
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FUSEBATCH: UNLOCKING THE POTENTIAL OF DIFFU-
SION MODELS IN THROUGHPUT PERSPECTIVE

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion models achieve state-of-the-art image quality but suffer from slow, it-
erative denoising. Existing acceleration methods focus on reducing the number
of iterations, but these approaches are nearing practical limits. To address this,
we take a different perspective by improving efficiency through generating mul-
tiple images within a single forward pass. We propose FuseBatch which fuses
multiple inputs into a shared latent, applies the denoiser once, and unfuses the
results to recover all outputs. To extend across domains, we introduce FB-UNet
for pixel-space models and FB-AE for latent diffusion models.We further propose
Timestep-Fusion Scheduling (TFS), an inference-only strategy that balances
throughput and quality, enabling FuseBatch to surpass the baseline at comparable
throughput settings. Across DDPM and step-reduction methods (e.g DDIM, Flow
Matching), we achieve near-multiplicative throughput gains with modest quality
trade-offs, demonstrating its compatibility with existing acceleration techniques.
Moreover, it scales effectively to high-resolution LDMs where larger fusion factors
become attainable, providing a practical and orthogonal path to faster diffusion
sampling.

1 INTRODUCTION

Diffusion Models (DMs) have demonstrated state-of-the-art performance in image synthesis, deliv-
ering high fidelity and diversity across a range of datasets. More recently, latent diffusion models
(LDMs) have further advanced this capability, enabling high-resolution image generation with im-
proved efficiency. However, this efficiency comes at the expense of high inference cost. Unlike
VAEs and GANs that generate samples in a single step, DMs require iterative denoising over many
timesteps, which severely limits throughput1. Consequently, recent research has focused on improving
the generation throughput of diffusion models (Liu et al., 2022; Lu et al., 2022a).

Despite these efforts, recent approaches are increasingly facing practical limits. Most methods aim
to increase throughput by reducing per-sample inference time, primarily through cutting down the
number of denoising iterations (Lu et al., 2022b; Zhang & Chen, 2022). For example, DDIM (Song
et al., 2020a) reformulates the reverse diffusion process into a non-Markovian, deterministic sampler
that can generate high-fidelity images in as few as ten steps by reusing noise predictions across
iterations. Flow matching methods (Lipman et al., 2022), on the other hand, learn continuous-time
probability flows, enabling direct mappings from noise to data with far fewer function evaluations.
However, as the number of iterations becomes smaller, further reductions become increasingly difficult
and the throughput gains also diminish. This suggests that throughput is approaching a practical
limit and cannot be improved indefinitely by step-reduction alone. To overcome this bottleneck, we
depart from reducing inference time per sample and instead open a novel dimension of efficiency by
increasing the number of images generated per forward pass.

Building on this motivation, we propose FuseBatch, a framework that processes multiple inputs jointly
within a single forward pass and produces multiple outputs simultaneously. Achieving such efficiency
is far from straightforward, since it requires solving three interdependent problems: compressing
multiple inputs into a representation comparable in scale to a single sample, ensuring that the

1Throughput =
images generated

total inference time
=

images per forward pass
inference time (per forward pass)

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

x1x1x1xK

x1x1x1x2K

x1x1x1xBK

…

x̃B

x̃2

x̃1

vB

v2

v1
x1x1x1uK

x1x1x1u2K

x1x1x1uBK

…

x1x1x1 ̂xK

x1x1x1 ̂x2K

x1x1x1 ̂xBK

…… …

K inputs K outputsFusion

Fusion

Fusion

Unfusion

Unfusion

Unfusion
Projection Layer

Body Network

Batch Generative Module

Figure 1: Illustration of the FuseBatch framework. A batch of K × B inputs is fused into B
representations, jointly processed by a shared denoising backbone, then unfused via the unfusion
module into K representations per group, and finally passed through a projection layer to produce the
K outputs. This design enables up to K× throughput gains with minimal quality loss, and applies
broadly across DDPM, DDIM, and flow matching.

fused representation can be meaningfully processed by the model, and then disentangling it to
accurately recover each original image. These obstacles demand a dedicated architectural solution
rather than simple approaches such as concatenation, which inevitably lose semantic information. To
this end, we introduce a lightweight dual-space fusion–unfusion module that constructs a shared latent
representation, routes it through the model in a single computation, and restores fine-grained outputs
for all inputs (Fig. 1). By elevating throughput to a primary design objective, FuseBatch surpasses the
practical limits of step-reduction and establishes a new direction for speeding up diffusion inference.

For completeness, we validate FuseBatch across diverse settings to highlight both generality and
scalability. We design two architectural variants, each tailored to the dominant bottlenecks of diffusion
models in pixel and latent spaces. For pixel-space models such as DDPM, where the UNet dominates
computation, we propose FB-UNet, which enables joint denoising of multiple inputs even under
conditional generation. To further balance throughput and fidelity, we introduce Temporal Fusion
Scheduling (TFS), a simple yet effective strategy that dynamically varies the fusion factor K across
the denoising trajectory. Both FB-UNet and TFS are fully compatible with step-reduction techniques
such as DDIM and flow matching, allowing throughput gains from multi-sample fusion to compound
with reductions in denoising iterations. In high-throughput regimes, this combined design surpasses
the practical limits of step-reduction alone, achieving levels of performance unattainable by existing
methods.

For latent-space models such as LDMs, we propose FB-AE. A naïve application of FB-UNet fuses
only the denoiser while leaving the autoencoder untouched, limiting the achievable throughput.
FB-AE overcomes this by embedding fusion–unfusion directly around the autoencoder, enabling end-
to-end acceleration in high-resolution settings. Since latent representations are both compressed and
structurally sparse, they are particularly well-suited for multi-sample fusion with minimal information
loss. At higher resolutions, the relative degradation from larger fusion scales is further reduced,
making the benefits of fusion pronounced. Altogether, FuseBatch extends seamlessly from pixel to
latent diffusion models, providing a unified and scalable framework for efficient image synthesis.

2 RELATED WORK

Diffusion models have emerged as powerful generative frameworks, achieving state-of-the-art fidelity
and diversity by learning to iteratively denoise a corrupted signal (Sohl-Dickstein et al., 2015; Ho
et al., 2020; Song & Ermon, 2019). Pixel-space diffusion models such as DDPM operate on raw
images, progressively refining noisy inputs into high-quality samples (Ho et al., 2020). To enable
higher-resolution generation with greater efficiency, Latent Diffusion Models (LDMs) (Rombach
et al., 2022) introduced an autoencoding formulation that compresses images into a latent space before
denoising, which has since become the foundation of many large-scale generative models. Both pixel-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

and latent-space diffusion models demonstrate strong generative fidelity, but they share a fundamental
drawback: inference remains slow due to the need for iterative denoising across timesteps.

To address this limitation, a major line of work has focused on reducing the number of sampling steps
for accelerating diffusion. Deterministic samplers such as DDIM reparameterize the reverse process
into non-Markovian updates, producing high-quality images in a few(e.g 50) iterations (Song et al.,
2020a; Nichol & Dhariwal, 2021). Flow-matching frameworks (Lipman et al., 2022; 2024) extend
this idea by learning continuous-time vector fields that directly transport noise to data. More recently,
step-aware approaches have been proposed that adapt network capacity across timesteps, though
they still operate on a per-sample basis rather than multiplexing multiple inputs (Yang et al., 2023).
Despite these advances, as the step budget enters the few-step regime, further reductions increasingly
degrade sample quality (Noroozi et al., 2024; Xia et al., 2023; Yue et al., 2023).

There has also been a line of work exploring acceleration superposing inputs into a joint latent
trajectory. Murahari et al. (Murahari et al., 2022) subsequently extended input superposition to
sentence- and token-level classification, while Menet et al. (Menet et al., 2023) applied the concept to
small-scale image datasets such as MNIST and CIFAR. In contrast to these approaches, we are the
first attempt to increase throughput by multiplexing multiple signals into a shared latent trajectory on
diffusion models for image generation, enabling multiple images to be fused and generated within a
single inference while preserving the fidelity required for high-quality synthesis.

3 METHOD

Our goal is to increase throughput not by reducing per-sample latency, but by generating multiple
images within a single forward pass. To achieve this, we propose a dual-space pipeline that fuses
K inputs into a single representation, processes them jointly, and recovers K outputs through
lightweight heads. We formalize this mechanism by introducing fusion–unfusion operators with index
conditioning to preserve sample identity (Sec.3.1). Building on this formulation, we design FB-UNet,
which reduces the standard B ×K × T forward passes to B × T by inserting fusion and unfusion
modules around the UNet backbone (Sec.3.2). To further improve the efficiency–quality trade-off,
we propose Timestep-Fusion Scheduling (TFS), which adapts the fusion factor K to the relative
importance of each timestep in the denoising process(Sec.3.3). Finally, for latent-space models such
as LDMs, we extend fusion to the autoencoder via FB-AE, enabling shared encoding/decoding and
denoising across multiple samples (Sec.3.4).

3.1 FORMULATION ANALYSIS

Achieving throughput gains by processing multiple inputs jointly is non-trivial. It requires a mech-
anism that can (i) compress several inputs into a single latent of consistent scale, (ii) propagate
this fused representation through the backbone without loss of compatibility, and (iii) disentangle
it to faithfully recover each output. To meet these requirements, we introduce the dual space fu-
sion–unfusion pipeline. At a high level, the fusion stage condenses K inputs into a single latent
representation that retains the essential information of all elements, while the unfusion stage recovers
the corresponding K outputs by re-injecting sample-specific identity. This mechanism allows the
backbone to operate at the dual space of the original model for the fused representation, amortizing
computation across multiple samples.

Formally, given a set of K inputs {xi}Ki=1, a fusion mapper ϕ : (Rd)K → Rh aggregates them into a
single latent representation. This fused vector is processed once by a shared network f̃ : Rh → Rh,
and finally an unfusion module ϕ−1 decomposes the output back into individual predictions:

{f(x1), f(x2), . . . , f(xK)} = ϕ−1
(
f̃
(
ϕ(x1, x2, . . . , xK)

))
. (1)

Whereas the conventional element-wise approach applies f to each input independently, our pipeline
introduces a dual operator f̃ that acts once on the fused representation, after which all K outputs are

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

recovered via ϕ−1. The formulation is illustrated below:

ϕ(x1, x2, . . . , xK)
f̃−−−−−−→ f̃(ϕ(x1, x2, . . . , xK))xϕ :fusion

yϕ−1 :unfusion

{x1, x2, . . . , xK} f−−−−−−→ {y1, y2, . . . , yK}

The fused representation preserves the essential information of all inputs, as latent spaces often
exhibit the property that additive operations retain semantic structure rather than destroying it (Zhang
et al., 2017; Verma et al., 2019). Furthermore, the unfusion process can recover the original image
information from the fused representation by exploiting the distinct high-dimensional signatures of
each input (Gandelsman et al., 2019; Szeliski et al., 2000).

For this dual-space pipeline to function correctly, each input xj must map to its corresponding output
yj , preserving bijective correspondence. This precludes a purely permutation-invariant fusion, as it
would erase sample identity. Accordingly, the fusion-unfusion stage must maintain index-specific
identity across all K elements. To achieve this, we introduce an index-conditioned composition
function ψ that injects ordering information into the fused representation. The complete process is
thus given by:

{y1, y2, . . . , yK} = ϕ−1
(
f̃
(
ϕ
(
ψ(x1, 1), ψ(x2, 2), . . . , ψ(xK ,K)

)))
, (2)

where ψ(xj , j) denotes the index-conditioned encoding of j-th sample. This ensures that each fused
input can be faithfully disentangled into its corresponding output, enabling information-preserving
fusion and unfusion.

3.2 FB-UNET

For pixel-space diffusion models such as DDPM, the denoising U-Net constitutes the main com-
putational bottleneck, as every noisy sample must be processed independently at each timestep.
Concretely, a standard denoiser ϵθ requires B ×K × T forward passes for a batch of size B, fusion
factor K, and sampling horizon T . To overcome this inefficiency, we propose FB-UNet, a U-Net
backbone augmented with the FuseBatch strategy that restructures the computation into B × T
passes. FB-UNet achieves this by inserting two lightweight, learnable modules into the U-Net: a
fusion module Fϕ that condenses each group of K noisy inputs into a single latent representation,
and an unfusion module Uϕ−1 that disentangles the fused features back into K individual predictions.
Between these modules, the shared denoiser body ϵbodyθ is executed only once, and the recovered
features are finally mapped to noise estimates by the projection head ϵprojθ :

RB×K×d Fϕ−−→ RB×h ϵbody
θ−−−→ RB×h Uϕ−1

−−−→ RB×K×h ϵprojθ−−−→ RB×d. (3)

Fusion via Index-Conditioned Composition We aggregate each group of K noisy samples
{x(i,j)t }Kj=1 into a single latent representation x̃(i)t ∈ Rh using an index-conditioned composition
functionCψ : RB×K×d → RB×K×h and a fusion function Fϕ : RB×K×h → RB×h. For framework-
agnostic implementation, we adopt a parameter-free summation for Fϕ, avoiding the need for
learnable parameters ϕ. However, naïvely summing inputs collapses sample identity, making it
unsuitable for recovering individual trajectories. To address this, we first pass each input through a
learnable module Cψ that incorporates the sample index j, enabling permutation-sensitive fusion.
The fused representation is thus given by:

x̃
(i)
t = Fϕ

(
{x(i,j)t }Kj=1

)
=

K∑
j=1

Cψ

(
x
(i,j)
t , j

)
∈ Rh, i ∈ [B], j ∈ [K]. (4)

Here, each Cψ is implemented as a small 2D convolutional block with kernel size 3, using a learnable
index-conditioned function ψ(xj , j) to retain sample identity while preserving spatial structure.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Shared Denoising Step To amortize computation, we decompose the original denoiser ϵθ into a
heavy body ϵbodyθ and a lightweight projection head ϵprojθ to apply ϵbodyθ exactly once to the fused
representation batch, dramatically cutting computation. Concretely, for each batch index i, the fused
latent x̃(i)t and timestep t are fed into ϵbodyθ , producing

ṽ
(i)
t = ϵbodyθ

(
x̃
(i)
t , t

)
∈ Rh. (5)

Importantly, this design allows the expensive core to be operated on x̃t exactly once per group while
preserving the expressive power of the original model. Therefore, by inserting lightweight fusion
and unfusion modules around the expensive core with negligible parameter overheads, FuseBatch
generates B × K images with only B × T full U-Net body evaluations, delivering substantial
throughput gains at the expense of subtle reductions in image quality.

Index-Conditioned Unfusion We recover each of the K denoising outputs via an efficient, index-
conditioned channel-wise disentanglement and projection head. First, we apply Uϕ−1 , a pointwise
2D convolution conditioned on the original sample index j. We focus on the fact that the shared
pass (Eq. 5) captures rich multi-sample features while leveraging the full spatial capacity of the
U-Net backbone. Because ṽt resides just before the final projection layer, it already encodes detailed
localization, context, and inter-sample correlations (Ronneberger et al., 2015). Therefore, the fused
features in ṽt are disentangled by applying linear projections along the channel dimension, enabling
separation through a lightweight Uϕ−1 that is invariant to spatial position. Next, each u(i,j)t is passed
through the projection layer to yield the noise prediction:

ϵ̂
(i,j)
t = ϵprojθ (u

(i,j)
t ) = ϵprojθ (Uϕ−1

(
ṽ
(i)
t , j

)
), i ∈ [B], j ∈ [K]. (6)

Finally, we update each sample using the standard diffusion step to produce x(i,j)t−1 .

3.3 TIMESTEP-FUSION SCHEDULING (TFS)

To achieve a favorable speed–quality tradeoff, we introduce Timestep-Fusion Scheduling (TFS),
which dynamically varies the fusion factor K across the denoising trajectory. It is well established
that diffusion processes contain timesteps of varying importance, with certain steps being more
critical to sample fidelity than others (Nichol & Dhariwal, 2021; Song et al., 2020b; Karras et al.,
2022; Yang et al., 2023). Accordingly, TFS allocates smaller fusion factors K to fidelity-critical steps
and larger K to less sensitive regions. This design both improves throughput and preserves quality by
adapting fusion strength to the intrinsic importance of each timestep, without additional training. For
example, in the case of DDPM, early steps dominated by high noise primarily recover low-frequency
structure and are relatively robust to aggressive fusion. In contrast, later steps refine high-frequency
details, where large K may cause blurring. Accordingly, our DDPM-specific TFS schedule places
larger fusion factors in the early phase and gradually reduces them as denoising progresses.

3.4 FB-AUTOENCODER

Architecture and Training We extend the FuseBatch paradigm to latent diffusion models, where
applying FB-UNet alone fuses the denoiser but leaves the decoder to process each sample indepen-
dently, limiting throughput gains. To address this bottleneck, we propose FB-AutoEncoder (FB-AE),
which places fusion and unfusion modules around the autoencoder so that both encoding and decod-
ing can be shared across multiple inputs. FB-AE applies the index-conditioned fusion module Fϕ
immediately before the encoder Eα and places the unfusion module Uϕ−1 just ahead of the decoder’s
final projection layer Dproj

β . To clarify notation, we denote the decoder as Dβ = (Dbody
β ,Dproj

β ),
where Dbody

β represents the intermediate convolutional layers that transform latent features and Dproj
β

is the final linear projection back to pixel space. By reusing the lightweight convolutional blocks
introduced in Sec. 3.2, FB-AE adds only negligible parameter overhead while preserving the original
latent-space expressivity. During training, FB-AE learns to map groups of K noisy inputs into a
single fused representation, encode and decode them jointly, and then recover K outputs in parallel,
as formalized below:

RB×K×d Fϕ−−→ RB×h Eα−−→ RB×m Dbody
β−−−−→ RB×m Uϕ−1

−−−→ RB×K×h Dproj
β−−−→ RB×K×d. (7)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Unified comparison of Vanilla, FuseBatch (K = 2, 4), and TFS across three sampling
frameworks (DDPM, DDIM (T=50), FM) on CIFAR-10 and CelebA. Reported metrics include
throughput (images/sec), MAC reduction, parameter overhead, and sample quality (FID↓, sFID↓, IS↑,
Precision↑, Recall↑). Best results are in bold, and second-best results are underlined.

CIFAR-10
Method Variant Throughput MAC Parameter FID↓ sFID↓ IS↑ Precision↑ Recall↑

DDPM

Vanilla 1.71 6.07T 35.7M 3.41 4.40 9.20 0.68 0.58
FuseBatch (K=2) 3.17 (×1.85) 3.07T (50.6%) +63.1K (0.18%) 5.93 4.58 8.67 0.63 0.58
FuseBatch (K=4) 6.31 (×3.49) 1.55T (25.5%) +102.0K (0.29%) 18.27 6.54 7.41 0.56 0.55
TFS 3.31 (×1.94) 3.06T (50.4%) – 3.88 4.27 9.29 0.66 0.60

DDIM (T=50)

Vanilla 35.47 303.44G 35.7M 7.99 6.66 8.71 0.64 0.55
FuseBatch (K=2) 65.39 (×1.84) 153.44G (50.6%) +63.1K (0.18%) 13.34 7.16 8.11 0.59 0.56
FuseBatch (K=4) 120.95 (×3.41) 77.31G (25.5%) +102.0K (0.29%) 26.92 7.95 7.16 0.53 0.54
TFS 66.80 (×1.88) 152.87G (50.4%) – 10.35 6.29 8.58 0.60 0.57

FM

Vanilla 9.60 124.55G 55.7M 2.74 3.84 9.47 0.65 0.63
FuseBatch (K=2) 18.22 (×1.90) 62.89G (50.5%) +185.9K (0.33%) 6.72 4.50 8.76 0.62 0.60
FuseBatch (K=4) 32.98 (×3.44) 31.69G (25.4%) +323.4K (0.58%) 21.11 7.10 7.35 0.58 0.53
TFS 18.29 (×1.91) 62.70G (50.3%) – 4.10 3.95 8.72 0.61 0.59

CelebA
Method Variant Throughput MAC Parameter FID↓ sFID↓ IS↑ Precision↑ Recall↑

DDPM

Vanilla 0.71 15.56T 113.7M 3.51 6.27 2.77 0.76 0.50
FuseBatch (K=2) 1.28 (×1.80) 7.92T (50.9%) +63.1K (0.06%) 4.73 6.98 2.70 0.75 0.46
FuseBatch (K=4) 2.34 (×3.30) 4.01T (25.8%) +102.0K (0.09%) 9.15 10.34 2.64 0.70 0.40
TFS 1.33 (×1.87) 7.87T (50.6%) – 3.81 6.00 2.77 0.74 0.51

DDIM (T=50)

Vanilla 14.56 778.00G 113.7M 5.58 8.37 2.81 0.74 0.46
FuseBatch (K=2) 26.05 (×1.79) 395.88G (51.1%) +63.1K (0.06%) 7.43 9.07 2.75 0.71 0.42
FuseBatch (K=4) 47.67 (×3.27) 200.32G (25.8%) +102.0K (0.09%) 12.62 12.26 2.67 0.65 0.36
TFS 26.83 (×1.84) 393.63G (50.6%) – 6.52 7.82 2.84 0.68 0.48

FM

Vanilla 2.12 589.55G 169.1M 2.80 5.35 3.23 0.67 0.60
FuseBatch (K=2) 4.06 (×1.92) 297.24G (50.4%) +185.9K (0.11%) 3.67 5.67 3.17 0.68 0.56
FuseBatch (K=4) 7.65 (×3.61) 149.59G (25.4%) +323.4K (0.19%) 7.15 7.24 3.00 0.62 0.52
TFS 4.08 (×1.92) 296.49G (50.3%) – 2.98 5.20 3.22 0.66 0.59

Inference At test time, we skip the initial fusion and encoder. Instead we draw one latent z̃(i)T ∼
N (0, I) ∈ Rh per group, implicitly encoding the identities of K samples. We then apply the
diffusion denoiser ϵθ over T timesteps to transform z̃

(i)
T into z̃(i)0 . Finally, the decoder body processes

fused latent once, and the unfusion module followed by the projection head recover all K images:

z̃
(i)
T

ϵθ−−−−→
t=T→1

z̃
(i)
0

Dbody
β−−−−→ ṽ(i)

Uϕ−1 (·,j)
−−−−−−→ u(i,j)

Dproj
β−−−→ x̂(i,j), i ∈ [B], j ∈ [K]. (8)

This procedure achieves upto K-fold throughput boost with only modest fusion overhead, generating
B ×K images from B random latents, though with noticable sample fidelity trade-offs.

4 RESULTS

We evaluate FuseBatch across standard DDPMs, class-conditional variants, step-reduced samplers
such as DDIM and Flow Matching, and latent diffusion models (LDMs). In standard pixel-space
models, including conditional settings, small fusion factors (e.g., K = 2) bring near-multiplicative
throughput gains with only minor quality loss. However, larger K values, cause suboptimal trade-offs.
To address this, we propose Timestep-Fusion Scheduling (TFS), which alters K adaptively across
timesteps in the denoising trajectory. This preserves fidelity while sustaining acceleration, and in some
cases improves IS, Recall, or sFID. Extending FuseBatch to step-reduction methods demonstrates
their orthogonality, as the efficiency gains compound when the two are combined, while TFS helps
restore the quality–efficiency balance at larger fusion factors. FuseBatch also surpasses the practical
throughput ceilings of step-reduction alone, maintaining quality where conventional methods collapse.
Finally, results on LDMs confirm that FuseBatch scales to high-resolution models, where larger
fusion factors are increasingly viable due to lower per-pixel information density. Overall, FuseBatch
emerges as a general and scalable strategy that boosts throughput while keeping quality competitive.

Implementation Details To underscore the plug-and-play nature of FuseBatch, we introduce
only the learnable Fusion and Unfusion modules into each base model, leaving all architectural

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

CIFAR-10
Throughput Variant FID↓ sFID↓ IS↑ Prec.↑ Rec.↑

66.80 img/s Vanilla 10.36 8.16 8.54 0.63 0.53
TFS 10.35 6.29 8.58 0.60 0.57

156.56 img/s Vanilla 17.55 12.66 8.15 0.59 0.46
TFS 14.30 8.76 8.32 0.58 0.53

317.89 img/s Vanilla 43.59 26.38 6.83 0.50 0.30
TFS 22.99 13.76 7.84 0.55 0.46

565.03 img/s Vanilla 99.09 51.83 4.80 0.38 0.15
TFS 50.07 28.11 6.48 0.48 0.31

CelebA
Throughput Variant FID↓ sFID↓ IS↑ Prec.↑ Rec.↑

26.83 img/s Vanilla 7.12 10.68 2.77 0.73 0.43
TFS 6.52 7.82 2.84 0.68 0.48

66.90 img/s Vanilla 12.33 19.01 2.59 0.73 0.30
TFS 8.90 11.53 2.72 0.69 0.40

127.92 img/s Vanilla 23.06 31.96 2.37 0.68 0.15
TFS 14.11 18.63 2.53 0.69 0.28

228.77 img/s Vanilla 65.15 68.64 2.13 0.40 0.01
TFS 31.24 36.63 2.26 0.60 0.10

0

30

60

90

120

0 150 300 450 600

CIFAR10

Vanilla
TFS

0

22.5

45

67.5

90

0 62.5 125 187.5 250

CelebA

0

15

30

45

60

0 150 300 450 600

CIFAR10

0

17.5

35

52.5

70

0 62.5 125 187.5 250

CelebA

Throughput (Images / sec) Throughput (Images / sec)

FI
D

sF
ID

Figure 2: Comparison of throughput vs. sample quality and diversity on CIFAR-10 (left) and CelebA
(right). The table (top) reports FID, sFID, IS, Precision, and Recall across throughput levels for
Vanilla and TFS). The plots (bottom) visualize FID (right) and sFID (left) for DDIM, highlighting
how TFS (red) compares against Vanilla DDIM (blue).

components and hyperparameters unchanged (Karras et al., 2022). All methods, including ours and
baselines, are trained from scratch starting from the model’s initialization to ensure a fair comparison.
During training, we also ensure that wall-clock time matches that of the original model. Because our
method yieldsK× throughput, it effectively providesK× more gradient updates under the same time
budget. Notably, Timestep-Fusion Scheduling (TFS) requires no additional training. It is applied
purely at inference time by combining already trained models with K = 1, 2, 4, enabling adaptive
fusion without altering training cost. Training and optimization details are provided in the Appendix.

Metrics We assess perceptual quality and distributional coverage along five complementary axes.
First, we report the Inception Score (IS) (Salimans et al., 2016) and Fréchet Inception Distance
(FID) (Heusel et al., 2017) to jointly capture sample diversity and global visual fidelity. Second,
we compute the spatial FID (sFID), which measures the Fréchet distance over intermediate feature
maps that preserve spatial structure, thereby providing a more sensitive evaluation of local detail
and geometric fidelity (Nash et al., 2021; Dhariwal & Nichol, 2021). Finally, we measure precision
(i.e, fraction of generated samples that lie on or near the true data manifold), and recall (i.e, fraction
of the real data manifold covered by generated outputs) to quantify the extent to which FuseBatch
preserves individual sample fidelity while still covering the full diversity of the true data manifold.
(Kynkäänniemi et al., 2019; Sajjadi et al., 2018).

4.1 APPLICATION TO STANDARD MODELS WITH TFS

Table 2: Class-conditional CIFAR-10.

Model FID↓ sFID↓ IS↑ Prec.↑ Rec.↑

Baseline(DDPM) 4.07 4.37 9.04 0.66 0.56
FuseBatch (K=2) 7.56 5.65 8.65 0.65 0.54

We first apply FuseBatch to standard DDPMs
and extend it to their class-conditional variants.
With a fixed fusion factor (e.g.,K = 2 orK =
4), throughput improves proportionally while
adding only a minimal parameter overhead (at
most 0.29%). Importantly, we find that when
K is small (e.g., K = 2), the quality drop
is modest: FID reflects a slight degradation, while sFID, IS, Precision, and Recall remain largely
unaffected, indicating preserved diversity and distributional coverage. For instance, on CelebA, FID
increases from 3.51 to 4.73 but sFID remains nearly unchanged (6.27 → 6.98). Under the class-
conditional DDPM on CIFAR-10, the quality degradation at K = 2 mirrors that of the unconditional
setting, confirming that FuseBatch applies seamlessly to conditional generation with acceptable
trade-offs (Table 2). The stability of IS and Precision suggests that although generated samples
diverge slightly from the original distribution, perceptual quality, fidelity, and diversity are preserved.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Performance of FB-AE imported in LDM for K = 2, 4. Reports parameter overhead,
inference throughput, MAC reduction, and sample quality metrics (FID ↓, sFID ↓, IS ↑, Precision ↑,
Recall ↑). Experiments are conducted on the CelebA-HQ dataset.

CelebA-HQ
Method Parameter Throughput MAC FID↓ sFID↓ IS↑ Precision↑ Recall↑
LDM(baseline) 362.3M 0.54 96.38T 11.58 12.68 3.12 0.68 0.34

FuseBatch(K=2) +159.8K (0.04%) 1.08 (×2.00) 48.19T (50.0%) 12.90 13.74 2.96 0.66 0.33

FuseBatch(K=4) +319.6K (0.08%) 0.54 (×4.00) 24.09T (25.0%) 14.57 16.79 2.78 0.69 0.24

These results highlight FuseBatch’s effectiveness as a general strategy for boosting throughput while
maintaining sample quality in low-K regimes.

However, as K grows larger, the trade-off becomes less favorable, motivating the need for an adaptive
strategy. For example, Table 1 shows that on CIFAR-10, FID rises from 3.41 to 5.93 at K = 2, but to
11.20 at K = 4. A similar trend is observed on CelebA, where throughput gains are consistent yet
quality degradation becomes pronounced. To overcome this limitation, we introduce Timestep-Fusion
Scheduling (TFS), a purely inference-time policy that adaptively allocates K across timesteps. We
allocate 50% of steps to K=4, 25% to K=2, and the remaining 25% to K=1.2 For DDPM, whose
trajectories proceed coarse-to-fine (Karras et al., 2022; Yang et al., 2023), the K=4/2/1 sets are
arranged from early to late so thatK decreases over time. This schedule achieves a favorable trade-off:
throughput improves by approximately ×1.7 while FID degrades only modestly (e.g., 3.41 → 4.77).
Notably, on CIFAR-10, IS improves (9.20 → 9.29) and Recall rises (0.58 → 0.60), while on CelebA,
sFID is reduced (6.27 → 6.00), even surpassing the vanilla baseline. These improvements suggest
that adaptive fusion not only preserves efficiency but can also enhance distributional alignment.
Qualitative examples in Appendix confirm that TFS maintains perceptual fidelity and diversity while
still delivering near-multiplicative acceleration.

4.2 EXTENSION TO STEP-REDUCED MODELS

We further extend FuseBatch to step-reduction frameworks such as DDIM and Flow Matching
(FM). Since these methods shorten the sampling trajectory, they are naturally complementary to our
approach, which increases the number of samples generated per step. Consistent with the standard
DDPM setting, we find that small fusion factors (e.g., K = 2) deliver substantial acceleration with
only modest quality impact. For example, on CIFAR-10 under FM, FID increases from 2.74 to 6.72
at K = 2, while other metrics such as IS, sFID, Precision, and Recall remain largely stable (Table 1).
This indicates that FuseBatch preserves diversity and perceptual quality even when combined with
step-reduction, validating its compatibility across different sampling paradigms.

However, quality degradation becomes more severe as K grows larger, mirroring the trend observed
in the vanilla DDPM setting. For instance, applying K = 4 under DDIM or FM leads to sharper
rises in FID despite continued throughput gains, revealing that naïvely fixing K across all timesteps
is suboptimal. To address this limitation, we integrate Timestep-Fusion Scheduling (TFS) into
step-reduced samplers to preserve fidelity while still delivering significant acceleration (Table 1).
DDIM exhibits the same alignment between timesteps and importance, and therefore adopts the
same scheduling strategy as DDPM. In contrast, Flow Matching lacks a sequential timestep order.
Therefore, we instead rank timesteps by scheduler interval and apply the same global allocation
in order of increasing interval size (smaller interval → larger K, larger interval → smaller K). To
achieve approximately 2× throughput, we maintain the same ratio of steps across different K values
as used in DDPM. In both cases, adaptive scheduling not only restores the balance between efficiency
and quality but also produces secondary gains (e.g., improved IS or sFID in certain regimes). These
results demonstrate that FuseBatch, when combined with TFS, synergizes with step-reduction to
unlock compounding efficiency gains while avoiding the sharp quality penalties of large fixed-K
fusion.

2This yields approximately 2× throughput since the effective cost is 1
4
× 0.5 + 1

2
× 0.25 + 1× 0.25 = 0.5.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.3 UNLOCKING THROUGHPUT LIMITS

In this section, we demonstrate that FuseBatch surpasses the practical throughput ceilings of conven-
tional step-reduction methods. This is possible because, as shown in Sec. 4.2, FuseBatch doubles
inference throughput with minor quality drop using Timestep-Fusion Scheduling (TFS), thereby
enabling the model to operate at higher throughput settings than conventional approaches. To high-
light this advantage, we integrated TFS into DDIM and measured image fidelity at 50, 20, and 10,
5 sampling steps. We then compared these results to those of a standard DDIM baseline operating
at the same throughputs in order to assess whether step reduction alone can achieve comparable
speed without severe quality degradation. As shown in Fig. 2, FuseBatch achieves superior perfor-
mance to the conventional approach across nearly all metrics, maintaining higher sample quality at
equal throughput settings. The baseline’s FID rises sharply once pushed beyond its practical ceiling,
FuseBatch exhibits a much more gradual decline. These findings confirm that FuseBatch unlocks
new practical limits for high-throughput diffusion inference. Corresponding quantitative results are
provided in the Appendix.

4.4 EXTENSION TO LATENT MODELS WITH HIGHER RESOLUTION

Having demonstrated that FuseBatch can be seamlessly integrated with step-reduction methods such
as DDIM and Flow Matching, we next investigate its applicability to latent diffusion models (LDMs).
This direction shows that our method is not limited to pixel-space denoising but extends naturally
to latent-space generative frameworks, underscoring its compatibility with recent scalable diffusion
models (e.g Stable Diffusion 1.5). To this end, we evaluate FuseBatch on CelebA-HQ using an
LDM backbone, which operates in compressed latent space and thus represents a widely adopted
high-resolution setting.

As reported in Table 3, FuseBatch preserves its throughput advantage with only modest degradation in
sample quality. Notably, when scaling the fusion factor to K = 4, the decline in FID is far less severe
on CelebA and CelebA-HQ than on CIFAR-10 (Table 1). This reflects an intrinsic resolution effect:
encoding four images into a 32 × 32 × 3 space imposes a heavier bottleneck than in 64 × 64 × 3
or latent 2562 settings. Although high-resolution images contain more absolute information, their
sparsity reduces per-pixel density, making larger fusion factors more viable (Olshausen & Field,
1996; Simoncelli & Olshausen, 2001; Rombach et al., 2022).

Unlike pixel-space models, Timestep-Fusion Scheduling (TFS) cannot be applied in this setting.
Because FB-AE wraps the entire denoising process, fusion and unfusion are tied to the autoencoder
interface, leaving no hook to vary K across timesteps. Once a fusion factor is chosen, it must remain
fixed throughout the trajectory. Nevertheless, FuseBatch still performs strongly in LDMs, showing
that stable multi-sample fusion alone is sufficient for high-resolution settings. From these results, two
key insights emerge: (i) FuseBatch scales effectively to latent models and thus to high-resolution
generators, and (ii) larger fusion factors (K > 2) are increasingly viable as resolution grows. Together,
they demonstrate FuseBatch’s strength in keeping pace with the trend toward larger diffusion models
for high-fidelity image synthesis (Peebles & Xie, 2023).

5 CONCLUSION

In this paper, we address the throughput limitation of diffusion models by shifting focus from reducing
the cost of a single trajectory to generating multiple images in one forward pass. To realize this idea,
we propose FuseBatch, introducing lightweight fusion–unfusion operators instantiated as FB-UNet
for pixel-space models and FB-AE for latent-space models. We show that FuseBatch improves
throughput with negligible overhead, applies effectively to DDPM, while remaining orthogonal to
step-reduction methods(e.g DDIM, flow matching). To further balance speed and fidelity, we propose
Timestep-Fusion Scheduling (TFS), which adapts the fusion factor across timesteps, thereby
enabling FuseBatch to surpass the baseline at comparable throughput settings. Extending to latent
diffusion, FuseBatch proves especially effective in high-resolution settings where larger fusion factors
are viable. For future work, we expect FuseBatch to provide a foundation for adaptive schedules,
stronger architectures for large-K fusion, and integration with future generative frameworks, paving
the way toward faster and more scalable diffusion-based generation.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Reproducibility Statement We have taken several steps to ensure the reproducibility of our work. In
the Appendix, we provide detailed model configurations and training settings. Our experimental setup
closely follows the guidelines established in prior works on diffusion acceleration, so reproducing
these baselines directly translates to reproducing our method without additional difficulty. Most
importantly, we will submit the full source code as supplementary material, enabling researchers to
reproduce our results and extend our approach with minimal effort.

REFERENCES

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Yosef Gandelsman, Assaf Shocher, and Michal Irani. " double-dip": unsupervised image decompo-
sition via coupled deep-image-priors. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 11026–11035, 2019.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In NeurIPS,
2020.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in neural information processing systems, 35:26565–26577,
2022.

Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models. Advances in neural information
processing systems, 32, 2019.

Muyang Li, Tianle Cai, Jiaxin Cao, Qinsheng Zhang, Han Cai, Junjie Bai, Yangqing Jia, Kai Li,
and Song Han. Distrifusion: Distributed parallel inference for high-resolution diffusion models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
7183–7193, 2024.

Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky TQ Chen,
David Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow matching guide and code. arXiv preprint
arXiv:2412.06264, 2024.

Yoni Lipman, Michal Elish, and et al. Upshot. Flow matching for generative modeling. arXiv preprint
arXiv:2210.02747, 2022.

Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models on
manifolds. arXiv preprint arXiv:2202.09778, 2022.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775–5787, 2022a.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
solver for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095,
2022b.

Nicolas Menet, Michael Hersche, Geethan Karunaratne, Luca Benini, Abu Sebastian, and Abbas
Rahimi. Mimonets: Multiple-input-multiple-output neural networks exploiting computation in
superposition. Advances in Neural Information Processing Systems, 36:39553–39565, 2023.

Vishvak Murahari, Carlos Jimenez, Runzhe Yang, and Karthik Narasimhan. Datamux: Data multiplex-
ing for neural networks. Advances in Neural Information Processing Systems, 35:17515–17527,
2022.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Charlie Nash, Jacob Menick, Sander Dieleman, and Peter W Battaglia. Generating images with
sparse representations. arXiv preprint arXiv:2103.03841, 2021.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International conference on machine learning, pp. 8162–8171. PMLR, 2021.

Mehdi Noroozi, Isma Hadji, Brais Martinez, Adrian Bulat, and Georgios Tzimiropoulos. You only
need one step: Fast super-resolution with stable diffusion via scale distillation. In European
Conference on Computer Vision, pp. 145–161. Springer, 2024.

Bruno A Olshausen and David J Field. Emergence of simple-cell receptive field properties by learning
a sparse code for natural images. Nature, 381(6583):607–609, 1996.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4195–4205, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In MICCAI, 2015.

Mehdi SM Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, and Sylvain Gelly. Assessing
generative models via precision and recall. Advances in neural information processing systems, 31,
2018.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. Advances in neural information processing systems, 29,
2016.

Eero P Simoncelli and Bruno A Olshausen. Natural image statistics and neural representation. Annual
review of neuroscience, 24(1):1193–1216, 2001.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256–2265. pmlr, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Richard Szeliski, Shai Avidan, and Padmanabhan Anandan. Layer extraction from multiple images
containing reflections and transparency. In Proceedings IEEE Conference on Computer Vision and
Pattern Recognition. CVPR 2000 (Cat. No. PR00662), volume 1, pp. 246–253. IEEE, 2000.

Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas, David Lopez-Paz,
and Yoshua Bengio. Manifold mixup: Better representations by interpolating hidden states. In
International conference on machine learning, pp. 6438–6447. PMLR, 2019.

Mengfei Xia, Yujun Shen, Changsong Lei, Yu Zhou, Ran Yi, Deli Zhao, Wenping Wang, and Yong-jin
Liu. Towards more accurate diffusion model acceleration with a timestep aligner. arXiv preprint
arXiv:2310.09469, 2023.

Shuai Yang, Yukang Chen, Luozhou Wang, Shu Liu, and Yingcong Chen. Denoising diffusion
step-aware models. arXiv preprint arXiv:2310.03337, 2023.

Zongsheng Yue, Jianyi Wang, and Chen Change Loy. Resshift: Efficient diffusion model for image
super-resolution by residual shifting. Advances in Neural Information Processing Systems, 36:
13294–13307, 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412, 2017.

Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
arXiv preprint arXiv:2204.13902, 2022.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A SUPPLEMENTAL MATERIALS

A.1 IMPLEMENTATION DETAILS

We describe here the training and inference configurations used across all datasets and model families.
For CIFAR-10 DDPM, we follow the protocol of Ho et al. (Ho et al., 2020), while CelebA DDPM
and the DDIM samplers adopt the settings of Song et al. (Song et al., 2020a). For Flow Matching on
CIFAR-10, we replicate Lipman et al. (Lipman et al., 2024); for CelebA, no official baseline exists,
so we define its configuration consistently with the rest of our experiments. Across all cases, the
same learning rate schedule, noise schedule, and sampling procedure are maintained regardless of
the fusion factor K. Evaluation is performed on 50k generated samples using the implementation
of Dhariwal et al. (Dhariwal & Nichol, 2021), ensuring that any performance differences can be
attributed solely to the FuseBatch modules. The detailed configuration is provided in Table 4.

Table 4: Training and inference configurations of DDPM, DDIM, and Flow Matching on CIFAR-10
and CelebA, including model architecture parameters, diffusion sampling schedules, and optimization
hyperparameters.

CIFAR-10 CelebA
DDPM DDIM Flow Matching DDPM DDIM Flow Matching

Channels 128 128 128 128 128 128
Channel Multiplier 1,2,2,2 1,2,2,2 2,2,2 1,1,2,2,4,4 1,1,2,2,4,4 2,2,4,4
Number of Heads 1 1 1 16,16,32,32,64,64 16,16,32,32,64,64 1
Activation Function SiLU SiLU SiLU SiLU SiLU SiLU
Diffusion Steps 1000 50 50 1000 50 50
Noise Schedule linear linear – linear linear –
Beta Start 0.0001 0.0001 – 0.0001 0.0001 –
Beta End 0.02 0.02 – 0.02 0.02 –
Dropout 0.1 0.1 0.3 0.0 0.0 0.3
Learning Rate 2e-4 2e-4 1e-4 2e-4 2e-4 1e-4
Batch Size 128 128 64 32 32 64

A.2 ANALYSIS OF THROUGHPUT-CENTRIC DESIGN

Comparison with Naive K = 4 Baseline. To evaluate the feasibility of FuseBatch under higher
fusion factors, we compare our method at K = 4 against a straightforward patch-based baseline.
Using the same model architectures and dataset configurations described in Section A.1, we design
a naive multi-sample strategy where each noisy input is first downscaled to one-quarter resolution,
concatenated into a 2×2 grid, processed once by the diffusion model, and then split and upscaled back
to full resolution (Li et al., 2024). This simple approach, however, severely degrades generation quality.
As illustrated in Table 5, the patch-based method introduces artifacts, unnatural boundaries, and
blurred details, particularly on facial features and textured backgrounds, while FuseBatch preserves
fine textures and color consistency.

Quantitative results in Table 6 further confirm this gap. When applied to a standard DDPM, the
patch-based method suffers a dramatic quality drop—on CIFAR-10, FID deteriorates from 18.27
(FuseBatch) to 91.71, and IS falls from 7.41 to 4.55. On CelebA, FuseBatch achieves an FID of 9.50
versus 26.07 for the grid approach, and an IS of 2.58 compared to 2.37. These findings demonstrate
that our fusion–unfusion modules not only preserve and disentangle multi-sample information more
effectively than naive patch compositing but also scale reliably to higher throughput settings. Together,
the qualitative and quantitative evidence underscores the scalability of FuseBatch and its potential to
unlock further efficiency gains without compromising visual fidelity.

Comparison to Throughput-Matched Small Models. Beyond comparisons to naive compositing,
we also evaluate whether FuseBatch simply mimics the effect of reducing model size to match a
desired throughput. To this end, we construct two reduced-FLOPs U-Net variants trained on CIFAR-
10 at K = 2. The first is a channel-reduced model, which decreases the number of feature maps per
layer by modifying the channel multipliers. The second is a depth-reduced model, which shortens the
network depth by removing residual blocks. These models are designed to operate under comparable
computational budgets as FuseBatch, thereby serving as throughput-matched baselines.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 5: Qualitative comparison of FuseBatch (K = 4) versus a naive 2× 2 patch-based baseline on
CIFAR-10 and CelebA. FuseBatch maintains sharper details and avoids mosaic artifacts.

CIFAR-10 CelebA

FuseBatch (K=4) Patch-Based FuseBatch (K=4) Patch-Based

Table 6: Quantitative performance of FuseBatch (K = 4) compared with a naive patch-based
baseline on CIFAR-10 and CelebA. Metrics include FID, sFID, IS, Precision, and Recall. FuseBatch
significantly outperforms the naive approach.

CIFAR-10 CelebA
Method FID↓ sFID↓ IS↑ Precision↑ Recall↑ FID↓ sFID↓ IS↑ Precision↑ Recall↑
FuseBatch (K=4) 18.27 6.54 7.41 0.56 0.55 9.50 10.66 2.58 0.70 0.38
Patch-Based 91.71 52.16 4.55 0.35 0.07 26.07 37.34 2.37 0.36 0.12

Detailed configurations are listed in Table 7, and quantitative results are reported in Table 8. While
both reduced models achieve fewer FLOPs and lower throughput than the baseline DDPM, they suffer
clear degradation in generative quality. On CIFAR-10, FID rises from 5.93 (baseline) to 7.59 (channel-
reduced) and 6.55 (depth-reduced), with corresponding declines in IS and recall. The channel-reduced
model shows the most pronounced drop, reflecting the loss of representational capacity when latent
dimensionality is heavily compressed. The depth-reduced model fares slightly better but still lags
behind FuseBatch.

These results highlight a key distinction: reducing network capacity to save FLOPs inevitably shrinks
the latent space available for each sample, limiting the model’s ability to store and recover fine-
grained image information. By contrast, FuseBatch maintains the full backbone capacity while
distributing multiple inputs through shared computation, thereby preserving fidelity and diversity
even under higher throughput demands. Although fusion introduces a mild bottleneck at the encoding
stage, it nonetheless outperforms simple FLOPs-matched capacity-reduced variants. In other words,
FuseBatch achieves efficiency by increasing per-pass yield without sacrificing the richness of the
latent representation, whereas smaller models pay a steep price in generative quality for reduced cost.

Extension to Latent Diffusion Models. Finally, we extend FuseBatch to the Latent Diffusion
Model (LDM) framework trained on CelebA-HQ in order to test whether our approach generalizes
to high-resolution generative settings. Unlike pixel-space diffusion models, LDMs operate in a
compressed latent space, which makes them a widely adopted backbone for large-scale and high-
resolution synthesis. Within this setup, we consider two alternative integration points for our fusion
modules. The first design, denoted FB-UNet, inserts fusion directly inside the denoising UNet
backbone. In this case, multiple noisy latent samples are combined and processed jointly during
the denoising steps. However, because fusion occurs inside the denoising network, small latent
perturbations introduced during compression are often amplified when decoded back to pixel space,
which can lead to visible artifacts and degraded fidelity. The second design, denoted FB-AE, instead
applies fusion at the autoencoder stage. Here, noisy inputs are fused before decoding, and unfusion
occurs after the autoencoder reconstruction. This approach avoids the amplification issue seen in FB-
UNet, since fusion is performed closer to pixel space where minor perturbations are less destructive.
As summarized in Table 9, the difference between the two strategies is substantial. FB-AE achieves
both higher throughput (almost doubling inference speed) and stronger fidelity across quality metrics,

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 7: Configuration details for CIFAR-10 DDPM baseline, channel-reduced, and depth-reduced
variants.

CIFAR-10 (DDPM)
Baseline Channel-Reduced Depth-Reduced

Channels 128 128 128
Channel Multiplier 1,2,2,2 1,1,1,2 1,1,2
Number of Heads 1 1 1
Activation Function SiLU SiLU SiLU
Diffusion Steps 1000 1000 1000
Noise Schedule linear linear linear
Beta Start 0.0001 0.0001 0.0001
Beta End 0.02 0.02 0.02
Dropout 0.1 0.1 0.1
Learning Rate 2e-4 2e-4 2e-4
Batch Size 128 128 128

Table 8: Performance of CIFAR-10 DDPM baseline, channel-reduced, and depth-reduced models.
FuseBatch achieves higher quality at similar throughput compared to reduced models.

CIFAR-10 (DDPM)
Method Throughput MAC FID↓ sFID↓ IS↑ Precision↑ Recall↑
Baseline 3.38 3.07T 5.93 4.58 8.67 0.63 0.58

Channel-Reduced 2.75 3.26T 7.59 4.78 8.25 0.62 0.55

Depth-Reduced 2.54 3.72T 6.55 4.65 8.47 0.63 0.57

whereas FB-UNet shows clear performance degradation. These results demonstrate that FuseBatch
can be effectively adapted to high-resolution latent diffusion pipelines, and that careful placement of
the fusion–unfusion modules is crucial to preserve fidelity while reaping efficiency gains. Qualitative
results of FB-AE with various K and FB-UNet implemented into LDM is shown in Figure 11.

A.3 ABLATION STUDY

We conduct an ablation study to investigate the effect of kernel size in the fusion stage. As shown in
Table 10, increasing the kernel size leads to degraded quality across FID, sFID, and IS. This effect
arises because larger kernels introduce stronger entanglement of spatial information across inputs,
which in turn hampers effective disentanglement during unfusion. These results indicate that smaller
kernels are preferable for stable fusion and higher fidelity.

A.4 QUALITATIVE RESULTS

We present qualitative evidence to complement the quantitative metrics. First, we provide random
samples generated from DDPM, DDIM, and Flow Matching models under different fusion factors
K = 1, 2, 4 along with TFS. As shown in Table 12, 13, FuseBatch preserves structural coherence
and perceptual fidelity across datasets and samplers, highlighting the robustness of our framework
across diverse generative settings.

We further examine how image fidelity scales with throughput under different DDIM sampling steps.
Table 14, 15 shows samples from TFS on CIFAR-10 and CelebA at timesteps 5, 10, 20, 50. We also
include qualitative results of FuseBatch (K = 2). Despite aggressive reduction of sampling steps,
the generated images remain competitive in quality, demonstrating graceful scaling toward real-time
inference.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 9: FuseBatch in Latent Diffusion Models on CelebA-HQ. FB-AE achieves both higher through-
put and better quality than FB-UNet.

CelebA-HQ

Method Parameter Throughput MAC FID↓ sFID↓ IS↑ Precision↑ Recall↑
LDM(baseline) 362.3M 0.54 96.38T 11.58 12.68 3.12 0.68 0.34

FB-UNet(K=2) +159.8K (0.04%) 1.07 (×1.98) 48.67T (50.5%) 17.62 17.97 3.00 0.60 0.30

FB-AE(K=2) +122.0K (0.03%) 1.08 (×2.00) 48.19T (50.0%) 12.90 13.74 2.96 0.66 0.33

Table 10: Ablation on fusion kernel size. Larger kernels increase spatial entanglement, degrading
sample quality. Smaller kernels (e.g., size 3) yield the best performance across FID, sFID, and IS.

Kernel FID↓ sFID↓ IS↑ Precision↑ Recall↑
3 5.93 4.58 8.67 0.63 0.58

5 6.94 4.74 8.58 0.61 0.59

7 7.47 4.74 8.33 0.62 0.58

USE OF LARGE LANGUAGE MODELS

In this paper, large language models (LLMs) were used solely for refining the writing style and
checking grammar. No aspect of the conceptual development, experimental design, implementation,
or analysis relied on the use of an LLM. All scientific contributions are entirely the work of the
authors.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 11: Qualitative comparison of LDM (vanilla), FB-UNet, and FB-AE with different fusion
factors.

LDM (vanilla) FB-UNet (K=2) FB-AE (K=2) FB-AE (K=4)

Table 12: Randomly generated samples from DDPM, DDIM (T=50), and Flow Matching on CIFAR-
10 for K = 1, 2, 4 and TFS. FuseBatch maintains coherence and diversity across different samplers.

K DDPM DDIM (T=50) FM

1

2

4

TFS

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 13: Randomly generated samples from DDPM, DDIM (T=50), and Flow Matching on CelebA
for K = 1, 2, 4 and TFS. Results confirm that FuseBatch preserves sample fidelity and diversity
across datasets.

K DDPM DDIM (T=50) FM

1

2

4

TFS

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 14: Qualitative scaling with throughput on CIFAR-10: random samples from FuseBatch (K=2)
and TFS using DDIM with timesteps 10, 20, 50, and 100. Throughput ranges from 66.80–565.03
img/s.

Throughput 565.03 img/s 317.89 img/s 156.56 img/s 66.80 img/s

Baseline

FuseBatch
(K=2)

TFS

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 15: Qualitative scaling with throughput on CelebA: random samples from FuseBatch (K=2)
and TFS using DDIM with timesteps 10, 20, 50, and 100. Throughput ranges from 26.83–228.77
img/s.

Throughput 228.77 img/s 127.92 img/s 66.90 img/s 26.83 img/s

Baseline

FuseBatch
(K=2)

TFS

20


	Introduction
	Related Work
	Method
	Formulation Analysis
	FB-UNet
	Timestep-Fusion Scheduling (TFS)
	FB-AutoEncoder

	Results
	Application to Standard Models with TFS
	Extension to Step-Reduced Models
	Unlocking Throughput Limits
	Extension to Latent Models with Higher Resolution

	Conclusion
	Supplemental Materials
	Implementation Details
	Analysis of Throughput-Centric Design
	Ablation Study
	Qualitative Results


