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Abstract
Reinforcement learning (RL) folklore suggests
that history-based function approximation meth-
ods, such as recurrent neural nets or history-
based state abstraction, perform better than their
memory-less counterparts, due to the fact that
function approximation in Markov decision pro-
cesses (MDP) can be viewed as inducing a Par-
tially observable MDP. However, there has been
little formal analysis of such history-based al-
gorithms, as most existing frameworks focus ex-
clusively on memory-less features. In this paper,
we introduce a theoretical framework for study-
ing the behaviour of RL algorithms that learn
to control an MDP using history-based feature
abstraction mappings. Furthermore, we use this
framework to design a practical RL algorithm and
we numerically evaluate its effectiveness on a set
of continuous control tasks.

1. Introduction
State abstraction and function approximation are vital com-
ponents used by reinforcement learning (RL) algorithms
to efficiently solve complex control problems when exact
computations are intractable due to large state and action
spaces. Over the past few decades, state abstraction in RL
has evolved from the use of pre-determined and problem-
specific features (Crites & Barto, 1995; Tsitsiklis & Roy,
1996; Bertsekas & Tsitsiklis, 1996; Sutton & Barto, 1998;
Singh et al., 2002; Kwok & Fox, 2004; Proper & Tadepalli,
2006) to the use of adaptive basis functions learnt by solv-
ing an isolated regression problem (Ormoneit & Sen, 2002;
Menache et al., 2005; Keller et al., 2006; Petrik, 2007), and
more recently to the use of neural network-based Deep-RL
algorithms that embed state abstraction in successive layers
of a neural network (Barto et al., 2004; Bellemare et al.,
2019).

Feature abstraction results in information loss, and the res-
ulting state features might not satisfy the controlled Markov
property, even if this property is satisfied by the corres-
ponding state (Sutton & Barto, 2018). One approach to
counteract the loss of the Markov property is to generate the
features using the history of state-action pairs, and empirical

evidence suggests that using such history-based features are
beneficial in practice (OpenAI et al., 2019). However, a
theoretical characterisation of history-based Deep-RL al-
gorithms for fully observed Markov Decision Processes
(MDPs) is largely absent form the literature.

In this paper, we bridge this gap between theory and prac-
tise by providing a theoretical analysis of history-based RL
agents acting in a MDP. Our approach adapts the notion of
approximate information state (AIS) for POMDPs proposed
in (Subramanian et al., 2020; Subramanian & Mahajan,
2019) to feature abstraction in MDPs, and we develop a
theoretically grounded policy search algorithm for history-
based feature abstractions and policies.

The rest of the paper is organised as follows: In Section 2,
following a brief review of feature-based abstraction, we mo-
tivate the need for using history-based feature abstractions.
In Section 3, we present a formal model for the co-design
of the feature abstraction and control policy, derive a dy-
namic program using the AIS. We also derive bounds on the
quality of approximate solutions to this dynamic program.
In Section 4 we build on these approximation bounds to
develop an RL algorithm for learning a history-based state
representation and control policy. In Section 5, we present
an empirical evaluation of our proposed algorithm on con-
tinuous control tasks. Finally, we discuss related work in
Section 6 and conclude with future research directions in
Section 7.

2. Background and Motivation
Consider an MDPM = ⟨S,A, P, r, γ⟩ where S denotes
the state space, A denotes the action space, P denotes the
controlled transition matrix, r : S × A → R denotes the
per-step reward, and γ ∈ (0, 1) denotes the discount factor.

The performance of a randomised (and possibly history-
dependent) policy π starting from a start state s0 is measured
by the value function, defined as:

V π(s0) = Eπ

[ ∞∑
t=1

γt−1r(St, At)

∣∣∣∣S0 = s0

]
. (1)

A policy maximising V π(s0) over all (randomised and pos-
sibly history dependent) policies is called the optimal policy
with respect to initial state s0 and is denoted by π⋆.
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In many applications, S and A are combinatorially large
or uncountable, which makes it intractable to compute the
optimal policy. Most practical RL algorithms overcome this
hurdle by using function approximation where the state is
mapped to a feature space Z using a state abstraction func-
tion ϕ : S → Z . In Deep-RL algorithms, the last layer of
the network is often viewed as a feature vector. These fea-
ture vectors are then used as an approximate state for approx-
imating the value function V̂ : Z → R and/or computing
an approximately optimal policy µ : Z → ∆(A) (Sutton &
Barto, 1998) (where ∆(A) denotes the set of probability dis-
tribution over actions). Therefore, the mapping from state
to distribution of actions is given by the “flattened” policy
µ̃ = µ ◦ ϕ i.e., µ̃ = µ(ϕ(·)).

A well known fact about function approximation is that
the features that are used as an approximate state may not
satisfy the controlled Markov property i.e., in general,

P(Zt+1 | Z1:t, A1:t) ̸= P(Zt+1 | Zt, At).
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Figure 1. The transition probability for an example MDP

To see the implications of this fact, consider the toy MDP
depicted in Figures 1a to 1c, with S = {0, 1, 2, 3}, A =
{0, 1, 2}, {Ps,s′(a)}a∈A, and r(0) = r(1) = −1, r(2) = 1,
r(3) = −K, where K is a large positive number. Given the
reward structure the objective of the policy is to try to avoid
state 3 and keep the agent at state 2 as much as possible. It
is easy to see that the optimal policy is

π⋆(0) = 0, π⋆(1) = 0, π⋆(2) = 1, and π⋆(3) = 2.

Note that if the initial state is not state 3 then an agent will
never visit that state under the optimal policy. Furthermore,
any policy which cannot prevent the agent from visiting
state 3 will have a large negative value and, therefore, cannot

be optimal. Now suppose the feature space Z = {0, 1}. It
is easy to see that for any Markovian feature-abstraction
ϕ : S → Z , no policy π̂ : Z → A can prevent the agent
from visiting state 3. Thus, the best policy when using
Markovian feature abstraction will perform significantly
worse than the optimal policy (which has direct access to
the state).

However, it is possible to construct a history-based feature-
abstraction ϕ and a history-based control policy π̂ that works
with ϕ and is of the same quality as π⋆. For this, consider
the following codebooks (where the entries denoted by a dot
do not matter):

Now define

D(0) =


0 1
1 2
2 3
3 0

 , F (1) =


0 1 · ·
· 0 1 ·
· · 0 1
1 · · 0

 ,

D(1) =


3 0
0 1
1 2
2 3

 , F (2) =


1 · · 0
0 1 · ·
· 0 1 ·
· · 0 1

 ,

D(2) =


1 3
0 2
1 3
0 2

 , F (3) =


· 0 · 1
0 · 1 ·
· 0 · 1
0 · 1 ·

 ,

and consider the feature-abstraction policy Zt =
FSt−1,St

(At−1) and a control policy µ which is a finite
state machine with memory, where the memory Mt that
is updated as Mt = DMt−1,Zt(At−1) and the action At

is chosen as At = π(Mt), where π : S → ∆(A) is any
pre-specified reference policy. It can be verified that if the
system starts from a known initial state then µ ◦ ϕ = π.
Thus, if we choose the reference policy π = π⋆, then the
agent will never visit state 3 under µ ◦ ϕ, in contrast to
Markovian feature-abstraction policies where (as we argued
before) state 3 is always visited.

In the above example, we used the properties of the system
dynamics and the reward function to design a history-based
feature abstraction which outperforms memoryless feature
abstractions. We are interested in developing such history-
based feature abstractions using a learning framework when
the system model is not known. We present such a construc-
tion in the next section.

3. Approximation bounds for history-based
feature abstraction

The approximation results of our framework depend on the
properties of metrics on probability spaces. We start with
a brief overview of a general class of metrics known as
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Integral Probability Measures (IPMs) (Müller, 1997); many
of the commonly used metrics on probability spaces such
as total variation (TV) distance, Wasserstein distance, and
maximum-mean discrepency (MMD) are instances of IPMs.
We then derive a general approximation bound that holds
for general IPMs, and then specialize the bound to specific
instances (TV, Wassserstein, and MMD).

3.1. Integral probability metrics (IPM)

Definition 3.1 ( (Müller, 1997)). Let (E ,G) be a measurable
space and F denote a class of uniformly bounded measurable
functions on (E ,G). The integral probability metric between
two probability distributions ν1, ν2 ∈ P(E) with respect to
the function class F is defined as:

dF(ν1, ν2) = sup
f∈F

∣∣∣∣ ∫
E
fdν1 −

∫
E
fdν2

∣∣∣∣. (2)

For any function f (not necessarily in F), the Minkowski
functional ρF associated with the metric dF is defined as:

ρF(f) ≜ inf{ρ ∈ R≥0 : ρ−1f ∈ F}. (3)

Eq. (3), implies that that for any function f :∣∣∣∣ ∫
E
fdν1 −

∫
E
fdν2

∣∣∣∣ ≤ ρF(f)dF(ν1, ν2). (4)

In this paper, we use the following IPMs:

1. Total Variation Distance: If F is chosen as FTV ≜
{ 12 span(f) = 1

2 (max(f) − min(f))}, then dF is the
total variation distance, and its Minkowski functional
is ρFTV(f) = 1

2 span(f).
2. Wasserstein/Kantorovich-Rubinstein Distance: If E

is a metric space and F is chosen as FW ≜ {f : Lf ≤
1} (where Lf denotes the Lipschitz constant of f with
respect to the metric on E), then dF is the Wasserstein
or the Kantorovich distance. The Minkowski function
for the Wasserstein distance is ρFW (f) = Lf .

3. Maximum Mean Discrepancy (MMD) Distance:
Let U be a reproducing kernel Hilbert space (RKHS)
of real-valued functions on E and F is choosen as
FMMD ≜ {f ∈ U : ∥f∥U ≤ 1}, (where ∥ · ∥U de-
notes the RKHS norm), then dF is the Maximum Mean
Discrepancy (MMD) distance and its Minkowski func-
tional is ρFMMD(f) = ∥f∥U .

3.2. Approximate information state

Given an MDPM and a feature space Z , letHt = S ×A
denote the space of all histories (S1:t, A1:t−1) up to time t,
where S1:t is a shorthand notation for the history of states
(S1, . . . , St), and similar interpretation holds for A1:t. We

are interested in learning history-based feature abstraction
functions {σt : Ht → Z}t≥1 and a time homogenous policy
µ : Z → ∆(A) such that the flattened policy π = {πt}t≥1,
where πt = µ ◦ σt, is approximately optimal.

3.3. Approximate information state

Given an MDPM and a feature space Z , letHt = S ×A
denote the space of all histories (S1:t, A1:t−1) up to time t,
where S1:t is a shorthand notation for the history of states
(S1, . . . , St), and similar interpretation holds for A1:t. We
are interested in learning history-based feature abstraction
functions {σt : Ht → Z}t≥1 and a time homogenous policy
µ : Z → ∆(A) such that the flattened policy π = {πt}t≥1,
where πt = µ ◦ σt, is approximately optimal.

Since the feature abstraction approximates the state, its
quality depends on how well it can be used to approximate
the per step reward and predict the next state. We formalise
this intuition in definition below.

Definition 3.2. A family of history-based feature abstrac-
tion functions {σt : Ht → Z}t≥1 are said to be re-
cursively updatable if there exists an update function f̂ :
Z × S × A → Z such that the process {Zt}t≥1, where
Zt = σt(S1:t, A1:t−1), satisfies:

Zt+1 = f̂(Zt, St+1, At). t ≥ 1 (5)

Definition 3.3. Given a family of history based recursively
updatable feature abstraction functions {σt : Ht → Z}t≥1,
the features Zt = σt(S1:t, A1:t−1) are said to be (ϵ, δ)-
approximate information state (AIS) with respect to a func-
tion space F if there exist: (i) a reward approximation func-
tion r̂ : Z × A → R, and (ii) an approximate transition
kernel P̂ : Z ×A → ∆(S) such that Z satisfies the follow-
ing properties:

(P1) Sufficient for approximate performance evaluation:
for all t,

|r(St, At)− r̂(Zt, At)| ≤ ϵ. (6)

(P2) Sufficient for predicting future states approximately:
for all t

dF(P (·|St, At), P̂ (·|Zt, At)) ≤ δ. (7)

We call the tuple (r̂, P̂ ) as an (ϵ, δ)-AIS approximator. Note
that similar definitions have appeared in other works e.g.,
latent state (Gelada et al., 2019), and approximate inform-
ation state for for POMDPs (Subramanian et al., 2020;
Subramanian & Mahajan, 2019). However, in (Gelada
et al., 2019) it is assumed that the feature abstractions are
memory-less and the discussion is restricted to Wasserstein
distance. The key difference from the POMDP model in
(Subramanian et al., 2020; Subramanian & Mahajan, 2019)
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is that the in POMDPs the observation Zt is a pre-specified
function of the state while in the proposed model Zt depends
on our choice of feature abstraction.

As such, our key insight is that an AIS-approximator of a
recursively updatable history-based feature abstraction can
be used to define a dynamic program. In particular, given
a history-based abstraction function {σt : Ht → Z}t≥1

which is recursively updatable using f̂ and an (ϵ, δ) AIS-
approximator (P̂ , r̂), we can define the following dynamic
programming decomposition:

For any zt ∈ Z, at ∈ A

Q̂(zt, at) = r̂(zt, at)

+ γ
∑

st+1∈S
P̂ (st+1|zt, at)V̂ (f̂(zt, st+1, at))

(8)

V̂ (zt) = max
at∈A

Q̂(zt, at), ∀zt ∈ Z (9)

Definition 3.4. Define µ : Z → ∆(A) be any policy such
that for any z ∈ Z ,

Supp(µ(z)) ⊆ argmax
a∈A

Q̂(z, a). (10)

Since µ is a policy from the feature space to actions, we can
use it to define a policy from the history of the state action
pairs to actions as:

πt(s1:t, a1:t−1) ≜ µ(σt(s1:t, a1:t−1)) (11)

Therefore, the dynamic program defined in (9) indirectly
defines a history-based policy π. The performance of any
such history-based policy is given by the following dynamic
program:

For any ht ∈ H, at ∈ A

Qπ
t (ht, at)

1 = r(st, at) + γ
∑

st+1∈S
P (st+1|st, at)V π

t+1(ht+1),

V π
t (ht) =

∑
at∈A

π(at|ht)Q
π
t (ht, at), ∀ht ∈ H

(12)

We want to quantify the loss in performance when using
the history based policy π. Note that since V π

t is not time-
homogeneous, we need to compute the worst-case difference
between V ⋆ and V π

t , which is given by:

∆ ≜ sup
t≥0

sup
ht=(s1:t,a1:t)∈Ht

|V ⋆(st)− V π
t (ht)|, (13)

Our main approximation result is the following:

1We have dropped the time index from the policy to reduce
clutter

Theorem 3.5. The worst case difference between V ⋆ and
V π
t is bounded by

∆ ≤ 2
ε+ γδκF(V̂ , f̂)

1− γ
, (14)

where κF(V̂ , f̂) = supz,a ρF(V̂ (f̂(·, z, a))), ρF(·) is the
Minkowski functional associated with the IPM dF as defined
in (3).

Proof in Appendix A

Some salient features of the bound are as follows: First,
the bound depends on the choice of metric on probability
spaces. Different IPMs will result in a different value of δ
and also a different value of κF(V̂ , f̂). Second, the bound
depends on the properties of V̂ . For this reason we call it
an instance dependent bound. Sometimes, it is desirable
to have bounds which do not require solving the dynamic
program in (9). We present such bounds as below, note
that these “instance independent” bounds are the derived by
upper bounding κF(V̂ , f̂). Therefore, these are looser than
the upper bound in Theorem 3.5

Corollary 3.6. If the function class F is FTV, then ∆ as
defined in (13) is upper bounded as:

∆ ≤ 2ϵ

(1− γ)
+

γδ span(r̂)

(1− γ)2
. (15)

Proof in Appendix B

Corollary 3.7. Let Lr̂ and LP̂ denote the Lipschitz con-
stants of the approximate reward function r̂ and approxim-
ate transition function P̂ respectively, and Lf̂ is the uniform

bound on the Lipschitz constant of f̂ with respect to the state
St. If γLP̂Lf̂ ≤ 1 and the function class F is FW, then ∆
as defined in (13) is upper bounded as:

∆ ≤ 2ϵ

(1− γ)
+

2γδLr̂

(1− γ)(1− γLf̂LP̂ )
. (16)

Proof in Appendix C

Corollary 3.8. If the function class F is FMMD, then ∆ as
defined in (13) is upper bounded as:

∆ ≤ 2
ϵ+ γδκU (V̂ , f̂)

(1− γ)
, (17)

where U is a RKHS space, ∥ · ∥U its associated norm and
κU (V̂ , f̂) = supz,a ∥(V̂ (f̂(·, z, a)))∥U .

Proof. The proof follows from the properties of MMD de-
scribed previously.

In the following section we will show how one can use these
theoretical insights to design a policy search algorithm.
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State: 𝑍𝑡−1

𝑆𝑡
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𝐴𝑡

To environment

𝑟𝑡

𝜈𝑡+1

History compressor Policy network Reward and
next-state predictor

Figure 2. AIS approximator block

4. Reinforcement learning with history-based
feature abstraction

The previous section helps us establish two results, the first
result tells that a history-based representation can be called
an AIS if it is able to evolve like a state and approximately
predict the instantaneous reward and state transition. The
second result tells us that if a policy is obtained using an
AIS, then its performance loss is bounded in terms of the
approximation error as in (14). In this section we will show
how one can design a theoretically grounded computational
framework that uses an RL algorithm to simultaneously
learn an AIS and a policy. The key idea is to represent
the AIS generator and the policy using a parametric family
of functions/distributions and training them using a multi-
timescale optimisation algorithm.

According to Definition 3.3, the AIS generator consists
of four components, a compression function σt, the up-
date function f̂ , an approximate reward predictor r̂, and
transition kernel P̂ . We can represent the history compres-
sion function using any time series approximators such as
LSTMs or GRUs. An advantage of such memory based
neural networks is that their internal layers are updated in a
state-like manner. Therefore, we can satisfy Definition 3.2
since Zt evolves according to the RNN’s state update func-
tion such that f̂ : Z × S ×A → Z .

The main function of r̂ and P̂ is ensure that Zt satisfies prop-
erties P1 and P2 (in Definition 3.3), i.e., prediction of the
instantaneous reward with a bounded error ϵ and approxima-
tion of the ground MDP’s transition function with a bounded
error δ. One way in which the computational framework
can satisfy these is conditions is by explicitly optimising the
AIS generator for the constants ϵ and δ. We can achieve this
by modelling the reward predictor r̂ using a multilayered
perception (MLP) layer which uses the representation Zt

and action At to approximately predict the reward r̂t. In the
same way, we can model the approximate transition kernel
P̂ using an appropriate class of stochastic kernel approxim-
ators e.g., a softmax function or a mixture of Gaussian’s to
learn a parametric approximation of P . We can then train
the AIS generator by minimising an appropriate objective
function.

To make things more concrete, let us denote

the AIS generator as the following collec-
tion: {σt(·; ζ), f̂(·; ζ), fr̂(·; ζ), fP̂ (· : ζ)} where
fr̂(·; ζ) : Z × A → R and fP̂ (·; ζ) : Z × A → ∆(S)
are the reward and transition approximators, and ζ are
the parameters of the respective sub-components. Instead
of separately optimising the reward prediction loss
|r(St, At)− r̂(Zt, At)|, and the transition loss dF(P, P̂ ) we
can combine them in a single objective function objective
function as:

LAIS(ζ) =
1

T

T∑
t=0

(
λ (r̂(Zt, At; ζ)− r(St, At))

2︸ ︷︷ ︸
LR̂(·;ζ)

+ (1− λ) · dF(P̂ (Zt, At ; ζ), P )2︸ ︷︷ ︸
LP̂ (·;ζ)

)
, (18)

where, T is the length of the episode or the rollout length,
λ ∈ [0, 1] is a hyper-parameter, reward prediction loss
LR̂(; ζ) is simply the mean-squared error between the pre-
dicted and the observed reward, whereas the transition pre-
diction loss LP̂ (·; ζ) is the distance between predicted and
observed transition distributions P̂ and P . To compute
LP̂ (·; ζ), we need to choose an IPM. In principle we can
pick any IPM, but we would want to use an IPM using which
the distance dF can be efficiently computed.

4.1. Choice of an IPM

To compute the IPM dF we need to know the probability
density functions P̂ and P . As we assume P̂ to belongs to
a parametric family, we know its density function in closed
form. However, since we are in the learning setup, we can
only access samples from P . For a function a f ∈ F, and
probability density functions P and P̂ such that, ν1 = P ,
and ν2 = P̂ , we can estimate the IPM dF between a distri-
bution and samples using the duality |

∫
Z fdν1 −

∫
Z fdν2|.

In this paper, we use two from of IPMs, the MMD distance
and the Wasserstein/Kantorovich–Rubinstein distance.

4.1.1. MMD DISTANCE:

Let mζ denote the mean of the distribution P̂ (·; ζ). Then,
the AIS-loss when MMD is used as an IPM is given by

LAIS(ζ) =
1

T

T∑
t=0

(
λ(r̂(Zt, At; ζ)− r(St, At))

2

+ (1− λ)(mSt

ζ − 2St)
⊤mSt

ζ

)
, (19)

where mSt

ζ is obtained using the from the transition approx-
imator, i.e., the mapping P̂ (ζ) : Z × A → R. For the
detailed derivation of the above loss see Appendix D.1.1
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4.1.2. WASSERSTEIN/KANTOROVICH–RUBINSTEIN
DISTANCE:

In principle, the Wasserstein/Kantorovich distance can be
computed by solving a linear program (Sriperumbudur et al.,
2012), but doing at every episode can be computationally ex-
pensive. Therefore, we propose to approximate the Wasser-
stein distance using a KL-divergence (Kullback & Leibler,
1951) based upper-bound. The simplified-KL divergence
based AIS loss is given as:

LAIS(ζ) =
1

T

T∑
t=0

(
λ(r̂(Zt, At; ζ)− r(St, At))

2

+ (1− λ) log(P̂ (St; ζ))

)
, (20)

where after dropping the terms which do not depend on
ζ, we get d2FW(P, P̂ ) ≤ log(P̂ (St; ζ)) is the simplified-
KL-divergence based upper bound. For the details of this
derivation see Appendix D.1.2.

4.2. Policy gradient algorithm

Algorithm 1: Policy Search with AIS
Input :ι0: Initial state distribution,

ζ0: Ais parameters,
ξ0: Actor parameters,
a0: Initial action,
D = ∅: Replay buffer,
Ncomp: Computation budget,
Nep: Episode length,
Ngrad: Gradient steps

1 for iterations i = 0 : Ncomp do
2 Sample start state s0 ∼ ι0;
3 for iterations j = 0 : Nep do
4 zj = σζ(s1:j , a1:j−1);
5 aj = µξ(zj);
6 sj+1 = P (sj , aj);
7 D ←− {zj , aj , sj , sj+1};
8 aj−1 = aj ;
9 sj = sj+1;

10 end
11 for every batch b ∈ D do
12 for gradient step t = 0 : Ngrad do
13 ζt+1,b = ζt,b + b∇ζLAIS(ζt,b);
14 ξt+1,b = ξt,b + d∇̂ξJ(ξt,b, ζt,b)

15 end
16 end
17 end

Following the design of the AIS block, we now provide
a policy-gradient algorithm to learning both the AIS and
policy. The schematic of our agent architecture is given in

Figure 2, and pseudo-code is given in Algorithm 1. Given
a feature space Z , we can simultaneously learn the AIS-
generator and the policy using a multi-timescale stochastic
gradient ascent algorithm (Borkar, 2008). Let µ(·; ξ) : Z →
∆(A) be a parameterised stochastic policy with parameters
ξ. Let J(ξ, ζ) denote the performance of the policy µ(·; ξ).
The policy gradient theorem (Sutton et al., 1999; Williams,
2004; Baxter & Bartlett, 2001) states that: For a rollout
horizon T , we can estimate∇ξJ as:

∇̂ξJ(ξt, ζt) =

T∑
t=1

γt−1rt

( t∑
τ=1

∇ξ log(µ(At|Zt; ξt))

)
.

Following a rollout of length T , we can then update the
parameters {(ζi, ξi)}i≥1 as follows:

ζi+1 = ζi + bi∇ζLAIS(ζi), (21)

ξi+1 = ξi + di∇̂ξJ(ξi, ζi) (22)

where the step-size {bi}i≥0 and {di}i≥0 satisfy the standard
conditions

∑
i bi = ∞,

∑
i b

2
i < ∞,

∑
i di = ∞ and∑

i d
2
i <∞ respectively. Moreover, one can ensure that the

AIS generator converges faster by choosing an appropriate
learning rates such that, limi→∞

di

bi
= 0. It is also possible

to design an Actor-Critic algorithm using similar arguments,
we elaborate more on this and the convergence of these
methods in Appendix E.1, and Appendix E.2.

5. Empirical evaluation
Through our experiments, we seek to answer the following
questions: (1) Can history-based feature representations
policies help improve the quality of solution found by a
memory-less RL algorithms? (2) In terms of the solution
quality how does the proposed method compare with other
methods which use memory augmented policies as well as
reward and transition predictors? (3) How does the choice
of IPM affect the algorithms performance?

We answer question (1) by comparing our approach with the
proximal policy gradient (PPO) (Schulman et al., 2017) and
the policy-gradient version of DeepMDP framework (Ge-
lada et al., 2019). For question (2) we compare our ap-
proach with modified versions of PlaNet (Hafner et al.,
2019), Dreamer (Hafner et al., 2020), and VariBAD (Zint-
graf et al., 2020).

For question (3) we compare the performance of our method
using different MMD kernels and KL-divergence based ap-
proximation of Wasserstein distance. All the approaches
are evaluated on six continuous control tasks from the Mu-
JoCo (Todorov et al., 2012) OpenAI-Gym suite. To ensure
a fair comparison, the baselines and their respective hyper-
parameter settings are taken from well tested stand-alone
implementations provided by Dhariwal et al. (2017). From
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Figure 3. Empirical results averaged over 50 Monte Carlo runs with shaded regions representing the quantiles.

an implementation perspective, our framework can be used
to modify any off-the-shelf policy-gradient algorithm by
simply replacing (or augmenting) the feature abstraction
layers of the policy and/or value networks with recurrent
neural networks (RNNs), trained with the appropriate losses,
as outlined previously. In these experiments, we replace the
fully connected layers in PPO’s architecture with a Gated
Recurrent Unit (GRU). For all the implementations, we
initialise the hidden state of the GRU to zero at the be-
ginning of the trajectory. This strategy simplifies the im-
plementation and also allows for independent decorrelated
sampling of sequences, therefore ensuring robust optim-
isation of the networks (Hausknecht & Stone, 2015). It
is important to note that we can extend our framework to
other policy gradient methods such as SAC (Haarnoja et al.,
2018), TD3 (Fujimoto et al., 2018) or DDPG (Lillicrap et al.,
2016), after satisfying certain technical conditions. How-
ever, we leave these extensions for future work. Additional
experimental details and results on different IPMs can be
found in Appendix F.

6. Related Work
The development of RL algorithms with memory-based fea-
ture abstractions has been an active area of research, and
most existing algorithms have tackled this problem using
non-parametric methods like Nearest neighbour (Bentley,
1975; Friedman et al., 1977; Peng, 1995), Locally-weighted
regression (Baird & Klopf, 1993; Atkeson et al., 1997;
Moore et al., 1997), and Kernel-based regression (Connell
& Utgoff, 1987; Dietterich & Wang, 2001; Ormoneit & Sen,
2002; Xu et al., 2006; Bhat et al., 2012; Barreto et al., 2016).

Despite their solid theoretical footing, these methods, have
limited applicability as they are difficult to scale to high-
dimensional state and action spaces. More recently, several
methods that propose using recurrent neural networks for
learning history-based abstractions have enjoyed consider-
able success in complex computer games (Hausknecht &
Stone, 2015; Jaderberg et al., 2017; Espeholt et al., 2018;
Gruslys et al., 2018; Ha & Schmidhuber, 2018) however
most of these methods have been designed for partially ob-
servable environments where use of history-based methods
is often necessary. To the best of our knowledge, the only
other work where a history-based RL algorithm is used for
controlling a MDP is presented by OpenAI et al. (2019). In
this work the authors show that using an LSTM-based agent
architecture results in superior performance for the object
reorientation using robotic arms. However, the authors do
not provide a theoretical analysis of their method.

6.1. Bisimulation metrics

On the theoretical front, our work is closely related to state
aggregation techniques based on bisimulation metrics pro-
posed by Givan et al. (2003); Ferns et al. (2004; 2011).
The bisimulation metric is the fixed point of an operator
on the space of semi-metrics defined over the state space
of an MDP with Lipschitz value functions. Apart from
state aggregation, bisimulation metrics have been used for
feature discovery (Comanici & Precup, 2011; Ruan et al.,
2015), and transfer learning (Castro & Precup, 2010). How-
ever, computational impediments have prevented their broad
adoption. Our work can be viewed as an alternative to bisim-
ulation for the analysis of history-based state abstractions
and deep RL methods. Our work can also be thought of as
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extension of the DeepMDP framework (Gelada et al., 2019)
to history-based policies and direct policy search methods.

6.2. AIS and Agent state

The notion of AIS is closely related to the epistemic state
recently proposed by Lu et al. (2021). An epistemic state is
a bounded representation of the history. It is updated recurs-
ively as the agent collects more information, and is represen-
ted as an environment proxy Υ which is learnt by optimising
a target/objective function χ. Since Υ is a random variable,
its entropy H(Υ) is used to represent system’s uncertainty
about the environment. The framework proposed in this
paper can considered as a practical way of constructing the
system epistemic state where, the AIS Zt represents both
the epistemic state and the environment proxy Υ, LAIS rep-
resents χ, and instead of entropy, the constants ϵ, and δ
represent the systems uncertainty about the environment.
The study of the AIS framework in the regret minimisation
paradigm could help establish a relationship between the ϵ,
δ, and H(Υ), thereby helping designers develop principled
algorithms which synthesise ideas like information directed
sampling for direct policy search algorithms.

6.3. Analysis of RL algorithms with attention
mechanism

Recently, there has been considerable interest in developing
RL algorithms which use attention mechanism/transformer
architectures (Bahdanau et al., 2015; Xu et al., 2015) for
learning feature abstractions (Zambaldi et al., 2019; Mott
et al., 2019; Sorokin et al., 2015; Oh & Kaneko, 2018; Ritter
et al., 2021; Parisotto et al., 2020; Chen et al., 2021; Loynd
et al., 2020; Tang et al., 2020; Pritzel et al., 2017). At-
tention mechanism extract task relevant information from
historical observations and can be used instead of RNNs for
processing sequential data (Vaswani et al., 2017). As we do
not impose a functional from on the history compression
function σt(·) in Definition 3.3, any attention mechanism
can be interpreted as history compression function, and
one can construct a valid information state by ensuring that
the output of the attention mechanism satisfies (P1) and
(P2). That being said, even without optimising LAIS, the
approximation bound in Theorem 3.5 still applies for RL
algorithms with attention mechanisms, with the caveat that
the constants ϵ, and δ may be arbitrarily large. A thorough
empirical analysis of the effect of different attention mech-
anisms, and the AIS loss on the on the error constants ϵ,
and δ could help us gain a better understanding of the way
in which such design choices could influence the learning
process.

6.4. AIS for POMDPs

The concept of an AIS used in this paper is similar to the
idea of AIS for POMDPs (Subramanian & Mahajan, 2019;
Subramanian et al., 2020). Moreover, the literature also
contains several other methods which have enjoyed empir-
ical success in using history-based policies for controlling
POMDPs (Holmes & Jr., 2006; Daswani et al., 2013; Hutter,
2014; Schaefer et al., 2007; Hafner et al., 2020; 2019). In
principle, one can use any of these methods for controlling
MDPs. However, this does not immediately provide a tight
bound for the approximation error. The MDP model has
more structure than POMDPs, and our goal in this paper is
to use this fact to present a tighter analysis of the approxim-
ation error.

7. Conclusion and future work
This paper presents the design and analysis of a principled
approach for learning history-based policies for controlling
MDPs. We believe that our approximation bounds can be
helpful for practitioners to study the effect of some of their
design choices on the solution quality. On the practical side,
the proposed algorithm shows favourable results on high-
dimensional control tasks. Note that one can also use the
bounds in Theorem 3.5 to analyse the approximation error
of other history-based methods. However, since some of
these algorithms do not satisfy Definition 3.3, the resulting
approximation error might be arbitrarily large. Such blow-
ups in the approximation error could be because the bound
itself is loose or the optimality gap is large. This would
depend on the specifics of the methods and remains to be
investigated. As such, a sharper analysis of the approxima-
tion error by factoring in the specific design choices of other
methods is an interesting direction for future research. An-
other interesting direction would be to conduct a thorough
empirical evaluation exploring the design choices of history
compression functions.
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ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018, volume 80 of Proceedings of Ma-
chine Learning Research, pp. 1856–1865. PMLR,
2018. URL http://proceedings.mlr.press/
v80/haarnoja18b.html.

Hafner, D., Lillicrap, T. P., Fischer, I., Villegas, R., Ha,
D., Lee, H., and Davidson, J. Learning latent dynam-
ics for planning from pixels. In Chaudhuri, K. and
Salakhutdinov, R. (eds.), Proceedings of the 36th Inter-
national Conference on Machine Learning, ICML 2019,
9-15 June 2019, Long Beach, California, USA, volume 97
of Proceedings of Machine Learning Research, pp. 2555–
2565. PMLR, 2019. URL http://proceedings.
mlr.press/v97/hafner19a.html.

Hafner, D., Lillicrap, T. P., Ba, J., and Norouzi, M. Dream to
control: Learning behaviors by latent imagination. In 8th
International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020. URL https://openreview.
net/forum?id=S1lOTC4tDS.

Hausknecht, M. J. and Stone, P. Deep recurrent q-
learning for partially observable mdps. In 2015
AAAI Fall Symposia, Arlington, Virginia, USA, Novem-
ber 12-14, 2015, pp. 29–37. AAAI Press, 2015.
URL http://www.aaai.org/ocs/index.php/
FSS/FSS15/paper/view/11673.

Holmes, M. P. and Jr., C. L. I. Looping suffix tree-based
inference of partially observable hidden state. In Co-
hen, W. W. and Moore, A. W. (eds.), Machine Learning,
Proceedings of the Twenty-Third International Confer-
ence (ICML 2006), Pittsburgh, Pennsylvania, USA, June
25-29, 2006, volume 148 of ACM International Con-
ference Proceeding Series, pp. 409–416. ACM, 2006.
doi: 10.1145/1143844.1143896. URL https://doi.
org/10.1145/1143844.1143896.

Hutter, M. Extreme state aggregation beyond mdps. In
Auer, P., Clark, A., Zeugmann, T., and Zilles, S. (eds.),
Algorithmic Learning Theory - 25th International Con-
ference, ALT 2014, Bled, Slovenia, October 8-10, 2014.
Proceedings, volume 8776 of Lecture Notes in Computer
Science, pp. 185–199. Springer, 2014. doi: 10.1007/
978-3-319-11662-4\ 14. URL https://doi.org/
10.1007/978-3-319-11662-4_14.

Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T.,
Leibo, J. Z., Silver, D., and Kavukcuoglu, K. Rein-
forcement learning with unsupervised auxiliary tasks.
In 5th International Conference on Learning Repres-
entations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net,
2017. URL https://openreview.net/forum?
id=SJ6yPD5xg.

http://proceedings.mlr.press/v80/fujimoto18a.html
http://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.neurips.cc/paper/2009/file/685ac8cadc1be5ac98da9556bc1c8d9e-Paper.pdf
https://proceedings.neurips.cc/paper/2009/file/685ac8cadc1be5ac98da9556bc1c8d9e-Paper.pdf
https://proceedings.neurips.cc/paper/2009/file/685ac8cadc1be5ac98da9556bc1c8d9e-Paper.pdf
https://proceedings.neurips.cc/paper/2009/file/685ac8cadc1be5ac98da9556bc1c8d9e-Paper.pdf
http://proceedings.mlr.press/v97/gelada19a.html
http://proceedings.mlr.press/v97/gelada19a.html
https://openreview.net/forum?id=rkHVZWZAZ
https://openreview.net/forum?id=rkHVZWZAZ
http://arxiv.org/abs/1803.10122
http://arxiv.org/abs/1803.10122
http://proceedings.mlr.press/v80/haarnoja18b.html
http://proceedings.mlr.press/v80/haarnoja18b.html
http://proceedings.mlr.press/v97/hafner19a.html
http://proceedings.mlr.press/v97/hafner19a.html
https://openreview.net/forum?id=S1lOTC4tDS
https://openreview.net/forum?id=S1lOTC4tDS
http://www.aaai.org/ocs/index.php/FSS/FSS15/paper/view/11673
http://www.aaai.org/ocs/index.php/FSS/FSS15/paper/view/11673
https://doi.org/10.1145/1143844.1143896
https://doi.org/10.1145/1143844.1143896
https://doi.org/10.1007/978-3-319-11662-4_14
https://doi.org/10.1007/978-3-319-11662-4_14
https://openreview.net/forum?id=SJ6yPD5xg
https://openreview.net/forum?id=SJ6yPD5xg


550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

On learning history-based policies for controlling Markov decision processes

Keller, P. W., Mannor, S., and Precup, D. Automatic basis
function construction for approximate dynamic program-
ming and reinforcement learning. In Proceedings of
the 23rd International Conference on Machine Learning,
ICML ’06, pp. 449–456, New York, NY, USA, 2006. As-
sociation for Computing Machinery. ISBN 1595933832.
doi: 10.1145/1143844.1143901. URL https://doi.
org/10.1145/1143844.1143901.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2015.

Kullback, S. and Leibler, R. A. On Information and Suffi-
ciency. The Annals of Mathematical Statistics, 22(1):79 –
86, 1951. doi: 10.1214/aoms/1177729694. URL https:
//doi.org/10.1214/aoms/1177729694.

Kwok, C. and Fox, D. Reinforcement learning for sensing
strategies. In 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566), volume 4, pp. 3158–3163 vol.4, 2004.
doi: 10.1109/IROS.2004.1389903.

Leslie, D. Reinforcement learning in games. 2004.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. Continuous con-
trol with deep reinforcement learning. In Bengio, Y. and
LeCun, Y. (eds.), 4th International Conference on Learn-
ing Representations, ICLR 2016, San Juan, Puerto Rico,
May 2-4, 2016, Conference Track Proceedings, 2016.
URL http://arxiv.org/abs/1509.02971.

Loynd, R., Fernandez, R., Celikyilmaz, A., Swaminathan,
A., and Hausknecht, M. J. Working memory graphs.
In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020,
Virtual Event, volume 119 of Proceedings of Ma-
chine Learning Research, pp. 6404–6414. PMLR, 2020.
URL http://proceedings.mlr.press/v119/
loynd20a.html.

Lu, X., Roy, B. V., Dwaracherla, V., Ibrahimi, M., Osband,
I., and Wen, Z. Reinforcement learning, bit by bit. CoRR,
abs/2103.04047, 2021. URL https://arxiv.org/
abs/2103.04047.

Menache, I., Mannor, S., and Shimkin, N. Basis function
adaptation in temporal difference reinforcement learning.
Ann. Oper. Res., 134(1):215–238, 2005. doi: 10.1007/
s10479-005-5732-z. URL https://doi.org/10.
1007/s10479-005-5732-z.

Moore, A. W., Schneider, J. G., and Deng, K. Efficient
locally weighted polynomial regression predictions. In
ICML, 1997.

Mott, A., Zoran, D., Chrzanowski, M., Wierstra, D., and
Rezende, D. J. Towards interpretable reinforcement learn-
ing using attention augmented agents. In NeurIPS, 2019.

Müller, A. Integral probability metrics and their generating
classes of functions. Advances in Applied Probability,
29(2):429–443, 1997. ISSN 00018678. URL http:
//www.jstor.org/stable/1428011.

Oh, H. and Kaneko, T. Deep recurrent q-network with
truncated history. In 2018 Conference on Technologies
and Applications of Artificial Intelligence (TAAI), pp. 34–
39, 2018. doi: 10.1109/TAAI.2018.00017.

OpenAI, Andrychowicz, M., Baker, B., Chociej, M., Joze-
fowicz, R., McGrew, B., Pachocki, J., Petron, A., Plap-
pert, M., Powell, G., Ray, A., Schneider, J., Sidor, S.,
Tobin, J., Welinder, P., Weng, L., and Zaremba, W. Learn-
ing dexterous in-hand manipulation, 2019.

Ormoneit, D. and Sen, S. Kernel-based reinforcement learn-
ing. Mach. Learn., 49(2-3):161–178, 2002. doi: 10.
1023/A:1017928328829. URL https://doi.org/
10.1023/A:1017928328829.

Parisotto, E., Song, H. F., Rae, J. W., Pascanu, R., Gülçehre,
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Appendix

A. Proof for Theorem 3.5
For readability we will restate the theorem statement

Theorem A.1. For any time t, any realisation st of St, at of At, let ht = (s1:t, a1:t−1), and zt = σt(ht). The worst case
difference between V ⋆ and V π

t is bounded as:

∆ ≤ 2
ε+ γδκF(V̂ , f̂)

1− γ
, (23)

where, κF(V̂ , f̂) = supz,a ρF(V̂ (f̂(·, z, a))). and ρF(·) is the Minkowski functional associated with the IPM dF as defined
in (3).

Proof. For this proof we will use the following convention: For a generic history ht ∈ Ht, we assume that ht = (s1:t, a1:t−1),
moreover, note that zt = σt(ht).

Now from (3.1), and Definition 3.3 for any at, st, zt:

max
h∈Ht,at∈A

∣∣∣∣r(st, at)− r̂(zt, at)

∣∣∣∣ ≤ ϵ.

max
h∈Ht,at∈A

∣∣∣∣ ∑
st+1∈S

(
P (st+1|st, at)V̂ (f̂(s

t+1, zt, at))− P̂ (st+1|zt, at)V̂ (f̂(st+1, zt, at))

)∣∣∣∣ ≤ δρF(V̂ (f̂(·, zt, at))).

(24)

Now using triangle inequality we get:

∥V ⋆(st)− V π
t (ht)∥∞

(a)

≤ ∥V ⋆(st)− V̂ (zt)∥∞︸ ︷︷ ︸
term 1

+ ∥V π
t (ht)− V̂ (zt)∥∞︸ ︷︷ ︸

term 2

, (25)

where (a) follows from triangle inequality.

We will now proceed by bounding terms 1 and 2 separately

Bounding term 1:

∥V ⋆(st)− V̂ (zt)∥∞ ≤ max
h∈Ht

∣∣∣∣max
at∈A

[
Q⋆(st, at)− Q̂(zt, at)

]∣∣∣∣, (26)

Therefore, for any action at

max
h∈Ht

∣∣∣∣max
at∈A

[
Q⋆(st, at)− Q̂(zt, at)

]∣∣∣∣ = max
h∈Ht

∣∣∣∣max
at∈A

[
r(st, at) + γ

∑
st+1∈S

P (st+1|st, at)V ⋆(st+1)

− r̂(zt, at)− γ
∑

st+1∈S
P̂ (st+1|zt, at)V̂ (f̂(st+1, zt, at))

]∣∣∣∣
(a)

≤ ϵ+ max
h∈Ht,at∈A

∣∣∣∣γ ∑
st+1∈S

P (st+1|st, at)V ⋆(st+1)− γ
∑

st+1∈S
P (st+1|st, at)V̂ (f̂(st+1, zt, at))

∣∣∣∣
+ max

h∈Ht,at∈A

∣∣∣∣γ ∑
st+1∈S

P (st+1|st, at)V̂ (f̂(st+1, zt, at))− γ
∑

st+1∈S
P̂ (st+1|zt, at)V̂ (f̂(st+1, zt, at))

∣∣∣∣
(b)

≤ ϵ+ γ∥(V ⋆(st)− V̂ (zt))∥∞ + γδρF(V̂ (f̂(·, zt, at))),
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where (a) from triangle inequality and (b) is due to (24). Now defining κF(V̂ , f̂) = supz,a ρF(V̂ (f̂(·, z, a))), and
substituting the above result in (26) we get

|V ⋆(st)− V̂ (zt)| ≤
ε+ γδκF(V̂ , f̂)

1− γ
. (27)

Bounding term 2:

∥V π
t (ht)− V̂ (zt)∥∞ ≤ max

h∈Ht

∣∣∣∣max
at∈A

[
Qπ

t (ht, at)− Q̂(zt, at)

]∣∣∣∣, (28)

Therefore, for any action at

max
h∈Ht

∣∣∣∣max
at∈A

[
Qπ(ht, at)− Q̂(zt, at)

]∣∣∣∣ = max
h∈Ht

∣∣∣∣max
at∈A

[
r(st, at) + γ

∑
st+1∈S

P (st+1|st, at)V π
t+1(ht+1)− (r̂(zt, at)+

γ
∑

st+1∈S
P̂ (st+1|zt, at)V̂ (f̂(st+1, zt, at))

]∣∣∣∣,
(a)

≤ ϵ+ max
h∈Ht,at∈A

∣∣∣∣γ ∑
st+1∈S

P (st+1|st, at)V π
t+1(ht+1)− γ

∑
st+1∈S

P (st+1|st, at)V̂ (f̂(st+1, zt, at))

∣∣∣∣
+ max

h∈Ht,at∈A

∣∣∣∣γ ∑
st+1∈S

P (st+1|st, at)V̂ (f̂(st+1, zt, at))− γ
∑

st+1∈S
P̂ (st+1|zt, at)V̂ (f̂(st+1, zt, at))

∣∣∣∣,
(b)

≤ ϵ+ γ∥(V π(ht)− V̂ (zt))∥∞ + γδρF(V̂ (f̂(·, zt, at))),

where (a) is from triangle inequality, (b) is due to (24), with κF(V̂ , f̂) = supz,a ρF(V̂ (f̂(·, z, a))), and substituting the
above result in (28) we get

∥V π
t (ht)− V̂ (zt)∥∞ ≤

ε+ γδκF(V̂ , f̂)

1− γ
. (29)

The final result then follows by adding (27) and (29).

B. Proof for Corollary 3.6
Lemma B.1. If V̂ is the optimal value function of the MDP M̂ induced by the process {Zt}t≥0, then

span(V̂ ) ≤ span(r̂)

1− γ
. (30)

Proof. The result follows by observing that the per-step reward r̂(Zt, At) ∈ [min(r̂),max(r̂)]. Therefore max(V̂ ) ≤
max(r̂) and min(V̂ ) ≥ min(r̂).

Corollary B.2. If the function class F is FTV, then ∆ defined in (13) is upper bounded as:

∆ ≤ 2ϵ

1− γ
+

γδ span(r̂)

(1− γ)2
, (31)

Proof. From Section 3.1 we know that for the Total variation distance ρFTV(V̂ ) = span(V̂ ) and κ(f̂) = 1. The result in the
corollary then follows from Lemma B.1.
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C. Proof for Corollary 3.7
Definition C.1. For any Lipschitz function f : (Z, dZ)→ (R, | · |), and probability measures ν1, and ν2 on (Z, dZ)∣∣∣∣ ∫

Z
fdν1 −

∫
Z
fdν2

∣∣∣∣ ≤ ∥f∥L.dFW(ν1, ν2) ≤ LfdFW(ν1, ν2), (32)

where Lf is the Lipschitz constant of f and dFW is the Wasserstein distance.

Definition C.2. Let d be a metric on the AIS/Feature space Z . The MDP M̂ induced by the process {Zt}t≥0 is said to be
(Lr̂, LP̂ ) - Lipschitz if for any Z1, Z2 ∈ Z , the reward r̂ and transition P̂ of M̂ satisfy the following:∣∣∣∣r(Z1, A)− r(Z2, A)

∣∣∣∣ ≤ Lr̂d(Z1, Z2), (33)

dFW(P̂ (·|Z1, A), P̂ (·|Z2, A) ≤ LP̂ d(Z1, Z2), (34)

where dFW is the Wasserstein or the Kantorovitch-Rubinstein distance.

Lemma C.3. Let V̂ : Z → R be LV̂ continuous. Define:

Q̂(z, a) = r̂(z, a) + γ
∑
s′

P̂ (s′|z, a)V̂ (f̂(s′, z, a).

Then Q̂ is (Lr̂ + γLV̂ Lf̂LP̂ )-Lipschitz continuous.

Proof. For any action a∣∣∣∣Q̂(z1, a)− Q̂(z2, a)

∣∣∣∣ (a)

≤
∣∣∣∣r̂(z1, a)− r̂(z2, a)

∣∣∣∣+ γ

∣∣∣∣∑
s′

P̂ (s′|z1, a)V̂ (f̂(s′, z1, a))− P̂ (s′|z2, a)V̂ (f̂(s′, z2, a))

∣∣∣∣, (35)

(b)

≤ (Lr̂ + γLV̂ Lf̂LP̂ )d(z1, z2), (36)

where (a) due to triangle inequality, and (b) follows form Definition C.1, Definition C.2, and because ∥a ◦ b∥L ≤
∥a∥L · ∥b∥L.

Lemma C.4. Let Q̂ : Z ×A → R be LQ̂- Lipschitz continuous, Define

V̂ (z) = max
at∈A

Q̂(z, a).

Then V̂ is LQ̂ Lipschitz

Proof. Consider z1, z2 ∈ Z , and let a1 and a2 denote the corresponding optimal action. Then,

V̂ (z1)− V̂ (z2) = Q̂(z1, a1)− Q̂(z2, a2), (37)
(a)

≤ Q̂(z1, a2)− Q̂(z2, a2), (38)
(b)

≤ LQ̂d(z1, z2), (39)

By symmetry,

V̂ (z2)− V̂ (z1) ≤ LQ̂d(z1, z2).

Therefore, ∣∣∣∣V̂ (z1)− V̂ (z2)

∣∣∣∣ ≤ LQ̂d(z1, z2).
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Lemma C.5. Consider the following dynamic program defined in (9):2

Q̂t(zt, at) = r̂(zt, at) + γ
∑
st∈S

P̂ (st|zt, at)V̂ (f̂(zt, st, at)), ∀z ∈ Z, a ∈ A

V̂t(zt) = max
a∈A

Q̂t(zt, at), ∀z ∈ Z

Then at any time t, we have:

LV̂t+1
= Lr̂ + γLP̂Lf̂LV̂t

.

Proof. We prove this by induction. At time t = 1 Q̂1(z, a) = r̂(z, a), therefore LQ̂1
= Lr̂. Then according to Lemma C.4,

V̂1 is Lipschitz with Lipschitz constant LV̂1
= LQ̂1

= Lr̂. This forms the basis of induction. Now assume that at time t, V̂t

is LV̂t
- Lipschitz. By Lemma C.3 Q̂t+1 is Lr̂ + γLf̂ , LP̂LV̂t

. Therefore by Lemma C.4, V̂(t+1) is Lipschitz with constant:

LV̂t+1
= Lr̂ + γLf̂LP̂LV̂t

.

Theorem C.6. Given any (Lr̂, LP̂ )- Lipschitz MDP, if γLP̂Lf̂ ≤ 1, then the infinite horizon γ-discounted value function V̂
is Lipschitz continuous with Lipschitz constant

LV̂ =
Lr̂

1− γLf̂LP̂

.

Proof. Consider the sequence of Lt = LV̂t
values. For simplicity write α = γLP̂Lf̂ . Then the sequence {Lt}t≥1 is given

by : L1 = Lr̂ and for t ≥ 1,

Lt+1 = Lr̂ + αLt,

Therefore,

Lt = Lr̂ + αLr̂ + . . .+ αt+1 =
1− αt

1− α
Lr̂.

This sequence converges if |α| ≤ 1. Since α is non-negative, this is equivalent to α ≤ 1, which is true by hypothesis.
Hence Lt is a convergent sequence. At convergence, the limit LV̂ must satisfy the fixed point of the recursion relationship
introduced in Lemma C.5, hence,

LV̂ = Lr̂ + γLf̂LP̂LV̂ .

Consequently, the limit is equal to,

LV̂ =
Lr̂

1− γLf̂LP̂

.

Corollary C.7. If γLP̂Lf̂ ≤ 1 and the function class F is FW, then ∆ as defined in (13) is upper bounded as:

∆ ≤ 2ϵ

(1− γ)
+

2γδLr̂

(1− γ)(1− γLf̂LP̂ )
, (40)

Proof. The proof follows from the observation that for dFW , ρFW = LV̂ , and then using the result from Theorem C.6.
2We have added t as a subscript to denote the computation time i.e., the time at which the respective function is updated.
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D. Algorithmic Details
D.1. Choice of an IPM:

D.1.1. MMD

One advantage of choosing dF as the MMD distance is that unlike the Wasserstein distance, its computation does not require
solving an optimisation problem. Another advantage is that we can leverage some of their properties to further simplify our
computation, as follows:

Proposition D.1 (Theorem 22 (Sejdinovic et al., 2013)). Let X ⊆ Rm, and dX ,p : X × X → R be a metric given by
dX ,p(x, x

′) = ∥x− x′∥p2, for p ∈ (0, 2]. Let kp : X × X → R be any kernel given:

kp(x, x
′) =

1

2
(dX ,p(x, x0) + dX ,p(x

′, x0)− dX ,p(x, x
′)), (41)

where x0 ∈ X is arbitrary, and let Up be a RKHS kernel with kernel kp and Fp = {f ∈ Up : ∥f∥Up
≥ 1}. Then for any

distributions ν1, ν2 ∈ ∆X , the IPM can be expressed as:

dF(ν1, ν2) =

(
E[dX ,p(X1,W1)]−

1

2
E[dX ,p(X1, X2)]−

1

2
E[dX ,p(W1,W2)]

) 1
2

, (42)

where X1, X2, and W1,W2 are i.i.d. samples from ν1 and ν2 respectively.

The main implication of Proposition D.1 is that, instead of using (42), for p ∈ (0, 2] we can use the following as a surrogate
for dFp : ∫

X

∫
X
∥x1 − w1∥p2ν1(dx1)ν2(dw1)−

1

2

∫
X

∫
X
∥w1 − w2∥p2ν2(dw1)ν2(dw1). (43)

Moreover, according to Sriperumbudur et al. (2012) for n identically and independently distributed (i.i.d) samples {Xi}ni=0 ∼
ν1 an unbiased estimator of (43) is given as:

1

n

n∑
i=1

∫
X
∥Xi − w1∥p2ν1d(w1)−

1

2

∫
X

∫
X
∥w1 − w2∥p2ν1(dw1)ν2(dw2). (44)

We implement a simplified version of the surrogate loss in (44) as follows:

Proposition D.2 ( (Subramanian et al., 2020)). Given the setup in Proposition D.1 and p = 2, Let ν2(ζ) be a parametric
distribution with mean m and let X ∼ ν1, then the gradient∇ζ(mζ − 2X)⊤mζ is an unbiased estimator of∇ζdF2(α, νζ)

2

Proof. Let X1, X2 ∼ ν1, and W1,W2 ∼ ν2(ζ)

∴ ∇ζdF2
(ν1, ν2(ζ))

2 = ∇ζ

[
E∥X1 −W1∥22 −

1

2
E∥X1 −X2∥22 −

1

2
E∥W1 −W2∥22

]
, (45)

(a)
= ∇ζ

[
E∥W1∥22 − 2E∥X1∥⊤E∥W1∥

]
, (46)

where (a) follows from the fact that X does not depend on ζ , which simplifies the implementation of the MMD distance.

In this way we can simplify the computation of dF using a parametric stochastic kernel approximator and MMD metric.

Note that when are trying to approximate a continuous distribution we can readily use the loss function (46) as long as the
mean mζ of ν2(ζ) is given in closed form. The AIS loss is then given as:

LAIS(ζ) =
1

T

T∑
t=0

(
λ(fr̂(Zt, At; ζ)− r(St, At))

2 + (1− λ)(mSt

ζ − 2St)
⊤mSt

ζ

)
, (47)

where mSt

ζ is obtained using the from the transition approximator, i.e., the mapping fP̂ (ζ) : Z ×A → R.
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D.1.2. WASSERSTEIN DISTANCE

The the KL-divergence between two densities ν1 and ν2 on for any X ∈ X ⊂ Rm is defined as:

dKL(ν1∥ν2) =
∫
X
log(ν1(x))ν1(dx)−

∫
X
log(ν2(x))ν1(dx) (48)

Moreover, if X is bounded space with diameter D, then the relation between the Wasserstein distance dFW , Total variation
distance dFTV , and the KL divergence is given as :

dFW(ν1, ν2) ≤ DdFTV(ν1, ν2)
(a)

≤
√
2dKL(ν1∥ν2), (49)

where, (a) follows from the Pinsker’s inequality. Note that in (18) we use d2F. Therefore, we can use a (simplified)
KL-divergence based surrogate objective given as:∫

X
log(ν2(x; ζ))ν1(dx), (50)

where we have dropped the terms which do not depend on ζ. Note that the above expression is same as the cross entropy
between ν1 and ν2 which can be effectively computed using samples. In particular, if we get T i.i.d samples from ν1, then,

1

T

T∑
i=0

log(ν2(xi; ζ)) (51)

is an unbiased estimator of
∫
X log(ν2(x; ζ))ν1(dx).

The KL divergence based AIS loss is then given as:

LAIS(ζ) =
1

T

T∑
t=0

(
λ(fr̂(Zt, At; ζ)− r(St, At))

2 + (1− λ) log(P̂ (St; ζ))

)
, (52)

E. Extension to actor critic and convergence
E.1. Actor Critic Algorithm

As mentioned previously, similar to Section 4.2 we can also design an AIS-based Actor-Critic algorithm. As such, in addition
to a parameterised policy π(·; ξ) and AIS generator (σt(·; ζ), f̂ , r̂, P̂ ) we can also a parameterised critic V̂ (·;ϑ) : Z → R,
where ϑ are the parameters for the critic. The performance of policy µ(·; ξ) is then given by J(ξ, ζ, ϑ). According to policy
gradient theorem (Sutton et al., 1999; Baxter & Bartlett, 2001) the gradient of J(ξ, ζ, ϑ), is given as:

∇ξJ(ξ, ζ, ϑ) = E
[
∇ξ log(µ(·; ξ))V̂ (·;ϑ)

]
. (53)

And for a trajectory of length T , we approximate it as:

∇̂ξJ(ξ, ζ, ϑ) =
1

T

T∑
t=1

[
∇ξ log(µ(·; ξ))V̂ (·;ϑ)

]
. (54)

The parameters ϑ can be learnt by optimising the temporal difference loss given as:

LTD(ξ, ζ, ϑ) =
1

T

T∑
t=0

smoothL1(V̂ (Zt;ϑ)− r(Zt, At)− γV̂ (Zt+1;ϑ)). (55)

The parameters {(ζi, ξi, ϑi)}i≥1 can then be updated using a multi-timescale stochastic approximation algorithm as follows:

ζi+1 = ζi + bi∇ζLAIS(ζi), (56a)
ϑi+1 = ϑi + ci∇ϑLTD(ξi, ζi, ϑi), (56b)

ξi+1 = ξi + di∇̂ξJ(ξi, ζi, ϑ), (56c)
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where the step-size {bi}i≥0, {ci}i≥0 and {di}i≥0 satisfy the standard conditions
∑

i bi = ∞,
∑

i b
2
i < ∞,

∑
i ci = ∞,∑

i c
2
i <∞,

∑
i di =∞ and

∑
i d

2
i <∞ respectively. Moreover, one can ensure that the AIS generator converges first,

followed by the critic and the actor by choosing an appropriate step-sizes such that, limi→∞
di

bi
= 0 and limi→∞

ci
di

= 0.

E.2. Convergence analysis

In this section we will discuss the convergence of the AIS-based policy gradient in Section 4.2 as well as Actor-Critic
algorithm presented in the previous subsection. The proof of convergence relies on multi-timescale stochastic approximation
Borkar (2008) under conditions similar to the standard conditions for convergence of policy gradient algorithms with
function approximation stated below, therefore it would suffice to provide a proof sketch.

Assumption E.1. 1. The values of step-size parameters b, d and c (for the actor critic algorithm) are set such that the
timescales of the updates for ζ, ξ, and ϑ (for Actor-Critic algorithm) are separated, i.e., bt ≫ dt, and for the Actor-
Critic algorithm bt ≫ ct ≫ dt,

∑
i bi = ∞,

∑
i b

2
i < ∞,

∑
i ci = ∞,

∑
i c

2
i < ∞,

∑
i di = ∞ and

∑
i d

2
i < ∞,

limi→∞
di

bi
= 0 and limi→∞

ci
di

= 0,

2. The parameters ζ, ξ and ϑ (for Actor-Critic algorithm) lie in a convex, compact and closed subset of Euclidean spaces.

3. The gradient∇ζLAIS is Lipschitz in ζt, and ∇̂ξJ(ξ, ζ) is Lipschitz in ξt, and ζt. Whereas for the Actor-Critic algorithm
the gradient of the TD loss∇ϑLTD(ζ, ξ, ϑ) and the policy gradient ∇̂ξJ(ζ, ξ, ϑ) is Lipschitz in (ζt, ξt, ϑt).

4. All the estimates of all the gradients∇ζLAIS,∇ξJ(ξ, ζ),∇ϑLTD(ζ, ξ, ϑ) and are unbiased with bounded variance3.

Assumption E.2. 1. The ordinary differential equation (ODE) corresponding to (22) is locally asymptotically stable.

2. The ODEs corresponding to (21) is globally asymptotically stable.

3. For the Actor-Critic algorithm, the ODE corresponding to (56b) is globally asymptotically stable and has a fixed point
which is Lipschitz in ξ.

Theorem E.3. Under assumption E.1 and E.2, along any sample path, almost surely we have the following:

1. The iteration for ζ in (21) converges to an AIS generator that minimises the LAIS.

2. The iteration for ξ in (22) converges to a local maximum of the performance J(ζ⋆, ξ) where ζ⋆, and ϑ⋆ (for Actor
Critic) are the converged value of ζ, ϑ.

3. For the Actor-Critic algorithm the iteration for ϑ in (56b) converges to critic that minimises the error with respect to
the true value function.

Proof. The proof for this theorem follows the technique used in (Leslie, 2004; Borkar, 2008). Due to the specific choice of
learning rate the AIS-generator is updated at a faster time-scale than the actor, therefore it is “quasi static” with respect to to
the actor while the actor observes a “nearly equilibriated” AIS generator. Similarly in the case of the Actor-Critic algorithm
the AIS generator observes a stationary critic and actor, whereas the critic and actor see “nearly equilibriated” AIS generator.
The Martingale difference condition (A3) of Borkar (2008) is satisfied due to Item 4 in assumption E.1. As such since our
algorithm satisfies all the four conditions by (Leslie, 2004, page35), (Borkar, 1997, Theorem 23), the result then follows by
combining the theorem on (Leslie, 2004, page 35)(Borkar, 2008, Theorem 23) and (Borkar, 1997, Theorem 2.2).

F. Experimental Details
F.1. Environments

Our algorithms are evaluated on MuJoCo (Todorov et al., 2012, mujoco-py version 2.0.2.9 ) via OpenAI gym (Brockman
et al., 2016, version 0.17.1) interface, using the v2 environments. The environment, state-space, action space, and reward
function are not modified or pre-processed in any way for easy reproducibility and fair comparison with previous results.
Each environment runs for a maximum of 2048 time steps or until some termination condition and has a multi-dimensional
action space with values in the range of (-1, 1), except for Humanoid which uses the range of (-0.4, 0.4).

3This assumption is only satisfied in tabular MDPs.
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Common

Optimiser Adam
Discount Factor γ 0.99
Inital standard deviation for the policy 0.0
PPO-Epochs 12
Clipping Coefficient 0.2
Entropy-Regulariser 0
Batch Size 512
Episode Length 2048

AIS generator
History Compressor GRU
Hidden layer dimension 256
Step size 1.5e-3
λ 0.3

Actor
Step size 3.5e-4
No of hidden layers 1
Hidden layer Dimension 32

Table 1. Hyperparameters

F.2. Hyper-parameters

Table 1 contains all the hyper-parameters used in our experiments. Both the policy and AIS networks are trained with Adam
optimiser (Kingma & Ba, 2015), with a batch size of 512. We follow Raichuk et al. (2021)’s recommended protocol for
training on-policy policy based methods, and perform 12 PPO updates after every policy evaluation subroutine. To ensure
separation of time-scales the step size of the AIS generator and the policy network is set to 1.5e−3 and 3.5e−4 respectively.
Hyper-parameters of our approach are searched over a grid of values, but an exhaustive grid search is not carried out due to
prohibitive computational cost. We start with the recommended hyper-parameters for the baseline implementations and tune
them further around promising values by an iterative process of performing experiments and observing results.

For the state-based RNN baseline we have tuned the learning rate over a grid of values starting from 1e-4 to 4e-4 and settled
on 3.5e-4 as it achieved the best performance. Similarly the hidden layer size set to 256 as it is observed to achieve best
performance. For the feed-forward baselines we use the implementation by OpenAI baselines (Dhariwal et al., 2017) with
their default hyper-parameters.

F.3. Modifications to baselines and their hyper-parameters

Note that the methods in (Hafner et al., 2020; 2019) are designed for pixel-based control tasks and cannot be readily used
for continuous control tasks in this paper. To help them process real-valued state vectors, we replace the convolutional
and deconvolutional layers in their architectures by fully connected layers. We observed that feed-forward layers of size
256 for PlaNET (Hafner et al., 2019), and 300 for Dreamer (Hafner et al., 2020) produced the best results for both the
methods. For PlaNET (Hafner et al., 2019) we used the default hyper-parameters and varied the learning rate over a grid
of values starting from 1e-4 to 4e-4. We observed that this method achieved best performance at the learning rate of 3e-3.
For Dreamer (Hafner et al., 2020) we used the default hyper-parameters and varied the learning rate over a grid of values
starting from 6e-4, 6e-5 and 6e-5 respectively to 1e-3, 1e-4, 1e-4 respectively. We observed that this method achieved the
best performance at 7.5e-4, 9e-5 and 8.5e-5 respectively.

The architecture proposed in this paper is similar to the VariBAD (Zintgraf et al., 2020) method proposed by Zintgraf et al..
The main motivation of Zintgraf et al. was evaluate VariBAD for multi-task RL, however we believe that the specifics of this
method are relevant to both the ideas presented in this paper and the single-task RL setup. In our experiments we use the
code base provided by Zintgraf et al. without any modifications and observe that the method performs on-par with several
other baselines.

F.4. Type of MMDs

The MMD distance given by (46) in Appendix D.1.1, can be computed using different types of characteristic kernels (for a
detailed review see (Sriperumbudur et al., 2012; Fukumizu et al., 2009; Sejdinovic et al., 2013)). In this paper we consider
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On learning history-based policies for controlling Markov decision processes

computing (46) using the Laplace, Gaussian and energy distance kernels. The performance of the proposed approach under
different kernels is shown in Figure 4. It can be observed that for the continuous control tasks in the MuJoCo suite, the
energy distance yields better performance, and therefore we implement Equation (46) using the energy distance for all the
experiments.
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Figure 4. Comparison of different MMDs, averaged over 50 runs with ±1 std-dev

F.5. MMD vs KL

Next, we compare the performance of our method under MMD (energy distance)-based AIS loss in (19) and KL-based AIS
loss given in (20). From Figure 5, one can observe that for the Mujoco tasks, MMD-based loss leads to better performance.
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Figure 5. Comparison of Wasserstein vs MMDs, averaged over 50 runs with ±1 std-dev


