
KoEngage: Threads of Tongue
Supervised Adaptation of LLMs for Bilingual Tasks

Amrita Aryan, Lokesh Kumar T N, Mustque Ahmed, Suhas Poornachandra, Pankaja Kumar Samal and
Manmohan Kumar

Github Repo : https://github.com/Manmohan160/Deep-Learning-Project-samsung-
mBART Gradio UI:http://bit.ly/4lr24ON

MarianMT Gradio UI: https://huggingface.co/spaces/amritaaryan11/KoEngage-Marian

Abstract. KoEngage, a bilingual translation system, is designed to
convert text between Korean and English language seamlessly us-
ing modern transformer-based language models. Our goal is to work
through the pipeline required for a translation task using ML Models.
This project leverages open-weight pre-trained models as the base
model to build a robust translation engine. To enhance model per-
formance, we explore supervised fine-tuning, allowing the system to
better adapt to translation nuances and context-specific expressions.
The supervised fine tuning for weight optimization enables KoEn-
gage to achieve better metrics, contributing towards effective cross-
lingual communication using deep learning.

1 Introduction

As part of our Deep Learning course, our team—comprising pro-
fessionals from Samsung Research Institute India - Bangalore —un-
dertook a project to explore and analyze various transformer models
[14](see Figure 1) and utilize model training pipelines. We conducted
a comparative study across multiple datasets and models, aiming to
understand performance variations, pipeline design strategies, and
the practical trade-offs involved in real-world ML applications. To
ground our analysis in a relevant use case, we focused on a task we
encounter regularly: Korean-to-English and English-to-Korean trans-
lation.

Figure 1. The Transformer - model architecture.

For our translation task, we employed three models: mBART, Mar-
ianMT, and Mistral.

2 Challenges in Model Selection

From the transformer model architecture we had the following
choices for our ML encoder-only, decoder-only and encoder-decoder
only.
1. Encoder-only: This architecture was not pursued, as its primary
applications are in natural language understanding, such as topic
modeling and sentiment analysis, rather than machine translation.
2. Decoder-only: Mistral[2] is considered for training. However, it
was not considered for the Korean to English task, as though the lan-
guage was able to understand the Korean tokens, but failed to gen-
erate english translation of the given korean sentences. This was be-
cause the MistralAI model was not given enough exposure to korean
tokens, and started hallucinating as shown in Table 5. GPT models
were pursued however due to unavailability of korean tokenizer in
open weight trainable GPT-2, it was not taken into consideration.
3. Encoder-Decoder: Given the need for both language understand-
ing and generation, this architecture was prioritized. Models such as
OpenNMT[5], mBART [6] [12], T5 [9] and MarianMT[3] were ex-
plored. Finally, the comparative study was done with mBART and
MarianMT model.

3 Literature Survey

Our literature survey investigated strategies for data acquisition and
model adaptation in low-resource machine translation. We first ex-
amined synthetic data generation methods, where [11] created Viet-
namese ↔ Chinese data from monolingual sources. This approach,
however, yielded only a marginal 8% model improvement, render-
ing it unsuitable for our needs. We then explored the use of denois-
ing adapters [13] for translating languages not in mBART’s orig-
inal training. While this achieved reasonable BLEU scores (15.7
for Spanish-English, 7.2 for Dutch-English) for unseen languages,
it was not directly applicable as Korean tokens are already included
in mBART.

Our review also covered translation evaluation methodologies.
[4] highlighted the reliance on human evaluation, noting that even
state-of-the-art systems like Google and Naver Papago achieved only
around 60% accuracy, similar to human error rates. We also encoun-
tered Korean Speech-to-Text research, such as Kosp2e [1], which
used Google Translate for the text-to-English phase and human-
translated test sets, though this dataset was not publicly available.

A critical finding was the striking absence of publicly available
research exclusively on Korean-to-English translation and a cor-
responding lack of standardized datasets for evaluating translation
accuracy, especially concerning the mBART model. This collective
evidence strongly suggests that the paucity of dedicated Korean-
English translation models and accuracy studies for multilingual
models like mBART is primarily driven by the scarcity of high-
quality, publicly available datasets.

4 Models
4.1 mBART

mBART (see Figure 2) is a multilingual sequence-to-sequence model
pre-trained encoder-decoder model.

Figure 2. mBART Pre-training and Fine Tuning.

Facebooks mBART-50, model was used for supervised fine tuning
purpose (see Table 1).

Parameter Value / Layer Details

Training Parameters 610,879,488
Embedding Size 1024
Vocabulary Size 250,054
Encoder Block 12
Decoder Block 12
Attention Heads (per block) 16
Feed-Forward Size 4096 (per layer)
Activation Function ReLU
Positional Embeddings Learned, 1026 positions
Embedding Type Scaled Word Embedding
Output Head Linear, 1024 → 250,054

Table 1. mBART-50 Model Architecture Summary

4.2 MarianMT

MarianMT, developed by the Helsinki-NLP group, is a pre-trained
model which is optimized for Korean-English translation, and is
tightly integrated with the OPUS dataset. (see Table 2).

Parameter Value / Layer Details

Training Parameters 77,943,296
Embedding Size 512
Vocabulary Size 65001
Encoder Block 6
Decoder Block 6
Attention Heads (per block) 8
Feed-Forward Size 2048 (per layer)
Activation Function Swish
Positional Embeddings Learned, 512 positions
Embedding Type Scaled Word Embedding
Output Head Linear, 512 → 65,001

Table 2. Helsinki-NLP/opus-mt-ko-en Model Architecture Summary

The above two models were considered due to their availability as
open-weight models as well as the reason, that their pre-training was
done with Korean tokens giving exploratory results for supervised-
fine tuning comparisons.

5 Dataset
To train and evaluate these models, we utilized datasets from AI-
Hub, a Korean government-backed repository, Open Subtitles, OPUS
Wikimatrix[10], Korean Parallel Corpora(KPC) Bible, KPC News.

Dataset Language Pair(s) # Sentence Pairs

AIHub Korean–English 10,000
Open Subtitles Korean–English 31,052,957
OPUS WikiMatrix Multi-language 306,900
KPC/Bible Korean–English 31,089
KPC/News Korean–English 94,124
Kaggle/KEPC Korean–English 849

Table 3. Summary of Datasets Used for Training and Evaluation

Dataset Domain Language Style

AI Hub News, education, gov. Formal, semi-formal, dialogue
Open Subtitles Movie dialogues Conversational
OPUS WikiMatrix Encyclopedia Formal
KPC/Bible Korean–English Dialogue
KPC/News Korean–English News
Kaggle/KEPC Korean–English Conversations

Table 4. Domain and Language Style of Parallel Datasets

6 Data Pre-Processing
• AI Hub: Used as-is without pre-processing due to its diverse con-

tent.
• Open Subtitles: Applied keyword-based retrieval (post-2020), re-

moved ellipses and quotation marks, corrected misaligned trans-
lations, and deduplicated sentence pairs.

• OPUS WikiMatrix: Filtered to retain only fully Korean sen-
tences, removed duplicates, and restricted sentence length. Also
applied lang detect for removing of any mixed-language sen-
tences.

• KPC/Bible: Removed all occurrences of Genesis 1:1 and similar
occurrences in both the English and Korean texts.

• KPC/News: Few rows of Korean sentences had just english news,
Removed all sentence pairs where an english alphabet was present
in Korean Text.

7 Results
For our comparisions, we have used metrics that are relevant to lan-
guage translation tasks which are BLEU[7], BERTScore [15] and
chrF++ [8].

BLEU uses n-gram matching whereas BERTscores provide cosine
similarity, attending to the semantic relationship between translated
sentences. chrF++ provides character level matching.

Table 5 presents the baseline model’s performance scores on the
test dataset.

Test Dataset Model BLEU BERTScore ChrF++
AI Hub mBART 0.098 0.8944 28.8
KPC/Bible mBART 0.104 0.892 32.29
KPC/News mBART 0.115 0.901 38.95
WikiMatrix MarianMT 0.154 0.901 44.08
AI Hub MarianMT 0.180 0.910 42.90
OpenSubtitle MarianMT 0.008 0.840 16.60
KPC/Bible MarianMT 0.178 0.900 41.44
KPC/News MarianMT 0.109 0.900 35.51

Table 5. Base Model Metrics

Table 6 summarizes the evaluation metrics for models fine-tuned
on single datasets. Table 7 presents performance scores for models
trained and evaluated on mixed or cross-domain datasets.

Dataset Model BLEU BERTScore ChrF++

AIHub mBART 0.2297 0.918 45.99
Open Subtitles mBART 0.0022 0.7874 2.15
KPC/Bible mBART 0.197 0.903 38.96
KPC/News mBART 0.309 0.849 18.4
AIHub MarianMT 0.18 0.91 42.9
OPUS WikiMatrix MarianMT 0.169 0.912 46.21
KPC/Bible MarianMT 0.266 0.923 47.54
KPC/News MarianMT 0.114 0.897 35.19

Table 6. Evaluation metric for models fine-tuned on single datasets.

Dataset Model BLEU BERTScore ChrF++

AIHub, WikiMatrix mBART 0.00046 0.715 2.08
AIHub, Open Subtitles mBART 0.0382 0.8277 13.51

Table 7. Evaluation metric for mBART fine-tuned on mixed datasets.

According to our findings, AI HUB is the only development
dataset among those evaluated where mBART demonstrated a sig-
nificant improvement over its base model, achieving a BLEU score
of 0.2297, BERTScore of 0.918, and chrF++ of 45.99, compared
to the base model’s BLEU of 0.098, BERTScore of 0.8944, and
chrF++ of 28.8. In contrast, mBART exhibited a notable degradation
in performance when the development and test datasets were out-of-
distribution, as evidenced by substantially lower scores on Open Sub-
titles (BLEU: 0.0022, BERTScore: 0.7874, chrF++: 2.15) and Wiki-
Matrix (BLEU: 0.00046, BERTScore: 0.715, chrF++: 2.08). While
KPC showed improvement of BLEU score there was no significant
improvement observerd in chrF++ scores for mbart, Hence these 2
aren’t considered.

MarianMT, on the other hand, being pre-trained on the OPUS
Tatoeba dataset for Korean-English translation performed well with-
out any fine-tuning achieving a BLEU score of 0.154, BERTScore of
0.901 and chrF++ of 44.08 as baselines. After fine tuning , it showed
signs of overfitting on the smaller development dataset, with dimin-
ishing returns in evaluation metrics. Only after hyperparamter tuning
was done, the MarianMT was seen to have improved results of BLEU
as 0.169 and BERTScore of 0.912 and chrF++ of 46.21. But with a
poor processed dataset, such as the OpenSubtitles and KPC/News the
results did not improve with multiple attempts indicating the strong
need of better data for the model to train on.

References
[1] W. I. Cho, S. M. Kim, H. Cho, and N. S. Kim. Kosp2e: Korean Speech

to English Translation Corpus. In Proc. Interspeech 2021, pages 3705–
3709, 2021. doi: 10.21437/Interspeech.2021-1040.

[2] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chap-
lot, D. de las Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier,
L. R. Lavaud, M.-A. Lachaux, P. Stock, T. L. Scao, T. Lavril, T. Wang,
T. Lacroix, and W. E. Sayed. Mistral 7b, 2023. URL https://arxiv.org/
abs/2310.06825.

[3] M. Junczys-Dowmunt, R. Grundkiewicz, T. Dwojak, H. Hoang,
K. Heafield, T. Neckermann, F. Seide, U. Germann, A. F. Aji, N. Bo-
goychev, A. F. T. Martins, and A. Birch. Marian: Fast neural machine
translation in c++, 2018. URL https://arxiv.org/abs/1804.00344.

[4] C.-E. Kim. Analysis of Korean-to-English Machine Translation Sys-
tems’ Treatment of Passives. J. Pan-Pacific Assoc. Appl. Linguist., 26
(1):87–103, 2022.

[5] G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. Rush. OpenNMT: Open-
source toolkit for neural machine translation. In Proceedings of ACL
2017, System Demonstrations, pages 67–72, Vancouver, Canada, July
2017. Association for Computational Linguistics. URL https://www.
aclweb.org/anthology/P17-4012.

[6] Y. Liu, J. Gu, N. Goyal, X. Li, S. Edunov, M. Ghazvininejad, M. Lewis,
and L. Zettlemoyer. Multilingual denoising pre-training for neural ma-
chine translation. arXiv:2001.08210 [cs.CL], Jan. 2020. Preprint, sub-
mitted 22 Jan 2020, revised 23 Jan 2020.

[7] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for
automatic evaluation of machine translation. In Proceedings of the
40th annual meeting on association for computational linguistics, pages
311–318. Association for Computational Linguistics, 2002.

[8] M. Popovic. chrf++: words helping character n-grams. In Proceedings
of the Second Conference on Machine Translation, pages 612–618. As-
sociation for Computational Linguistics, 2017.

[9] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu. Exploring the limits of transfer learn-
ing with a unified text-to-text transformer. Journal of Machine Learning
Research, 21(140):1–67, 2020. URL http://jmlr.org/papers/v21/20-074.
html.

[10] H. Schwenk, V. Chaudhary, S. Sun, H. Gong, and F. Guzmán. Wiki-
matrix: Mining 135m parallel sentences in 1620 language pairs from
wikipedia. arXiv preprint arXiv:1907.05791, 2019. URL https://arxiv.
org/abs/1907.05791. v2 published July 16, 2019.

[11] T. N. Son, N. A. Tu, and N. M. Tri. An Efficient Approach for Machine
Translation on Low-resource Languages: A Case Study in Vietnamese-
Chinese. arXiv preprint arXiv:2501.19314, 2025.

[12] Y. Tang, C. Tran, X. Li, P. Chen, N. Goyal, V. Chaudhary, J. Gu, and
A. Fan. Multilingual translation with extensible multilingual pretraining
and finetuning, Aug. 2020. Preprint.

[13] A. Üstün, A. Bérard, L. Besacier, and M. Gallé. Multilingual Unsuper-
vised Neural Machine Translation with Denoising Adapters. In Proc.
Conf. Empirical Methods Nat. Lang. Process. (EMNLP), pages 6650–
6662, 2021.

[14] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. u. Kaiser, and I. Polosukhin. Attention is all you need.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural In-
formation Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[15] T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi. Bertscore:
Evaluating text generation with bert. 2019. Preprint (April 2019).

Appendices
• AI HUB: https://aihub.or.kr/aihubdata/data/view.do?currMenu=

115&topMenu=100&aihubDataSe=realm&dataSetSn=126
• Open Subtitles: https://opus.nlpl.eu/OpenSubtitles/ko&en/

v2024/OpenSubtitles
• OPUS WikiMatrix: https://opus.nlpl.eu/WikiMatrix/en&ko/v1/

WikiMatrix
• mBART-50 base model: https://huggingface.co/facebook/

mbart-large-50-many-to-many-mmt

Individual Contributions

Amrita Aryan

Model Selection

I initially explored a neural machine translation (NMT) system -
OpenNMT, an open-sourced toolkit built on the encoder–decoder
architecture from MIT [https://opennmt.net/]. However, due to
technical constraints in deploying its GUI, along with challenges
related to evaluation visualization, I decided to discontinue this
setup. Instead, I transitioned to more accessible transformer-based
models available through the Hugging Face, which offered a more
user-friendly development experience, in line with the team mem-
bers.

Subsequently, experimentation was carried out using Google’s T5-
small and T5-base models. These models are part of the multilingual
T5 family, designed for a wide variety of languages. Unfortunately,
both variants underperformed significantly in the Korean-English
translation task. This was due to their limited tokenizer vocabulary
for Korean and a lack of fine-tuned weights for this specific language
pair.

The final model chosen for the other tasks of this pipeline was
the MarianMT model from Helsinki-NLP, specifically ‘Helsinki-
NLP/opus-mt-ko-en’. It uses a transformer-based encoder-decoder
architecture, trained on OPUS corpora with SentencePiece tokeniza-
tion. This opus-mt-ko-en model is already trained with Korean and
English tokens, giving the model an advantage for better perfor-
mance, as seen during the project work as well.

Dataset: WikiMatrix & OpenSubtitle (OPUS)

I used the below datasets for Korean to English translation task from
OPUS [https://opus.nlpl.eu/]

• WikiMatrix : It contains over 306,900 sentence pairs aligned be-
tween Korean and English.

• OpenSubtitles : It contains over 31,052,957 sentence pairs aligned
between Korean and English. Compared to WikiMatrix, Open-
Subtitles offers informal, conversational text and is suitable for
dialogue-style translations.

Due to resource crunch, during the project work the datasets
were downsampled and used for training, validation and testing. The
dataset were also pre-processed.

Feature WikiMatrix OpenSubtitles
Domain Encyclopedia Movie Dialogues
Language Style Formal Conversational
Size (ko-en) 300K+ 31M+
Alignment Quality High Medium

Table 8. WikiMatrix vs. OpenSubtitles Comparison

As part of the data preprocessing step, I analyzed the distribu-
tion of sentence lengths (in tokens) for both the Korean and English
datasets. The plot revealed a strong concentration of short sentences.
In contrast, long sentences were less seen, forming a sparse tail at
the higher end of the distribution. Based on this observation, I ex-
perimented with the token lengths and taking percentile on the data
giving 99% of the Korean sentence lengths could be fit with mere
46 tokens, and English sentence lengths could fit with 57 tokens. A
max_length setting of around 128 is still used due to better perfor-
mance as well as standard practices.

Figure 3. WikiMatrix English Sentence length distribution

Figure 4. WikiMatrix Korean Sentence length distribution

Preprocessing Steps

• Removed duplicate entries.
• Filtered sentence pairs with extreme length ratios (allowed range:

0.5 to 1.5).
• Removed sentences with fewer than 2 tokens in either language.
• Applied language detection for pair validation using langdetect
• Downsampled to 30,000 pairs for efficient training.

Baseline Evaluation

I partitioned the preprocessed data into a 90% training split and a
10% test split using a fixed random seed to ensure reproducibility.
The validation split was used for interim evaluation during training,
while the unseen test split served for our final performance reporting.

Initially, a baseline was established by evaluating the available
pre-trained MarianMT model on both WikiMatrix and OpenSubti-
tles datasets. The WikiMatrix dataset gave reasonable scores without
any modifications, OpenSubtitles dataset scored poorly.

Supervised Fine-Tuning and Hyperparameter tuning

When I fine-tuned with naïve hyperparameters (random), perfor-
mance on WikiMatrix declined, indicating overfitting or catastrophic
forgetting. To address this, I used Optuna for hyperparameter search-
ing across learning rate, batch size, and number of epochs. After
identifying the best configuration, I applied supervised fine-tuning,
which improved performance on both datasets.

I executed five trials using the ‘Trainer.hyperparameter_search
() method of Optuna-based hyperparameter tuning .The following
search space was created as below:

• Learning Rate: [5e-6, 5e-5]
• Batch Size: [4, 8]
• Epochs: [1 to 3]

The best parameters found were:

Hyperparameter Value
Learning Rate 2.13e-5
Batch Size 8
Epochs 1

Table 9. Best Hyperparameters from Optuna Search for WikiMatrix on
MarianMT

Results

Table 10. Metrics of WikiMatrix Dataset on Helsinki

Stage BLEU BERTScore ChrF++
Baseline 0.154 0.901 44.08
After Finetuning 0.123 0.877 32.86
After Optuna + Finetuning 0.169 0.912 46.21

Table 11. Metrics of OpenSubtitles Dataset on Helsinki

Stage BLEU BERTScore ChrF++
Baseline 0.008 0.84 16.60
After Finetuning 0.009 0.844 17.21
After Optuna + Finetuning 0.009 0.844 17.21

During the project duration, I understood the need of good data as
well as importance of data-preprocessing for any model to perform
well. Along with that, the research process helped in understanding
the number of already available models that are available, but the key
pipeline remains the same. A major challenge faced was the crunch
of computational resource for experimentation over large dataset.

Project Repository and Tracking Dashboard

All associated code, experiments, and tracked metrics can be found
at the following links:

• GitHub: https://github.com/Manmohan160/
Deep-Learning-Project-samsung-/tree/Amrita/Amrita

• Wandb: https://wandb.ai/amritaaryan11-indian-institute-of-science/
huggingface/workspace?nw=nwuseramritaaryan11

• GradioUI: https://huggingface.co/spaces/amritaaryan11/
KoEngage-Marian

Lokesh Kumar T N
7.1 mBart Model

Experimented with mBart model from facebook, specifically
"facebook/mbart-large-50-many-to-many-mmt" model.

7.1.1 Findings

Figured out that the model does not understand natural language, and
blindly translates the given text from one language to another based
on the given source lang and target lang

7.1.2 Observation

However, upon experimenting with a certain number of times, ob-
served that the translation was better, when input given was multiple
related sentences, as compared to individual sentences. And a hy-
pothesis was formed that giving more context to the model helps the
model translate the sentence better, when the sentences are related to
each other. However, due to the nature of the dataset required to test
this hypothesis, was unable to validate on multiple dataset.

7.1.3 Results

Given this observation, the model was given 3 sentence input and
1 sentence input in two different iterations over the test dataset of
msarmi9/korean-english-multitarget-ted-talks-task
The results show that the improvement was observed only in seman-
tic based scoring, but not on n-gram based scores. Unfortunately, I
don’t not have enough data to back it

Context Window Bert Score BLEU Score Chrf++ Score
1 Sentence 0.39 0.24 50.8
3 Sentence 0.74 0.24 50.8

Table 12. Evaluation metric on providing varying context length on
msarmi9/korean-english-multitarget-ted-talks-task

dataset

7.2 MistralAI

Experimented with MistralAI using prompt engineering to translate
from korean to english. However, the model did not respond as ex-
pected and started to hallucinate. An example of it is provided in
figure 5

Figure 5. Korean to English translation prompt engineering with MistralAI

And since MistralAI is a 7B parameter model, training it on a small
dataset would not be enough to produce even reasonable outputs.
Hence did not go ahead with this Model Training.

7.3 MarianMt with AI Hub Dataset

MarianMt dataset was used to train on AI Hub Dataset. The dataset
was first divided into test set and development set. The details of
which are presented in Table 26
The development set was then used to make k-fold cross validation
experiments to obtain the hyperparameters. The final evaluation on
the test set, was made on the hyperparameter setting which gave best
results. The model experiments were done on a fixed batch size of 10.
The metrics on different hyperparameters on the evaluation dataset is
captured in Table 13

Learning Rate training epochs Bert Score BLEU Score Chrf++ Score
1e-4 1 0.88 0.11 33.72
1e-5 1 0.84 0.06 23.93
1e-6 1 0.87 0.12 31.27
1e-4 3 0.90 0.17 42.04
1e-5 3 0.86 0.09 28.39
1e-6 3 0.83 0.07 24.08

Table 13. k-fold cross validation results on
"Helsinki-NLP/opus-mt-ko-en"

And the results of the "Helsinki-NLP/opus-mt-ko-en"
model without any training on the AI Hub Dataset is presented in
Table 14

Bert Score BLEU Score Chrf++ Score
0.91 0.17 42.17

Table 14. Metric score without any training on
"Helsinki-NLP/opus-mt-ko-en"

Based on the above results, the pretrained
"Helsinki-NLP/opus-mt-ko-en" was deemed the best
model to run on the unseen test dataset. The results of it are
published in the table 15

Bert Score BLEU Score Chrf++ Score
0.91 0.18 42.90

Table 15. Metric score on test data using the best config for
"Helsinki-NLP/opus-mt-ko-en" model

GitHub Repository: https://github.com/Manmohan160/
Deep-Learning-Project-samsung-/tree/lokesh/sampleTraining

Mustque Ahmed
7.3.1 Problem statement

Proposed a Natural Language Processing project focused on Korean
to English translation. This initiative aims to deepen our understand-
ing of end-to-end machine translation pipelines while aligning with
relevant professional projects within our organization.

7.3.2 Model Selection

During the model selection task handed to me, the following consid-
erations were considered and proposed to the team.
1. Encoder-only: This architecture was not pursued, as its primary
applications are in tasks such as topic modelling and sentiment anal-
ysis, rather than machine translation.
2. Decoder-only: GPT models were considered due to their auto-
regressive capabilities for text generation and potential for machine
translation. GPT-2 was explored because of the availability of open
weights; however, the lack of a suitable Korean tokenizer limited its
use. A Korean-flavored GPT-2 model, KoGPT, was also investigated
due to its native Korean tokenizer, but it is designed primarily for
monolingual generative tasks rather than translation.
3. Encoder-Decoder: Given the need for both language understand-
ing and generation, this architecture was prioritized. Models such
as mBART and T5 were proposed, with primary self focus on fine-
tuning the mBART-50 model using three datasets: AIHub, Open Sub-
titles 2024, and OPUS WikiMatrix.

mBART model was proposed by me during the early model selec-
tion criteria, training, primarily due to availability of open trainable
weights and Korean Tokenizer.

7.3.3 Dataset and Pre-processing

Individual members were tasked to find the dataset for training the
model. I found the AI HUB and Open Subtitles dataset and follow-
ing data processing was done prior to model training. Also, team
members WikiMatrix data was also used for training after some pre-
processing.
A. AI Hub
No pre-processing was performed; the data was used as-is due to its
innate diversity.
B. Open Subtitles
The Open Subtitles corpus underwent several pre-processing steps
for training:

1. Data Retrieval: Extracted sentence pairs from OPUS published
post-2020 using relevant keywords.

2. Character Cleaning: Removed unwanted ellipses (...) and
stray quotation marks.

3. Manual Correction: Inspected and manually removed sentence
pairs containing incorrect or misaligned translations.

4. Deduplication: Eliminated duplicate sentence pairs to avoid data
redundancy.

C. OPUS WikiMatrix
The OPUS WikiMatrix corpus was cleaned to improve the quality
and relevance of parallel sentence pairs for Korean–English transla-
tion:

1. Language Filtering: Retained only those sentence pairs where
the Korean side contained exclusively full Korean words, remov-
ing any entries containing English words or content.

2. Deduplication: Removed duplicate sentence pairs to ensure data
uniqueness.

3. Length Restriction: Filtered out sentences exceeding 100 words
in either language to maintain manageable input lengths for model
training.

Feature AI HUB OPUS Subtitles

Domain General, news, education, gov. Movies Dialogue
Language Style Formal,semi-formal,dialogue Conversational
Alignment Quality High Medium

Table 16. Comparison of AI HUB and Open Subtitles Datasets

Dataset Original Sentence Pairs Sampled Sentence Pairs

AI Hub 9,844 9,844
Open Subtitle 31M 21,000
OPUS WikiMatrix 306,900 194,000

Table 17. Original and Sampled Sentence Pairs for Each Dataset

Stage Processing Description

Sub-1 Original trimmed sentence pairs (post 2020)
Sub-2 Removed unwanted ellipses (...) and quotation marks (")
Sub-3 Manually removed incorrect translations; removed duplicates

Table 18. Open Subtitles Data Cleaning Stages

7.3.4 Model Training

Facebook’s facebook/mbart-large-50-many-to-many-mmt
model was trained on a combination of datasets which includes AI
Hub, Open Subtitles, and OPUS WikiMatrix. To achieve correct
translation results, prompt conditioning was necessary: the tokenizer
had to be explicitly provided with both the source and target
language codes. An example code snippet is shown below:

tokenizer.src_lang = "ko_KR"
tokenizer.tgt_lang = "en_XX"

Table 19 captures the system information on which the model
training was performed.

Component Specification

CPU Intel Xeon @ 2.00GHz (4 cores)
RAM 31 GiB
GPU NVIDIA Tesla P100-PCIE-16GB (16 GB)
CUDA Version 12.6
NVIDIA Driver 560.35.03
Operating System Linux (x86_64)

Table 19. System Specifications

Table 20 captures the development and test pair distribution.

Dataset Development Pairs Test Pairs

AI Hub 8,344 1,500
Sub-1,2,3 18,000 3,00
WikiMatrix 100,000 -

Table 20. Dataset Usage for Training and Evaluation

Table 21 shows the model hyper-parameters fixed for model train-
ings with different dataset.

Hyperparameter Value

Batch size 5
Train/Validate split 0.25
Number of epochs 1

Table 21. Fixed Hyperparameters for Model Training

7.3.5 Results

1. The model was trained on the AI Hub, Open Subtitle and
OPUS WikiMatrix dataset, and performance was assessed using
BLUE[7], BertScore[15] and chrF++[8] evaluation metrics.

2. There was no data leakage, as the test data was never used as part
of development set. Feature processing was performed on both the
development and test datasets to maintain proper domain align-
ment.

3. 1-fold was used to monitor training and validation loss.
4. Max Input Token length of 128 tokens was restricted to avoid

OOM errors.
5. Out-of-distribution evaluation was conducted using both AI Hub,

Open Subtitles, OPUS Wikimatrix datasets to assess generaliza-
tion, with the best performance observed on in-domain data.

6. Early stopping was not required as validation and training loss
were close to each other. And there was not uphill movement of
the validation loss, as in Figure 6, 7

Figure 6 and Figure 7 shows the graph for AI HUB
and WikiMatrix used for development set with Average
Training Loss = 2.0146 and Validation Loss = 2.0908.
The run information is available in Wandb Workspace
(https://wandb.ai/mustqueahmed46-indian-institute-of-science/
Train%20mBART%20on%20Wiki%20Matrix_test_3_100k_pairs/
runs/yg2uv047/workspace?nw=nwusermustqueahmed46).

Figure 6. Training Loss on AI HUB, WikiMatrix.

Figure 7. Validation Loss on AI HUB, WikiMatrix.

mBART base model evaluation scores are in Table 22

Model LR(η) Test BLEU BERTScore chrF++

mBART-50 - AI Hub 0.098 0.8944 28.8

Table 22. Baseline Results

Table 23 shows the metric scores for machine translation per-
formed by mBART-50 model after being trained on different dataset,
with increasing BERTScore.

DEV LR(η) Test BLEU BERTScore chrF++

AI Hub, WikiMtrix 3e-5 AI Hub 0.00046 0.715 2.08
Sub-1 1e-4 Sub-1 0.0022 0.7874 2.15
AI Hub 3e-5 Sub-1 0.0046 0.786 6.14
AI Hub, Sub-3 3e-5 Sub-3 0.0382 0.8277 13.51
AI Hub, Sub-1 1e-4 Sub-1 0.018 0.8503 13.76
AI Hub, Sub-2 3e-5 Sub-2 0.0168 0.8507 13.76
AI Hub 3e-5 Sub-3 0.083 0.8857 26.4
AI Hub 3e-5 AI Hub 0.2297 0.918 45.99

Table 23. Evaluation Results on Different Datasets for mBART-50 with
increasing BertScore

Table 24 shows the best dataset on which the model scores has
increased in comparison with the base model is AI HUB.

Metric mBART-50 (Fine-tuned) mBART-50 (Base)

Test Set AI Hub AI Hub
BLEU 0.2297 0.098
BERTScore 0.918 0.8944
chrF++ 45.99 28.8

Table 24. Comparison of mBART-50 Base and Fine-tuned Model on AI
Hub Test Set

7.3.6 Deployment

The model trained on AI HUB has been deployed in Hugging Face
Space using Gradio UI seee Figure 8. Accepts Korean Text and Out-
puts English texts. Links below for the artifacts.

• HuggingFace Gradio UI: https://
mustqueahmed-musqueahmed-koengage.hf.space/?__theme=
system\&deep_link=F_6TDpOzTe0

Figure 8. Gradio UI for AI HUB trained mBART50

7.3.7 Artifacts

Links below for the artifacts.

• GitHub Repository: https://github.com/Manmohan160/
Deep-Learning-Project-samsung-/tree/mustqueahmed/mBART_
model

• Wandb Logs: https://wandb.ai/
mustqueahmed46-indian-institute-of-science/Train%
20mBART%20on%20Wiki%20Matrix_test_3_100k_pairs/runs/
yg2uv047/workspace?nw=nwusermustqueahmed46

• HuggingFace mBART trained Model: https://huggingface.co/
mustqueahmed/KoEngage_v2.0

• HuggingFace Gradio UI: https://
mustqueahmed-musqueahmed-koengage.hf.space/?__theme=
system\&deep_link=F_6TDpOzTe0

• AI HUB:https://aihub.or.kr/aihubdata/data/view.do?currMenu=
115&topMenu=100&aihubDataSe=realm&dataSetSn=126

• Open Subtitles:https://opus.nlpl.eu/OpenSubtitles/ko&en/
v2024/OpenSubtitles

• OPUS WikiMatrix:https://opus.nlpl.eu/WikiMatrix/en&ko/v1/
WikiMatrix

• mBART-50 base model: https://huggingface.co/facebook/
mbart-large-50-many-to-many-mmt

Suhas Poornachandra

7.4 Dataset and Pre-processing
A. Korean Parallel Corpora (KPC) - Bible Dataset
The Bible component of the Korean Parallel Corpora was processed
to ensure high-quality parallel data for Korean–English translation,
leveraging its structured nature:

1. Noise Filtering: Removed entries containing significant format-
ting issues, meta-data, or non-Biblical content accidentally in-
cluded during extraction.

B. Korean Parallel Corpora (KPC) - News/Park Dataset
The Park dataset, a component of the Korean Parallel Corpora often
derived from news, web, and general text sources, underwent specific
cleaning steps to enhance its utility for Korean–English translation:

1. Language Identification and Filtering: Ensured that Korean
segments contained exclusively full Korean words and removed
entries with mixed languages or significant foreign content (En-
glish words within Korean sentences).

2. Length-based Filtering: Removed sentence pairs where either
the Korean or English segment exceeded a predefined length
threshold (120 words) to manage input length for models.

3. Outlier Removal: Identified and discarded anomalous entries,
such as those with unusual character patterns.

C. JHE Dataset
The JHE dataset was identified as a very clean parallel corpus, re-
quiring no further pre-processing due to its inherent quality. How-
ever, its utility for our comprehensive model training was limited by
two factors: it contained only simple English sentences, and its total
size was constrained to approximately 3,000 sentence pairs. Conse-
quently, this dataset was not included in our training.

Feature KPC Bible Dataset KPC Park Dataset

Domain Religious Texts News, Web, General Text
Language Style Formal, Archaic Formal, Semi-formal
Alignment Quality High (Verse-level) Medium-High

Table 25. Comparison of Dataset Features for KPC Components

Dataset Original Sentence Pairs Sampled Sentence Pairs

KPC Bible 31,104 31,089
KPC News Park 94,124 90,174

Table 26. Dataset Usage for Training and Evaluation (KPC Components)

7.5 SFT and Model Evaluation
All the training and evaluation was done on Kaggle notebook editor
using Free 30hrs GPU given for P100. Inferencing for testing and
metrices evaluation was done on both Kaggle and Google Colab.

For the Supervised Fine-Tuning (SFT) and subsequent model eval-
uation, we adopted a training methodology similar to that detailed in
previous sections of this document. Specifically, the general train-
ing parameters, optimization strategies, and hardware configurations
employed align with the comprehensive descriptions provided in pre-
vious appendixes and individual contribution Page.

7.6 Results
Our evaluation revealed distinct training behaviors between the
mBART and MarianMT models. It was observed that the mBART
model quickly exhibited signs of overfitting after just one epoch
of training, characterized by a consistent increase in validation
losses with subsequent epochs. This rapid overfitting suggests that
mBART, in our experimental setup, struggled to generalize beyond
the initial training pass, potentially due to its pre-trained scale or the
nature of our fine-tuning data.

In contrast, the MarianMT model demonstrated significantly
more stable training dynamics. We were able to train MarianMT
for an extended period of 20–25 epochs without observing an in-
crease in validation loss, indicating better generalization and less
susceptibility to overfitting on our datasets. This robustness allowed
for more prolonged and effective fine-tuning compared to mBART.

Also it was observed that training was getting more stabilized with
lower learning rate.

Model & Train-
ing Data

Evaluation
Dataset

BLEU BERTScore chrF++

MarianMT Base
(Untrained)

News Dataset 0.109 0.900 35.51
Bible Corpus 0.179 0.915 41.45
JHE Dataset 0.379 0.957 59.52

MarianMT
(Trained on
Bible)

News Dataset 0.025 0.845 20.18
Bible Corpus 0.266 0.924 47.54

MBART (Trained
on News)

News Dataset 0.114 0.897 35.19
Bible Corpus 0.076 0.878 28.71
JHE Dataset 0.246 0.934 48.05

Table 27. MarianMT Performance Metrics Across Different Training and
Evaluation Scenarios

Model &
Dataset

Learning
Rate

BLEU BERT F1 chrF++

Base Model JHE
EVAL

- 0.330 0.952 57.31

Base Model
News Park

- 0.115 0.901 38.95

Cleaned Bible

Base (no
LR)

0.104 0.892 32.29

3.00E-05 0.023 0.787 9.99
5.00E-06 0.197 0.903 38.96

Mbart trained on
Cleaned News
Cleaned News

5.00E-6 0.309 0.849 18.40

Table 28. mBART Performance Metrics Across Different Training and
Evaluation Scenarios

7.7 Artifacts
Links below for the artifacts.

• GitHub Repository: https://github.com/Manmohan160/
Deep-Learning-Project-samsung-/commits/Suhas

Pankaja Kumar Samal

7.8 Model Selection

For the KoEngage project, I selected the mBART model
(‘facebook/mbart-large-50-many-to-many-mmt‘) based on its strong
multilingual capabilities and its architecture specifically designed for
sequence-to-sequence tasks like translation.

mBART supports over 50 languages, including Korean and En-
glish, and is pre-trained using a denoising autoencoder objective
across multiple languages. This makes it well-suited for handling
low-resource language pairs where parallel corpora are limited.

A key reason for choosing mBART was its design: it uses both
encoder and decoder components, allowing it to learn bidirectional
context in the source language and generate more fluent output in
the target language. It also requires explicit language tokens, which
provided us with control over source and target translation directions
— a critical feature for multilingual scenarios.

Another practical reason was the strong Hugging Face integration,
which enabled flexible experimentation through prompt condition-
ing, as well as straightforward fine-tuning using the ‘Trainer‘ API.

7.8.1 Findings

• As I studied, found that mBART model does not interpret natural-
language instructions. It strictly relies on the provided source and
target language tokens and translates accordingly, without under-
standing the task context in the prompt.

• Even with a relatively small dataset (under 1,000 sentence pairs),
fine-tuning led to a significant improvement in translation accu-
racy, highlighting mBART’s effectiveness in low-resource settings
when the domain is consistent.

• When using the base model without any fine-tuning, the transla-
tions usually kept the sentence structure correct, but often got the
meaning wrong — especially when the Korean sentence was in-
formal, unclear, or used idioms.

• The translation output improved drastically after fine-tuning. The
model started producing more fluent, grammatically correct, and
semantically appropriate English sentences.

• Fine-tuned outputs closely matched the ground truth references
in both structure and meaning, confirming that the model adapted
well to the limited but domain-specific dataset.

7.8.2 Observation

The model translated best when working with short, clean, stan-
dalone sentences — as seen in the KoEngage dataset of conversation
titles. Using multiple related sentences did not improve results due
to the dataset’s single-sentence structure.

Translation quality was highly sensitive to correct language token
usage. Missing or incorrect tokens often led to incomplete or wrong-
language outputs.

After fine-tuning, the model became better at handling tone and
common expressions, showing that even a small, focused dataset can
significantly improve performance.

7.8.3 Development Setup and Environments

I have developed using both Kaggle and a local Python environment:

• Kaggle: Initial evaluation of the base mBART model was per-
formed using a Kaggle notebook. Due to internet restrictions, eval-
uation metrics (BLEU, BERTScore, chrF++) were installed via

custom wheel files. This setup allowed quick experimentation and
validation of the zero-shot mBART outputs.

• Local VS Code Environment: Full model fine-tuning was con-
ducted locally using Python and VS Code. A virtual environment
was created, and the ‘transformers‘ and ‘datasets‘ libraries were
used for training. This setup provided the flexibility and resources
needed to fine-tune the mBART model effectively.

7.8.4 Training Configuration

The following configuration was used to fine-tune the mBART model
locally using Python and VS Code. No hyperparameter tuning frame-
work was used; all values were manually selected based on empirical
testing.

Parameter Value or Strategy
Learning Rate 2e-5
Scheduler Constant (no warmup or decay)
Warmup Steps 0
Restart Strategy None
Initial Condition Pretrained weights from facebook/mbart-large-50-mmt
Epochs 5
Batch Size 4
Data Shuffling Enabled (per-epoch via HuggingFace Datasets)
Training Scope Entire model fine-tuned
LoRA or Adapter Used No — full parameter fine-tuning applied
Training Time Approx. 18 minutes (on local machine)
GPU Used Local CPU-only training (no dedicated GPU)

Table 29. Training configuration for local fine-tuning of mBART
(KoEngage)

Prompt Conditioning in mBART

In this project, I followed the model’s expected format by prepending
the input with the source language token (Korea) and ensuring the
decoder started with the target language token (English)

So used token conditioning which is required for the model to
function properly and is not considered prompt engineering. It sim-
ply guides the model to perform translation between the specified
languages.

Clarification: Not used Prompt Engineering

It is important to note that I did not use prompt engineering in this
project. As I understood, Prompt engineering typically involves de-
signing natural-language instructions or contextual cues to steer a
model’s behavior.

As I studied, mBART requires language token specification as
part of its architecture. While this format informs the model about
language direction, it does not qualify as prompt engineering in the
broader NLP context.

Challenges Faced & Mitigation

• Data Leakage: Initially, the model was evaluated on the same
data it was trained on, leading to artificially high scores. This was
fixed by using train_test_split() to create a proper 80/20
training-test split.

• Overfitting Risk: Since the dataset had only 849 pairs, there was a
risk of the model memorizing the training data. This was mitigated
by holding out a test set and monitoring BLEU/BERTScore during
training to detect signs of overfitting.

• Language Token Errors: Early experiments failed due to in-
correct language token settings. This was corrected by ex-
plicitly assigning tokenizer.src_lang = ’ko_KR’ and
tgt_lang = ’en_XX’ before training and inference.

• Metric Limitations: BLEU alone did not always reflect transla-
tion quality. BERTScore was added to evaluate semantic similarity
more accurately.

7.8.5 Results

Unlike models evaluated on multi-sentence input context (e.g., TED
talks), the KoEngage project focused solely on single-sentence con-
versational titles. The model was evaluated in two conditions: (1)
Zero-shot inference using the base mBART model, and (2) Super-
vised fine-tuning on a custom Korean-English dataset of 700 training
and 149 test pairs.

Evaluation was performed using BLEU and BERTScore (F1), fo-
cusing on both surface-level n-gram matching and deeper semantic
similarity.

1. The model was trained on a custom dataset of 700 Korean-English
sentence pairs curated from conversation titles. Performance was
evaluated using BLEU and BERTScore on a held-out test set of
149 pairs.

2. The test data was strictly kept separate from training data to pre-
vent data leakage. Both training and test datasets underwent the
same preprocessing pipeline to maintain consistency.

3. A single validation fold was used during training to monitor train-
ing and validation loss across 5 epochs.

4. The input token length was capped at 64 tokens per sentence to
avoid memory issues and maintain model stability during fine-
tuning.

5. Since the dataset was highly domain-specific, no out-of-
distribution evaluation was conducted. However, model general-
ization was indirectly tested by visually inspecting varied sentence
styles within the test set.

6. Early stopping was not applied, as validation loss closely tracked
training loss, and no overfitting pattern (such as divergence or sud-
den spikes) was observed during training.

7. The final model achieved a BLEU score of 97.81 and a
BERTScore (F1) of 0.9981 on the held-out test set — indicating
strong surface-level and semantic alignment with reference trans-
lations.

Metric mBART-50 (Fine-tuned) mBART-50 (Base)
Test Set KoEngage (149 samples) KoEngage (149 samples)
BLEU 97.81 64.70
BERTScore (F1) 0.9981 0.9743
chrF++ — —

Table 30. Comparison of mBART-50 Base and Fine-tuned Model on
KoEngage Test Set

Key Insights

• Fine-tuning made a huge difference — the BLEU score improved
by over 30 points, meaning the translated sentences became much
closer to the actual references in terms of wording and structure.

• The BERTScore (F1) went up to 0.9981, which shows that the
meaning of the translated sentences matched the reference almost
perfectly.

• Even though the dataset was small, the model performed really
well after fine-tuning. This is likely because the data was con-
sistent and focused (short conversation titles), which helped the
model learn effectively.

• Since KoEngage only had individual titles, no experiments with
multi-sentence input (like giving 3 sentences at once) were done
— so comparisons on context-based performance don’t apply
here.

Artifacts

The following artifacts were developed and used during the KoEn-
gage project:

• Dataset Files

– conversation_titles.csv — Raw Korean-English
sentence pairs (source file).

– koengage_dataset.csv — Cleaned dataset used for
training (700 pairs).

– koengage_testset.csv — Held-out test set used for
evaluation (149 pairs).

• Script Files

– train.py — Script used to fine-tune the mBART model us-
ing Hugging Face’s Trainer API.

– evaluate_finetuned_metrics.py — Evaluation
script computing BLEU and BERTScore.

– save_model.py — Script to save the fine-tuned model
checkpoint.

• Model Outputs

– conversation_titles_with_translation.csv
— Output from zero-shot mBART inference.

– conversation_titles_with_finetuned_translation.csv
— Output from the fine-tuned model.

• Evaluation Metrics

– BLEU Score: 97.81

– BERTScore (F1): 0.9981

– chrF++: Not computed due to low variation in character-level
structure across test set.

• Environment

– Local Python environment using VS Code and virtualenv
(koengage_env).

– Libraries used: transformers, datasets, torch,
evaluate, sacrebleu, bert_score.

• Code Repository

– GitHub Repository: https://github.com/Manmohan160/
Deep-Learning-Project-samsung-/tree/pankajsamal

• Reference/Whitepapers

– mBART Architecture: https://arxiv.org/abs/2001.08210

Manmohan Kumar

7.9 Dataset and Pre-processing
A. Cleaned Korean–English Dataset
The dataset was created by combining and processing Korean–
English parallel sentence pairs from diverse open-source corpora.
The cleaning pipeline involved:

1. Deduplication: Removed exact duplicate sentence pairs across
the corpus to reduce redundancy.

2. Noise Removal: Filtered out sentences with excessive punctua-
tion, HTML tags, or encoding errors.

3. Length Filtering: Removed sentence pairs where either side ex-
ceeded a token length threshold of 128.

4. Tokenization Check: Ensured that both Korean and English text
were properly segmented for tokenization using the MarianMT
tokenizer.

5. Train-Validation-Test Split: The cleaned dataset was split into 3
parts:

• clean_train.csv (Training set)

• clean_valid.csv (Validation set)

• clean_test.csv (Test set)

Dataset Total Pairs Avg. Korean Length Avg. English Length

clean_train.csv 20,000 15.8 14.2
clean_valid.csv 2,500 15.7 14.0
clean_test.csv 2,500 15.5 14.1

Table 31. Dataset Statistics After Cleaning and Splitting

7.10 Supervised Fine-Tuning (SFT)
The MarianMT model Helsinki-NLP/opus-mt-ko-en was
used as the base model for fine-tuning Korean → English transla-
tion. Fine-tuning was conducted locally on a MacBook Air M4 with
16 GB RAM using the Hugging Face ‘transformers‘ Trainer API.

• Model: MarianMT (pretrained)
• Epochs: 3
• Learning Rate: 2e-5
• Batch Size: 4
• Optimizer: AdamW with weight decay
• Evaluation Strategy: BLEU on validation set

Training logs showed decreasing loss and stable
learning rate scheduling. The model was saved as
fine_tuned_marianmt_ko_en.

7.11 Evaluation
The evaluation was performed on the clean_test.csv file using
three standard metrics:

• BLEU using ‘evaluate.load("sacrebleu")‘
• BERTScore using ‘evaluate.load("bertscore")‘
• chrF++ using ‘evaluate.load("chrf")‘

Metric Score

BLEU Score 0.2364
BERTScore (F1) 0.7481
chrF++ 7.4129

Table 32. Evaluation Results on Test Set (clean_test.csv)

7.12 Artifacts
The following artifacts were developed and used during the Ko-En
translation project.

• Dataset Files

– trainkoen.csv¯RawKorean −
Englishparallelcorpususedfortraining(cleaned).

––• Script Files

– finetunetranslation.py¯Scriptusedtofine −
tunetheMarianMTmodelusingHuggingFace′sSeq2SeqTrainerAPI.

––• Model Outputs

– translationoutput/generatedtranslations.csv¯Translationsproducedbythefine−
tunedMarianMTmodel.

• Evaluation Metrics

– BLEU Score: N/A (error in metric module execution)

– BERTScore (F1): 0.7481

– chrF++: 7.4129

• Environment

– Local Python environment using VS Code and virtualenv
(sample_env).

– Libraries used: transformers, datasets, evaluate,
sacrebleu, bert_score, pandas, torch.

– Platform: MacBook Air (M4, 16GB RAM)

• Code Repository

– https://github.com/Manmohan160/
Deep-Learning-Project-samsung-/tree/manmohan

– Model Checkpoint: fine_tuned_marianmt_ko_en/

– Test Output: translation_output/generated_translations.csv

– Evaluation Script: evaluate_translations.py

