
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

On learning history-based policies for controlling Markov decision processes

Anonymous Authors1

Abstract
Reinforcement learning (RL) folklore suggests
that history-based function approximation meth-
ods, such as recurrent neural nets or history-
based state abstraction, perform better than their
memory-less counterparts, due to the fact that
function approximation in Markov decision pro-
cesses (MDP) can be viewed as inducing a Par-
tially observable MDP. However, there has been
little formal analysis of such history-based al-
gorithms, as most existing frameworks focus ex-
clusively on memory-less features. In this paper,
we introduce a theoretical framework for study-
ing the behaviour of RL algorithms that learn
to control an MDP using history-based feature
abstraction mappings. Furthermore, we use this
framework to design a practical RL algorithm and
we numerically evaluate its effectiveness on a set
of continuous control tasks.

1. Introduction
State abstraction and function approximation are vital com-
ponents used by reinforcement learning (RL) algorithms
to efficiently solve complex control problems when exact
computations are intractable due to large state and action
spaces. Over the past few decades, state abstraction in RL
has evolved from the use of pre-determined and problem-
specific features (Crites & Barto, 1995; Tsitsiklis & Roy,
1996; Bertsekas & Tsitsiklis, 1996; Sutton & Barto, 1998;
Singh et al., 2002; Kwok & Fox, 2004; Proper & Tadepalli,
2006) to the use of adaptive basis functions learnt by solv-
ing an isolated regression problem (Ormoneit & Sen, 2002;
Menache et al., 2005; Keller et al., 2006; Petrik, 2007), and
more recently to the use of neural network-based Deep-RL
algorithms that embed state abstraction in successive layers
of a neural network (Barto et al., 2004; Bellemare et al.,
2019).

Feature abstraction results in information loss, and the res-
ulting state features might not satisfy the controlled Markov
property, even if this property is satisfied by the corres-
ponding state (Sutton & Barto, 2018). One approach to
counteract the loss of the Markov property is to generate the
features using the history of state-action pairs, and empirical

evidence suggests that using such history-based features are
beneficial in practice (OpenAI et al., 2019). However, a
theoretical characterisation of history-based Deep-RL al-
gorithms for fully observed Markov Decision Processes
(MDPs) is largely absent form the literature.

In this paper, we bridge this gap between theory and prac-
tise by providing a theoretical analysis of history-based RL
agents acting in a MDP. Our approach adapts the notion of
approximate information state (AIS) for POMDPs proposed
in (Subramanian et al., 2020; Subramanian & Mahajan,
2019) to feature abstraction in MDPs, and we develop a
theoretically grounded policy search algorithm for history-
based feature abstractions and policies.

The rest of the paper is organised as follows: In Section 2,
following a brief review of feature-based abstraction, we mo-
tivate the need for using history-based feature abstractions.
In Section 3, we present a formal model for the co-design
of the feature abstraction and control policy, derive a dy-
namic program using the AIS. We also derive bounds on the
quality of approximate solutions to this dynamic program.
In Section 4 we build on these approximation bounds to
develop an RL algorithm for learning a history-based state
representation and control policy. In Section 5, we present
an empirical evaluation of our proposed algorithm on con-
tinuous control tasks. Finally, we discuss related work in
Section 6 and conclude with future research directions in
Section 7.

2. Background and Motivation
Consider an MDPM = ⟨S,A, P, r, γ⟩ where S denotes
the state space, A denotes the action space, P denotes the
controlled transition matrix, r : S × A → R denotes the
per-step reward, and γ ∈ (0, 1) denotes the discount factor.

The performance of a randomised (and possibly history-
dependent) policy π starting from a start state s0 is measured
by the value function, defined as:

V π(s0) = Eπ

[∞∑
t=1

γt−1r(St, At)

∣∣∣∣S0 = s0

]
. (1)

A policy maximising V π(s0) over all (randomised and pos-
sibly history dependent) policies is called the optimal policy
with respect to initial state s0 and is denoted by π⋆.

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

On learning history-based policies for controlling Markov decision processes

In many applications, S and A are combinatorially large
or uncountable, which makes it intractable to compute the
optimal policy. Most practical RL algorithms overcome this
hurdle by using function approximation where the state is
mapped to a feature space Z using a state abstraction func-
tion ϕ : S → Z . In Deep-RL algorithms, the last layer of
the network is often viewed as a feature vector. These fea-
ture vectors are then used as an approximate state for approx-
imating the value function V̂ : Z → R and/or computing
an approximately optimal policy µ : Z → ∆(A) (Sutton &
Barto, 1998) (where ∆(A) denotes the set of probability dis-
tribution over actions). Therefore, the mapping from state
to distribution of actions is given by the “flattened” policy
µ̃ = µ ◦ ϕ i.e., µ̃ = µ(ϕ(·)).

A well known fact about function approximation is that
the features that are used as an approximate state may not
satisfy the controlled Markov property i.e., in general,

P(Zt+1 | Z1:t, A1:t) ̸= P(Zt+1 | Zt, At).

0 1

3 2

0.5

0.5

0.5

0.5

0.5 0.5

0.50.5

(a) P (0)

0 1

3 2

0.5

0.5

0.5

0.5

0.5 0.5

0.50.5

(b) P (1)

0 1

3 2

0.5

0.5

0.5

0.5

(c) P (2)

0 1

3 2

0.5

0.50.50.5

0.5

0.5 0.5

0.5

(d) Pπ

Figure 1. The transition probability for an example MDP

To see the implications of this fact, consider the toy MDP
depicted in Figures 1a to 1c, with S = {0, 1, 2, 3}, A =
{0, 1, 2}, {Ps,s′(a)}a∈A, and r(0) = r(1) = −1, r(2) = 1,
r(3) = −K, where K is a large positive number. Given the
reward structure the objective of the policy is to try to avoid
state 3 and keep the agent at state 2 as much as possible. It
is easy to see that the optimal policy is

π⋆(0) = 0, π⋆(1) = 0, π⋆(2) = 1, and π⋆(3) = 2.

Note that if the initial state is not state 3 then an agent will
never visit that state under the optimal policy. Furthermore,
any policy which cannot prevent the agent from visiting
state 3 will have a large negative value and, therefore, cannot

be optimal. Now suppose the feature space Z = {0, 1}. It
is easy to see that for any Markovian feature-abstraction
ϕ : S → Z , no policy π̂ : Z → A can prevent the agent
from visiting state 3. Thus, the best policy when using
Markovian feature abstraction will perform significantly
worse than the optimal policy (which has direct access to
the state).

However, it is possible to construct a history-based feature-
abstraction ϕ and a history-based control policy π̂ that works
with ϕ and is of the same quality as π⋆. For this, consider
the following codebooks (where the entries denoted by a dot
do not matter):

Now define

D(0) =

0 1
1 2
2 3
3 0

 , F (1) =

0 1 · ·
· 0 1 ·
· · 0 1
1 · · 0

 ,

D(1) =

3 0
0 1
1 2
2 3

 , F (2) =

1 · · 0
0 1 · ·
· 0 1 ·
· · 0 1

 ,

D(2) =

1 3
0 2
1 3
0 2

 , F (3) =

· 0 · 1
0 · 1 ·
· 0 · 1
0 · 1 ·

 ,

and consider the feature-abstraction policy Zt =
FSt−1,St

(At−1) and a control policy µ which is a finite
state machine with memory, where the memory Mt that
is updated as Mt = DMt−1,Zt(At−1) and the action At

is chosen as At = π(Mt), where π : S → ∆(A) is any
pre-specified reference policy. It can be verified that if the
system starts from a known initial state then µ ◦ ϕ = π.
Thus, if we choose the reference policy π = π⋆, then the
agent will never visit state 3 under µ ◦ ϕ, in contrast to
Markovian feature-abstraction policies where (as we argued
before) state 3 is always visited.

In the above example, we used the properties of the system
dynamics and the reward function to design a history-based
feature abstraction which outperforms memoryless feature
abstractions. We are interested in developing such history-
based feature abstractions using a learning framework when
the system model is not known. We present such a construc-
tion in the next section.

3. Approximation bounds for history-based
feature abstraction

The approximation results of our framework depend on the
properties of metrics on probability spaces. We start with
a brief overview of a general class of metrics known as

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

On learning history-based policies for controlling Markov decision processes

Integral Probability Measures (IPMs) (Müller, 1997); many
of the commonly used metrics on probability spaces such
as total variation (TV) distance, Wasserstein distance, and
maximum-mean discrepency (MMD) are instances of IPMs.
We then derive a general approximation bound that holds
for general IPMs, and then specialize the bound to specific
instances (TV, Wassserstein, and MMD).

3.1. Integral probability metrics (IPM)

Definition 3.1 ((Müller, 1997)). Let (E ,G) be a measurable
space and F denote a class of uniformly bounded measurable
functions on (E ,G). The integral probability metric between
two probability distributions ν1, ν2 ∈ P(E) with respect to
the function class F is defined as:

dF(ν1, ν2) = sup
f∈F

∣∣∣∣ ∫
E
fdν1 −

∫
E
fdν2

∣∣∣∣. (2)

For any function f (not necessarily in F), the Minkowski
functional ρF associated with the metric dF is defined as:

ρF(f) ≜ inf{ρ ∈ R≥0 : ρ−1f ∈ F}. (3)

Eq. (3), implies that that for any function f :∣∣∣∣ ∫
E
fdν1 −

∫
E
fdν2

∣∣∣∣ ≤ ρF(f)dF(ν1, ν2). (4)

In this paper, we use the following IPMs:

1. Total Variation Distance: If F is chosen as FTV ≜
{ 12 span(f) = 1

2 (max(f) − min(f))}, then dF is the
total variation distance, and its Minkowski functional
is ρFTV(f) = 1

2 span(f).
2. Wasserstein/Kantorovich-Rubinstein Distance: If E

is a metric space and F is chosen as FW ≜ {f : Lf ≤
1} (where Lf denotes the Lipschitz constant of f with
respect to the metric on E), then dF is the Wasserstein
or the Kantorovich distance. The Minkowski function
for the Wasserstein distance is ρFW (f) = Lf .

3. Maximum Mean Discrepancy (MMD) Distance:
Let U be a reproducing kernel Hilbert space (RKHS)
of real-valued functions on E and F is choosen as
FMMD ≜ {f ∈ U : ∥f∥U ≤ 1}, (where ∥ · ∥U de-
notes the RKHS norm), then dF is the Maximum Mean
Discrepancy (MMD) distance and its Minkowski func-
tional is ρFMMD(f) = ∥f∥U .

3.2. Approximate information state

Given an MDPM and a feature space Z , letHt = S ×A
denote the space of all histories (S1:t, A1:t−1) up to time t,
where S1:t is a shorthand notation for the history of states
(S1, . . . , St), and similar interpretation holds for A1:t. We

are interested in learning history-based feature abstraction
functions {σt : Ht → Z}t≥1 and a time homogenous policy
µ : Z → ∆(A) such that the flattened policy π = {πt}t≥1,
where πt = µ ◦ σt, is approximately optimal.

3.3. Approximate information state

Given an MDPM and a feature space Z , letHt = S ×A
denote the space of all histories (S1:t, A1:t−1) up to time t,
where S1:t is a shorthand notation for the history of states
(S1, . . . , St), and similar interpretation holds for A1:t. We
are interested in learning history-based feature abstraction
functions {σt : Ht → Z}t≥1 and a time homogenous policy
µ : Z → ∆(A) such that the flattened policy π = {πt}t≥1,
where πt = µ ◦ σt, is approximately optimal.

Since the feature abstraction approximates the state, its
quality depends on how well it can be used to approximate
the per step reward and predict the next state. We formalise
this intuition in definition below.

Definition 3.2. A family of history-based feature abstrac-
tion functions {σt : Ht → Z}t≥1 are said to be re-
cursively updatable if there exists an update function f̂ :
Z × S × A → Z such that the process {Zt}t≥1, where
Zt = σt(S1:t, A1:t−1), satisfies:

Zt+1 = f̂(Zt, St+1, At). t ≥ 1 (5)

Definition 3.3. Given a family of history based recursively
updatable feature abstraction functions {σt : Ht → Z}t≥1,
the features Zt = σt(S1:t, A1:t−1) are said to be (ϵ, δ)-
approximate information state (AIS) with respect to a func-
tion space F if there exist: (i) a reward approximation func-
tion r̂ : Z × A → R, and (ii) an approximate transition
kernel P̂ : Z ×A → ∆(S) such that Z satisfies the follow-
ing properties:

(P1) Sufficient for approximate performance evaluation:
for all t,

|r(St, At)− r̂(Zt, At)| ≤ ϵ. (6)

(P2) Sufficient for predicting future states approximately:
for all t

dF(P (·|St, At), P̂ (·|Zt, At)) ≤ δ. (7)

We call the tuple (r̂, P̂) as an (ϵ, δ)-AIS approximator. Note
that similar definitions have appeared in other works e.g.,
latent state (Gelada et al., 2019), and approximate inform-
ation state for for POMDPs (Subramanian et al., 2020;
Subramanian & Mahajan, 2019). However, in (Gelada
et al., 2019) it is assumed that the feature abstractions are
memory-less and the discussion is restricted to Wasserstein
distance. The key difference from the POMDP model in
(Subramanian et al., 2020; Subramanian & Mahajan, 2019)

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

On learning history-based policies for controlling Markov decision processes

is that the in POMDPs the observation Zt is a pre-specified
function of the state while in the proposed model Zt depends
on our choice of feature abstraction.

As such, our key insight is that an AIS-approximator of a
recursively updatable history-based feature abstraction can
be used to define a dynamic program. In particular, given
a history-based abstraction function {σt : Ht → Z}t≥1

which is recursively updatable using f̂ and an (ϵ, δ) AIS-
approximator (P̂ , r̂), we can define the following dynamic
programming decomposition:

For any zt ∈ Z, at ∈ A

Q̂(zt, at) = r̂(zt, at)

+ γ
∑

st+1∈S
P̂ (st+1|zt, at)V̂ (f̂(zt, st+1, at))

(8)

V̂ (zt) = max
at∈A

Q̂(zt, at), ∀zt ∈ Z (9)

Definition 3.4. Define µ : Z → ∆(A) be any policy such
that for any z ∈ Z ,

Supp(µ(z)) ⊆ argmax
a∈A

Q̂(z, a). (10)

Since µ is a policy from the feature space to actions, we can
use it to define a policy from the history of the state action
pairs to actions as:

πt(s1:t, a1:t−1) ≜ µ(σt(s1:t, a1:t−1)) (11)

Therefore, the dynamic program defined in (9) indirectly
defines a history-based policy π. The performance of any
such history-based policy is given by the following dynamic
program:

For any ht ∈ H, at ∈ A

Qπ
t (ht, at)

1 = r(st, at) + γ
∑

st+1∈S
P (st+1|st, at)V π

t+1(ht+1),

V π
t (ht) =

∑
at∈A

π(at|ht)Q
π
t (ht, at), ∀ht ∈ H

(12)

We want to quantify the loss in performance when using
the history based policy π. Note that since V π

t is not time-
homogeneous, we need to compute the worst-case difference
between V ⋆ and V π

t , which is given by:

∆ ≜ sup
t≥0

sup
ht=(s1:t,a1:t)∈Ht

|V ⋆(st)− V π
t (ht)|, (13)

Our main approximation result is the following:

1We have dropped the time index from the policy to reduce
clutter

Theorem 3.5. The worst case difference between V ⋆ and
V π
t is bounded by

∆ ≤ 2
ε+ γδκF(V̂ , f̂)

1− γ
, (14)

where κF(V̂ , f̂) = supz,a ρF(V̂ (f̂(·, z, a))), ρF(·) is the
Minkowski functional associated with the IPM dF as defined
in (3).

Proof in Appendix A

Some salient features of the bound are as follows: First,
the bound depends on the choice of metric on probability
spaces. Different IPMs will result in a different value of δ
and also a different value of κF(V̂ , f̂). Second, the bound
depends on the properties of V̂ . For this reason we call it
an instance dependent bound. Sometimes, it is desirable
to have bounds which do not require solving the dynamic
program in (9). We present such bounds as below, note
that these “instance independent” bounds are the derived by
upper bounding κF(V̂ , f̂). Therefore, these are looser than
the upper bound in Theorem 3.5

Corollary 3.6. If the function class F is FTV, then ∆ as
defined in (13) is upper bounded as:

∆ ≤ 2ϵ

(1− γ)
+

γδ span(r̂)

(1− γ)2
. (15)

Proof in Appendix B

Corollary 3.7. Let Lr̂ and LP̂ denote the Lipschitz con-
stants of the approximate reward function r̂ and approxim-
ate transition function P̂ respectively, and Lf̂ is the uniform

bound on the Lipschitz constant of f̂ with respect to the state
St. If γLP̂Lf̂ ≤ 1 and the function class F is FW, then ∆
as defined in (13) is upper bounded as:

∆ ≤ 2ϵ

(1− γ)
+

2γδLr̂

(1− γ)(1− γLf̂LP̂)
. (16)

Proof in Appendix C

Corollary 3.8. If the function class F is FMMD, then ∆ as
defined in (13) is upper bounded as:

∆ ≤ 2
ϵ+ γδκU (V̂ , f̂)

(1− γ)
, (17)

where U is a RKHS space, ∥ · ∥U its associated norm and
κU (V̂ , f̂) = supz,a ∥(V̂ (f̂(·, z, a)))∥U .

Proof. The proof follows from the properties of MMD de-
scribed previously.

In the following section we will show how one can use these
theoretical insights to design a policy search algorithm.

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

On learning history-based policies for controlling Markov decision processes

GRU: �̂�(⋅; 𝜁)
𝜇(⋅; 𝜉)

𝑟(⋅; 𝜁), �̂�(⋅; 𝜁)

State: 𝑍𝑡−1

𝑆𝑡

𝐴𝑡−1

𝑍𝑡

𝐴𝑡

To environment

𝑟𝑡

𝜈𝑡+1

History compressor Policy network Reward and
next-state predictor

Figure 2. AIS approximator block

4. Reinforcement learning with history-based
feature abstraction

The previous section helps us establish two results, the first
result tells that a history-based representation can be called
an AIS if it is able to evolve like a state and approximately
predict the instantaneous reward and state transition. The
second result tells us that if a policy is obtained using an
AIS, then its performance loss is bounded in terms of the
approximation error as in (14). In this section we will show
how one can design a theoretically grounded computational
framework that uses an RL algorithm to simultaneously
learn an AIS and a policy. The key idea is to represent
the AIS generator and the policy using a parametric family
of functions/distributions and training them using a multi-
timescale optimisation algorithm.

According to Definition 3.3, the AIS generator consists
of four components, a compression function σt, the up-
date function f̂ , an approximate reward predictor r̂, and
transition kernel P̂ . We can represent the history compres-
sion function using any time series approximators such as
LSTMs or GRUs. An advantage of such memory based
neural networks is that their internal layers are updated in a
state-like manner. Therefore, we can satisfy Definition 3.2
since Zt evolves according to the RNN’s state update func-
tion such that f̂ : Z × S ×A → Z .

The main function of r̂ and P̂ is ensure that Zt satisfies prop-
erties P1 and P2 (in Definition 3.3), i.e., prediction of the
instantaneous reward with a bounded error ϵ and approxima-
tion of the ground MDP’s transition function with a bounded
error δ. One way in which the computational framework
can satisfy these is conditions is by explicitly optimising the
AIS generator for the constants ϵ and δ. We can achieve this
by modelling the reward predictor r̂ using a multilayered
perception (MLP) layer which uses the representation Zt

and action At to approximately predict the reward r̂t. In the
same way, we can model the approximate transition kernel
P̂ using an appropriate class of stochastic kernel approxim-
ators e.g., a softmax function or a mixture of Gaussian’s to
learn a parametric approximation of P . We can then train
the AIS generator by minimising an appropriate objective
function.

To make things more concrete, let us denote

the AIS generator as the following collec-
tion: {σt(·; ζ), f̂(·; ζ), fr̂(·; ζ), fP̂ (· : ζ)} where
fr̂(·; ζ) : Z × A → R and fP̂ (·; ζ) : Z × A → ∆(S)
are the reward and transition approximators, and ζ are
the parameters of the respective sub-components. Instead
of separately optimising the reward prediction loss
|r(St, At)− r̂(Zt, At)|, and the transition loss dF(P, P̂) we
can combine them in a single objective function objective
function as:

LAIS(ζ) =
1

T

T∑
t=0

(
λ (r̂(Zt, At; ζ)− r(St, At))

2︸ ︷︷ ︸
LR̂(·;ζ)

+ (1− λ) · dF(P̂ (Zt, At ; ζ), P)2︸ ︷︷ ︸
LP̂ (·;ζ)

)
, (18)

where, T is the length of the episode or the rollout length,
λ ∈ [0, 1] is a hyper-parameter, reward prediction loss
LR̂(; ζ) is simply the mean-squared error between the pre-
dicted and the observed reward, whereas the transition pre-
diction loss LP̂ (·; ζ) is the distance between predicted and
observed transition distributions P̂ and P . To compute
LP̂ (·; ζ), we need to choose an IPM. In principle we can
pick any IPM, but we would want to use an IPM using which
the distance dF can be efficiently computed.

4.1. Choice of an IPM

To compute the IPM dF we need to know the probability
density functions P̂ and P . As we assume P̂ to belongs to
a parametric family, we know its density function in closed
form. However, since we are in the learning setup, we can
only access samples from P . For a function a f ∈ F, and
probability density functions P and P̂ such that, ν1 = P ,
and ν2 = P̂ , we can estimate the IPM dF between a distri-
bution and samples using the duality |

∫
Z fdν1 −

∫
Z fdν2|.

In this paper, we use two from of IPMs, the MMD distance
and the Wasserstein/Kantorovich–Rubinstein distance.

4.1.1. MMD DISTANCE:

Let mζ denote the mean of the distribution P̂ (·; ζ). Then,
the AIS-loss when MMD is used as an IPM is given by

LAIS(ζ) =
1

T

T∑
t=0

(
λ(r̂(Zt, At; ζ)− r(St, At))

2

+ (1− λ)(mSt

ζ − 2St)
⊤mSt

ζ

)
, (19)

where mSt

ζ is obtained using the from the transition approx-
imator, i.e., the mapping P̂ (ζ) : Z × A → R. For the
detailed derivation of the above loss see Appendix D.1.1

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

On learning history-based policies for controlling Markov decision processes

4.1.2. WASSERSTEIN/KANTOROVICH–RUBINSTEIN
DISTANCE:

In principle, the Wasserstein/Kantorovich distance can be
computed by solving a linear program (Sriperumbudur et al.,
2012), but doing at every episode can be computationally ex-
pensive. Therefore, we propose to approximate the Wasser-
stein distance using a KL-divergence (Kullback & Leibler,
1951) based upper-bound. The simplified-KL divergence
based AIS loss is given as:

LAIS(ζ) =
1

T

T∑
t=0

(
λ(r̂(Zt, At; ζ)− r(St, At))

2

+ (1− λ) log(P̂ (St; ζ))

)
, (20)

where after dropping the terms which do not depend on
ζ, we get d2FW(P, P̂) ≤ log(P̂ (St; ζ)) is the simplified-
KL-divergence based upper bound. For the details of this
derivation see Appendix D.1.2.

4.2. Policy gradient algorithm

Algorithm 1: Policy Search with AIS
Input :ι0: Initial state distribution,

ζ0: Ais parameters,
ξ0: Actor parameters,
a0: Initial action,
D = ∅: Replay buffer,
Ncomp: Computation budget,
Nep: Episode length,
Ngrad: Gradient steps

1 for iterations i = 0 : Ncomp do
2 Sample start state s0 ∼ ι0;
3 for iterations j = 0 : Nep do
4 zj = σζ(s1:j , a1:j−1);
5 aj = µξ(zj);
6 sj+1 = P (sj , aj);
7 D ←− {zj , aj , sj , sj+1};
8 aj−1 = aj ;
9 sj = sj+1;

10 end
11 for every batch b ∈ D do
12 for gradient step t = 0 : Ngrad do
13 ζt+1,b = ζt,b + b∇ζLAIS(ζt,b);
14 ξt+1,b = ξt,b + d∇̂ξJ(ξt,b, ζt,b)

15 end
16 end
17 end

Following the design of the AIS block, we now provide
a policy-gradient algorithm to learning both the AIS and
policy. The schematic of our agent architecture is given in

Figure 2, and pseudo-code is given in Algorithm 1. Given
a feature space Z , we can simultaneously learn the AIS-
generator and the policy using a multi-timescale stochastic
gradient ascent algorithm (Borkar, 2008). Let µ(·; ξ) : Z →
∆(A) be a parameterised stochastic policy with parameters
ξ. Let J(ξ, ζ) denote the performance of the policy µ(·; ξ).
The policy gradient theorem (Sutton et al., 1999; Williams,
2004; Baxter & Bartlett, 2001) states that: For a rollout
horizon T , we can estimate∇ξJ as:

∇̂ξJ(ξt, ζt) =

T∑
t=1

γt−1rt

(t∑
τ=1

∇ξ log(µ(At|Zt; ξt))

)
.

Following a rollout of length T , we can then update the
parameters {(ζi, ξi)}i≥1 as follows:

ζi+1 = ζi + bi∇ζLAIS(ζi), (21)

ξi+1 = ξi + di∇̂ξJ(ξi, ζi) (22)

where the step-size {bi}i≥0 and {di}i≥0 satisfy the standard
conditions

∑
i bi = ∞,

∑
i b

2
i < ∞,

∑
i di = ∞ and∑

i d
2
i <∞ respectively. Moreover, one can ensure that the

AIS generator converges faster by choosing an appropriate
learning rates such that, limi→∞

di

bi
= 0. It is also possible

to design an Actor-Critic algorithm using similar arguments,
we elaborate more on this and the convergence of these
methods in Appendix E.1, and Appendix E.2.

5. Empirical evaluation
Through our experiments, we seek to answer the following
questions: (1) Can history-based feature representations
policies help improve the quality of solution found by a
memory-less RL algorithms? (2) In terms of the solution
quality how does the proposed method compare with other
methods which use memory augmented policies as well as
reward and transition predictors? (3) How does the choice
of IPM affect the algorithms performance?

We answer question (1) by comparing our approach with the
proximal policy gradient (PPO) (Schulman et al., 2017) and
the policy-gradient version of DeepMDP framework (Ge-
lada et al., 2019). For question (2) we compare our ap-
proach with modified versions of PlaNet (Hafner et al.,
2019), Dreamer (Hafner et al., 2020), and VariBAD (Zint-
graf et al., 2020).

For question (3) we compare the performance of our method
using different MMD kernels and KL-divergence based ap-
proximation of Wasserstein distance. All the approaches
are evaluated on six continuous control tasks from the Mu-
JoCo (Todorov et al., 2012) OpenAI-Gym suite. To ensure
a fair comparison, the baselines and their respective hyper-
parameter settings are taken from well tested stand-alone
implementations provided by Dhariwal et al. (2017). From

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

On learning history-based policies for controlling Markov decision processes

0.0 0.2 0.4 0.6 0.8 1.0

Number of episodes 1e6

0

1000

2000

3000

4000

5000

6000

7000

Av
er

ag
e

R
et

ur
n

(a) Walker

0.0 0.2 0.4 0.6 0.8 1.0

Number of episodes 1e6

0

2000

4000

6000

8000

Av
er

ag
e

R
et

ur
n

(b)Humanoid

0.0 0.2 0.4 0.6 0.8 1.0

Number of episodes 1e6

0

2000

4000

6000

8000

Av
er

ag
e

R
et

ur
n

(c) Half Cheetah

0.0 0.2 0.4 0.6 0.8 1.0

Number of episodes 1e6

50000

100000

150000

200000

250000

300000

Av
er

ag
e

R
et

ur
n

(d) Humanoid Standup

0.0 0.2 0.4 0.6 0.8 1.0

Number of episodes 1e6

0

1000

2000

3000

4000

5000

6000

7000

Av
er

ag
e

R
et

ur
n

(e) Ant

0.0 0.2 0.4 0.6 0.8 1.0

Number of episodes 1e6

0

500

1000

1500

2000

2500

3000

3500

Av
er

ag
e

R
et

ur
n

(f) Hopper

Legend Title

Feed-Forward Baseline
DeepMdp
Ais

PlaNet
VariBAD
Dreamer

Figure 3. Empirical results averaged over 50 Monte Carlo runs with shaded regions representing the quantiles.

an implementation perspective, our framework can be used
to modify any off-the-shelf policy-gradient algorithm by
simply replacing (or augmenting) the feature abstraction
layers of the policy and/or value networks with recurrent
neural networks (RNNs), trained with the appropriate losses,
as outlined previously. In these experiments, we replace the
fully connected layers in PPO’s architecture with a Gated
Recurrent Unit (GRU). For all the implementations, we
initialise the hidden state of the GRU to zero at the be-
ginning of the trajectory. This strategy simplifies the im-
plementation and also allows for independent decorrelated
sampling of sequences, therefore ensuring robust optim-
isation of the networks (Hausknecht & Stone, 2015). It
is important to note that we can extend our framework to
other policy gradient methods such as SAC (Haarnoja et al.,
2018), TD3 (Fujimoto et al., 2018) or DDPG (Lillicrap et al.,
2016), after satisfying certain technical conditions. How-
ever, we leave these extensions for future work. Additional
experimental details and results on different IPMs can be
found in Appendix F.

6. Related Work
The development of RL algorithms with memory-based fea-
ture abstractions has been an active area of research, and
most existing algorithms have tackled this problem using
non-parametric methods like Nearest neighbour (Bentley,
1975; Friedman et al., 1977; Peng, 1995), Locally-weighted
regression (Baird & Klopf, 1993; Atkeson et al., 1997;
Moore et al., 1997), and Kernel-based regression (Connell
& Utgoff, 1987; Dietterich & Wang, 2001; Ormoneit & Sen,
2002; Xu et al., 2006; Bhat et al., 2012; Barreto et al., 2016).

Despite their solid theoretical footing, these methods, have
limited applicability as they are difficult to scale to high-
dimensional state and action spaces. More recently, several
methods that propose using recurrent neural networks for
learning history-based abstractions have enjoyed consider-
able success in complex computer games (Hausknecht &
Stone, 2015; Jaderberg et al., 2017; Espeholt et al., 2018;
Gruslys et al., 2018; Ha & Schmidhuber, 2018) however
most of these methods have been designed for partially ob-
servable environments where use of history-based methods
is often necessary. To the best of our knowledge, the only
other work where a history-based RL algorithm is used for
controlling a MDP is presented by OpenAI et al. (2019). In
this work the authors show that using an LSTM-based agent
architecture results in superior performance for the object
reorientation using robotic arms. However, the authors do
not provide a theoretical analysis of their method.

6.1. Bisimulation metrics

On the theoretical front, our work is closely related to state
aggregation techniques based on bisimulation metrics pro-
posed by Givan et al. (2003); Ferns et al. (2004; 2011).
The bisimulation metric is the fixed point of an operator
on the space of semi-metrics defined over the state space
of an MDP with Lipschitz value functions. Apart from
state aggregation, bisimulation metrics have been used for
feature discovery (Comanici & Precup, 2011; Ruan et al.,
2015), and transfer learning (Castro & Precup, 2010). How-
ever, computational impediments have prevented their broad
adoption. Our work can be viewed as an alternative to bisim-
ulation for the analysis of history-based state abstractions
and deep RL methods. Our work can also be thought of as

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

On learning history-based policies for controlling Markov decision processes

extension of the DeepMDP framework (Gelada et al., 2019)
to history-based policies and direct policy search methods.

6.2. AIS and Agent state

The notion of AIS is closely related to the epistemic state
recently proposed by Lu et al. (2021). An epistemic state is
a bounded representation of the history. It is updated recurs-
ively as the agent collects more information, and is represen-
ted as an environment proxy Υ which is learnt by optimising
a target/objective function χ. Since Υ is a random variable,
its entropy H(Υ) is used to represent system’s uncertainty
about the environment. The framework proposed in this
paper can considered as a practical way of constructing the
system epistemic state where, the AIS Zt represents both
the epistemic state and the environment proxy Υ, LAIS rep-
resents χ, and instead of entropy, the constants ϵ, and δ
represent the systems uncertainty about the environment.
The study of the AIS framework in the regret minimisation
paradigm could help establish a relationship between the ϵ,
δ, and H(Υ), thereby helping designers develop principled
algorithms which synthesise ideas like information directed
sampling for direct policy search algorithms.

6.3. Analysis of RL algorithms with attention
mechanism

Recently, there has been considerable interest in developing
RL algorithms which use attention mechanism/transformer
architectures (Bahdanau et al., 2015; Xu et al., 2015) for
learning feature abstractions (Zambaldi et al., 2019; Mott
et al., 2019; Sorokin et al., 2015; Oh & Kaneko, 2018; Ritter
et al., 2021; Parisotto et al., 2020; Chen et al., 2021; Loynd
et al., 2020; Tang et al., 2020; Pritzel et al., 2017). At-
tention mechanism extract task relevant information from
historical observations and can be used instead of RNNs for
processing sequential data (Vaswani et al., 2017). As we do
not impose a functional from on the history compression
function σt(·) in Definition 3.3, any attention mechanism
can be interpreted as history compression function, and
one can construct a valid information state by ensuring that
the output of the attention mechanism satisfies (P1) and
(P2). That being said, even without optimising LAIS, the
approximation bound in Theorem 3.5 still applies for RL
algorithms with attention mechanisms, with the caveat that
the constants ϵ, and δ may be arbitrarily large. A thorough
empirical analysis of the effect of different attention mech-
anisms, and the AIS loss on the on the error constants ϵ,
and δ could help us gain a better understanding of the way
in which such design choices could influence the learning
process.

6.4. AIS for POMDPs

The concept of an AIS used in this paper is similar to the
idea of AIS for POMDPs (Subramanian & Mahajan, 2019;
Subramanian et al., 2020). Moreover, the literature also
contains several other methods which have enjoyed empir-
ical success in using history-based policies for controlling
POMDPs (Holmes & Jr., 2006; Daswani et al., 2013; Hutter,
2014; Schaefer et al., 2007; Hafner et al., 2020; 2019). In
principle, one can use any of these methods for controlling
MDPs. However, this does not immediately provide a tight
bound for the approximation error. The MDP model has
more structure than POMDPs, and our goal in this paper is
to use this fact to present a tighter analysis of the approxim-
ation error.

7. Conclusion and future work
This paper presents the design and analysis of a principled
approach for learning history-based policies for controlling
MDPs. We believe that our approximation bounds can be
helpful for practitioners to study the effect of some of their
design choices on the solution quality. On the practical side,
the proposed algorithm shows favourable results on high-
dimensional control tasks. Note that one can also use the
bounds in Theorem 3.5 to analyse the approximation error
of other history-based methods. However, since some of
these algorithms do not satisfy Definition 3.3, the resulting
approximation error might be arbitrarily large. Such blow-
ups in the approximation error could be because the bound
itself is loose or the optimality gap is large. This would
depend on the specifics of the methods and remains to be
investigated. As such, a sharper analysis of the approxima-
tion error by factoring in the specific design choices of other
methods is an interesting direction for future research. An-
other interesting direction would be to conduct a thorough
empirical evaluation exploring the design choices of history
compression functions.

References
Atkeson, C. G., Moore, A. W., and Schaal, S. Loc-

ally Weighted Learning, pp. 11–73. Springer Nether-
lands, Dordrecht, 1997. ISBN 978-94-017-2053-3. doi:
10.1007/978-94-017-2053-3 2. URL https://doi.
org/10.1007/978-94-017-2053-3_2.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate. In
Bengio, Y. and LeCun, Y. (eds.), 3rd International Confer-
ence on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceed-
ings, 2015. URL http://arxiv.org/abs/1409.
0473.

https://doi.org/10.1007/978-94-017-2053-3_2
https://doi.org/10.1007/978-94-017-2053-3_2
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

On learning history-based policies for controlling Markov decision processes

Baird, L. C. and Klopf, A. H. Reinforcement learning with
high-dimensional, continuous actions. Technical report,
Wright Laboratory, 1993.

Barreto, A., Doina, P., and Joelle, P. Practical kernel-based
reinforcement learning. Journal of Machine Learning
Research, 2016.

Barto, A., Anderson, C., and Sutton, R. Synthesis of non-
linear control surfaces by a layered associative search
network. Biological Cybernetics, 43:175–185, 2004.

Baxter, J. and Bartlett, P. L. Infinite-horizon policy-gradient
estimation. J. Artif. Intell. Res., 15:319–350, 2001.
doi: 10.1613/jair.806. URL https://doi.org/10.
1613/jair.806.

Bellemare, M. G., Dabney, W., Dadashi, R., Taı̈ga, A. A.,
Castro, P. S., Roux, N. L., Schuurmans, D., Lattimore,
T., and Lyle, C. A geometric perspective on optimal
representations for reinforcement learning. In Wallach,
H. M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F.,
Fox, E. B., and Garnett, R. (eds.), Advances in Neural In-
formation Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
4360–4371, 2019. URL https://proceedings.
neurips.cc/paper/2019/hash/
3cf2559725a9fdfa602ec8c887440f32-Abstract.
html.

Bentley, J. L. Multidimensional binary search trees used
for associative searching. Commun. ACM, 18:509–517,
1975.

Bertsekas, D. P. and Tsitsiklis, J. N. Neuro-Dynamic Pro-
gramming. Athena Scientific, 1st edition, 1996. ISBN
1886529108.

Bhat, N., Moallemi, C. C., and Farias, V. F. Non-
parametric approximate dynamic programming via the
kernel method. In NIPS, 2012.

Borkar, V. Stochastic Approximation: A Dynamical Systems
Viewpoint. Cambridge University Press, 2008. ISBN
9780521515924. URL https://books.google.
ca/books?id=QLxIvgAACAAJ.

Borkar, V. S. Stochastic approximation with two time scales.
Systems & Control Letters, 29:291–294, 1997.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym,
2016.

Castro, P. S. and Precup, D. Using bisimulation for policy
transfer in mdps. In AAAI, 2010.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I.
Decision transformer: Reinforcement learning via se-
quence modeling. CoRR, abs/2106.01345, 2021. URL
https://arxiv.org/abs/2106.01345.

Comanici, G. and Precup, D. Basis function discovery using
spectral clustering and bisimulation metrics. In AAAI,
2011.

Connell, M. E. and Utgoff, P. Learning to control a dynamic
physical system. Computational Intelligence, 3, 1987.

Crites, R. H. and Barto, A. G. Improving elevator perform-
ance using reinforcement learning. In Touretzky, D. S.,
Mozer, M., and Hasselmo, M. E. (eds.), Advances in
Neural Information Processing Systems 8, NIPS, Denver,
CO, USA, November 27-30, 1995, pp. 1017–1023. MIT
Press, 1995. URL https://proceedings.
neurips.cc/paper/1995/file/
390e982518a50e280d8e2b535462ec1f-Paper.
pdf.

Daswani, M., Sunehag, P., and Hutter, M. Q-learning
for history-based reinforcement learning. In Ong,
C. S. and Ho, T. B. (eds.), Asian Conference on Ma-
chine Learning, ACML 2013, Canberra, ACT, Australia,
November 13-15, 2013, volume 29 of JMLR Workshop
and Conference Proceedings, pp. 213–228. JMLR.org,
2013. URL http://proceedings.mlr.press/
v29/Daswani13.html.

Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert,
M., Radford, A., Schulman, J., Sidor, S., Wu, Y., and
Zhokhov, P. Openai baselines. https://github.
com/openai/baselines, 2017.

Dietterich, T. G. and Wang, X. Batch value function approx-
imation via support vectors. In NIPS, 2001.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V.,
Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning, I.,
Legg, S., and Kavukcuoglu, K. IMPALA: Scalable dis-
tributed deep-RL with importance weighted actor-learner
architectures. In Dy, J. and Krause, A. (eds.), Proceed-
ings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learn-
ing Research, pp. 1407–1416. PMLR, 10–15 Jul 2018.
URL https://proceedings.mlr.press/v80/
espeholt18a.html.

Ferns, N., Panangaden, P., and Precup, D. Metrics for
finite markov decision processes. In Conferrence on
Uncertainty in Artificial Intelligence, 2004.

Ferns, N., Panangaden, P., and Precup, D. Bisimulation
metrics for continuous markov decision processes. SIAM
J. Comput., 40:1662–1714, 2011.

https://doi.org/10.1613/jair.806
https://doi.org/10.1613/jair.806
https://proceedings.neurips.cc/paper/2019/hash/3cf2559725a9fdfa602ec8c887440f32-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/3cf2559725a9fdfa602ec8c887440f32-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/3cf2559725a9fdfa602ec8c887440f32-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/3cf2559725a9fdfa602ec8c887440f32-Abstract.html
https://books.google.ca/books?id=QLxIvgAACAAJ
https://books.google.ca/books?id=QLxIvgAACAAJ
https://arxiv.org/abs/2106.01345
https://proceedings.neurips.cc/paper/1995/file/390e982518a50e280d8e2b535462ec1f-Paper.pdf
https://proceedings.neurips.cc/paper/1995/file/390e982518a50e280d8e2b535462ec1f-Paper.pdf
https://proceedings.neurips.cc/paper/1995/file/390e982518a50e280d8e2b535462ec1f-Paper.pdf
https://proceedings.neurips.cc/paper/1995/file/390e982518a50e280d8e2b535462ec1f-Paper.pdf
http://proceedings.mlr.press/v29/Daswani13.html
http://proceedings.mlr.press/v29/Daswani13.html
https://github.com/openai/baselines
https://github.com/openai/baselines
https://proceedings.mlr.press/v80/espeholt18a.html
https://proceedings.mlr.press/v80/espeholt18a.html

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

On learning history-based policies for controlling Markov decision processes

Friedman, J. H., Bentley, J. L., and Finkel, R. A. An al-
gorithm for finding best matches in logarithmic expected
time. ACM Trans. Math. Softw., 3:209–226, 1977.

Fujimoto, S., van Hoof, H., and Meger, D. Address-
ing function approximation error in actor-critic meth-
ods. In Dy, J. G. and Krause, A. (eds.), Proceed-
ings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, volume 80 of Proceedings
of Machine Learning Research, pp. 1582–1591. PMLR,
2018. URL http://proceedings.mlr.press/
v80/fujimoto18a.html.

Fukumizu, K., Gretton, A., Lanckriet, G., Schölkopf,
B., and Sriperumbudur, B. K. Kernel choice and
classifiability for rkhs embeddings of probability
distributions. In Bengio, Y., Schuurmans, D., Lafferty, J.,
Williams, C., and Culotta, A. (eds.), Advances in Neural
Information Processing Systems, volume 22. Curran As-
sociates, Inc., 2009. URL https://proceedings.
neurips.cc/paper/2009/file/
685ac8cadc1be5ac98da9556bc1c8d9e-Paper.
pdf.

Gelada, C., Kumar, S., Buckman, J., Nachum, O., and Belle-
mare, M. G. Deepmdp: Learning continuous latent space
models for representation learning. In Chaudhuri, K. and
Salakhutdinov, R. (eds.), Proceedings of the 36th Inter-
national Conference on Machine Learning, ICML 2019,
9-15 June 2019, Long Beach, California, USA, volume 97
of Proceedings of Machine Learning Research, pp. 2170–
2179. PMLR, 2019. URL http://proceedings.
mlr.press/v97/gelada19a.html.

Givan, R., Dean, T. L., and Greig, M. Equivalence notions
and model minimization in markov decision processes.
Artif. Intell., 147:163–223, 2003.

Gruslys, A., Dabney, W., Azar, M. G., Piot, B., Bellemare,
M. G., and Munos, R. The reactor: A fast and sample-
efficient actor-critic agent for reinforcement learning. In
6th International Conference on Learning Representa-
tions, ICLR 2018, Vancouver, BC, Canada, April 30 -
May 3, 2018, Conference Track Proceedings. OpenRe-
view.net, 2018. URL https://openreview.net/
forum?id=rkHVZWZAZ.

Ha, D. and Schmidhuber, J. World models. CoRR,
abs/1803.10122, 2018. URL http://arxiv.org/
abs/1803.10122.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S.
Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. In
Dy, J. G. and Krause, A. (eds.), Proceedings of the
35th International Conference on Machine Learning,

ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018, volume 80 of Proceedings of Ma-
chine Learning Research, pp. 1856–1865. PMLR,
2018. URL http://proceedings.mlr.press/
v80/haarnoja18b.html.

Hafner, D., Lillicrap, T. P., Fischer, I., Villegas, R., Ha,
D., Lee, H., and Davidson, J. Learning latent dynam-
ics for planning from pixels. In Chaudhuri, K. and
Salakhutdinov, R. (eds.), Proceedings of the 36th Inter-
national Conference on Machine Learning, ICML 2019,
9-15 June 2019, Long Beach, California, USA, volume 97
of Proceedings of Machine Learning Research, pp. 2555–
2565. PMLR, 2019. URL http://proceedings.
mlr.press/v97/hafner19a.html.

Hafner, D., Lillicrap, T. P., Ba, J., and Norouzi, M. Dream to
control: Learning behaviors by latent imagination. In 8th
International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020. URL https://openreview.
net/forum?id=S1lOTC4tDS.

Hausknecht, M. J. and Stone, P. Deep recurrent q-
learning for partially observable mdps. In 2015
AAAI Fall Symposia, Arlington, Virginia, USA, Novem-
ber 12-14, 2015, pp. 29–37. AAAI Press, 2015.
URL http://www.aaai.org/ocs/index.php/
FSS/FSS15/paper/view/11673.

Holmes, M. P. and Jr., C. L. I. Looping suffix tree-based
inference of partially observable hidden state. In Co-
hen, W. W. and Moore, A. W. (eds.), Machine Learning,
Proceedings of the Twenty-Third International Confer-
ence (ICML 2006), Pittsburgh, Pennsylvania, USA, June
25-29, 2006, volume 148 of ACM International Con-
ference Proceeding Series, pp. 409–416. ACM, 2006.
doi: 10.1145/1143844.1143896. URL https://doi.
org/10.1145/1143844.1143896.

Hutter, M. Extreme state aggregation beyond mdps. In
Auer, P., Clark, A., Zeugmann, T., and Zilles, S. (eds.),
Algorithmic Learning Theory - 25th International Con-
ference, ALT 2014, Bled, Slovenia, October 8-10, 2014.
Proceedings, volume 8776 of Lecture Notes in Computer
Science, pp. 185–199. Springer, 2014. doi: 10.1007/
978-3-319-11662-4\ 14. URL https://doi.org/
10.1007/978-3-319-11662-4_14.

Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T.,
Leibo, J. Z., Silver, D., and Kavukcuoglu, K. Rein-
forcement learning with unsupervised auxiliary tasks.
In 5th International Conference on Learning Repres-
entations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net,
2017. URL https://openreview.net/forum?
id=SJ6yPD5xg.

http://proceedings.mlr.press/v80/fujimoto18a.html
http://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.neurips.cc/paper/2009/file/685ac8cadc1be5ac98da9556bc1c8d9e-Paper.pdf
https://proceedings.neurips.cc/paper/2009/file/685ac8cadc1be5ac98da9556bc1c8d9e-Paper.pdf
https://proceedings.neurips.cc/paper/2009/file/685ac8cadc1be5ac98da9556bc1c8d9e-Paper.pdf
https://proceedings.neurips.cc/paper/2009/file/685ac8cadc1be5ac98da9556bc1c8d9e-Paper.pdf
http://proceedings.mlr.press/v97/gelada19a.html
http://proceedings.mlr.press/v97/gelada19a.html
https://openreview.net/forum?id=rkHVZWZAZ
https://openreview.net/forum?id=rkHVZWZAZ
http://arxiv.org/abs/1803.10122
http://arxiv.org/abs/1803.10122
http://proceedings.mlr.press/v80/haarnoja18b.html
http://proceedings.mlr.press/v80/haarnoja18b.html
http://proceedings.mlr.press/v97/hafner19a.html
http://proceedings.mlr.press/v97/hafner19a.html
https://openreview.net/forum?id=S1lOTC4tDS
https://openreview.net/forum?id=S1lOTC4tDS
http://www.aaai.org/ocs/index.php/FSS/FSS15/paper/view/11673
http://www.aaai.org/ocs/index.php/FSS/FSS15/paper/view/11673
https://doi.org/10.1145/1143844.1143896
https://doi.org/10.1145/1143844.1143896
https://doi.org/10.1007/978-3-319-11662-4_14
https://doi.org/10.1007/978-3-319-11662-4_14
https://openreview.net/forum?id=SJ6yPD5xg
https://openreview.net/forum?id=SJ6yPD5xg

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

On learning history-based policies for controlling Markov decision processes

Keller, P. W., Mannor, S., and Precup, D. Automatic basis
function construction for approximate dynamic program-
ming and reinforcement learning. In Proceedings of
the 23rd International Conference on Machine Learning,
ICML ’06, pp. 449–456, New York, NY, USA, 2006. As-
sociation for Computing Machinery. ISBN 1595933832.
doi: 10.1145/1143844.1143901. URL https://doi.
org/10.1145/1143844.1143901.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2015.

Kullback, S. and Leibler, R. A. On Information and Suffi-
ciency. The Annals of Mathematical Statistics, 22(1):79 –
86, 1951. doi: 10.1214/aoms/1177729694. URL https:
//doi.org/10.1214/aoms/1177729694.

Kwok, C. and Fox, D. Reinforcement learning for sensing
strategies. In 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566), volume 4, pp. 3158–3163 vol.4, 2004.
doi: 10.1109/IROS.2004.1389903.

Leslie, D. Reinforcement learning in games. 2004.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. Continuous con-
trol with deep reinforcement learning. In Bengio, Y. and
LeCun, Y. (eds.), 4th International Conference on Learn-
ing Representations, ICLR 2016, San Juan, Puerto Rico,
May 2-4, 2016, Conference Track Proceedings, 2016.
URL http://arxiv.org/abs/1509.02971.

Loynd, R., Fernandez, R., Celikyilmaz, A., Swaminathan,
A., and Hausknecht, M. J. Working memory graphs.
In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020,
Virtual Event, volume 119 of Proceedings of Ma-
chine Learning Research, pp. 6404–6414. PMLR, 2020.
URL http://proceedings.mlr.press/v119/
loynd20a.html.

Lu, X., Roy, B. V., Dwaracherla, V., Ibrahimi, M., Osband,
I., and Wen, Z. Reinforcement learning, bit by bit. CoRR,
abs/2103.04047, 2021. URL https://arxiv.org/
abs/2103.04047.

Menache, I., Mannor, S., and Shimkin, N. Basis function
adaptation in temporal difference reinforcement learning.
Ann. Oper. Res., 134(1):215–238, 2005. doi: 10.1007/
s10479-005-5732-z. URL https://doi.org/10.
1007/s10479-005-5732-z.

Moore, A. W., Schneider, J. G., and Deng, K. Efficient
locally weighted polynomial regression predictions. In
ICML, 1997.

Mott, A., Zoran, D., Chrzanowski, M., Wierstra, D., and
Rezende, D. J. Towards interpretable reinforcement learn-
ing using attention augmented agents. In NeurIPS, 2019.

Müller, A. Integral probability metrics and their generating
classes of functions. Advances in Applied Probability,
29(2):429–443, 1997. ISSN 00018678. URL http:
//www.jstor.org/stable/1428011.

Oh, H. and Kaneko, T. Deep recurrent q-network with
truncated history. In 2018 Conference on Technologies
and Applications of Artificial Intelligence (TAAI), pp. 34–
39, 2018. doi: 10.1109/TAAI.2018.00017.

OpenAI, Andrychowicz, M., Baker, B., Chociej, M., Joze-
fowicz, R., McGrew, B., Pachocki, J., Petron, A., Plap-
pert, M., Powell, G., Ray, A., Schneider, J., Sidor, S.,
Tobin, J., Welinder, P., Weng, L., and Zaremba, W. Learn-
ing dexterous in-hand manipulation, 2019.

Ormoneit, D. and Sen, S. Kernel-based reinforcement learn-
ing. Mach. Learn., 49(2-3):161–178, 2002. doi: 10.
1023/A:1017928328829. URL https://doi.org/
10.1023/A:1017928328829.

Parisotto, E., Song, H. F., Rae, J. W., Pascanu, R., Gülçehre,
Ç., Jayakumar, S. M., Jaderberg, M., Kaufman, R. L.,
Clark, A., Noury, S., Botvinick, M., Heess, N., and
Hadsell, R. Stabilizing transformers for reinforcement
learning. In Proceedings of the 37th International Con-
ference on Machine Learning, ICML 2020, 13-18 July
2020, Virtual Event, volume 119 of Proceedings of Ma-
chine Learning Research, pp. 7487–7498. PMLR, 2020.
URL http://proceedings.mlr.press/v119/
parisotto20a.html.

Peng, J. Efficient memory-based dynamic program-
ming. In Prieditis, A. and Russell, S. (eds.), Machine
Learning Proceedings 1995, pp. 438–446. Mor-
gan Kaufmann, San Francisco (CA), 1995. ISBN
978-1-55860-377-6. doi: https://doi.org/10.1016/
B978-1-55860-377-6.50061-X. URL https:
//www.sciencedirect.com/science/
article/pii/B978155860377650061X.

Petrik, M. An analysis of laplacian methods for value
function approximation in mdps. In Veloso, M. M.
(ed.), IJCAI 2007, Proceedings of the 20th Interna-
tional Joint Conference on Artificial Intelligence, Hy-
derabad, India, January 6-12, 2007, pp. 2574–2579,
2007. URL http://ijcai.org/Proceedings/
07/Papers/414.pdf.

Pritzel, A., Uria, B., Srinivasan, S., Badia, A. P., Vinyals,
O., Hassabis, D., Wierstra, D., and Blundell, C. Neural
episodic control. In Precup, D. and Teh, Y. W. (eds.),
Proceedings of the 34th International Conference on

https://doi.org/10.1145/1143844.1143901
https://doi.org/10.1145/1143844.1143901
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
http://arxiv.org/abs/1509.02971
http://proceedings.mlr.press/v119/loynd20a.html
http://proceedings.mlr.press/v119/loynd20a.html
https://arxiv.org/abs/2103.04047
https://arxiv.org/abs/2103.04047
https://doi.org/10.1007/s10479-005-5732-z
https://doi.org/10.1007/s10479-005-5732-z
http://www.jstor.org/stable/1428011
http://www.jstor.org/stable/1428011
https://doi.org/10.1023/A:1017928328829
https://doi.org/10.1023/A:1017928328829
http://proceedings.mlr.press/v119/parisotto20a.html
http://proceedings.mlr.press/v119/parisotto20a.html
https://www.sciencedirect.com/science/article/pii/B978155860377650061X
https://www.sciencedirect.com/science/article/pii/B978155860377650061X
https://www.sciencedirect.com/science/article/pii/B978155860377650061X
http://ijcai.org/Proceedings/07/Papers/414.pdf
http://ijcai.org/Proceedings/07/Papers/414.pdf

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

On learning history-based policies for controlling Markov decision processes

Machine Learning, ICML 2017, Sydney, NSW, Aus-
tralia, 6-11 August 2017, volume 70 of Proceedings
of Machine Learning Research, pp. 2827–2836. PMLR,
2017. URL http://proceedings.mlr.press/
v70/pritzel17a.html.

Proper, S. and Tadepalli, P. Scaling model-based average-
reward reinforcement learning for product delivery. In
Fürnkranz, J., Scheffer, T., and Spiliopoulou, M. (eds.),
Machine Learning: ECML 2006, 17th European Confer-
ence on Machine Learning, Berlin, Germany, September
18-22, 2006, Proceedings, volume 4212 of Lecture Notes
in Computer Science, pp. 735–742. Springer, 2006. doi:
10.1007/11871842\ 74. URL https://doi.org/
10.1007/11871842_74.

Raichuk, A., Stanczyk, P., Orsini, M., Girgin, S., Marinier,
R., Hussenot, L., Geist, M., Pietquin, O., Michalski, M.,
and Gelly, S. What matters for on-policy deep actor-critic
methods? a large-scale study. In ICLR, 2021.

Ritter, S., Faulkner, R., Sartran, L., Santoro, A., Botvinick,
M., and Raposo, D. Rapid task-solving in novel en-
vironments. In 9th International Conference on Learn-
ing Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021. URL https:
//openreview.net/forum?id=F-mvpFpn_0q.

Ruan, S. S., Comanici, G., Panangaden, P., and Precup, D.
Representation discovery for mdps using bisimulation
metrics. In AAAI, 2015.

Schaefer, A., Udluft, S., and Zimmermann, H.-G. A recur-
rent control neural network for data efficient reinforce-
ment learning. 2007 IEEE International Symposium on
Approximate Dynamic Programming and Reinforcement
Learning, pp. 151–157, 2007.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
CoRR, abs/1707.06347, 2017. URL http://arxiv.
org/abs/1707.06347.

Sejdinovic, D., Sriperumbudur, B., Gretton, A., and Fuku-
mizu, K. Equivalence of distance-based and rkhs-based
statistics in hypothesis testing. The Annals of Statistics, 41
(5):2263–2291, 2013. ISSN 00905364, 21688966. URL
http://www.jstor.org/stable/23566550.

Singh, S. P., Litman, D. J., Kearns, M. J., and Walker, M. A.
Optimizing dialogue management with reinforcement
learning: Experiments with the njfun system. J. Artif.
Intell. Res., 16:105–133, 2002. doi: 10.1613/jair.859.
URL https://doi.org/10.1613/jair.859.

Sorokin, I., Seleznev, A., Pavlov, M., Fedorov, A., and
Ignateva, A. Deep attention recurrent q-network. ArXiv,
abs/1512.01693, 2015.

Sriperumbudur, B. K., Fukumizu, K., Gretton, A.,
Schölkopf, B., and Lanckriet, G. R. G. On the empir-
ical estimation of integral probability metrics. Electronic
Journal of Statistics, 6(none):1550 – 1599, 2012. doi:
10.1214/12-EJS722. URL https://doi.org/10.
1214/12-EJS722.

Subramanian, J. and Mahajan, A. Approximate information
state for partially observed systems. In 2019 IEEE 58th
Conference on Decision and Control (CDC), pp. 1629–
1636, 2019. doi: 10.1109/CDC40024.2019.9029898.

Subramanian, J., Sinha, A., Seraj, R., and Mahajan, A.
Approximate information state for approximate planning
and reinforcement learning in partially observed systems.
CoRR, abs/2010.08843, 2020. URL https://arxiv.
org/abs/2010.08843.

Sutton, R. S. and Barto, A. G. Reinforcement Learn-
ing: An Introduction. MIT Press, Cambridge,
MA, USA, 1998. ISBN 0-262-19398-1. URL
http://www.cs.ualberta.ca/%7Esutton/
book/ebook/the-book.html.

Sutton, R. S. and Barto, A. G. Reinforcement Learning: An
Introduction. MIT Press, Cambridge, MA, USA, 2018.

Sutton, R. S., McAllester, D. A., Singh, S. P., and
Mansour, Y. Policy gradient methods for reinforce-
ment learning with function approximation. In Solla,
S. A., Leen, T. K., and Müller, K. (eds.), Advances
in Neural Information Processing Systems 12, [NIPS
Conference, Denver, Colorado, USA, November 29
- December 4, 1999], pp. 1057–1063. The MIT
Press, 1999. URL https://proceedings.
neurips.cc/paper/1999/file/
464d828b85b0bed98e80ade0a5c43b0f-Paper.
pdf.

Tang, Y., Nguyen, D., and Ha, D. Neuroevolution of self-
interpretable agents. In Coello, C. A. C. (ed.), GECCO

’20: Genetic and Evolutionary Computation Conference,
Cancún Mexico, July 8-12, 2020, pp. 414–424. ACM,
2020. doi: 10.1145/3377930.3389847. URL https:
//doi.org/10.1145/3377930.3389847.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. 2012 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp.
5026–5033, 2012.

Tsitsiklis, J. N. and Roy, B. V. Feature-based meth-
ods for large scale dynamic programming. Mach.
Learn., 22(1-3):59–94, 1996. doi: 10.1023/A:
1018008221616. URL https://doi.org/10.
1023/A:1018008221616.

http://proceedings.mlr.press/v70/pritzel17a.html
http://proceedings.mlr.press/v70/pritzel17a.html
https://doi.org/10.1007/11871842_74
https://doi.org/10.1007/11871842_74
https://openreview.net/forum?id=F-mvpFpn_0q
https://openreview.net/forum?id=F-mvpFpn_0q
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://www.jstor.org/stable/23566550
https://doi.org/10.1613/jair.859
https://doi.org/10.1214/12-EJS722
https://doi.org/10.1214/12-EJS722
https://arxiv.org/abs/2010.08843
https://arxiv.org/abs/2010.08843
http://www.cs.ualberta.ca/%7Esutton/book/ebook/the-book.html
http://www.cs.ualberta.ca/%7Esutton/book/ebook/the-book.html
https://proceedings.neurips.cc/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://doi.org/10.1145/3377930.3389847
https://doi.org/10.1145/3377930.3389847
https://doi.org/10.1023/A:1018008221616
https://doi.org/10.1023/A:1018008221616

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

On learning history-based policies for controlling Markov decision processes

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L. u., and Polosukhin,
I. Attention is all you need. In Guyon, I., Luxburg,
U. V., Bengio, S., Wallach, H., Fergus, R., Vish-
wanathan, S., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017. URL https://proceedings.
neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.
pdf.

Williams, R. J. Simple statistical gradient-following al-
gorithms for connectionist reinforcement learning. Ma-
chine Learning, 8:229–256, 2004.

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A. C.,
Salakhutdinov, R., Zemel, R. S., and Bengio, Y. Show,
attend and tell: Neural image caption generation with
visual attention. In ICML, 2015.

Xu, X., Xie, T., Hu, D., and Lu, X. Kernel least-squares tem-
poral difference learning. In Computational intelligence
and neuroscience, 2006.

Zambaldi, V. F., Raposo, D., Santoro, A., Bapst, V., Li, Y.,
Babuschkin, I., Tuyls, K., Reichert, D. P., Lillicrap, T. P.,
Lockhart, E., Shanahan, M., Langston, V., Pascanu, R.,
Botvinick, M. M., Vinyals, O., and Battaglia, P. W. Deep
reinforcement learning with relational inductive biases.
In ICLR, 2019.

Zintgraf, L. M., Shiarlis, K., Igl, M., Schulze, S., Gal, Y.,
Hofmann, K., and Whiteson, S. Varibad: A very good
method for bayes-adaptive deep RL via meta-learning.
In 8th International Conference on Learning Repres-
entations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net, 2020. URL https:
//openreview.net/forum?id=Hkl9JlBYvr.

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=Hkl9JlBYvr
https://openreview.net/forum?id=Hkl9JlBYvr

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

On learning history-based policies for controlling Markov decision processes

Appendix

A. Proof for Theorem 3.5
For readability we will restate the theorem statement

Theorem A.1. For any time t, any realisation st of St, at of At, let ht = (s1:t, a1:t−1), and zt = σt(ht). The worst case
difference between V ⋆ and V π

t is bounded as:

∆ ≤ 2
ε+ γδκF(V̂ , f̂)

1− γ
, (23)

where, κF(V̂ , f̂) = supz,a ρF(V̂ (f̂(·, z, a))). and ρF(·) is the Minkowski functional associated with the IPM dF as defined
in (3).

Proof. For this proof we will use the following convention: For a generic history ht ∈ Ht, we assume that ht = (s1:t, a1:t−1),
moreover, note that zt = σt(ht).

Now from (3.1), and Definition 3.3 for any at, st, zt:

max
h∈Ht,at∈A

∣∣∣∣r(st, at)− r̂(zt, at)

∣∣∣∣ ≤ ϵ.

max
h∈Ht,at∈A

∣∣∣∣ ∑
st+1∈S

(
P (st+1|st, at)V̂ (f̂(s

t+1, zt, at))− P̂ (st+1|zt, at)V̂ (f̂(st+1, zt, at))

)∣∣∣∣ ≤ δρF(V̂ (f̂(·, zt, at))).

(24)

Now using triangle inequality we get:

∥V ⋆(st)− V π
t (ht)∥∞

(a)

≤ ∥V ⋆(st)− V̂ (zt)∥∞︸ ︷︷ ︸
term 1

+ ∥V π
t (ht)− V̂ (zt)∥∞︸ ︷︷ ︸

term 2

, (25)

where (a) follows from triangle inequality.

We will now proceed by bounding terms 1 and 2 separately

Bounding term 1:

∥V ⋆(st)− V̂ (zt)∥∞ ≤ max
h∈Ht

∣∣∣∣max
at∈A

[
Q⋆(st, at)− Q̂(zt, at)

]∣∣∣∣, (26)

Therefore, for any action at

max
h∈Ht

∣∣∣∣max
at∈A

[
Q⋆(st, at)− Q̂(zt, at)

]∣∣∣∣ = max
h∈Ht

∣∣∣∣max
at∈A

[
r(st, at) + γ

∑
st+1∈S

P (st+1|st, at)V ⋆(st+1)

− r̂(zt, at)− γ
∑

st+1∈S
P̂ (st+1|zt, at)V̂ (f̂(st+1, zt, at))

]∣∣∣∣
(a)

≤ ϵ+ max
h∈Ht,at∈A

∣∣∣∣γ ∑
st+1∈S

P (st+1|st, at)V ⋆(st+1)− γ
∑

st+1∈S
P (st+1|st, at)V̂ (f̂(st+1, zt, at))

∣∣∣∣
+ max

h∈Ht,at∈A

∣∣∣∣γ ∑
st+1∈S

P (st+1|st, at)V̂ (f̂(st+1, zt, at))− γ
∑

st+1∈S
P̂ (st+1|zt, at)V̂ (f̂(st+1, zt, at))

∣∣∣∣
(b)

≤ ϵ+ γ∥(V ⋆(st)− V̂ (zt))∥∞ + γδρF(V̂ (f̂(·, zt, at))),

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

On learning history-based policies for controlling Markov decision processes

where (a) from triangle inequality and (b) is due to (24). Now defining κF(V̂ , f̂) = supz,a ρF(V̂ (f̂(·, z, a))), and
substituting the above result in (26) we get

|V ⋆(st)− V̂ (zt)| ≤
ε+ γδκF(V̂ , f̂)

1− γ
. (27)

Bounding term 2:

∥V π
t (ht)− V̂ (zt)∥∞ ≤ max

h∈Ht

∣∣∣∣max
at∈A

[
Qπ

t (ht, at)− Q̂(zt, at)

]∣∣∣∣, (28)

Therefore, for any action at

max
h∈Ht

∣∣∣∣max
at∈A

[
Qπ(ht, at)− Q̂(zt, at)

]∣∣∣∣ = max
h∈Ht

∣∣∣∣max
at∈A

[
r(st, at) + γ

∑
st+1∈S

P (st+1|st, at)V π
t+1(ht+1)− (r̂(zt, at)+

γ
∑

st+1∈S
P̂ (st+1|zt, at)V̂ (f̂(st+1, zt, at))

]∣∣∣∣,
(a)

≤ ϵ+ max
h∈Ht,at∈A

∣∣∣∣γ ∑
st+1∈S

P (st+1|st, at)V π
t+1(ht+1)− γ

∑
st+1∈S

P (st+1|st, at)V̂ (f̂(st+1, zt, at))

∣∣∣∣
+ max

h∈Ht,at∈A

∣∣∣∣γ ∑
st+1∈S

P (st+1|st, at)V̂ (f̂(st+1, zt, at))− γ
∑

st+1∈S
P̂ (st+1|zt, at)V̂ (f̂(st+1, zt, at))

∣∣∣∣,
(b)

≤ ϵ+ γ∥(V π(ht)− V̂ (zt))∥∞ + γδρF(V̂ (f̂(·, zt, at))),

where (a) is from triangle inequality, (b) is due to (24), with κF(V̂ , f̂) = supz,a ρF(V̂ (f̂(·, z, a))), and substituting the
above result in (28) we get

∥V π
t (ht)− V̂ (zt)∥∞ ≤

ε+ γδκF(V̂ , f̂)

1− γ
. (29)

The final result then follows by adding (27) and (29).

B. Proof for Corollary 3.6
Lemma B.1. If V̂ is the optimal value function of the MDP M̂ induced by the process {Zt}t≥0, then

span(V̂) ≤ span(r̂)

1− γ
. (30)

Proof. The result follows by observing that the per-step reward r̂(Zt, At) ∈ [min(r̂),max(r̂)]. Therefore max(V̂) ≤
max(r̂) and min(V̂) ≥ min(r̂).

Corollary B.2. If the function class F is FTV, then ∆ defined in (13) is upper bounded as:

∆ ≤ 2ϵ

1− γ
+

γδ span(r̂)

(1− γ)2
, (31)

Proof. From Section 3.1 we know that for the Total variation distance ρFTV(V̂) = span(V̂) and κ(f̂) = 1. The result in the
corollary then follows from Lemma B.1.

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

On learning history-based policies for controlling Markov decision processes

C. Proof for Corollary 3.7
Definition C.1. For any Lipschitz function f : (Z, dZ)→ (R, | · |), and probability measures ν1, and ν2 on (Z, dZ)∣∣∣∣ ∫

Z
fdν1 −

∫
Z
fdν2

∣∣∣∣ ≤ ∥f∥L.dFW(ν1, ν2) ≤ LfdFW(ν1, ν2), (32)

where Lf is the Lipschitz constant of f and dFW is the Wasserstein distance.

Definition C.2. Let d be a metric on the AIS/Feature space Z . The MDP M̂ induced by the process {Zt}t≥0 is said to be
(Lr̂, LP̂) - Lipschitz if for any Z1, Z2 ∈ Z , the reward r̂ and transition P̂ of M̂ satisfy the following:∣∣∣∣r(Z1, A)− r(Z2, A)

∣∣∣∣ ≤ Lr̂d(Z1, Z2), (33)

dFW(P̂ (·|Z1, A), P̂ (·|Z2, A) ≤ LP̂ d(Z1, Z2), (34)

where dFW is the Wasserstein or the Kantorovitch-Rubinstein distance.

Lemma C.3. Let V̂ : Z → R be LV̂ continuous. Define:

Q̂(z, a) = r̂(z, a) + γ
∑
s′

P̂ (s′|z, a)V̂ (f̂(s′, z, a).

Then Q̂ is (Lr̂ + γLV̂ Lf̂LP̂)-Lipschitz continuous.

Proof. For any action a∣∣∣∣Q̂(z1, a)− Q̂(z2, a)

∣∣∣∣ (a)

≤
∣∣∣∣r̂(z1, a)− r̂(z2, a)

∣∣∣∣+ γ

∣∣∣∣∑
s′

P̂ (s′|z1, a)V̂ (f̂(s′, z1, a))− P̂ (s′|z2, a)V̂ (f̂(s′, z2, a))

∣∣∣∣, (35)

(b)

≤ (Lr̂ + γLV̂ Lf̂LP̂)d(z1, z2), (36)

where (a) due to triangle inequality, and (b) follows form Definition C.1, Definition C.2, and because ∥a ◦ b∥L ≤
∥a∥L · ∥b∥L.

Lemma C.4. Let Q̂ : Z ×A → R be LQ̂- Lipschitz continuous, Define

V̂ (z) = max
at∈A

Q̂(z, a).

Then V̂ is LQ̂ Lipschitz

Proof. Consider z1, z2 ∈ Z , and let a1 and a2 denote the corresponding optimal action. Then,

V̂ (z1)− V̂ (z2) = Q̂(z1, a1)− Q̂(z2, a2), (37)
(a)

≤ Q̂(z1, a2)− Q̂(z2, a2), (38)
(b)

≤ LQ̂d(z1, z2), (39)

By symmetry,

V̂ (z2)− V̂ (z1) ≤ LQ̂d(z1, z2).

Therefore, ∣∣∣∣V̂ (z1)− V̂ (z2)

∣∣∣∣ ≤ LQ̂d(z1, z2).

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

On learning history-based policies for controlling Markov decision processes

Lemma C.5. Consider the following dynamic program defined in (9):2

Q̂t(zt, at) = r̂(zt, at) + γ
∑
st∈S

P̂ (st|zt, at)V̂ (f̂(zt, st, at)), ∀z ∈ Z, a ∈ A

V̂t(zt) = max
a∈A

Q̂t(zt, at), ∀z ∈ Z

Then at any time t, we have:

LV̂t+1
= Lr̂ + γLP̂Lf̂LV̂t

.

Proof. We prove this by induction. At time t = 1 Q̂1(z, a) = r̂(z, a), therefore LQ̂1
= Lr̂. Then according to Lemma C.4,

V̂1 is Lipschitz with Lipschitz constant LV̂1
= LQ̂1

= Lr̂. This forms the basis of induction. Now assume that at time t, V̂t

is LV̂t
- Lipschitz. By Lemma C.3 Q̂t+1 is Lr̂ + γLf̂ , LP̂LV̂t

. Therefore by Lemma C.4, V̂(t+1) is Lipschitz with constant:

LV̂t+1
= Lr̂ + γLf̂LP̂LV̂t

.

Theorem C.6. Given any (Lr̂, LP̂)- Lipschitz MDP, if γLP̂Lf̂ ≤ 1, then the infinite horizon γ-discounted value function V̂
is Lipschitz continuous with Lipschitz constant

LV̂ =
Lr̂

1− γLf̂LP̂

.

Proof. Consider the sequence of Lt = LV̂t
values. For simplicity write α = γLP̂Lf̂ . Then the sequence {Lt}t≥1 is given

by : L1 = Lr̂ and for t ≥ 1,

Lt+1 = Lr̂ + αLt,

Therefore,

Lt = Lr̂ + αLr̂ + . . .+ αt+1 =
1− αt

1− α
Lr̂.

This sequence converges if |α| ≤ 1. Since α is non-negative, this is equivalent to α ≤ 1, which is true by hypothesis.
Hence Lt is a convergent sequence. At convergence, the limit LV̂ must satisfy the fixed point of the recursion relationship
introduced in Lemma C.5, hence,

LV̂ = Lr̂ + γLf̂LP̂LV̂ .

Consequently, the limit is equal to,

LV̂ =
Lr̂

1− γLf̂LP̂

.

Corollary C.7. If γLP̂Lf̂ ≤ 1 and the function class F is FW, then ∆ as defined in (13) is upper bounded as:

∆ ≤ 2ϵ

(1− γ)
+

2γδLr̂

(1− γ)(1− γLf̂LP̂)
, (40)

Proof. The proof follows from the observation that for dFW , ρFW = LV̂ , and then using the result from Theorem C.6.
2We have added t as a subscript to denote the computation time i.e., the time at which the respective function is updated.

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

On learning history-based policies for controlling Markov decision processes

D. Algorithmic Details
D.1. Choice of an IPM:

D.1.1. MMD

One advantage of choosing dF as the MMD distance is that unlike the Wasserstein distance, its computation does not require
solving an optimisation problem. Another advantage is that we can leverage some of their properties to further simplify our
computation, as follows:

Proposition D.1 (Theorem 22 (Sejdinovic et al., 2013)). Let X ⊆ Rm, and dX ,p : X × X → R be a metric given by
dX ,p(x, x

′) = ∥x− x′∥p2, for p ∈ (0, 2]. Let kp : X × X → R be any kernel given:

kp(x, x
′) =

1

2
(dX ,p(x, x0) + dX ,p(x

′, x0)− dX ,p(x, x
′)), (41)

where x0 ∈ X is arbitrary, and let Up be a RKHS kernel with kernel kp and Fp = {f ∈ Up : ∥f∥Up
≥ 1}. Then for any

distributions ν1, ν2 ∈ ∆X , the IPM can be expressed as:

dF(ν1, ν2) =

(
E[dX ,p(X1,W1)]−

1

2
E[dX ,p(X1, X2)]−

1

2
E[dX ,p(W1,W2)]

) 1
2

, (42)

where X1, X2, and W1,W2 are i.i.d. samples from ν1 and ν2 respectively.

The main implication of Proposition D.1 is that, instead of using (42), for p ∈ (0, 2] we can use the following as a surrogate
for dFp : ∫

X

∫
X
∥x1 − w1∥p2ν1(dx1)ν2(dw1)−

1

2

∫
X

∫
X
∥w1 − w2∥p2ν2(dw1)ν2(dw1). (43)

Moreover, according to Sriperumbudur et al. (2012) for n identically and independently distributed (i.i.d) samples {Xi}ni=0 ∼
ν1 an unbiased estimator of (43) is given as:

1

n

n∑
i=1

∫
X
∥Xi − w1∥p2ν1d(w1)−

1

2

∫
X

∫
X
∥w1 − w2∥p2ν1(dw1)ν2(dw2). (44)

We implement a simplified version of the surrogate loss in (44) as follows:

Proposition D.2 ((Subramanian et al., 2020)). Given the setup in Proposition D.1 and p = 2, Let ν2(ζ) be a parametric
distribution with mean m and let X ∼ ν1, then the gradient∇ζ(mζ − 2X)⊤mζ is an unbiased estimator of∇ζdF2(α, νζ)

2

Proof. Let X1, X2 ∼ ν1, and W1,W2 ∼ ν2(ζ)

∴ ∇ζdF2
(ν1, ν2(ζ))

2 = ∇ζ

[
E∥X1 −W1∥22 −

1

2
E∥X1 −X2∥22 −

1

2
E∥W1 −W2∥22

]
, (45)

(a)
= ∇ζ

[
E∥W1∥22 − 2E∥X1∥⊤E∥W1∥

]
, (46)

where (a) follows from the fact that X does not depend on ζ , which simplifies the implementation of the MMD distance.

In this way we can simplify the computation of dF using a parametric stochastic kernel approximator and MMD metric.

Note that when are trying to approximate a continuous distribution we can readily use the loss function (46) as long as the
mean mζ of ν2(ζ) is given in closed form. The AIS loss is then given as:

LAIS(ζ) =
1

T

T∑
t=0

(
λ(fr̂(Zt, At; ζ)− r(St, At))

2 + (1− λ)(mSt

ζ − 2St)
⊤mSt

ζ

)
, (47)

where mSt

ζ is obtained using the from the transition approximator, i.e., the mapping fP̂ (ζ) : Z ×A → R.

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

On learning history-based policies for controlling Markov decision processes

D.1.2. WASSERSTEIN DISTANCE

The the KL-divergence between two densities ν1 and ν2 on for any X ∈ X ⊂ Rm is defined as:

dKL(ν1∥ν2) =
∫
X
log(ν1(x))ν1(dx)−

∫
X
log(ν2(x))ν1(dx) (48)

Moreover, if X is bounded space with diameter D, then the relation between the Wasserstein distance dFW , Total variation
distance dFTV , and the KL divergence is given as :

dFW(ν1, ν2) ≤ DdFTV(ν1, ν2)
(a)

≤
√
2dKL(ν1∥ν2), (49)

where, (a) follows from the Pinsker’s inequality. Note that in (18) we use d2F. Therefore, we can use a (simplified)
KL-divergence based surrogate objective given as:∫

X
log(ν2(x; ζ))ν1(dx), (50)

where we have dropped the terms which do not depend on ζ. Note that the above expression is same as the cross entropy
between ν1 and ν2 which can be effectively computed using samples. In particular, if we get T i.i.d samples from ν1, then,

1

T

T∑
i=0

log(ν2(xi; ζ)) (51)

is an unbiased estimator of
∫
X log(ν2(x; ζ))ν1(dx).

The KL divergence based AIS loss is then given as:

LAIS(ζ) =
1

T

T∑
t=0

(
λ(fr̂(Zt, At; ζ)− r(St, At))

2 + (1− λ) log(P̂ (St; ζ))

)
, (52)

E. Extension to actor critic and convergence
E.1. Actor Critic Algorithm

As mentioned previously, similar to Section 4.2 we can also design an AIS-based Actor-Critic algorithm. As such, in addition
to a parameterised policy π(·; ξ) and AIS generator (σt(·; ζ), f̂ , r̂, P̂) we can also a parameterised critic V̂ (·;ϑ) : Z → R,
where ϑ are the parameters for the critic. The performance of policy µ(·; ξ) is then given by J(ξ, ζ, ϑ). According to policy
gradient theorem (Sutton et al., 1999; Baxter & Bartlett, 2001) the gradient of J(ξ, ζ, ϑ), is given as:

∇ξJ(ξ, ζ, ϑ) = E
[
∇ξ log(µ(·; ξ))V̂ (·;ϑ)

]
. (53)

And for a trajectory of length T , we approximate it as:

∇̂ξJ(ξ, ζ, ϑ) =
1

T

T∑
t=1

[
∇ξ log(µ(·; ξ))V̂ (·;ϑ)

]
. (54)

The parameters ϑ can be learnt by optimising the temporal difference loss given as:

LTD(ξ, ζ, ϑ) =
1

T

T∑
t=0

smoothL1(V̂ (Zt;ϑ)− r(Zt, At)− γV̂ (Zt+1;ϑ)). (55)

The parameters {(ζi, ξi, ϑi)}i≥1 can then be updated using a multi-timescale stochastic approximation algorithm as follows:

ζi+1 = ζi + bi∇ζLAIS(ζi), (56a)
ϑi+1 = ϑi + ci∇ϑLTD(ξi, ζi, ϑi), (56b)

ξi+1 = ξi + di∇̂ξJ(ξi, ζi, ϑ), (56c)

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

On learning history-based policies for controlling Markov decision processes

where the step-size {bi}i≥0, {ci}i≥0 and {di}i≥0 satisfy the standard conditions
∑

i bi = ∞,
∑

i b
2
i < ∞,

∑
i ci = ∞,∑

i c
2
i <∞,

∑
i di =∞ and

∑
i d

2
i <∞ respectively. Moreover, one can ensure that the AIS generator converges first,

followed by the critic and the actor by choosing an appropriate step-sizes such that, limi→∞
di

bi
= 0 and limi→∞

ci
di

= 0.

E.2. Convergence analysis

In this section we will discuss the convergence of the AIS-based policy gradient in Section 4.2 as well as Actor-Critic
algorithm presented in the previous subsection. The proof of convergence relies on multi-timescale stochastic approximation
Borkar (2008) under conditions similar to the standard conditions for convergence of policy gradient algorithms with
function approximation stated below, therefore it would suffice to provide a proof sketch.

Assumption E.1. 1. The values of step-size parameters b, d and c (for the actor critic algorithm) are set such that the
timescales of the updates for ζ, ξ, and ϑ (for Actor-Critic algorithm) are separated, i.e., bt ≫ dt, and for the Actor-
Critic algorithm bt ≫ ct ≫ dt,

∑
i bi = ∞,

∑
i b

2
i < ∞,

∑
i ci = ∞,

∑
i c

2
i < ∞,

∑
i di = ∞ and

∑
i d

2
i < ∞,

limi→∞
di

bi
= 0 and limi→∞

ci
di

= 0,

2. The parameters ζ, ξ and ϑ (for Actor-Critic algorithm) lie in a convex, compact and closed subset of Euclidean spaces.

3. The gradient∇ζLAIS is Lipschitz in ζt, and ∇̂ξJ(ξ, ζ) is Lipschitz in ξt, and ζt. Whereas for the Actor-Critic algorithm
the gradient of the TD loss∇ϑLTD(ζ, ξ, ϑ) and the policy gradient ∇̂ξJ(ζ, ξ, ϑ) is Lipschitz in (ζt, ξt, ϑt).

4. All the estimates of all the gradients∇ζLAIS,∇ξJ(ξ, ζ),∇ϑLTD(ζ, ξ, ϑ) and are unbiased with bounded variance3.

Assumption E.2. 1. The ordinary differential equation (ODE) corresponding to (22) is locally asymptotically stable.

2. The ODEs corresponding to (21) is globally asymptotically stable.

3. For the Actor-Critic algorithm, the ODE corresponding to (56b) is globally asymptotically stable and has a fixed point
which is Lipschitz in ξ.

Theorem E.3. Under assumption E.1 and E.2, along any sample path, almost surely we have the following:

1. The iteration for ζ in (21) converges to an AIS generator that minimises the LAIS.

2. The iteration for ξ in (22) converges to a local maximum of the performance J(ζ⋆, ξ) where ζ⋆, and ϑ⋆ (for Actor
Critic) are the converged value of ζ, ϑ.

3. For the Actor-Critic algorithm the iteration for ϑ in (56b) converges to critic that minimises the error with respect to
the true value function.

Proof. The proof for this theorem follows the technique used in (Leslie, 2004; Borkar, 2008). Due to the specific choice of
learning rate the AIS-generator is updated at a faster time-scale than the actor, therefore it is “quasi static” with respect to to
the actor while the actor observes a “nearly equilibriated” AIS generator. Similarly in the case of the Actor-Critic algorithm
the AIS generator observes a stationary critic and actor, whereas the critic and actor see “nearly equilibriated” AIS generator.
The Martingale difference condition (A3) of Borkar (2008) is satisfied due to Item 4 in assumption E.1. As such since our
algorithm satisfies all the four conditions by (Leslie, 2004, page35), (Borkar, 1997, Theorem 23), the result then follows by
combining the theorem on (Leslie, 2004, page 35)(Borkar, 2008, Theorem 23) and (Borkar, 1997, Theorem 2.2).

F. Experimental Details
F.1. Environments

Our algorithms are evaluated on MuJoCo (Todorov et al., 2012, mujoco-py version 2.0.2.9) via OpenAI gym (Brockman
et al., 2016, version 0.17.1) interface, using the v2 environments. The environment, state-space, action space, and reward
function are not modified or pre-processed in any way for easy reproducibility and fair comparison with previous results.
Each environment runs for a maximum of 2048 time steps or until some termination condition and has a multi-dimensional
action space with values in the range of (-1, 1), except for Humanoid which uses the range of (-0.4, 0.4).

3This assumption is only satisfied in tabular MDPs.

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

On learning history-based policies for controlling Markov decision processes

Common

Optimiser Adam
Discount Factor γ 0.99
Inital standard deviation for the policy 0.0
PPO-Epochs 12
Clipping Coefficient 0.2
Entropy-Regulariser 0
Batch Size 512
Episode Length 2048

AIS generator
History Compressor GRU
Hidden layer dimension 256
Step size 1.5e-3
λ 0.3

Actor
Step size 3.5e-4
No of hidden layers 1
Hidden layer Dimension 32

Table 1. Hyperparameters

F.2. Hyper-parameters

Table 1 contains all the hyper-parameters used in our experiments. Both the policy and AIS networks are trained with Adam
optimiser (Kingma & Ba, 2015), with a batch size of 512. We follow Raichuk et al. (2021)’s recommended protocol for
training on-policy policy based methods, and perform 12 PPO updates after every policy evaluation subroutine. To ensure
separation of time-scales the step size of the AIS generator and the policy network is set to 1.5e−3 and 3.5e−4 respectively.
Hyper-parameters of our approach are searched over a grid of values, but an exhaustive grid search is not carried out due to
prohibitive computational cost. We start with the recommended hyper-parameters for the baseline implementations and tune
them further around promising values by an iterative process of performing experiments and observing results.

For the state-based RNN baseline we have tuned the learning rate over a grid of values starting from 1e-4 to 4e-4 and settled
on 3.5e-4 as it achieved the best performance. Similarly the hidden layer size set to 256 as it is observed to achieve best
performance. For the feed-forward baselines we use the implementation by OpenAI baselines (Dhariwal et al., 2017) with
their default hyper-parameters.

F.3. Modifications to baselines and their hyper-parameters

Note that the methods in (Hafner et al., 2020; 2019) are designed for pixel-based control tasks and cannot be readily used
for continuous control tasks in this paper. To help them process real-valued state vectors, we replace the convolutional
and deconvolutional layers in their architectures by fully connected layers. We observed that feed-forward layers of size
256 for PlaNET (Hafner et al., 2019), and 300 for Dreamer (Hafner et al., 2020) produced the best results for both the
methods. For PlaNET (Hafner et al., 2019) we used the default hyper-parameters and varied the learning rate over a grid
of values starting from 1e-4 to 4e-4. We observed that this method achieved best performance at the learning rate of 3e-3.
For Dreamer (Hafner et al., 2020) we used the default hyper-parameters and varied the learning rate over a grid of values
starting from 6e-4, 6e-5 and 6e-5 respectively to 1e-3, 1e-4, 1e-4 respectively. We observed that this method achieved the
best performance at 7.5e-4, 9e-5 and 8.5e-5 respectively.

The architecture proposed in this paper is similar to the VariBAD (Zintgraf et al., 2020) method proposed by Zintgraf et al..
The main motivation of Zintgraf et al. was evaluate VariBAD for multi-task RL, however we believe that the specifics of this
method are relevant to both the ideas presented in this paper and the single-task RL setup. In our experiments we use the
code base provided by Zintgraf et al. without any modifications and observe that the method performs on-par with several
other baselines.

F.4. Type of MMDs

The MMD distance given by (46) in Appendix D.1.1, can be computed using different types of characteristic kernels (for a
detailed review see (Sriperumbudur et al., 2012; Fukumizu et al., 2009; Sejdinovic et al., 2013)). In this paper we consider

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

On learning history-based policies for controlling Markov decision processes

computing (46) using the Laplace, Gaussian and energy distance kernels. The performance of the proposed approach under
different kernels is shown in Figure 4. It can be observed that for the continuous control tasks in the MuJoCo suite, the
energy distance yields better performance, and therefore we implement Equation (46) using the energy distance for all the
experiments.

0.0 0.2 0.4 0.6 0.8 1.0

Number of episodes 1e6

0

2000

4000

6000

8000

Av
er

ag
e

R
et

ur
n

(a) Half Cheetah

0.0 0.2 0.4 0.6 0.8 1.0

Number of episodes 1e6

0

2000

4000

6000

8000

Av
er

ag
e

R
et

ur
n

(b) Walker

0.0 0.2 0.4 0.6 0.8 1.0

Number of episodes 1e6

0

1000

2000

3000

4000

5000

6000

7000

Av
er

ag
e

R
et

ur
n

(c) Ant

Legend Title
Laplace
Gaussian
Energy

Figure 4. Comparison of different MMDs, averaged over 50 runs with ±1 std-dev

F.5. MMD vs KL

Next, we compare the performance of our method under MMD (energy distance)-based AIS loss in (19) and KL-based AIS
loss given in (20). From Figure 5, one can observe that for the Mujoco tasks, MMD-based loss leads to better performance.

0.0 0.2 0.4 0.6 0.8 1.0

Number of episodes 1e6

0

2000

4000

6000

8000

Av
er

ag
e

R
et

ur
n

(a) Half Cheetah

0.0 0.2 0.4 0.6 0.8 1.0

Number of episodes 1e6

0

2000

4000

6000

8000

Av
er

ag
e

R
et

ur
n

(b) Walker

0.0 0.2 0.4 0.6 0.8 1.0

Number of episodes 1e6

0

1000

2000

3000

4000

5000

6000

7000

Av
er

ag
e

R
et

ur
n

(c) Ant

Legend Title
MMD
KL/Wasserstein

Figure 5. Comparison of Wasserstein vs MMDs, averaged over 50 runs with ±1 std-dev

