semantic
representation of each token” (Li et al., 2022), and
S0, zeroing out it’s parameters would remove the
impact of a given token’s representation in calcu-
lating the self-attention of the other tokens.

Similarly, we speculated that because the key
and query matrices provide the relative importance
of each token to the attention calculation, zeroing
out these parameters would divert self-attention
away from the ordinarily used tokens. This zero-
ing strategy - which we call ANH — was expected
to cause the greatest impact. This was confirmed
by our results and may be attributed to the self-
attention mechanism’s ability to formulate repre-
sentations of words at lower-levels of language,
including syntax. This would reflect the changes
in language use in terms of lexical richness and
grammatical structure in adults with AD, as demon-
strated by (Bucks et al., 2000).

5.2 Syntactic Evaluation

Our dementia evaluation experiments yielded
mixed results. While the best performing BERT
model fine-tuned on ADReSS approached those
of other baseline and SOTA models (Meghanani



et al., 2021; Balagopalan et al., 2020), it was not
able to accurately classify text as ‘control’ or ‘de-
mentia.” The p-value metric suggests that the na-
ture of the degradation may not resemble dementia
in a lexico-syntactic way, supported by previous
findings that the syntactic abilities of “mildly or
moderately demented” patients remain relatively
intact (Murdoch et al., 1987) even in written lan-
guage (Kemper et al., 1993), though such work
may have other implications beyond the scope of
the spontaneous speech data we used. Degradation
may instead extend further into the apparatuses re-
sponsible for storing semantic memory (Hier et al.,
1985; Nebes, 1989; Almor et al., 1999; Altmann
and McClung, 2008).

This is not to contest that there are statistically
significant differences in lexico-syntactic measures
of word repetition in the text generated by both
GPT-2 and GPT-D models, mirrored in the type
of decline found in the speech of those with
AD, particularly in terms of lexical diversity and
richness and syntactic complexity (Bucks et al.,
2000; Berisha et al., 2015), correlating further with
the Mini-Mental State Examination (Herndndez-
Dominguez et al., 2018; Kavé and Dassa, 2018).
By fine-tuning BERT on the CoLA dataset, the
classifier verifies this difference and predicts that
96-97% of the generated outputs from the GPT-D
models impaired at the initial 6 layers are deemed
linguistically unacceptable. This is in contrast to
the classification results on outputs produced from
all other impairment configurations, which our clas-
sifier finds to be linguistically acceptable.

However, in contrast with our expectations, the
CoLA classifier found the control transcripts in
both ADReSS and CognoSpeak datasets to be less
linguistically acceptable than the dementia tran-
scripts. It is important to note this difference in clas-
sification findings on the human data in ADReSS
and CognoSpeak from the findings on data gen-
erated by GPT-2. This suggests a fundamental
difference in how degradation transpires in the hu-
man brain versus that which can be induced in a
LM generating experimental data, aligning with
our stance of not adopting GPT-2 as a proxy to
the human brain. The investigations in this work
explore deliberate degradation of an artificial LM
and the deficits induced as a consequence of such
perturbations, which are importantly from a LLM
perspective. Nevertheless, such work can inspire
possible avenues for exploring the impact cognitive

decline on linguistic function, as increasingly more
advanced Al and language technologies emerge.

Our findings can support the potential for clini-
cians to utilize speech elicitation tasks during as-
sessment and diagnosis that target grammaticality
to assess the cognitive health, an approach that has
been supported by findings in research (Herndndez-
Dominguez et al., 2018). Research has also demon-
strated the utility of correlating clinicians’ assess-
ments of speech and language to automated analy-
ses conducted using NLP techniques (Yeung et al.,
2021). Speech therapies may also aim to reinforce
skills in grammar and syntax as a result.

6 Conclusions

The present work sought to validate an effec-
tive way to simulate degradation in generative
transformer-based LMs that is comparable to the
cognitive decline of AD. The deliberate degrada-
tion approach introduced by (Li et al., 2022) allows
for experimentation on and probing of computa-
tional models to generate language that may oth-
erwise be inaccessible in real-life clinical settings
with patients. Our novel extension provides insight
into which linguistic apparatuses may be impacted
during cognitive decline, and joins other computa-
tional methods to elucidate the linguistic appara-
tuses that are most severely impacted in those with
AD. The main contributions of this work include:

* Creation of a new impairment style called ‘an-
nihilate’ building upon (Li et al., 2022), which
yields more significant results on the linguistic
apparatuses

* Corroboration with existing literature regard-
ing linguistic deficits that occur during cogni-
tive decline, further demonstrating the poten-
tial utility for the degradation approach

The value of such work lies in its potential for
informing clinical directions preceding a diagnosis
of AD and/or other forms of cognitive impairment,
and the therapeutic treatments that follow.

7 Limitations

7.0.1 Datasets

The use of the datasets involving human partici-
pants utilized in this work, namely ADReSS and
CognoSpeak, received full ethics approval. As
the data in the ADReSS and CognoSpeak datasets



consist of responses provided by human partici-
pants, the data were fully anonymized and cannot
be linked back to the individuals who provided the
responses. While the ADReSS data can be made
publicly available, access to this data must be re-
quested from the organizers of the challenge.

7.0.2 Methodology

Our methodology operates under the assumption
that our experiments do not attempt to or suggest
the idea of replacing professional medical advice
and evaluation that is required to receive any clini-
cal diagnosis. Computational modeling should not
be used to determine or diagnose human clinical
conditions. While advances in computational psy-
chiatry and ML models have become extremely
powerful in the tasks they can perform in terms of
human language, they are purely models in them-
selves. They are not exact or fully accurate mod-
els of the human brain, nor do they fully begin
to capture the extremely complex inner workings
and structures of the human brain, which neurosci-
entists, researchers, and other professionals have
yet to fully understand. These models allow us
to perform a variety of experimental tests that we
understand are prone to error and human biases
that are derived from the data and engineers that
are involved in the training process. Therefore,
these models are unable to draw definitive infer-
ences in real-world, clinical settings. Testing on
computational models to understand complex neu-
rodegenerative change is not ideal, but we hope that
they may give us clues into structural deterioration.
They serve as an alternative to otherwise costly and
potentially time-consuming methods of studying
the apparatuses that impact language use.

We clarify that while we previously utilized and
will henceforth utilize the term “control” to refer
to model and data associated with language gen-
erated and derived from neurotypical individuals,
we do not claim that this group of individuals is
comparatively “normal.” The term “control” is sim-
ply a way for us to define a standard within the
framework of our experiments to how we expect
language to be produced so that we may be able to
compare and contrast linguistic anomalies. These
linguistic anomalies may uncover various types of
cognitive and neurological degradation that we oth-
erwise may or may not otherwise associate with
cognitive disorders, and give us insight into how
we can possibly help guide the direction of clinical
assessments of cognitive health.

The aim of this work is to potentially develop
a pipeline or framework that allows us to study
linguistic phenomena and explore changes in lan-
guage use when the linguistic apparatuses of LMs
are altered. These LMs have been specifically de-
signed and trained on human language tasks, which
make them an interesting entrypoint into under-
standing changes in human language use.

Our study could potentially inform the work of
clinicians in how they run human subject-oriented
tests that have been well-established in the diag-
nostic pipeline. We hope that our work would help
determine better, more informed ways to assess
and treat individuals so that they are able to access
necessary medical interventions and treatment as
soon as possible.
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A Appendix A: BERT Training Results

The BERT experiments were carried out using the
Google Colab Pro infrastructure.

For the binary dementia classification task, the
BERT models were fine-tuned using an 80/20 split
on the training data. The ADReSS training set re-
sulted in 86 samples for training, 22 samples for
evaluation, and 48 samples for the test set. Shown
in Table 8, experiments T1 to T11 employed our
own fine-tuning parameters and those defined by
(Devlin et al., 2018) were used for experiments
T12 to T19 on the BERT and DistilBERT models.
Each of the trials was run 5 times over 5 random
seeds and the accuracies were averaged into a sin-
gle accuracy score. Using the best BERT model
and hyperparameters from T35, the generated text
from GPT-2 and GPT-D were classified (‘control’
or ‘dementia’) for each impairment configuration
using a softmax function.

For the linguistic acceptability classification task,
the BERT models were fine-tuned with the sug-
gested hyperparameter values from (Devlin et al.,
2018). Each of the trials from T1 to TS5 was run 5
times over 5 random seeds and the accuracies were
averaged into a single accuracy score. The results
are reported in Table 9.
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. # of train eval warmup | learning | weight | # of | avgeval | avg test
Trial . .
epochs | batch size | batch size | steps rate decay | runs | accuracy | accuracy
Tl 3 16 32 2 1E-06 0 5| 49.09% 50.83%
T2 10 16 32 2 1E-06 0 5| 53.64% 57.50%
T3 10 16 32 2 1E-05 0 5| 8091% 78.33%
T4 20 16 32 5 1E-05 0 5] 81.82% 80.83%
TS 50 16 32 5 1E-05 0 51| 86.36% 80.00%
T6 25 16 32 5 SE-05 0 5] 81.82% 79.17%
T7 25 16 32 5 1E-04 0 51 77.27% 78.75%
T8 25 16 32 8 SE-05 0 5] 81.82% 79.17%
T9 25 16 16 10 5E-05 0 5| 69.09% 80.42%
T10 25 16 32 10 1E-05 0 51 7273% 80.00%
T11 25 16 16 10 1E-05 0 5| 72.73% 80.00%
T12 25 16 32 2 1E-05 0.01 51 7273% 80.00%
T13 25 16 32 2 5E-05 0.01 5| 69.09% 80.42%
T14 3 16 32 2 SE-05 0.01 5| 74.55% 77.50%
T15 3 16 32 2 2E-05 0.01 5| 73.64% 77.50%
T16 3 16 32 2 3E-05 0.01 5| 75.45% 78.33%
T17 3 16 32 2 4E-05 0.01 51 72.73% 77.08%
T18 3 16 32 2 1E-05 0.01 5| 73.64% 74.58%
T19 3 32 32 2 1E-06 0.01 5| 53.64% 51.25%
Table 7: Cumulative results of fine-tuning DistilBERT on ADReSS over 5 runs per trial
. # of train eval warmup | learning | weight | # of | avgeval | avg test
Trial . .
epochs | batch size | batch size | steps rate decay | runs | accuracy | accuracy
T1 3 16 32 2 1E-06 0 5| 52.73% 55.83%
T2 10 16 32 2 1E-06 0 5| 69.10% 67.50%
T3 10 16 32 2 1E-05 0 5| 82.73% 81.25%
T4 20 16 32 5 1E-05 0 5| 85.45% 79.58%
T5 50 16 32 5 1E-05 0 5| 88.18% 79.58%
T6 25 16 32 5 5E-05 0 5| 84.55% 80.00%
T7 25 16 32 5 1E-04 0 5| 82.72% 77.92%
T8 25 16 32 8 5E-05 0 5| 84.54% 80.00%
T9 25 16 16 10 5E-05 0 5| 84.54% 80.00%
T10 25 16 32 10 1E-05 0 5| 87.27% 78.75%
T11 25 16 16 10 1E-05 0 5| 87.27% 78.75%
T12 25 16 32 2 1E-05 0.01 5| 87.27% 78.75%
T13 25 16 32 2 5E-05 0.01 5| 84.55% 80.00%
T14 3 16 32 2 5E-05 0.01 51 71.82% 77.92%
T15 3 16 32 2 2E-05 0.01 5| 66.36% 82.08%
T16 3 16 32 2 3E-05 0.01 5| 65.45% 80.83%
T17 3 16 32 2 4E-05 0.01 5| 66.36% 77.50%
T18 3 16 32 2 1E-05 0.01 5| 65.45% 75.00%
T19 3 32 32 2 1E-06 0.01 5| 48.18% 54.58%

Table 8: Cumulative results of fine-tuning BERT on ADReSS over 5 runs per trial
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. # of train eval warmup | weight | learning | # of | avgeval | avg test
Trial . .
epochs | batch size | batch size | steps decay | rate runs | accuracy | accuracy
T1 3 16 32 2 0.01 S5E-05 | 5 83.83 % 84.21%
T2 3 16 32 2 0.01 2E-05 | 5 82.70% 83.64%
T3 3 16 32 2 0.01 3E-05 | 5 83.90% 84.21%
T4 3 16 32 2 0.01 4E-05 | 5 83.30% 83.80%
TS 3 16 32 2 0.01 1E-05 | 5 83.09% 84.14%

Table 9: Cumulative results of fine-tuning BERT on CoLLA over 5 runs per trial
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