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Abstract—In this paper we approximate high-dimensional
functions f : Td → C by sparse trigonometric polynomials
based on function evaluations. Recently it was shown that a
dimension-incremental sparse Fourier transform (SFT) approach
does not require the signal to be exactly sparse and is applicable
in this setting. We combine this approach with subsampling
techniques for rank-1 lattices. This way our approach benefits
from the underlying structure in the sampling points making fast
Fourier algorithms applicable whilst achieving the good sampling
complexity of random points (logarithmic oversampling).

In our analysis we show detection guarantees of the frequencies
corresponding to the Fourier coefficients of largest magnitude.
In numerical experiments we make a comparison to full rank-1
lattices and uniformly random points to confirm our findings.

I. INTRODUCTION

The recovery of sparse signals or compressed sensing is
a thoroughly studied problem in signal processing. While
many one-dimensional approaches exist [10], we have a
look into the multivariate problem on the d-dimensional
torus Td = (R/Z)

d. Given an s-sparse signal f =∑
k∈I f̂k exp(2πi⟨k, ·⟩), |I| = s, the problem is to recover

I ⊂ Zd from function evaluations of the function f . Here, a
sparse Fourier transform (SFT) approach can be generalized
to work in higher dimensions, cf. [14]. However, when the
signal is not exactly sparse and we approximate by g =∑

k∈I ĝk exp(2πi⟨k, ·⟩) for some I ⊂ Zd, we obtain an
additional error

∥f − g∥2L2
= ∥f − PIf∥2L2

+ ∥PIf − g∥2L2
.

In this setting we have to find
• a suitable frequency set I ⊂ Zd to bound the first

summand and
• ĝk ∈ C approximating the true Fourier coefficients f̂k =

⟨f, exp(2πi⟨k, ·⟩)⟩L2 ∈ C in order to bound the second
summand.

Given a frequency set I , i.e., a suitable linear approximation
space, the corresponding Fourier coefficients can be computed
via least squares where error bounds are known, cf. [1]. Thus,
the main task is the detection of a frequency set I , which
should optimally be the support of the Fourier coefficients f̂k
with largest magnitude like in the best m-term approximation,
cf. [25, Section 1.7].

Recent approaches include [11] or [17] where arbitrary
bounded orthonormal product basis were considered. As an
application rank-1 lattices were used for the sampling similar

to [14] in order to make use of fast Fourier algorithms. This
was then compared to random points, which have a better
sampling complexity but lack fast algorithms.

In this paper we modify the approach from [17] to work
with subsampled rank-1 lattices utilizing recent subsampling
techniques from [2] combining the good sampling complexity
with the fast algorithms.

The SFT techniques from [17] work for other bounded or-
thonormal product basis as well and the subsampling methods
from [2] for arbitrary L2-Marcinkiewicz-Zygmund inequali-
ties. Therefore, the presented theory can be generalized but
for the sake of readability we restrict ourselves to the torus
Td and rank-1 lattices.

We will recap the ideas of an SFT approach in Section II-A
followed by the subsampling techniques for rank-1 lattices in
Section II-B, where we will give an L2-error bound for least
squares approximation. In Section III we will combine the
SFT approach with the subsampled rank-1 lattices and show
detection guarantees for the Fourier coefficients of largest
magnitude in Theorem III.3. Finally, we conclude with a
numerical experiment in Section IV comparing rank-1 lattices
and random points with the subsampled rank-1 lattices with
respect to sampling complexity and runtime. The proofs can
be found in the supplementary material.

II. PREREQUISITES

A. Sparse Fourier Transform

We briefly recall the key idea of a sparse Fourier transform
(SFT) approach. For a more detailed explanation see [22],
[14], [16], or [17] for a more general version. As stated in
the introduction, the goal is to find frequencies I ⊂ Zd such
that the target function f : Td → C can be approximated well
from span{exp(2πi⟨k, ·⟩)}k∈I . In order to do so, we choose
a suitable search space Γ ⊂ Zd and proceed in a dimension-
incremental way:

One-dimensional frequencies. We use the projections of Γ
to its t-th component P{t}(Γ) := {kt : k ∈ Γ}, t = 1, . . . , d
for the candidate sets. From these we construct frequency
sets I{t} ⊂ P{t}(Γ), t = 1, . . . , d, consisting of the “most
important”, one-dimensional frequency components in the
respective dimensions.

Dimension-incremental step. We construct the next fre-
quency set I{1,...,t+1} as a subset of the candidate set



(I{1,...,t−1} × I{t}) ∩ P{1,...,t}(Γ) consisting of the “most
important”, t-dimensional frequency components.

The output is the final frequency set I := I{1,...,d} and it is
left to refine the formulation of “most important”.

Let I⋆ be the set of frequencies corresponding to the s
Fourier coefficients f̂k of largest magnitude for some sparsity
s ∈ N. Ideally, in the step t − 1 → t we want to find the
frequencies P{1,...,t}(I⋆). The idea is to use an approximation
of so-called projected Fourier coefficients

f̂{1,...,t},k(ξ) =
∫

Tt

f(x, ξ) exp(−2πi⟨k,x⟩) dx , (1)

where x = (x1, . . . , xt) ∈ Tt, ξ = (ξ1, . . . , ξd−t) ∈ Td−t,
and f(x, ξ) = f(x1, . . . , xt, ξ1, . . . , ξd−t). The name is based
on the fact, that those values may be seen as the Fourier
coefficients of the function f(·, ξ) ∈ L2(T

t) with a fixed
anchor ξ ∈ Td−t. By the orthonormality of the Fourier basis
we have

f̂{1,...,t},k(ξ) =
∑

l∈Zd−t

f̂(k,l) exp(2πi⟨l, ξ⟩) ,

i.e., the projected Fourier coefficient f̂{1,...,t},k(ξ) contains
information on the Fourier coefficients with k ∈ Zt in the
first t components of their frequencies.

The frequency k is likely to be important and should be
included in I{1,...,t}, if the absolute value |f̂{1,...,t},k(ξ)| is
larger than some detection threshold δ′. In the algorithm, we
carry out r detection iterations with different, randomly drawn
anchors ξi, i = 1, . . . , r, to avoid cases where the factors
exp(2πi⟨l, ξ⟩) cause an annihilation (which results in small
projected Fourier coefficients, even though the corresponding
frequency components k are important). The detection of the
most important one-dimensional components kt in the first
step of the SFT approach works analogously.

Finally, we need to discuss the approximation of (1). A
favorable method A should combine the following properties:

• have small sample complexity;
• computationally fast, that is, both the construction of the

sampling points ξ and the evaluation of the projected
Fourier coefficients f̂{1,...,t},k using the samples f(x, ξ)
can be performed efficiently.

• small error, such that the relative magnitude of the
projected Fourier coefficients stays unharmed.

Note, that A has to be performed several times throughout the
SFT approach in different dimensions up to d. It is favorable
to use different methods in the one- and multivariate steps
using advantages of the respective methods.

B. Subsampling of rank-1 lattices

Rank-1 lattices XM = {x1, . . . ,xM} ⊂ Td consist of
equispaced points on a line which wraps around the d-
dimensional torus Td, more precisely, for a generating vector
z ∈ Rd and a lattice size M ∈M they are defined via

XM :=
{ 1

M
(izmod M1) ∈ Td : i = 0, . . . ,M − 1

}
,

where the modulus operation is used entry-wise. We will use
them in the least squares approximation

SXM
f = argmin

g∈V

M∑

i=1

|g(xi)− f(xi)|2 ,

where V = span{exp(2πi⟨k, ·⟩)}k∈I . By simple calculus we
have for the Fourier coefficients ĝ = (ĝk)k∈I of SXM

f =∑
k∈I ĝk exp(2πi⟨k, ·⟩) the equation ĝ = (L∗L)−1L∗f ,

where
L = (exp(2πi⟨k,xi⟩))i=1,...,M,k∈I .

We will solve this system of equations iterative only us-
ing matrix-vector multiplications. Because of their one-
dimensional structure of the rank-1 lattices, a one-dimensional
FFT can be used to compute the matrix-vector product with
the corresponding Fourier matrix L in O(M logM + d|I|)
instead of the naïve O(M · |I|), where I ⊂ Zd is an arbitrary
frequency index set. For approximating functions with rank-1
lattices we suppose the following feature: We say a rank-1
lattice XM has the reconstructing property for a frequency
index set I , if

1

M

M∑

i=1

exp(2πi⟨k,xi⟩) = δ0,k for all k ∈ D(I) , (2)

where D(I) = {k − l : k, l ∈ I}. Approximation bounds and
further resources can be found in [23], [20], [12], [13], [21],
[7].

Example II.1. When approximating functions from Sobolev
spaces with mixed smoothness Hs

mix for s > 1/2 the best
frequency index sets I for approximation are so called are
hyperbolic crosses, cf. [6]. We consider the following two
scenarios:

1. When approximating with samples from a reconstructing
rank-1 lattice XM the following error bound was shown for
the least squares approximation in [3, Theorem 2]:

M−s ≲ sup
∥f∥Hs

mix
≤1

∥f−SXM
f∥2L2

≲ M−s(logM)(d−2)s+d−1,

where the lower bound holds for all rank-1 lattices and there
exists a rank-1 lattice satisfying the upper one.

2. In contrast to that, for the same frequencies from the
hyperbolic cross I and using uniformly drawn points X =
{x1, . . . ,xn} we obtain by [15, Corollary 2]

sup
∥f∥Hs

mix
≤1

∥f − SXf∥2L2
≲ n−2s(log n)2ds .

Example II.1 demonstrates that the sample complexity loses
half the rate of convergence when approximating with rank-1
lattices compared to uniformly random points. The reason
for that lies in the reconstructing requirement (2) which are
|D(I)| ≈ |I|2 conditions blowing up the size M of the
rank-1 lattice. However, when we use the uniformly random
points with the better approximation rate, the lack of structure
in the uniformly random points prevents the implementation



of a fast and efficient matrix-vector multiplication with the
corresponding Fourier matrix.

It was show in [2, Theorem 3.1] that the good approxi-
mation rates and the fast algorithms can be combined: The
approach is to discretely subsample a rank-1 lattice to obtain
points X = {x1, . . . ,xn} from a rank-1 lattice with n ≥
12|I|(log |I|+ t). Since the underlying structure is preserved
fast Fourier algorithms are applicable, cf. [2, Eq. 5.5]. Further,
we have

A∥f∥2L2
≤ 1

n

n∑

i=1

|f(xi)|2 ≤ B∥f∥2L2
(3)

for all f ∈ span{exp(2πi⟨k, ·⟩)}k∈I with A = 1/2, B = 3/2,
and probability exceeding 1 − 2 exp(−t). The condition (3)
is known as L2-Marcinkiewicz-Zygmund inequality and is a
relaxation of the reconstructing property (2), since for A =
B = 1 (3) is equivalent to (2) which can be shown using
the parallelogram law, cf. [2, Theorem 2.3]. It gives a relation
of the continuous L2-norm and the point evaluations and is
used to show error bounds for least squares approximation.
For continuously random points this was done for individual
functions in [4], [5] and improved by [1]. Note, the existence
of a probability density was shown such that (3) holds with
merely linear oversampling, cf. [8].

The following result is a combination of the discrete sub-
sampling techniques from [2] and the error bound from [1,
Thm. 3.2] for individual function approximation.

Theorem II.2. Let f : Td → C be a fixed function and XM =
{x1, . . . ,xM} ⊂ Td be a reconstructing rank-1 lattice for a
frequency set IM ⊂ Zd. Further, let ∅ ≠ I ⊂ IM , t > 0,
and n be such that n ≥ 12|I|(log |I| + t). Drawing a set
X = {xi}i∈J , |J | = n of points i.i.d. and uniform from XM ,
we have

∥f − SXf∥2L2

≤
(
3∥f − PIf∥L2

+

√
2

9|I| ∥PIM f − PIf∥∞
)2

+ 4∥f − PIM f∥2∞

≤
(
3 +

√
2|IM \ I|

9|I|
)2

∥f − PIf∥2L2
+ 4∥f − PIM f∥2∞

with probability exceeding 1− 2 exp(−t).

Given the logarithmic oversampling and assuming |IM \
I| = c|I| for some constant c > 0, we obtain the projection
error in the first summand, which is the best possible from
the given approximation space. This has to be balanced with
the second term which decreases for bigger IM , which is
a degree of freedom not affecting the sampling complexity.
In the numerical experiments we will see that I = IM is
sufficient in practice. Note, that in this case the corresponding
rank-1 lattice will still be of size M ≈ |I|2 and the random
subsampling with logarithmic oversampling will improve the
sampling complexity.

III. SFT WITH SUBSAMPLED RANK-1 LATTICES

For a function f : Td → C and a threshold δ > 0, the final
goal is to find Iδ := {k ∈ Zd : |f̂k| ≥ δ} or a superset of
slightly bigger size. As described in Section II-A, our approach
works in a dimension-incremental way and so will the analysis.
The goal in the step from dimension t−1 to t is the detection
of P{1,...,t}(Iδ) ⊂ Zt. We first show that using the projected
coefficients (1) yields the objective.

Theorem III.1. Let f : Td → C, ε, δ > 0, Iδ := {k ∈ Zd :
|f̂k| ≥ δ}, and

r ≥ 4
(
|Iδ|+

1

δ2

( ∑

k/∈Iδ

|f̂k|
)2)(

log |Iδ|+ log
1

ε

)
.

Further let ξ1, . . . , ξr ∈ Td−t be drawn i.i.d. uniformly ran-
dom. With probability 1−ε we detect all important frequencies
in dimension t via the projected Fourier coefficients (1) with
r detection iterations and threshold δ′ ≤ δ/

√
2, i.e.,

max
i=1,...,r

|f̂{1,...,t},k(ξi)| ≥ δ′ ∀k ∈ P{1,...,t}(Iδ) .

In practice we do not have the exact projected Fourier
coefficients f̂{1,...,t},k(ξ). Rather, we will approximate them
by approximating

f(·, ξi) =
∑

k∈Zt

f̂{1,...,t},k(ξ) exp(2πi⟨k, ·⟩)

for fixed anchors ξ1, . . . , ξr ∈ Td−t in the last d − t
components and a subsampled rank-1 lattice X ⊂ Tt in the
first t components:

SXf(·, ξ) =
∑

k∈Zt

ĝ{1,...,t},k(ξ) exp(2πi⟨k, ·⟩) . (4)

Theorem III.2. Let the assumptions from Theorem III.1 hold
and let P{1,...,t}(Iδ) ⊂ I{1,...,t} ⊂ IM{1,...,t} be frequency index
sets such that |IM{1,...,t} \ I{1,...,t}| ≤ 9/2|I{1,...,t}|. Further,
let XM be a reconstructing rank-1 lattice for IM{1,...,t} with
probability 1 − ε and X ⊂ XM an i.i.d. uniformly drawn
subset with

|X| ≥ 12|I{1,...,t}|
(
log |I{1,...,t}|+ log

(2r
ε

))
.

With probability 1 − 3ε we detect all important frequencies
in dimension t via the approximated projected Fourier coeffi-
cients ĝ{1,...,t},k(ξi) from (4) with r detection iterations and
threshold

δ′ ≤ δ√
2
− 4∥f − PIδf∥L2

− 2∥f − PIM
{1,...,t}×Td−tf∥∞ ,

i.e.,

max
i=1,...,r

|ĝ{1,...,t},k(ξi)| ≥ δ′ ∀k ∈ P{1,...,t}(Iδ) .

Note, choosing IM{1,...,t} large does not affect the sampling
complexity but only the initial rank-1 lattice from which we
sample and diminishes the term ∥f − PIM

{1,...,t}×Td−tf∥∞.
Having shown the successful detection of the important

frequencies in one dimension-incremental step it is left to



apply Theorem III.2 iteratively to obtain our main theorem
stating the successful detection of all important frequencies
k ∈ Iδ using samples in subsampled rank-1 latices.

Theorem III.3. Let f : Td → C, ε, δ > 0, Γ ⊃ Iδ := {k ∈
Zd : |f̂k| ≥ δ}, and

r ≥ 4
(
|Iδ|+

1

δ2

( ∑

k/∈Iδ

|f̂k|
)2)(

log |Iδ|+ log
1

ε

)
.

1) Let t = 1, . . . , t and XM
{t} be a reconstructing rank-1

lattice for J{t} := P{t}(Γ) with probability 1 − ε and
X{t} ⊂ XM

{t} an i.i.d. uniformly drawn subset with

|X{t}| ≥ 12|J{t}|
(
log |J{t}|+ log

(2r
ε

))
.

Further, let Ξ{t} = {ξ1, . . . , ξr} ⊂ Td−1 be drawn i.i.d.
uniformly random.
Using samples in X{t} × Ξ{t} for r least squares
approximations, we construct I{t} such that

J{t} ⊃ I{t} ⊃ P{t}(Iδ)

with probability exceeding 1− 3ε.
2) Let t = 2, . . . , t and XM

{1,...,t} be a reconstructing rank-1
lattice for J{1,...,t} := (I{1,...,t−1} × I{t})∩P{1,...,t}(Γ)
with probability 1−ε and X{1,...,t} ⊂ XM

{1,...,t} an i.i.d.
uniformly drawn subset with

|X{1,...,t}| ≥ 12|J{1,...,t}|
(
log |J{1,...,t}|+ log

(2r
ε

))
.

Further, let Ξ{1,...,t} = {ξ1, . . . , ξr} ⊂ Td−t be drawn
i.i.d. uniformly random.
Using samples in X{1,...,t}×Ξ{1,...,t} for r least squares
approximations, we construct I{1,...,t} such that

J{1,...,t} ⊃ I{1,...,t} ⊃ P{1,...,t}(Iδ)

with probability exceeding 1− 3ε.
In particular, we have I{1,...,d} ⊃ Iδ with probability exceed-
ing 1− 6dε.

Proof. The assertion follows from repeatedly applying Theo-
rem III.2 and union bound.

IV. NUMERICAL EXPERIMENTS

We consider the 10-dimensional test function f : T10 → R,

f(x) :=
∏

t∈{1,3,8}
N2(xt) +

∏

t∈{2,5,6,10}
N4(xt) +

∏

t∈{4,7,9}
N6(xt),

with Nm : T→ R being the B-Spline of order m ∈ N

Nm(x) := Cm

∑

k∈Z
(−1)k sinc

(πk
m

)m

exp(2πikx) ,

with a constant Cm > 0 such that ∥Nm∥L2(T) = 1. This
function was already used to test high-dimensional algorithms
in [26], [22], [14], [16], [17]. It is not a sparse signal with
respect to the trigonometric system, i.e., |f̂k| ≠ 0 for infinitely
many k ∈ Z10.
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24 28 212
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s
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24 28 212
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Fig. 1. Approximation results for the 10-dimensional test function for
azure: full rank-1 lattices, orange: i.i.d. uniformly random points, and violet:
subsampled rank-1 lattices.

Because of the product structure and the smoothness of the
B-splines, we have |f̂k| ≤ C

∏d
t=1 max{1, kt}−2 for some

constant C > 0. For this reason we choose our initial search
space Γ ⊂ Z10 to be a 10-dimensional hyperbolic cross of
radius 28, i.e.,

Γ =
{
k ∈ Zd :

10∏

t=1

max{1, |kt|} ≤ 28
}

with |Γ| = 8827 703 433 possible frequencies to choose from.
In our algorithm we choose the number of detection it-

erations r = 5 and the detection threshold to δ′ = 10−12.
To limit the number of detected frequencies, we set the
target sparsity to s ∈ {23, . . . , 213} and only consider the
slocal = ⌈1.2s⌉ largest approximated Fourier coefficients in
each dimension-incremental step. We then used three different
sampling strategies for the dimension-incremental steps:

• full rank-1 lattices utilizing fast Fourier algorithms as in
[22];

• i.i.d. uniformly random points utilizing good sampling
complexity as in [17];

• subsampled rank-1 lattices combining both advantages
and obtained a frequency set I ⊂ Z10 and Fourier coefficients
ĝ = (ĝk)k∈I of our approximation. All tests were performed
10 times in MATLAB® using 2 six core CPUs Intel® Xeon®

CPU E5-2620 v3 @ 2.40GHz and 64 GB RAM. We stopped
computations which exeeded a time limit of 1 hour.

In Figure 1 we depicted the medians of various quantities of
the experiment. The two upper graphs show that the relative
L2-error as well as the error in the coefficients behaves the
same with all three approaches. Note, that we did not need as
many detection iterations as we proposed in the theory but r =
5 was sufficient. Next, we investigate the sampling complexity
and computation time.



Sampling complexity. As discussed in the theoretical part,
the reconstructing requirement of the rank-1 lattice blows up
its size resulting in the most used sampling points. Because of
computational infeasibility, we do not have many computations
with the i.i.d. uniformly random points and cannot capture
its behaviour (in our experience it should behave similar to
the subsampled rank-1 lattice). The subsampled rank-1 lattices
have better sampling complexity than the full rank-1 lattices
and the graph suggests this advantage will increase for higher
sparsity s.

Computation time. The fastest computation time can be
seen with the full rank-1 lattices since the approximations only
need one matrix-vector product each for which fast Fourier
algorithms are utilized. The subsampled rank-1 lattices are
slower by a constant factor of 10. Here, the same fast Fourier
algorithm is used but the approximations use an iterative
solver. We capped the maximal number of iterations by 10,
which explains the constant factor. For the i.i.d. uniformly
random points no fast Fourier algorithms are available making
it the slowest approach.

The experiments confirms our theoretical findings of sub-
sampled rank-1 lattices combining the computational and
sampling advantages of full rank-1 lattices and random points,
respectively.
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