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Abstract
Recent model based planning approaches have
attained a huge success on Atari games. However,
learning accurate models for complex robotics
scenarios such as navigation directly from high di-
mensional sensory measurements requires a large
amount of data and training. Furthermore, even a
small change on robot configuration such as kino-
dynamics or sensor in the inference time requires
re-training of the policy. In this paper, we ad-
dress these issues in a principled fashion through
a multi-constraint model based online planning
(CoMBiNED) framework that does not require
any retraining or modifications on the existing pol-
icy. We disentangle the given task into sub-tasks
and learn dynamical models for them. Treating
these dynamical models as soft-constraints, we
employ stochastic optimisation to jointly optimize
these sub-tasks on-the-fly at the inference time.
We consider navigation as central application in
this work and evaluate our approach on publicly
available benchmark with complex dynamic sce-
narios and achieved significant improvement over
recent approaches both in the cases of with-and-
without given map of the environment.

1. Introduction
In the last decades application of intelligent robotics systems
have increased by many-folds, several domains such as agri-
culture, manufacturing, surgery, transportation and logistics
have been revolutionised by the presence of robotic systems.
While classical navigation approaches have enabled robots
to autonomously navigate to the desired goal and accom-
plish the task in hand, sharing same space with humans in
diverse environments is still an open research area. Classi-
cal approaches often employ a hierarchical strategy towards
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Figure 1. Multi-constraint optimization for navigation: To make
safer decisions in complex practical scenarios we divide the task
into sub-tasks and learn dynamical models f1:N for them. Our
stochastic optimization approach then performs predictive plan-
ning at the inference time for the constraints captured by dynamical
models for sub-tasks (both analytical and deep Markov networks)
in a single framework, which is difficult to achieve by either clas-
sical approaches or gradient based approaches. Considering nav-
igation in presence of dynamic obstacles as our primary task we
split it into sub-tasks such as (i) goal reaching and (ii) dynamic
collision avoidance and plan actions that minimizes the planning
costs c1:N for these these sub-tasks which leads to safer actions.

navigation, a global path planner is used to generate a colli-
sion free path to the goal from robot’s current position with
the help of a given map (Ferguson et al., 2005). This path is
then followed by a local planner simultaneously avoiding
dynamic obstacles for a fixed horizon. Local path planning
approaches for dynamic obstacle avoidance often employ
a geometrically motivated optimization strategy that relies
on accurate position and velocity estimates of the dynamic
obstacles (Rösmann et al., 2015; Fox et al., 1997), which is
not always available in practical scenarios. While, recent
deep reinforcement learning (DRL) (Everett et al., 2018;
Alahi et al., 2016; Liu et al., 2021) have outperformed clas-
sical approaches in the field of dynamic obstacle avoidance
(map-less navigation), they only consider dynamic obstacles.
However, practical scenarios require robots to navigate in
both static and dynamic obstacles under partial observability,
which poses challenge to these approaches.

A few recent model-free DRL based approaches (Gulden-
ring et al., 2020; Liu et al., 2020) learn a policy for navi-
gation in dynamic environments directly from range mea-
surements, thus are more suitable to practical scenarios.
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However they suffers from large sim2real gap when sub-
jected to practical scenarios. Motivated from the success
of model based reinforcement learning approaches (Ha &
Schmidhuber, 2018), Navrep (Dugas et al., 2021) aims to
learn the dynamical model first and then use it to learn the
policy. However, such a policy tends to be conservative
(Dugas et al., 2021), since learning the joint representation
that captures the large variations in environment as well
as in the behaviors of dynamic obstacles requires training
on large amounts of data. Also, performing any further
changes to the robot’s configuration or accommodating new
constraints require retraining of the whole system again.

In this work, we aim to learn a flexible and modular frame-
work for attaining distant point goals in the presence of
dynamic obstacles from 2D LiDAR measurements. For cir-
cumventing the issues with a joint representation of static
and dynamic obstacles, we disentangle the task of naviga-
tion into two sub-tasks of: (i) goal reaching and (ii) dynamic
collision avoidance. We further train recurrent neural net-
works for learning the dynamical models for the robot and
other obstacle from the data. Considering each task as a
constraint, we propose a novel approach called CoMBiNED
for multi-constraint planning in deep learning based dy-
namical systems. Our approach jointly solves the required
constraints, analytical or learning based, by computing an
optimal action that minimizes the mean expected cost for a
planning horizon as shown in Figure 1. To solve the distant
horizon task, we also propose a waypoint based planning
strategy similar to classical approaches and recent DRL ap-
proaches. We maintain a partial occupancy map, which
is reconstructed online while navigating. We then select a
collision free waypoint on the shortest path, and provide
this as a goal to the CoMBiNED.

In summary our contributions are:

• We present a simple yet effective planning framework
that can combine several constraints, both deep and
analytical, and solves them in continuous space jointly
using stochastic optimization at inference time without
any retraining of the models.

• Based on our multi-constraint planning framework, we
present an indoor navigation approach, that can steer
the robot through complex environments in the pres-
ence of dynamic obstacles using LiDAR measurements
and odometry.

• Our proposed model (CoMBiNED) achieved signif-
icant performance gain with respect to the popular
dynamical obstacle avoidance methods on the publicly
available Navrep benchmark (Dugas et al., 2021).

2. Related Work
Robots co-working along with humans to solve a common
goal has been one of the central research theme in robotics
and autonomous navigation. Navigation in indoor has al-
ways interested robotics research community because of
the challenges in localisation, dense clutter and dynamic
objects and therefore, it has also been extensively studied.
Several classical approaches like time elastic band, dynamic
window approach (Rösmann et al., 2015; Fox et al., 1997)
have become a standard software stack for robot navigation.
Classical approaches divide the navigation task into three
stages: (i) a mapper module that identifies the goal and lo-
calises current position, (ii) a global planner such as A-star,
FMM (Sethian, 1996) that plans a path from current posi-
tion to the goal (iii) a local planner that takes in a waypoint
from the global plan and based on robot’s dynamics and
obstacle avoidance and plans a trajectory to nearest way-
point. Classical local planners like TEB (Rösmann et al.,
2015), DWA (Fox et al., 1997) and MPC (Brito et al., 2019)
assume accurate knowledge dynamics of robot as well as
other moving obstacles to optimize robot’s velocity to attain
the waypoint. While classical approaches excel for long
horizon point-goal navigation, data driven approaches show-
case superior performance on dynamic obstacle avoidance
tasks (Kästner et al.). Thus for navigation in dynamical
objects, recent approaches either rely on a classical global
policy to propose a waypoint (Kästner et al.; Brito et al.,
2021) that is followed by a RL based local planner or they
switch between classical and DRL planner (Kästner et al.,
2021). We showcase through experiments in section 4.4 that
simply combining the global planners with RL results in
sub-optimal performance, while switching planners could
lead to oscillations. Hence, in this work we combine them in
a principled fashion using a multi-constrained model based
planning.

Model based planning To overcome the limitation of reac-
tive nature of classical planners in complex environments,
Model Predictive Control (MPC) based planning has been
employed that jointly optimizes the control in presence of
both static as well as dynamic obstacles (Brito et al., 2019).
Where, the objective is to minimize the goal reaching cost
for a fixed horizon, while obstacle avoidance and robot dy-
namics are treated as constraints. While the approach is able
to generate online plans that are inherently safe respecting
the constraints, there are a few challenges: (i) Classical
MPC solvers do not scale-up to high dimensional inputs
such as LiDAR measurements. (ii) Classical MPC based
approaches analytically model the dynamics, for highly dy-
namical systems analytical models could be inaccurate after
a short time horizon. Thus, to take the advantage of both
MPC and DRL, recent approaches aim to combine MPC’s
with reinforcement learning. One of the initial approach in
this direction was Probabilistic Ensembles with Trajectory
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Sampling (PETS) (Chua et al., 2018), which proposed to
combine deep networks with planning by propagating sam-
ples in the latent space of the learned dynamical model. A
recent approach Model-based Policy Planning (POPLIN)
(Wang & Ba, 2019), proposed to improve PETS by (i) warm-
start of the MPC through policy output which increases the
efficiency of planner. (ii) planning in model parameter space
instead of action space. In this work, we propose to solve a
multi-constraint optimization by formulating each constraint
as a model (a neural network or analytic) and employing
latent space trajectory sampling to jointly optimize over
these constraints. We also use a DRL policy to warm-start
the MPC planning thus, making the process more efficient.

The central difference between our approach and exist-
ing deep model based planing approaches such as PETS,
POPLIN, mu-zero (Schrittwieser et al., 2020) is that: we
consider a multi-constraint setting where the objective
is to achieve safe and optimal plans over different sub-
tasks without retraining the actual policy, on the contrary,
PETS/POPLIN optimize over a single task by retraining the
current policy. To the best of our knowledge we are the first
approach to employ deep model based planning for solving
multiple sub-tasks.

In the context of autonomous navigation recent approaches
like (Bansal et al., 2020) employ classical MPC to supervise
their policy based on imitation learning for visual navigation
and (Brito et al., 2019) employ classical MPC for learning
better way-points proposal policies for dynamic obstacles
avoidance. In this paper, we consider the task of dynamic
navigation from LiDAR measurements and odometry. This
task is difficult for classical analytical MPC solvers, since
LiDAR inputs are high dimensional and do not inherently
capture moving obstacles. Thus, we propose recurrent neu-
ral networks to model dynamical obstacles and robots’s
dynamics. We present a novel formulation that can ac-
commodate kino-dynamical models or learned dynamical
models as constraints, which are satisfied by online planning
in the latent space making our approach inherently safe. To
improve the efficiency of online planning we warm start the
planning through a model based RL policy and iteratively
optimize the samples by maximizing the future expected
rewards obtained by propagating the samples through the
dynamical models (analytical or learned) of all constraints.

3. Approach
In this section we formulate autonomous navigation as an
unconstrained optimization problem (see section 3.1), which
is optimally solved by our CoMBiNED framework. Our
framework consists of three major components: (i) A recur-
rent neural network for learning robot’s next positions from
odometry and LiDAR observations (refer section 3.3). (ii)
A spatio-temporal convolutional neural network to model

motion of dynamic obstacles from LiDAR observations (as
shown in section 3.2). (iii) A multi-constrained model based
planning module to find the optimal velocity that is able
to steer robot towards goal and is free of collision from
dynamic as well as static obstacles (refer section 3.4). Our
approach can be summarized by figure 2.

3.1. Problem formulation

We consider the problem of point goal navigation in 2D,
where given the current position of the robot p = (px, py),
and a goal g = (gx, gy) and current LiDAR sensor measure-
ments x = (x1, x2, ...xd) at the current time instant t, the
objective is to navigate the robot to the goal through a se-
ries of velocity control commands at = (atx, a

t
y), avoiding

N non-cooperative dynamic obstacles and static obstacles
defined by a partial-reconstructed map Ms

t . This problem
could be formulated as a model predictive control as fol-
lows:

π∗ = argmin
π

t+H∑
t+1

∥pt − g∥

s.t. pt+1 = f(pt, at)

pi
t+1 = f i(pi

t), ∀i ∈ N

∥pt − pi
t∥ > δ, ∀i ∈ N

Ms
t (pt) < ϵ (1)

.

Where, π∗ is the optimal action sequence that minimizes
future distance to the goal for a time horizon H . Here, pt
denotes the position of the robot, pit denotes the position of
ith dynamic obstacle and Ms

t (pt) represents the probability
of position pt to be occupied at a time instance t by static
obstacle. We assume that the robot’s dynamics evolve by a
function f and other dynamic agents evolve through non-
stationary dynamics f i independent of the robot.

Dynamic obstacle avoidance as multi-constraint learning
problem: We model our solution as a multi-task planning
approach and employ stochastic optimization in latent space
to solve all the sub-tasks in a joint framework, thus we call
our framework CoMBiNED. There are several advantages in
our multi-task planning formulation of the problem: Firstly,
we can add additional constraints such as robot’s dynamics,
smoothness etc. on-the-fly at inference time. Secondly, our
framework can handle analytical as well as deep network
based dynamic constraints, for example, evolution of robot’s
trajectory depends upon its dynamics which is an analytic
constraint. Whereas trajectory of dynamic obstacles is bet-
ter predicted by a deep neural network and is difficult to
expressed in a closed form. The MPC formulation in equa-
tion (1) can be rewritten as an unconstrained optimization
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Figure 2. Overall pipeline of the ComBiNED framework: From LiDAR measurement and robot odometry we train two dynamics models
for navigation and dynamic obstacle avoidance task. We then solve both these tasks through a stochastic optimization framework for
computing the optimal control commands.

problem as,

π∗ = argmin
π

t+H∑
t+1

[Ct], Ct = αCg
t + βCo

t + γCs
t (2)

Where, we define the goal reaching cost as the geodesic dis-
tance between predicted position and goal Cg

t = dG(p̂t,g),
which is obtained by computing the length of the shortest
path on signed distance field (SDF) representation of current
reconstruction of the static map Ms

t = SLAM(p0:t,x0:t).
The predicted position of the robot can be obtained by a re-
current neural network p̂t = ϕ(pt−1,xt−1,at−1) or using
the true dynamics of the robot f(·), if known. Further-
more, we denote the dynamic obstacle avoidance cost Co

t

as the the probability of the robot having collision with a
dynamic obstacle. We compute this cost by querying the
predicted position of the robot in a dynamic occupancy
map i.e. Co

t = Mo
t (p̂t). Where, the dynamic occupancy

map is predicted using a spatio-temporal network from
past H LiDAR measurements transformed by robot’s pose
Mo

t = ψ(pt−H:t,xt−H:t). Similarly, the static collision
cost Cs

t is computed from occupancy map (Ms
t ) by query-

ing the probability of a position pt being greater then certain
threshold ϵ. Once the future states and corresponding costs
are predicted by the recurrent neural networks, we employ a
gradient free sampling based stochastic optimization frame-
work to optimize the cost from equation 2. The weights
(α, β, γ) of the individual costs are selected as 1, however
they can further be tuned.

Occupancy grid mapping It has been reported in litera-
ture that the performance of single RL based approaches
degrades for long horizon planning (Kästner et al.), (Brito
et al., 2021), (Chaplot et al., 2019). Therefore, recent ap-
proaches employ a global planner that takes the map and
proposes a waypoint near to current position of the robot. In
this paper we maintain a partially-reconstructed occupancy

map (Ms
t ) representation through Simultaneous Localiza-

tion and Mapping SLAM (Elfes, 1989) from the LiDAR
measurements and robot poses. We also maintain a signed
distance field (SDF) representation of the world over the
partial occupancy reconstruction that is updated after every
few steps, since computing SDF is computationally expen-
sive. We then employ fast marching method (Sethian, 1996)
as global planner to generate waypoints from the partial
SDF after every few steps. As mentioned in the previous
sub-sections, this static map is used to compute the collision
avoidance cost and the goal reaching cost.

3.2. Modeling Dynamic obstacles

In this paper, we aim to learn the dynamic obstacle tra-
jectories through LiDAR measurements. This is achieved
by training a spatio-temporal convolutional neural network,
that stacks the Euclidean gridmap representation of previous
LiDAR measurements (i.e. t−H to t) and predict dynamic
occupancy maps for time interval t − H to t + H which
is represented as Mo

t = ψ(pt−H:t,xt−H:t). Thus, the dy-
namic collision cost Co

t+τ can be obtained by probability
of a position (pt+τ ) being greater then certain threshold
δ. Here, we employ a U-net (Ronneberger et al., 2015)
style architecture for modeling ψ, which is trained in a
supervised fashion by mapping ground truth locations of
dynamic obstacles in same sized grid as LiDAR maps. Note
that, In our architectures the channels represent temporally
stacked frames thus the convolution operator learns over
the spatio-temporal slice of the input data. Hence we call it
a spatio-temporal network, alternatively a recurrent neural
network could also be used here.

3.3. Robot dynamics prediction

In PETS (Chua et al., 2018), the CEM policy is initialised
by random actions, which can be inefficient, since it can
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take large number of iterations for CEM to converge. Thus,
here we warm start the CEM optimizer by a initial action
obtained from a RL policy. To encode the dynamic model
of the agent, we employ a state space model that consists
of a convolutional varitaional autoencoder (VAE) and a
recurrent neural neural network similar to Navrep (Dugas
et al., 2021). The LiDAR observations (xt) are encoded
as hidden representation (zt) by the VAE which is used by
a RNN to predict future observations (xt+1). Finally, the
hidden representation of the encoder and RNN is stacked to
train the PPO (Schulman et al., 2017) RL agent. Once the
RL agent is trained is can be employed to generate an initial
guess to warm start the CEM process.

Algorithm 1 Multi-constrained model based planning
Input: Constraints as state-space models (RNNs/kino-
dynamical), initial guess from RL policy
for L-iterations do

Fit a Gaussian distribution with mean as initial guess
from RL and a predefined variance
Generate N samples from the distribution
for H-steps do

Propagate samples through all models
Collect the mean expected cost for all samples for a
fixed horizon
Select K-elite samples with minimum costs
Fit a new Gaussian distribution on them

end for
end for

3.4. Multi-Constrained model based planning

Since our actions are robot velocities which lie in contin-
uous space, we fit a Normal distribution with the mean as
initial solution provided by RL policy, ât = RL(xt,pt,g)
and a predefined variance Σ i.e. A = N (µ = at,Σ).
We then sample N trajectories with jth sample given as
(Aj = [ajt+1,a

j
t+2, ....,a

j
t+H ]) from this prior distribu-

tion Nt. These samples are propagated from robot’s state
space model to obtain next states P̂ j = ϕ(pj

t ,xt, A
j),

which are then propagated with all the constraint mod-
els (Mo(P̂ j),Ms(P̂ j)) to obtain the mean expected cost
Cj for a sample j for all time horizons i.e. Cj =∑t=H

τ=t+1 C
j
τ/H . We then sort these N samples in descend-

ing order of the rewards and select K-elite samples with
corresponding to minimum C. Following the CEM (Rubin-
stein, 1999) optimization process, we again fit the normal
distribution with means and variance of these K-elite sam-
ples. The process is repeated till the mean expect cost does
not decrease by a threshold or until a fixed maximum itera-
tions. Finally, we select the best action and command it to
the robot in the receding horizon fashion.

4. Experiments
4.1. Network architecture and training

Robot’s dynamic model ϕ(·): Using the similar architec-
ture to Navrep (Dugas et al., 2021), our VAE for robot’s
dynamic model (ϕ) consists of a 4-layer convolutional neu-
ral network (CNN) encoder, which is then followed by a
2-layer dense layer, and 4-layer CNN decoding blocks. The
latent features z are of size 32, and the hidden features of
the RNN (we use LSTM as our RNN) are of size 64. The
value network of the RL policy comprises of 2-layer dense
network.

Trajectory prediction for dynamic obstacles ψ(·): We
employ a U-net (Ronneberger et al., 2015) style architecture
for our dynamic obstacle branch. The LiDAR measure-
ments are converted to grid maps of size (140×140), 4-grid
maps from (t = t − 4 : t = t) are stacked in form of
(140 × 140 × 4) tensor, which is input to the U-net. The
U-Net output comprises of (140× 140× 8) tensor, which
represents 8-gridmaps with probability distributions of dy-
namic obstacles from (t− 4 : t+ 4).

Training data: Similar to Navrep (Dugas et al., 2021),
we the dynamic models are trained with 1000 trajectories
each of length 200, extracted by controlling the robot us-
ing ORCA (Van den Berg et al., 2008) policy for varying
number of static and dynamic obstacles between 10 and
15. Furthermore, we also used the leg movement to render
dynamic agents as moving legs in the generated LiDAR data
and a time-step of 0.2s was used for updating the agents’
positions. For training the dynamic obstacles’ state space
model (ψ(·)), we randomly sample 8 consecutive LiDAR
maps and give them as input, the true locations of visible
dynamic obstacles are mapped in a grid of same size as
input and provided to the network.

Training procedure: We use the publicly available pre-
trained models provided by Dugas et al. (Dugas et al.,
2021) for robot’s dynamics and RL policy. We then train
the dynamic obstacles’ state space models for 200 epochs
using the popular Adam (Kingma & Ba, 2014) optimizer
with learning late 1e-4. We also used random cropping
and random rotations as data augmentations for training the
U-net. For CEM optimization we use the horizon length
H = 4, initial variance 0.8, number of samples = 256 and
number of K−elite samples = 32, we optimize them for 6
iterations. These hyperparameters of CEM are empirically
selected based on Navrep train simulation environment.

4.2. Evaluation on Navrep validation set

While our approach can be applied to any multi-constrained
inference problem, here we consider dynamic obstacle
avoidance as an application, where the agent needs to reach
a point-goal by moving in an obstacle-free space (navigation
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Figure 3. Qualitative result: Example of robot navigating in a complex dynamic scene from our validation set in Navrep simulation
environment. (Top) Instantaneous LiDAR reconstructions of the current environment (sparse blue dots) at times t=10,20,30,40 and 50,
where robot is green navigates to a goal in grey avoiding dynamic obstacle detections by our dynamic obstacle prediction network in red.
(Bottom) Ground truth map. Note that the LiDAR maps are reconstructions of a single 1080 dimensional LiDAR measurements from the
sensor, therefore they are sparse.

5 dynamic and 5 static obstacles Success Rate (%)
Navrep (Dugas et al., 2021) 53

Ours 69

Table 1. Quantitative results on navrep validation set. Here, we
achieve 16% improvement success rate over the baseline.

task) and avoid moving obstacles (dynamic obstacle task).
We evaluate our approach on our validation environment
(5 moving obstacles and 5 objects in a small space) aver-
aged over 100 trajectories. The evaluation results are shown
in table 1. It can be seen for the table that our approach
outperforms the baseline by a significant margin. Figure
3 shows an example trajectory of our approach where the
robot needs to coordinate with other agents due to tight
space constraints.

4.3. Quantitative Evaluation on Navrep benchmark

We next evaluate our approach on Navrep’s publicly avail-
able simulation benchmark without any retraining or finetun-
ing, where our model was tested in 18 unseen scenarios (2
maps ’asl’ and ’unity’, 9 scenarios each) for 50 times every
scenario. The scenario definitions and selection was fixed
before any testing took place to avoid bias. A few examples
of these scenes are shown in figure 4. It can be seen from 2
that in this benchmark also we outperform Navrep and other
RL based baselines. Note that we dropped (’office j’) scene
since, the scene was incorrectly rendered in the simulator.

4.4. Effect of using true map

It can further be seen from the table 2, that all the approaches
perform significantly better given the true map, this obser-
vation validates the myopic nature of the DRL policies.
Secondly, it can be also be seen that Navrep when directly
combined with global planner performs sub-optimal as com-
pared to us, this showcases the importance CoMBiNED for
combining DRL based local planners with classical global
planners in a principled fashion.

Approach Success(%)
Navrep (Dugas et al., 2021) 45.5
SOADRL (Liu et al., 2020) 38

Guldenring (Guldenring et al., 2020) 34.3
CoMBiNED (ours) 51.1

Navrep (Dugas et al., 2021) + true map 70.1
TEB (Rösmann et al., 2015) + true map 79

CoMBiNED (ours) + true map 90.4

Table 2. Quantitative results on navrep benchmark on 18 pre-
defined scenarios. It can be seen that we outperform all the previ-
ous approaches in both the cases with-and-without map. Note that
even with map and global planner to provide waypoints Navrep
(Dugas et al., 2021) performs sub-optimally, which showcases
that for combining global planners, the policy needs to readjusted,
while CoMBiNED can optimize the policy online.
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Figure 4. Navrep benchmark: A few example scenarios from Navrep benchmark. Notice the variations in behaviour of dynamic obstacles,
few obstacles even remain static. That poses challenge to DRL policies trained only from LiDAR measurements since the policy expects
these obstacles to move.

4.5. Planner timing considerations

We evaluate out approach using an Intel-xeon-E5 proces-
sor with 128 GB RAM, and a Nvidia-Titan-x GPU, after
evaluation we found that for a Navrep planner the policy
evaluation time is 0.02 sec., whereas for a non-parallel sin-
gle core implementation of our CoMBiNED takes 0.2 sec.,
for 256 samples and 32 k-Elite samples, with horizon length
4 and 6 optimization steps. The advantage of using CEM
to solve CoMBiNED is that the process of sampling can be
made highly parallel. We observe that the parallel imple-
mentation of CoMBiNED takes around 0.08 sec. Thus we
firmly believe that CoMBiNED can be implemented on real
robotic system.

5. Conclusion
In this paper, we have formulated navigation in dynamic
environments as an unconstrained optimization problem
and presented a modular online planning approach that can
jointly optimize sub-tasks without any modifications or re-
training of the deep reinforcement policy. Posing the prob-
lem as multi-constraint optimisation makes the approach in-
herently safe since all constraints are required to be satisfied
for a candidate action. Our approach achieved substantially
better success rates as compared to recent approaches on
publicly available benchmarks for the task of indoor naviga-
tion in presence of dynamic obstacles. While in this work,
we limit ourselves to the task of indoor navigation, our for-
mulation is generic and could also be applied to even other
robotics fields such as manipulation.
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