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Abstract

Recent advances in speech and language tech-001
nologies aim to leverage clinical information002
embedded in a person’s language abilities to003
automatically assess cognitive health and func-004
tion. In this work, we investigate possible per-005
turbations of large language models that could006
lead to behaviors compatible with those ob-007
served in clinical conditions. In particular, we008
perturb GPT-2 to observe the impact on a gen-009
eration task used to assess Alzheimer’s demen-010
tia (AD). Our work achieves statistically sig-011
nificant degradation of the model, and addi-012
tional classification experiments demonstrate013
that lexico-syntax is the most impacted linguis-014
tic apparatus during deliberate degradation of015
GPT-2. These findings could inform diagnostic016
pathways and medical interventions of AD.017

1 Introduction018

By 2050, the global population of people aged 60019

years and older is expected to double to 2.1 bil-020

lion people (of Economic and Division, 2017). For021

Alzheimer’s dementia (AD), age is the strongest022

known risk factor (Organization et al., 2017), as the023

brain becomes more damaged over time, and this024

necessitates improved strategies for detection to025

provide timely interventions for the best outcomes026

possible (Porsteinsson et al., 2021). AD is a clin-027

ical condition that leads to cognitive impairment028

and decline. Subtle changes in a person’s speech029

and language can offer insights into the nature of030

such decline, particularly in cognitive-linguistic031

structures and their function in the brain. The bat-032

tery of tests employed during diagnosis entails a033

significant speech and language assessment com-034

ponent which can be leveraged therein (Hernández-035

Domínguez et al., 2018; Sanborn et al., 2022).036

In this context, computational methods can of-037

fer a framework to simulate cognitive decline038

and approximate or simulate the linguistic deficits039

that arise in patients diagnosed with AD (Borge-040

Holthoefer et al., 2011; Li et al., 2022). For in- 041

stance, neural deep learning (DL) models, which 042

have proven to be useful on classification tasks 043

among others (de la Fuente Garcia et al., 2020), 044

have also been investigated in the context of 045

classifying clinical conditions, such as in the 046

Alzheimer’s Dementia Recognition through Spon- 047

taneous Speech (ADReSS) Challenge (Luz et al., 048

2020). Insights from such investigations have po- 049

tential for deriving knowledge that may guide clin- 050

ical directions (Mota et al., 2012). However, this 051

requires bespoke approaches that take into account 052

the characteristics of the base model. For instance, 053

using DL models can be challenging due to the 054

quantity and quality of domain-specific data to clin- 055

ical conditions, which require novel methodologies. 056

Moreover, the particularities of DL architectures 057

may also play a role in the results obtained. 058

In this work, we investigate a method of degrad- 059

ing LMs to understand the impact on language use 060

and the linguistic apparatuses that underlie them, 061

building on the approach proposed by (Li et al., 062

2022). Although the brain is extremely complex 063

and we cannot yet align the inner workings of the 064

brain exactly to computational models, to explore 065

how cognitive decline affects linguistic apparatuses 066

in those diagnosed with AD, we simulate this de- 067

cline through deliberate degradation of a genera- 068

tive LM. Evaluation of how this degradation im- 069

pacts specific linguistic abilities of the LMs focuses 070

on syntactic and semantic tasks. We also investi- 071

gate the impact of degradation of different parts of 072

the architecture on performance, concentrating on 073

transformer-based models, given their wide adop- 074

tion for language tasks. In particular we aim to 075

answer the following core research questions: 076

• Given their opacity, how might we effectively 077

compare the degradation in deep neural mod- 078

els and the brain? 079

• To what extent this method to simulate cog- 080
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nitive decline in neural LMs reflects the way081

in which such decline manifests in humans082

diagnosed with AD?083

• What linguistic apparatus is most likely to be084

affected in AD?085

• Are the effects specific to parts of the archi-086

tecture? Or are they uniform and robust?087

This paper joins other computational evaluations088

of early detection of cognitive decline leading to089

AD (Hernández-Domínguez et al., 2018). It starts090

with a discussion of related work (§2) and of the091

methods adopted (§3). The results (§4) are dis-092

cussed (§5) along with conclusions and future work093

(§6). Insights from these studies may inform diag-094

nostic pathways and therapeutic treatments involv-095

ing language for those diagnosed with AD.096

2 Related Work097

Reported changes in language use due to cognitive098

decline affect different apparatuses of language,099

including aspects of syntax and semantics. For100

example, a decrease in lexical diversity and longi-101

tudinal changes in lexical choices preceding an AD102

diagnosis were reported by Berisha et al. (2015)103

and corroborated by Aramaki et al. (2016); Kavé104

and Dassa (2018); Vincze et al. (2022); Lira et al.105

(2014). From a computational perspective, these106

changes have been modeled with machine learn-107

ing (ML) classifiers trained on features derived108

from language samples from the target groups.109

For instance, different dementia types were classi-110

fied on the basis of semantic verbal fluency tasks111

and on features derived from word embeddings112

(Paula et al., 2018) or from speech graphs model-113

ing speech as a series of nodes (representing the114

words) and edges (representing the temporal se-115

quence in which the words were spoken) (Bertola116

et al., 2014).117

Moreover, in certain neurological disorders, se-118

mantic memory can be impaired, and, for instance,119

people with AD often find it increasingly difficult to120

categorize and name items as their memory deficits121

worsen, which is one known behavior attributed to122

a word finding difficulty (Almor et al., 1999). The123

network theory of semantic memory (Collins and124

Loftus, 1975) has formed a basis for computational125

modeling. Degradation across the semantic net-126

work causes particular difficulty on explicit seman-127

tic tasks, such as picture naming and word-picture128

matching (Altmann and McClung, 2008), and an 129

unexpected “hyperpriming” effect has been known 130

to occur in people with AD (Chertkow et al., 1989; 131

Rogers and Friedman, 2008). Using percolation 132

theory, (Borge-Holthoefer et al., 2011) modeled 133

a form of cognitive degradation of the semantic 134

memory to simulate this abnormal semantic prim- 135

ing effect by using semantic, free association net- 136

works created from psycholinguistic tests (Nelson 137

et al., 1998). The consequences of this global degra- 138

dation are an impoverished network, where some 139

relationships are reinforced and other weaker links 140

disappear altogether, corroborated by its effect in 141

humans (Chertkow et al., 1989). In another study, 142

data from participants responding to a virtual, on- 143

screen agent regarding questions about their mem- 144

ory and well-being could be used to distinguish be- 145

tween AD and Mild Cognitive Impairment groups 146

using a fully automated classification system (Cog- 147

noSpeak, O’Malley et al. (2021)). These innovative 148

projects may help define new diagnostic pathways 149

to address a lack of accessibility to screening ser- 150

vices for cognitive decline, accelerating waiting 151

times and clinical directions, among other benefits. 152

The availability of data from initiatives like the 153

Alzheimer’s Dementia Recognition using Sponta- 154

neous Speech (ADReSS) challenge (Luz et al., 155

2020) (which has become the most commonly 156

used dataset for AD detection (Ševčík and Rusko, 157

2022)), has enabled a wealth of new research ex- 158

amining the applicability of advances in natural 159

language processing (NLP) and speech processing 160

techniques. For instance, in response to method- 161

ological challenges of using DL models on limited 162

data Li et al. (2022) presents a novel approach 163

to deliberate degradation, perturbing DL trans- 164

former models by modifying parameters in the 165

architecture, approaching state-of-the-art perfor- 166

mance (SOTA) on ADReSS data using a paired 167

perplexities approach. 168

In this work, we extend the methodology of Li 169

et al. (2022) in a novel way to investigate how mod- 170

ifying additional parameters in the DL transformer 171

models’ structure impacts its performance on a text 172

generation task. We aim to elucidate model degra- 173

dation as a future avenue for exploring the impacts 174

of cognitive decline on linguistic function. We in- 175

vestigate the effects on generation and on semantic 176

tasks to determine if these are compatible with em- 177

pirical data. We also examine vulnerabilities of 178

different parts of the architecture and how these 179
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perturbations affect performance.180

3 Methods181

The methods described in this work extend a tech-182

nique by Li et al. (2022) of deliberate degradation183

of GPT-2 (Radford et al., 2019) to understand how184

damaging linguistic apparatuses impacts text gen-185

eration. We compare the results to the impact that186

AD has on a person’s performance on a speech187

elicitation task: the Cookie Theft Description Task188

(Goodglass et al., 2001).189

Two versions of GPT-2 are used for evaluation,190

following Li et al. (2022): the off-the-shelf GPT-2,191

taken as the “control” model, and the degraded and192

impaired versions of GPT-2 as “GPT-D”. They are193

probed to generate text based on a synthetic Cookie194

Theft Picture Description narrative created by Bird195

et al. (2000). As neural LMs are sensitive to lexical196

frequency (Cohen and Pakhomov, 2020), lexical197

frequency and type-to-token ratio (TTR) are cal-198

culated, and a two-sided Welch’s t-test is used to199

obtain p-values. The results are further evaluated200

by classifying the text generated using BERT (De-201

vlin et al., 2018) fine-tuned on the ADReSS dataset202

and the Corpus of Linguistic Acceptability (CoLA)203

(Warstadt et al., 2019).204

3.1 Datasets205

ADReSS (Luz et al., 2020) is a fully balanced206

dataset in terms of age and gender containing re-207

sponses from participants with and without a diag-208

nosis of AD to the Cookie Theft Picture Descrip-209

tion Task. We use the transcriptions available in the210

CHAT transcription format (MacWhinney, 2009).211

Additional classifiers were trained on the tok-212

enized in-domain set of the Corpus of Linguistic213

Acceptability (CoLA), which contains sentences214

sampled from published linguistic works and anno-215

tated for grammatically (Warstadt et al., 2019).216

As using additional descriptions of the Cookie217

Theft Picture Description Task seems to improve218

classification performance (Guo et al., 2021), we219

use the descriptions from the CognoSpeak dataset,220

which includes 41 control and 24 dementia tran-221

scripts across a variety of ages and gender groups.222

These include both manual and automatically223

recognised speech transcriptions.224

To test semantic understanding we use the LAn-225

guage Modeling Broadened to Account for Dis-226

course Aspects (LAMBADA) dataset (Paperno227

et al., 2016), consisting of narrative passages that228

humans can complete given the rest of the passage, 229

as such, models should predict the final word of 230

a passage. LAMBADA was used to evaluate lan- 231

guage understanding in the original GPT2 (Radford 232

et al., 2019) and decent performance was shown. 233

3.2 Degrading a transformer model 234

To modify and degrade GPT-2 to explore impact on 235

its text generation abilities, we extend the method 236

of Li et al. (2022). However, our motivation for us- 237

ing the same transformer model (GPT-2) diverges: 238

while Li et al. (2022) motivate the use of GPT-2 239

for experimentation because it was found to be ar- 240

guably the most cognitively plausible transformer 241

model, in this work we do not explore the cognitive 242

plausibility argument from (Schrimpf et al., 2021). 243

3.2.1 GPT-2 Impairment 244

GPT-2, a generative transformer model pre-trained 245

on English data (Radford et al., 2019), is used 246

to generate additional text based off a synthetic 247

Cookie Theft Picture description (Bird et al., 2000). 248

From GPT-2 (simple) several impairment configu- 249

rations are created by breaking the attention heads 250

at a number of different layers within the self- 251

attention mechanism.1 “Impairment” here refers 252

to masking, or zeroing, the values in different pat- 253

terns which “degrades” the model, and the impair- 254

ment patterns were informed by Vig and Belinkov 255

(2019) who analyzed the interaction between at- 256

tention in transformer models and syntax. We hy- 257

pothesize that breaking the attention heads using 258

various styles and combinations of layers will af- 259

fect the text generated from the resulting model. 260

In other words, it removes its access to values in 261

the attention layers and heads. By impairing the 262

internal structures that store specific kinds of lin- 263

guistic information, we investigate how the loss of 264

such information imbued in the layers, caused by 265

zeroing the values, may lead to generated text that 266

resembles the speech of those diagnosed with AD. 267

3.2.2 Artificial Impairment: Locations 268

To determine the portions of values and locations at 269

which we will perform the artificial impairment, we 270

follow Li et al. (2022), who found that the impair- 271

ment of 50% of the values (out of 25%, 50%, 75% 272

and 100%) at the corresponding locations, yielded 273

the best results. However, unlike Li et al. (2022), 274

1Functionalities for these experiments
are from Li et al. (2022) available in
https://github.com/LinguisticAnomalies/hammer-nets/
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Figure 1: GPT-2 architecture and GPT-D impairment styles

we focus exclusively at the self-attention mech-275

anism instead of other areas of the GPT-2 trans-276

former architecture, since they found that patterns277

of artificial impairment at other locations, namely278

the embeddings and feed-forward network compo-279

nents, did not yield the expected impact on produc-280

ing different discourse.281

3.2.3 Artificial Impairment: Patterns282

Within the 12 layers and 12 attention heads per283

layer, we followed a number of different combina-284

tions of impairing the layers and attention heads.285

The self-attention mechanism in GPT-2 contains286

concatenated Query-Key-Value matrices that pre-287

cede a feed-forward layer. We use the ‘random’288

(RAN) masking style (Li et al., 2022), in which289

the values in the attention heads are randomly set290

to zero exclusively at the Values matrix, “as their291

parameters directly determine the content of the292

vectors that are passed onto the subsequent feed-293

forward layer” (Li et al., 2022).294

We extend this by impairing the parameters of295

the entire concatenated Query-Key-Value matrices296

under a new type of impairment pattern called “an-297

nihilate” (ANH). We want to explore how much298

the generated text will be affected when both the299

amount of attention directed towards items in the300

sentence sequence and to where the mechanism301

is directing its attention are impaired. The ANH302

pattern considers all possible parameters in the con-303

catenated Query-Key-Value matrices for masking304

instead of just those at the Value matrix, which305

can be seen to provide information pertaining to306

the impact of each token on a given token’s rep-307

resentation. As such, zeroing out the parameters308

would remove the impact of that token in calculat-309

ing the self-attention of the other tokens. The two310

impairment styles are indicated in Figure 1.311

Similarly, we hypothesize that zeroing out the 312

parameters of the attention matrix corresponding 313

to the Key and the Query will additionally divert 314

the self-attention away from the tokens that would 315

ordinarily be used in calculating a token’s repre- 316

sentation. This is because the Query and the Key 317

provide the relative importance of different tokens 318

in calculating the representation of a given token. 319

The impairment patterns were further motivated 320

by analyses of the structure of attention in trans- 321

formers, focusing on different properties of syntax 322

and its interplay with attention at different layer 323

depths (Vig and Belinkov, 2019). We frame our 324

investigation of observing the impact of AD by 325

adopting a division between syntax and semantics. 326

As such, the patterns of impairment are as follows: 327

• Layers 1-6, seem to align syntactic depen- 328

dencies with attention most strongly (Vig and 329

Belinkov, 2019), and we expect that masking 330

the parameters at these layers will produce the 331

most impacted text generated from the GPT-D 332

model(s) in terms of syntactic correctness and 333

grammaticality. 334

• Layers 6-12 seem to capture the longest-range 335

relationships and semantic information (Vig 336

and Belinkov, 2019; Belinkov et al., 2018), 337

and we expect that masking at these layers 338

will impact the generated text differently than 339

at layers 1-6, with less of an effect on syntactic 340

correctness and grammaticality. 341

3.2.4 Evaluation and Metrics 342

We measure the effect of impairing attention layers 343

by using the generated text from GPT-2 and GPT-D 344

to calculate the p-value using a two-sided Welch’s 345

t-test. The p-value measures the statistical signifi- 346

cance in the difference between GPT-2 and various 347
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Lexical frequency Type-to-Token Ratio p-values
Impairment
configurations GPT-2 GPT-D GPT-2 GPT-D

Layers 1-6 (RAN) 0 0.25 0.71 0.40 0.083
Layers 7-12 (RAN) 0 0.08 0.72 0.64 0.159
Layers 1-6 (ANH) 0 0.4 0.74 0.55 0.005*
Layers 7-12 (ANH) 0 0 0.73 0.52 NaN

Table 1: Results of p-values calculated from two-sided Welch’s t-test, lexical frequency values, and type-to-token
ratio (TTR) values

GPT-D models (**p < 0.05). This p-value score348

captures two key word repetition metrics, lexical349

frequency and TTR (Li et al., 2022), which have350

shown to draw parallels with linguistic patterns351

produced by those with AD. For this framework,352

this serves as the measure to determine if a text353

is “dementia-like.” Although previous research has354

found that those with AD tend to exhibit word rep-355

etitions (Bucks et al., 2000; Berisha et al., 2015),356

suggesting it as a linguistic anomaly that may be357

indicative of dementia-like speech, there have also358

been conflicting findings about the effects of AD359

on language use (Altmann and McClung, 2008).360

4 Results361

4.1 GPT-2 and GPT-D Impairment362

The control GPT-2 and the degraded GPT-D mod-363

els are probed with a beam search to generate the364

next best, non-empty 20 tokens following a syn-365

thetic Cookie Theft picture description (Bird et al.,366

2000).2 We use the p-value as a measure of sta-367

tistical significance between the control and the368

degraded models, to evaluate the impact of the369

impairment experiments. Based on the results by370

Li et al. (2022), in accordance with the linguistic371

deficits that occur in those with dementia, the gen-372

erated text from GPT-D is expected to have higher373

lexical frequency values and lower TTR values,374

and the statistical significance to be observed more375

saliently in the impairment configurations that take376

place in the initial layers of the model. The results377

in Table 1 mostly align with these expectations.378

While the TTR values are consistently lower379

for the GPT-D than for the GPT-2 counterparts as380

expected, there is no pattern for the effect on the381

initial 6 layers for the TTR values. There is, though,382

2Additional information about the beam search
for this language generation can be found in (Li
et al., 2022) and the text generation scripts in
https://github.com/LinguisticAnomalies/hammer-nets/

a pattern of higher lexical frequency values for the 383

initial 6 layers in both the RAN and ANH styles. 384

4.2 Dementia Evaluation 385

While the findings on the p-value metric is consis- 386

tent with those by Li et al. (2022), perhaps statis- 387

tical significance in word repetition (i.e., lexical 388

frequency and TTR) is not the only characteristic 389

affected in those with AD. We investigate this for 390

the p-value metric by fine-tuning BERT classifiers 391

on other datasets to see if BERT can accurately 392

classify speech from a ‘control’ group versus a 393

‘dementia’ group of participants in the ADReSS 394

dataset. 395

Following (Li et al., 2022), we experimented on 396

BERT and DistilBERT, a lighter, distilled version 397

of BERT that retains 40% of the parameters while 398

still retaining 95% accuracy of BERT models (Sanh 399

et al., 2019). 3 Each participant response to the 400

Cookie Theft picture description task averaged 445 401

words and was fed into the model as one sample 402

for fine-tuning. The results of these fine-tuning 403

experiments are detailed in Table 8 in the appendix 404

section. Our best model on the evaluation accuracy 405

(T5) on the BERT (‘bert-base-uncased’) model ap- 406

proaches SOTA classification performance using 407

the ADReSS test set by (Balagopalan et al., 2020). 408

What is particularly surprising is that GPT-D out- 409

put probabilities for the dementia label were classi- 410

fied as from the ‘control’ group, even though our 411

best BERT classifier, fine-tuned on ADReSS, ap- 412

proaches SOTA performance on the test set shown 413

in Table 2. We acknowledge that the GPT-D out- 414

put probabilities are marginally higher than those 415

of GPT-2, except for the impairment configuration 416

“Layers 7-12 (ANH).” 417

To this end, we verify the viability of this BERT 418

classifier by feeding our BERT classifier the tran- 419

3Pre-trained models were publicly available through Ope-
nAI and the huggingface library and fine-tuned (Wolf et al.,
2020).
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Probability of
Dementia Classification

Impairment
configurations

GPT-2
Outputs

GPT-D
Outputs

Layers 1-6 (RAN) 33.77 % 35.17 %
Layers 7-12 (RAN) 34.92 % 38.16 %
Layers 1-6 (ANH) 34.17 % 37.13 %
Layers 7-12 (ANH) 34.11 % 32.72 %

Table 2: Dementia evaluation of GPT-2/GPT-D outputs

scripts from the CognoSpeak dataset. As these420

transcripts are also in response to the Cookie Theft421

picture description task, they are comparable to the422

ADReSS data and therefore can effectively mea-423

sure the viability of our classification task.424

While it is unsurprising that the control tran-425

scripts were classified as ‘dementia’ with only a426

3.83% probability (Table 3), we were surprised to427

see the dementia transcripts classified as ‘dementia’428

with a percentage well below chance at 26.68%.429

While this is still greater than the probability with430

which the control transcripts were classified, it is431

still not high enough to find our BERT classifier as432

a viable way to distinguish speech from dementia433

participants or verify the p-value metric findings.434

To this end, we conclude that a BERT model fine-435

tuned on ADReSS data cannot sensibly classify436

text as ‘control’ or ‘dementia.’ We look to explore437

an additional BERT classification task fine-tuned438

on a different dataset to verify them instead.439

Probability of Dementia Classification
Control Transcripts Dementia Transcripts

3.83 % 26.68%

Table 3: Dementia evaluation of CognoSpeak data

4.3 Syntactic Evaluation440

The generated outputs from GPT-D were found to441

be different and “dementia-like” in comparison to442

those of GPT-2 with statistical significance, par-443

ticularly in regards to the lexico-syntax apparatus.444

As such, we assess the grammaticality, or syntactic445

correctness, of the outputs to support this result.446

We fine-tune a BERT model on CoLA (Warstadt447

et al., 2019) and report the cumulative results in Ta-448

ble 9 of the appendix. The best performing model,449

T3, achieves an accuracy of 83.9% on the valida-450

tion dataset, and 84.21% accuracy on the test set.451

Table 4 shows that our GPT-D model, impaired at452

the initial 6 layers using the RAN and ANH styles, 453

produced outputs that are found to be only 2.51% 454

and 3.43% linguistically acceptable, respectively, 455

which aligns with expectations. 456

Percentage of
Linguistic Acceptability

Impairment
configurations

GPT-2
Outputs

GPT-D
Outputs

Layers 1-6 (RAN) 96.36 % 2.51 %
Layers 7-12 (RAN) 98.22 % 96.68 %
Layers 1-6 (ANH) 99.99 % 3.43 %
Layers 7-12 (ANH) 99.99 % 93.71 %

Table 4: Linguistic acceptability: GPT-2/GPT-D outputs

As a final measure, we use the CoLA classifier 457

on the ADReSS and CognoSpeak data themselves 458

to see if its findings align with our hypotheses on 459

how AD may impact the syntax apparatus. In con- 460

trast with our expectations, as shown in Table 5, 461

the control transcripts in both datasets are classified 462

as less linguistically acceptable than the dementia 463

transcripts. 464

Percentage of
Linguistic Acceptability

Dataset Control
Transcripts

Dementia
Transcripts

ADReSS 5.79 % 8.08 %
CognoSpeak 23.45 % 18.54 %

Table 5: Linguistic acceptability: ADReSS & CognoS-
peak

4.4 Semantic Evaluation 465

To evaluate the effect on semantic understanding 466

we employ the same impairment framework used 467

in the previous tasks on the LAMBADA dataset. 468

We also introduce 2 other variants on the RAN 469

strategy, RAN-Q and RAN-K, which impair the 470

Query and Key matrices respectively, rather than 471

the Value matrix. 472

The results show that impairment in the lower 473

layers of the model (1-6) has the highest effect 474

on the performance in this semantic understanding 475

task across all impairment configurations, contrary 476

to the suggestions of (Vig and Belinkov, 2019). 477

We also see that RAN-Q impairment has a larger 478

impact on performance than RAN-K and RAN im- 479

pairment, with the level of degradation similar to 480

that of the ANH impairment configuration. 481
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Impairment
configurations Accuracy

Layers 1-6 (RAN) 20.7%
Layers 1-6 (RAN-K) 9.93%
Layers 1-6 (RAN-Q) 3.62%
Layers 1-6 (ANH) 4.05%
Layers 7-12 (RAN) 33.04%
Layers 7-12 (RAN-K) 20.03%
Layers 7-12 (RAN-Q) 10.90%
Layers 7-12 (ANH) 11.76%

Table 6: Accuracy on the LAMBADA Dataset, averaged
across 10 runs.

5 Discussion482

5.1 GPT-2 Impairment Evaluation483

The p-value metric calculation from (Li et al., 2022)484

determines if generated text from GPT-2 can be485

said to reflect the linguistic anomalies that occur in486

the speech of those with AD. Our experiments im-487

pairing GPT-2 into various degraded configurations488

of GPT (GPT-D) indeed generated text based off of489

the synthetic Cookie Theft picture description task490

(Bird et al., 2000) that was distinct from GPT-2.491

Table 1 details the lexical frequency, TTR, and492

p-value measures of GPT-D’s generated text fol-493

lowing impairment. ANH in layers 1-6 is the only494

impairment pattern that shows a significant differ-495

ence between GPT-2 and GPT-D. However, the496

p-value is still lower for both impairment styles in497

layers 1-6 compared with RAN in layers 7-12. The498

implication of these results is two-fold:499

• Degradation is more impactful in the first500

6 layers than the last 6 layers of attention.501

The GPT-D model impaired with the ANH pat-502

tern in the first 6 layers of attention produced503

the highest lexical frequency value, which504

aligns with increased word repetitions.505

The next highest lexical frequency used the RAN506

impairment pattern in layers 1-6, with lower lexical507

frequency from impairments in layers 7-12. This508

may indicate a difference between impairment at509

layers 1-6 and 7-12 for RAN, but the results do not510

show a statistically significant difference between511

GPT-2 and GPT-D for the p-value. The p-value for512

the deeper 6 layers was inconclusive.513

To explain this, the first 6 layers of attention have514

been found to be most strongly aligned with syn-515

tactic dependencies, according to the dependency516

alignment metric established by (Vig and Belinkov, 517

2019). We see a significant difference in generated 518

outputs between GPT-2 and GPT-D, implying the 519

impairment at layers 1-6 has effectively damaged 520

the model’s syntactic apparatus. 521

Additionally, we observe a lack of p-value sig- 522

nificance when damaging the last 6 layers, with the 523

impaired model producing text more similar to the 524

control GPT-2 model. Researchers have found that 525

while the initial layers in the self-attention mech- 526

anism encode lower-level syntactic structures of 527

language, the deeper layers may be more responsi- 528

ble for encoding higher-level syntactic information 529

and even semantics (Vig and Belinkov, 2019), sug- 530

gested to be due to the ‘global perspective’ afforded 531

to them (Belinkov et al., 2018). 532

• Attention is more impacted using the ANH 533

pattern in comparison to the RAN pattern 534

of impairment. Additionally impairing the 535

self-attention mechanism at the Query and 536

Key matrices produces the most impactful dif- 537

ference in the linguistic apparatuses encoded 538

within attention. 539

The RAN masking style was originally designed 540

to perturb the Value matrix. Multiplying by the 541

Value matrix is thought to “generate a semantic 542

representation of each token” (Li et al., 2022), and 543

so, zeroing out it’s parameters would remove the 544

impact of a given token’s representation in calcu- 545

lating the self-attention of the other tokens. 546

Similarly, we speculated that because the key 547

and query matrices provide the relative importance 548

of each token to the attention calculation, zeroing 549

out these parameters would divert self-attention 550

away from the ordinarily used tokens. This zero- 551

ing strategy - which we call ANH – was expected 552

to cause the greatest impact. This was confirmed 553

by our results and may be attributed to the self- 554

attention mechanism’s ability to formulate repre- 555

sentations of words at lower-levels of language, 556

including syntax. This would reflect the changes 557

in language use in terms of lexical richness and 558

grammatical structure in adults with AD, as demon- 559

strated by (Bucks et al., 2000). 560

5.2 Syntactic Evaluation 561

Our dementia evaluation experiments yielded 562

mixed results. While the best performing BERT 563

model fine-tuned on ADReSS approached those 564

of other baseline and SOTA models (Meghanani 565
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et al., 2021; Balagopalan et al., 2020), it was not566

able to accurately classify text as ‘control’ or ‘de-567

mentia.’ The p-value metric suggests that the na-568

ture of the degradation may not resemble dementia569

in a lexico-syntactic way, supported by previous570

findings that the syntactic abilities of “mildly or571

moderately demented” patients remain relatively572

intact (Murdoch et al., 1987) even in written lan-573

guage (Kemper et al., 1993), though such work574

may have other implications beyond the scope of575

the spontaneous speech data we used. Degradation576

may instead extend further into the apparatuses re-577

sponsible for storing semantic memory (Hier et al.,578

1985; Nebes, 1989; Almor et al., 1999; Altmann579

and McClung, 2008).580

This is not to contest that there are statistically581

significant differences in lexico-syntactic measures582

of word repetition in the text generated by both583

GPT-2 and GPT-D models, mirrored in the type584

of decline found in the speech of those with585

AD, particularly in terms of lexical diversity and586

richness and syntactic complexity (Bucks et al.,587

2000; Berisha et al., 2015), correlating further with588

the Mini-Mental State Examination (Hernández-589

Domínguez et al., 2018; Kavé and Dassa, 2018).590

By fine-tuning BERT on the CoLA dataset, the591

classifier verifies this difference and predicts that592

96-97% of the generated outputs from the GPT-D593

models impaired at the initial 6 layers are deemed594

linguistically unacceptable. This is in contrast to595

the classification results on outputs produced from596

all other impairment configurations, which our clas-597

sifier finds to be linguistically acceptable.598

However, in contrast with our expectations, the599

CoLA classifier found the control transcripts in600

both ADReSS and CognoSpeak datasets to be less601

linguistically acceptable than the dementia tran-602

scripts. It is important to note this difference in clas-603

sification findings on the human data in ADReSS604

and CognoSpeak from the findings on data gen-605

erated by GPT-2. This suggests a fundamental606

difference in how degradation transpires in the hu-607

man brain versus that which can be induced in a608

LM generating experimental data, aligning with609

our stance of not adopting GPT-2 as a proxy to610

the human brain. The investigations in this work611

explore deliberate degradation of an artificial LM612

and the deficits induced as a consequence of such613

perturbations, which are importantly from a LLM614

perspective. Nevertheless, such work can inspire615

possible avenues for exploring the impact cognitive616

decline on linguistic function, as increasingly more 617

advanced AI and language technologies emerge. 618

Our findings can support the potential for clini- 619

cians to utilize speech elicitation tasks during as- 620

sessment and diagnosis that target grammaticality 621

to assess the cognitive health, an approach that has 622

been supported by findings in research (Hernández- 623

Domínguez et al., 2018). Research has also demon- 624

strated the utility of correlating clinicians’ assess- 625

ments of speech and language to automated analy- 626

ses conducted using NLP techniques (Yeung et al., 627

2021). Speech therapies may also aim to reinforce 628

skills in grammar and syntax as a result. 629

6 Conclusions 630

The present work sought to validate an effec- 631

tive way to simulate degradation in generative 632

transformer-based LMs that is comparable to the 633

cognitive decline of AD. The deliberate degrada- 634

tion approach introduced by (Li et al., 2022) allows 635

for experimentation on and probing of computa- 636

tional models to generate language that may oth- 637

erwise be inaccessible in real-life clinical settings 638

with patients. Our novel extension provides insight 639

into which linguistic apparatuses may be impacted 640

during cognitive decline, and joins other computa- 641

tional methods to elucidate the linguistic appara- 642

tuses that are most severely impacted in those with 643

AD. The main contributions of this work include: 644

• Creation of a new impairment style called ‘an- 645

nihilate’ building upon (Li et al., 2022), which 646

yields more significant results on the linguistic 647

apparatuses 648

• Corroboration with existing literature regard- 649

ing linguistic deficits that occur during cogni- 650

tive decline, further demonstrating the poten- 651

tial utility for the degradation approach 652

The value of such work lies in its potential for 653

informing clinical directions preceding a diagnosis 654

of AD and/or other forms of cognitive impairment, 655

and the therapeutic treatments that follow. 656

7 Limitations 657

7.0.1 Datasets 658

The use of the datasets involving human partici- 659

pants utilized in this work, namely ADReSS and 660

CognoSpeak, received full ethics approval. As 661

the data in the ADReSS and CognoSpeak datasets 662
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consist of responses provided by human partici-663

pants, the data were fully anonymized and cannot664

be linked back to the individuals who provided the665

responses. While the ADReSS data can be made666

publicly available, access to this data must be re-667

quested from the organizers of the challenge.668

7.0.2 Methodology669

Our methodology operates under the assumption670

that our experiments do not attempt to or suggest671

the idea of replacing professional medical advice672

and evaluation that is required to receive any clini-673

cal diagnosis. Computational modeling should not674

be used to determine or diagnose human clinical675

conditions. While advances in computational psy-676

chiatry and ML models have become extremely677

powerful in the tasks they can perform in terms of678

human language, they are purely models in them-679

selves. They are not exact or fully accurate mod-680

els of the human brain, nor do they fully begin681

to capture the extremely complex inner workings682

and structures of the human brain, which neurosci-683

entists, researchers, and other professionals have684

yet to fully understand. These models allow us685

to perform a variety of experimental tests that we686

understand are prone to error and human biases687

that are derived from the data and engineers that688

are involved in the training process. Therefore,689

these models are unable to draw definitive infer-690

ences in real-world, clinical settings. Testing on691

computational models to understand complex neu-692

rodegenerative change is not ideal, but we hope that693

they may give us clues into structural deterioration.694

They serve as an alternative to otherwise costly and695

potentially time-consuming methods of studying696

the apparatuses that impact language use.697

We clarify that while we previously utilized and698

will henceforth utilize the term “control” to refer699

to model and data associated with language gen-700

erated and derived from neurotypical individuals,701

we do not claim that this group of individuals is702

comparatively “normal.” The term “control” is sim-703

ply a way for us to define a standard within the704

framework of our experiments to how we expect705

language to be produced so that we may be able to706

compare and contrast linguistic anomalies. These707

linguistic anomalies may uncover various types of708

cognitive and neurological degradation that we oth-709

erwise may or may not otherwise associate with710

cognitive disorders, and give us insight into how711

we can possibly help guide the direction of clinical712

assessments of cognitive health.713

The aim of this work is to potentially develop 714

a pipeline or framework that allows us to study 715

linguistic phenomena and explore changes in lan- 716

guage use when the linguistic apparatuses of LMs 717

are altered. These LMs have been specifically de- 718

signed and trained on human language tasks, which 719

make them an interesting entrypoint into under- 720

standing changes in human language use. 721

Our study could potentially inform the work of 722

clinicians in how they run human subject-oriented 723

tests that have been well-established in the diag- 724

nostic pipeline. We hope that our work would help 725

determine better, more informed ways to assess 726

and treat individuals so that they are able to access 727

necessary medical interventions and treatment as 728

soon as possible. 729
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A Appendix A: BERT Training Results965

The BERT experiments were carried out using the966

Google Colab Pro infrastructure.967

For the binary dementia classification task, the968

BERT models were fine-tuned using an 80/20 split969

on the training data. The ADReSS training set re-970

sulted in 86 samples for training, 22 samples for971

evaluation, and 48 samples for the test set. Shown972

in Table 8, experiments T1 to T11 employed our973

own fine-tuning parameters and those defined by974

(Devlin et al., 2018) were used for experiments975

T12 to T19 on the BERT and DistilBERT models.976

Each of the trials was run 5 times over 5 random977

seeds and the accuracies were averaged into a sin-978

gle accuracy score. Using the best BERT model979

and hyperparameters from T5, the generated text980

from GPT-2 and GPT-D were classified (‘control’981

or ‘dementia’) for each impairment configuration982

using a softmax function.983

For the linguistic acceptability classification task,984

the BERT models were fine-tuned with the sug-985

gested hyperparameter values from (Devlin et al.,986

2018). Each of the trials from T1 to T5 was run 5987

times over 5 random seeds and the accuracies were988

averaged into a single accuracy score. The results 989

are reported in Table 9. 990
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Trial # of
epochs

train
batch size

eval
batch size

warmup
steps

learning
rate

weight
decay

# of
runs

avg eval
accuracy

avg test
accuracy

T1 3 16 32 2 1E-06 0 5 49.09% 50.83%
T2 10 16 32 2 1E-06 0 5 53.64% 57.50%
T3 10 16 32 2 1E-05 0 5 80.91% 78.33%
T4 20 16 32 5 1E-05 0 5 81.82% 80.83%
T5 50 16 32 5 1E-05 0 5 86.36% 80.00%
T6 25 16 32 5 5E-05 0 5 81.82% 79.17%
T7 25 16 32 5 1E-04 0 5 77.27% 78.75%
T8 25 16 32 8 5E-05 0 5 81.82% 79.17%
T9 25 16 16 10 5E-05 0 5 69.09% 80.42%
T10 25 16 32 10 1E-05 0 5 72.73% 80.00%
T11 25 16 16 10 1E-05 0 5 72.73% 80.00%
T12 25 16 32 2 1E-05 0.01 5 72.73% 80.00%
T13 25 16 32 2 5E-05 0.01 5 69.09% 80.42%
T14 3 16 32 2 5E-05 0.01 5 74.55% 77.50%
T15 3 16 32 2 2E-05 0.01 5 73.64% 77.50%
T16 3 16 32 2 3E-05 0.01 5 75.45% 78.33%
T17 3 16 32 2 4E-05 0.01 5 72.73% 77.08%
T18 3 16 32 2 1E-05 0.01 5 73.64% 74.58%
T19 3 32 32 2 1E-06 0.01 5 53.64% 51.25%

Table 7: Cumulative results of fine-tuning DistilBERT on ADReSS over 5 runs per trial

Trial # of
epochs

train
batch size

eval
batch size

warmup
steps

learning
rate

weight
decay

# of
runs

avg eval
accuracy

avg test
accuracy

T1 3 16 32 2 1E-06 0 5 52.73% 55.83%
T2 10 16 32 2 1E-06 0 5 69.10% 67.50%
T3 10 16 32 2 1E-05 0 5 82.73% 81.25%
T4 20 16 32 5 1E-05 0 5 85.45% 79.58%
T5 50 16 32 5 1E-05 0 5 88.18% 79.58%
T6 25 16 32 5 5E-05 0 5 84.55% 80.00%
T7 25 16 32 5 1E-04 0 5 82.72% 77.92%
T8 25 16 32 8 5E-05 0 5 84.54% 80.00%
T9 25 16 16 10 5E-05 0 5 84.54% 80.00%
T10 25 16 32 10 1E-05 0 5 87.27% 78.75%
T11 25 16 16 10 1E-05 0 5 87.27% 78.75%
T12 25 16 32 2 1E-05 0.01 5 87.27% 78.75%
T13 25 16 32 2 5E-05 0.01 5 84.55% 80.00%
T14 3 16 32 2 5E-05 0.01 5 71.82% 77.92%
T15 3 16 32 2 2E-05 0.01 5 66.36% 82.08%
T16 3 16 32 2 3E-05 0.01 5 65.45% 80.83%
T17 3 16 32 2 4E-05 0.01 5 66.36% 77.50%
T18 3 16 32 2 1E-05 0.01 5 65.45% 75.00%
T19 3 32 32 2 1E-06 0.01 5 48.18% 54.58%

Table 8: Cumulative results of fine-tuning BERT on ADReSS over 5 runs per trial
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Trial # of
epochs

train
batch size

eval
batch size

warmup
steps

weight
decay

learning
rate

# of
runs

avg eval
accuracy

avg test
accuracy

T1 3 16 32 2 0.01 5E-05 5 83.83 % 84.21%
T2 3 16 32 2 0.01 2E-05 5 82.70% 83.64%
T3 3 16 32 2 0.01 3E-05 5 83.90% 84.21%
T4 3 16 32 2 0.01 4E-05 5 83.30% 83.80%
T5 3 16 32 2 0.01 1E-05 5 83.09% 84.14%

Table 9: Cumulative results of fine-tuning BERT on CoLA over 5 runs per trial
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