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Abstract

Training offline RL models using visual inputs poses two significant challenges, i.e.,
the overfitting problem in representation learning and the overestimation bias for
expected future rewards. Recent work has attempted to alleviate the overestimation
bias by encouraging conservative behaviors. This paper, in contrast, tries to build
more flexible constraints for value estimation without impeding the exploration
of potential advantages. The key idea is to leverage off-the-shelf RL simulators,
which can be easily interacted with in an online manner, as the “test bed” for offline
policies. To enable effective online-to-offline knowledge transfer, we introduce
CoWorld, a model-based RL approach that mitigates cross-domain discrepancies
in state and reward spaces. Experimental results demonstrate the effectiveness of
CoWorld, outperforming existing RL approaches by large margins.

1 Introduction

Learning control policies with visual observations can be challenging due to high interaction costs
with the physical world. Offline reinforcement learning (RL) is a promising approach to address
this challenge [11, 21, 37, 3, 65]. However, the direct use of current offline RL algorithms in visual
control tasks presents two primary difficulties. Initially, offline visual RL is more prone to overfitting
issues during representation learning, as it involves extracting hidden states from the limited, high-
dimensional visual inputs. Moreover, like its state-space counterpart, offline visual RL is susceptible
to the challenge of value overestimation, as we observe from existing methods [22, 16].
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Figure 1: Our approach for offline visual RL.

Improving offline visual RL remains an under-
explored research area. We aim to balance be-
tween overestimating and over-conservatism
of the value function to avoid excessively pe-
nalizing the estimated values beyond the of-
fline data distribution. Intuitively, we should
not overly constrain the exploration with po-
tential advantages. Our basic idea, as illus-
trated in Figure 1, is to leverage readily avail-
able online simulators for related (not neces-
sarily identical) visual control tasks as aux-
iliary source domains, so that we can frame
offline visual RL as an offline-online-offline
transfer learning problem to learn mildly con-
servative policies.
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Figure 2: To address value overestimation in offline RL (a), we can directly penalize the estimated
values beyond the distribution of offline data, which may hinder the agent’s exploration of potential
states with high rewards (b). Unlike existing methods, CoWorld trains a cross-domain critic model in
an online auxiliary domain to reassess the offline policy (c), and regularizes the target values with
flexible constraints (d). The feasibility of this approach lies in the domain alignment techniques
during the world model learning stage.

We present a novel model-based transfer RL approach called Collaborative World Models (CoWorld).
Specifically, we train separate world models and RL agents for source and target domains, each with
domain-specific parameters. To mitigate discrepancies between the world models, we introduce a
novel representation learning scheme comprising two iterative training stages. These stages, as shown
in Figure 1, facilitate the alignment of latent state distributions (offline to online) and reward functions
(online to offline), respectively. By doing so, the source domain critic can serve as an online “test
bed” for assessing the target offline policy. It is also more “knowledgeable” as it can actively interact
with the online environment and gather rich information. Another benefit of the domain-collaborative
world models is the ability to alleviate overfitting issues of offline representation learning, leading to
more generalizable latent states derived from limited offline visual data.

For behavior learning in the offline dataset, we exploit the knowledge from the source model and
introduce a mild regularization term to the training objective of the target domain critic model. This
regularization term encourages the source critic to reevaluate the target policy. As illustrated in
Figure 2, it allows for flexible constraint on overestimated values of trajectories that receive low
values from the “knowledgeable” source critic. Conversely, if a policy yields high values from the
source critic, we prefer to retain the original estimation by the offline agent. This approach is feasible
because the source critic has been aligned with the target domain during world model learning.

We showcase the effectiveness of CoWorld in offline visual control tasks across the Meta-World,
RoboDesk, and DeepMind Control benchmarks. Our approach is shown to be readily extendable to
scenarios with multiple source domains. It effectively addresses value overestimation by transferring
knowledge from auxiliary domains, even in the presence of diverse physical dynamics, action spaces,
reward scales, and visual appearances. In summary, our work brings the following contributions:

• We innovatively frame offline visual RL as a domain transfer problem. The fundamental idea is to
harness cross-domain knowledge to tackle representation overfitting and value overestimation in
offline visual control tasks.

• We present CoWorld, a method that follows the offline-online-offline paradigm, incorporating
specific techniques of world model alignment and flexible value constraints.

2 Problem Setup

We consider offline visual reinforcement learning as a partially observable Markov decision process
(POMDP) that aims to maximize the cumulative reward in a fixed target dataset B(T ). We specif-
ically focus on scenarios where auxiliary environments are accessible, enabling rich interactions
and efficient online data collection. The goal is to improve the offline performance of the target
POMDP

〈
O(T ),A(T ), T (T ),R(T ), γ(T )

〉
through knowledge transfer from the source POMDPs〈

O(S),A(S), T (S),R(S), γ(S)
〉
. These notations respectively denote the space of visual observations,

the space of actions, the state transition probabilities, the reward function, and the discount factor.

For example, in one of our experiments, we employ RoboDesk as the offline target domain and various
tasks from Meta-World as the source domains. As illustrated in Table 1, these two environments
present notable distinctions in physical dynamics, action spaces, reward definitions, and visual
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Table 1: RoboDesk (target domain) vs. Meta-World (auxiliary source domain).

Source: Meta-World Target: RoboDesk Similarity / Difference

Task Window Close Open Slide Related manipulation tasks
Dynamics Simulated Sawyer robot arm Simulated Franka robot arm Different
Action space Box(-1, 1, (4,), float64) Box(-1, 1, (5,), float32) Different
Reward scale [0, 1] [0, 10] Different
Observation Right-view images Top-view images Different view points

appearances as the observed images are from different camera views. Our priority is to address
domain discrepancies to enable cross-domain behavior learning.

3 Method

In this section, we present the technical details of CoWorld, which consists of a pair of world
models {Mϕ′ ,Mϕ}, actor networks {πψ′ , πψ}, and critic networks {vξ′ , vξ}, where {ϕ, ψ, ξ}
and {ϕ′, ψ′, ξ′} are respectively target and source domain parameters. As potential cross-domain
discrepancies may exist in all elements of {O,A, T ,R}, the entire training process is organized into
three iterative stages, following an offline-online-offline transfer learning framework:

A) Offline-to-online state alignment: Train the offline world model Mϕ by aligning its state
space with that of the source world model Mϕ′ .

B) Online-to-offline reward alignment: Train Mϕ′ and {πψ′ , vξ′} in the online environment by
incorporating the target reward information.

C) Online-to-offline value constraint: Train the target offline-domain agent {πψ, vξ} with value
constraints provided by the source critic vξ′ .

3.1 Offline-to-Online State Alignment

Source model pretraining. We start with a source domain warm-up phase employing a model-
based actor-critic method known as DreamerV2 [16]. To facilitate cross-domain knowledge transfer,
we additionally introduce a state alignment module, which is denoted as g(·) and implemented using
the softmax operation. The world model Mϕ′ consists of the following components:

Recurrent transition: h(S)
t = fϕ′(h

(S)
t−1, z

(S)
t−1, a

(S)
t−1) Image encoding: e

(S)
t = eϕ′(o

(S)
t )

Posterior state: z
(S)
t ∼ qϕ′(h

(S)
t , e

(S)
t ) Prior state: ẑ

(S)
t ∼ pϕ′(h

(S)
t )

Reconstruction: ô
(S)
t ∼ pϕ′(h

(S)
t , z

(S)
t ) Reward prediction: r̂

(S)
t ∼ rϕ′(h

(S)
t , z

(S)
t )

Discount factor: γ̂
(S)
t ∼ pϕ′(h

(S)
t , z

(S)
t ) State alignment target: s(S)t = g(e

(S)
t ),

(1)

where ϕ′ represents the combined parameters of the world model. We train Mϕ′ on the dynamically
expanded source domain experience replay buffer B(S) by minimizing

L(ϕ′) = Eqϕ′
[ N∑
t=1

− ln pϕ′(o
(S)
t | h(S)

t , z
(S)
t )︸ ︷︷ ︸

image reconstruction

− ln rϕ′(r
(S)
t | h(S)

t , z
(S)
t )︸ ︷︷ ︸

reward prediction

− ln pϕ′(γ
(S)
t | h(S)

t , z
(S)
t )︸ ︷︷ ︸

discount prediction

+ KL
[
qϕ′(z

(S)
t | h(S)

t , o
(S)
t ) ∥ pϕ′(ẑ

(S)
t | h(S)

t )
]

︸ ︷︷ ︸
KL divergence

]
.

(2)

We train the source actor πψ′(ẑt) and critic vξ′(ẑt) with the respective objectives of maximizing and
estimating the expected future rewards Epϕ′ ,pψ′ [

∑
τ≥t γ̂τ−tr̂τ ] generated by Mϕ′ . Please refer to

Appendix A.3 for more details. We deploy πψ′ to interact with the auxiliary environment and collect
new data for further world model training.

State alignment. A straightforward transfer learning solution is to train the target agent in the
offline dataset upon the checkpoints of the source agent. However, it may suffer from a potential
mismatch issue due to the discrepancy in tasks, visual observations, physical dynamics, and action
spaces across various domains. This becomes more severe when the online data is collected from
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Algorithm 1 The training scheme of CoWorld.
1: Require: Offline dataset B(T ).
2: Initialize: Parameters of the source model {ϕ′, ψ′, ξ′} and the target model {ϕ, ψ, ξ}.
3: Pretrain the source agent and collect a replay buffer B(S).
4: while not converged do
5: for each step in {1 : K1} do ▷ In the offline domain
6: Sample {(o(T )

t , a
(T )
t , r

(T )
t )}Nt=1 ∼ B(T ).

7: Train the target world model Mϕ using Eq. (3). ▷ Offline-to-online state alignment
8: Generate {(z(T )

i , a
(T )
i )}t+Hi=t using πψ and Mϕ. ▷ Behavior learning with constraint

9: Train the critic vξ using Eq. (6) over {(z(T )
i , a

(T )
i )}t+Hi=t .

10: Train the actor πψ using Eq. (7) over {(z(T )
i , a

(T )
i )}t+Hi=t .

11: end for
12: for each step in {1 : K2} do ▷ In the online domain
13: Sample {(o(S)t , a

(S)
t , r

(S)
t )}Nt=1 ∼ B(S).

14: Sample {(o(T )
t , a

(T )
t , r

(T )
t )}Nt=1 ∼ B(T ). ▷ Online-to-offline reward alignment

15: Relabel the source rewards {r̃(S)t }Nt=1 using Eq. (4).
16: Train Mϕ′ using Eq. (2) combined with Eq. (5).
17: Generate {(z(S)i , a

(S)
i )}t+Hi=t using πψ′ and Mϕ′ . ▷ Source domain behavior learning

18: Train πψ′ and vξ′ over the imagined {(z(S)i , a
(S)
i )}t+Hi=t .

19: Use πψ′ to collect new source data and append B(S).
20: end for
21: end while

environments that differ from the offline dataset (e.g., Meta-World → RoboDesk). We tackle this
issue by separating the parameters of the source and the target agents while explicitly aligning their
latent state spaces. Concretely, the target world model Mϕ has an identical network architecture to
the source model Mϕ′ . We feed the same target domain observations sampled from B(T ) into these
models and close the distance of eϕ′(o

(T )
t ) and eϕ(o

(T )
t ). We optimize Mϕ by minimizing

L(ϕ) = Eqϕ
[ N∑
t=1

− ln pϕ(o
(T )
t | h(T )

t , z
(T )
t )︸ ︷︷ ︸

image reconstruction

− ln rϕ(r
(T )
t | h(T )

t , z
(T )
t )︸ ︷︷ ︸

reward prediction

− ln pϕ(γ
(T )
t | h(T )

t , z
(T )
t )︸ ︷︷ ︸

discount prediction

+ β1KL
[
qϕ(z

(T )
t | h(T )

t , o
(T )
t )∥ pϕ(ẑ(T )

t | h(T )
t )

]
︸ ︷︷ ︸

KL divergence

+ β2KL
[
sg(g(eϕ′(o

(T )
t ))) ∥ g(eϕ(o(T )

t ))
]

︸ ︷︷ ︸
domain alignment loss

]
,

(3)

where sg(·) indicates gradient stopping and we use the encoding from the source model as the state
alignment target. As the source world model can actively interact with the online environment
and gather rich information, it keeps the target world model from overfitting the offline data. The
importance of this loss term is governed by β2. We examine its sensitivity in the experiments.

3.2 Online-to-Offline Reward Alignment

To enable the source agent to value the target policy, it is essential to provide it with prior knowledge
of the offline task. To achieve this, we train the source reward predictor rϕ′(·) using mixed data
from both of the replay buffers B(S) and B(T ). Through the behavior learning on source domain
imaginations, the target-informed reward predictor enables the source RL agent to assess the imagined
states produced by the target model and provide a flexible constraint to target value estimation (as we
will discuss in Section 3.3).

Specifically, we first sample a target domain data trajectory {(o(T )
t , a

(T )
t , r

(T )
t )}Tt=1 from B(T ) (Line

14 in Alg. 1). We then use the source world model parametrized by ϕ′ to extract corresponding latent
states and relabel the target-informed source reward (Line 15 in Alg. 1):

h̃t = fϕ′(h̃t−1, z̃t−1, a
(T )
t−1) ẽt = eϕ′(o

(T )
t )

z̃t ∼ qϕ′(h̃t, ẽt) r̃
(S)
t = (1− k) · rϕ′(h̃t, z̃t) + k · r(T )

t ,
(4)

where k is the target-informed reward factor, which acts as a balance between the true target reward
r
(T )
t and the output of the source reward predictor rϕ′(·) provided with target states. It is crucial to
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emphasize that using the target data as inputs to compute rϕ′(·) is feasible due to the alignment of
the target state space with the source state space.

We jointly use the relabeled reward r̃(S)t and the original source domain reward r(S)t sampled from
B(S) to train the source reward predictor. This training is achieved by minimizing a maximum
likelihood estimation (MLE) loss:

Lr(ϕ′) = η · EB(S)

[ N∑
t=1

− ln rϕ′(r
(S)
t |h(S)

t , z
(S)
t )

]
+ (1− η)EB(T )

[ N∑
t=1

− ln rϕ′(r̃
(S)
t |h(T )

t , z
(T )
t )

]
, (5)

where the second term measures the negative log-likelihood of observing the relabelled source reward
r̃
(S)
t . η represents a hyperparameter that gradually decreases from 1 to 0.1 throughout this training

stage. Intuitively, η controls the progressive adaptation of the well-trained source reward predictor to
the target domain with limited target reward supervision. We integrate Eq. (5) into Eq. (2) to train the
entire world model Mϕ′ for the source domain agent (Line 16 in Alg. 1) and subsequently perform
behavior learning to enable the source critic to assess the target policy (Lines 17-19 in Alg. 1).

3.3 Min-Max Value Constraint

In the behavior learning phase of the target agent (Lines 8-10 of Alg. 1), we mitigate value
overestimation in the offline dataset by introducing a min-max regularization term to the objective
function of the target critic model vξ. Initially, we use the auxiliary source critic vξ′ to estimate the
value function of the imagined target states. Following that, we train vξ by additionally minimizing
the maximum value among the estimates provided by source and target critics:

L(ξ) = Epϕ,pψ
[H−1∑
t=1

1

2

(
vξ(ẑ

(T )
t )− sg

(
V

(T )
t

))2

︸ ︷︷ ︸
value regression

+ αmax
(
vξ(ẑ

(T )
t ), sg

(
vξ′(ẑ

(T )
t )

))
︸ ︷︷ ︸

value constraint

]
, (6)

where V (T )
t incorporates a weighted average of reward information over an n-step future horizon.

The first term in the provided loss function fits cumulative value estimates (whose specific formulation
can be located in Appendix A.3), while the second term regularizes the overestimated values for out-
of-distribution data in a mildly conservative way. The hyperparameter α represents the importance of
the value constraint. The sg(·) operator indicates that we stop the gradient to keep the source critic
from being influenced by the regularization term.

This approach provides flexibly conservative value estimations, finding a balance between mitigating
overestimation and avoiding excessive conservatism in the value function. When the target critic
overestimates the value function, the source critic is less vulnerable to the value overestimation
problem as it is trained with rich interaction data. Thus, it is possible to observe vξ(ẑ

(T )
t ) > vξ′(ẑ

(T )
t ),

and our approach is designed to decrease the output of vξ to the output of vξ′ . This prevents the target
critic from overestimating the true value. Conversely, when the source critic produces greater values
in vξ′(ẑ

(T )
t ), the min-max regularization term does not contribute to the training of the target critic

vξ. This encourages the exploration of potentially advantageous states within the imaginations of
the target world model. In line with DreamerV2 [16], we train the target actor πψ by maximizing a
REINFORCE objective function with entropy regularization, allowing the gradients to backpropagate
directly through the learned dynamics:

L(ψ) = Epϕ,pψ
H−1∑
t=1

(βH[a
(T )
t | ẑ(T )

t ]︸ ︷︷ ︸
entropy regularization

+ ρV
(T )
t︸ ︷︷ ︸

dynamics backprop

+(1− ρ) lnπψ(â
(T )
t | ẑ(T )

t )sg(V (T )
t − vξ(ẑ

(T )
t )︸ ︷︷ ︸

REINFORCE

).

(7)
As previously mentioned, V (T )

t involves a weighted average of reward information over an n-step
future horizon, with detailed formulation provided in Appendix A.3.

Furthermore, it is crucial to note that CoWorld can readily be extended to scenarios with multiple
source domains by adaptively selecting a useful task as the auxiliary domain. This extension is easily
achieved by measuring the distance of the latent states between the target domain and each source
domain. For technical details of the adaptive source domain selection, please refer to Appendix C.
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Table 2: Mean episode returns and standard deviations of 10 episodes over 3 seeds on Meta-World.

Model BP→ DC∗ DC → BP BT→ WC BP→ HP WC→ DC HP→ BT Avg.

Offline DV2 2143±579 3142±533 3921±752 278±128 3899±679 3002±346 2730
DrQ + BC 567±19 587±68 623±85 1203±234 134±64 642±99 626
CQL 1984±13 867±330 683±268 988±39 577±121 462±67 927
CURL 1972±11 51±17 281±73 986±47 366±52 189±10 641
LOMPO 2883±183 446±458 2983±569 2230±223 2756±331 1961±287 1712

DV2 Finetune 3500±414 2456±661 3467±1031 3702±451 4273±1327 3499±713 3781
DV2 Finetune + EWC 1566±723 167±86 978±772 528±334 2048±1034 224±147 918
LOMPO Finetune 259±191 95±53 142±70 332±452 3698±1615 224±88 792

CoWorld (Best-Source) 3967±312 3623±543 4521±367 4570±677 4845±14 3889±159 4241
CoWorld (Multi-Source) 3864±352 3573±541 4507±59 4460±783 4678±137 3626±275 4094

4 Experiments

4.1 Experimental Setups

Datasets. We evaluate CoWorld across three visual control environments, i.e., Meta-World [54],
RoboDesk [18], and DeepMind Control Suite (DMC) [47], including both cross-task and cross-
environment setups (Meta-World → RoboDesk). Inspired by D4RL [9], we build offline datasets
of medium-replay quality using DreamerV2 [16]. The datasets comprise all the samples in the
replay buffer collected during the training process until the policy attains medium-level performance,
defined as achieving 1/3 of the maximum score that the DreamerV2 agent can achieve. Please refer
to Appendix B.2 for further results of CoWorld trained with medium-expert offline data.

Compared methods. We compare CoWorld with both model-based and model-free RL approaches,
including Offline DV2 [25], DrQ+BC [25], CQL [25], CURL [22], and LOMPO [39]. In addi-
tion, we introduce the DV2 Finetune method, which involves taking a DreamerV2 [16] model
pretrained in the online source domain and subsequently finetuning it in the offline target dataset.
Furthermore, DV2 Finetune can be integrated with the continual learning method, Elastic Weight
Consolidation (EWC) [19], to regularize the model for preserving source domain knowledge, i.e.,
Finetune+EWC. Please refer to Appendix E for more details.

4.2 Cross-Task Experiments on Meta-World

Meta-World is an open-source simulated benchmark designed for solving a wide range of robot
manipulation tasks. We select 6 tasks as either the offline dataset or potential candidates for the online
auxiliary domain. These tasks include: Door Close (DC∗), Button Press (BP), Window Close (WC),
Handle Press (HP), Drawer Close (DC), Button Topdown (BT).

Main results. As shown in Table 2, we compare the results of CoWorld with other models on
Meta-World. CoWorld achieves the best performance in all 6 tasks. Notably, it outperforms Offline
DV2 [25], a method also built upon DreamerV2 and specifically designed for offline visual RL. For
the online-to-offline finetuning models, DV2 Finetune achieves the second-best results by leveraging
transferred knowledge from the auxiliary source domain. However, we observe that its performance
experiences a notable decline in scenarios (e.g., Meta-World → RoboDesk) involving significant
data distribution shifts between the source and the target domains in visual observation, physical
dynamics, reward definition, or even the action space of the robots. Another important baseline model
is DV2 Finetune+EWC, which focuses on mitigating the catastrophic forgetting of the knowledge
obtained in source domain pretraining. Nevertheless, without additional model designs for domain
adaptation, retaining source domain knowledge may eventually lead to a decrease in performance in
the target domain. The LOMPO model suffers from the negative transfer effect when incorporating a
source pretraining stage. It achieves an average return of 1,712 when it is trained from scratch in the
offline domain while achieving an average return of 792 for online-to-offline finetuning. It implies
that a naïve transfer learning method may degenerate the target performance due to unexpected bias.

Results with a random source domain. Given that we present the best-source results in Table 2,
where we manually select one source task from Meta-World, one may cast doubt on the influence of
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Figure 4: Quantitative results in domain transfer scenarios of Meta-World → RoboDesk.

domain discrepancies between the auxiliary environment and the target offline dataset. In Figure 3
(Left), the transfer matrix of CoWorld among the 6 tasks of Meta-World is presented, where values
greater than 1 indicate positive domain transfer effects. Notably, there are challenging cases with
weakly related source and target tasks. In the majority of cases (26 out of 30), CoWorld outperforms
Offline DV2, as illustrated in the heatmap.

Results with multiple source domains. It is crucial to note that CoWorld can be easily extended
to scenarios with multiple source domains by adaptively selecting a useful task as the auxiliary
domain. From Table 2, we can see that the multi-source CoWorld achieves comparable results to
the models trained with manually designated online simulators. In Figure 3 (Left), multi-source
CoWorld achieves positive improvements over Offline DV2 in all cases, approaching the best results
of models using each source task as the auxiliary domain. In Figure 3 (Right), it also consistently
outperforms the DV2 Finetune baseline model. These results demonstrate our approach’s ability to
execute without strict assumptions about domain similarity and its ability to automatically identify a
useful online simulator from a set of both related and less related source domains.

4.3 Cross-Environments: Meta-World to RoboDesk

To explore cross-environment transfer with more significant domain gaps, we employ four tasks
from RoboDesk to construct individual offline datasets, i.e., Push Button, Open Slide, Drawer Open,
Upright Block off Table. These tasks require handling randomly positioned objects with image inputs.
Table 1 presents the differences between the two environments in physical dynamics, action space,
reward definitions, and visual appearances.

Figure 4 presents quantitative comparisons, where CoWorld outperforms Offline DV2 and DV2
Finetune by large margins. For the best-source experiments, we manually select one source domain
from Meta-World. For the multi-source experiments, we jointly use all Meta-World tasks as the
source domains. In contrast to prior findings, directly finetuning the source world model in this
cross-environment setup, where there are more pronounced domain discrepancies, does not result
in significant improvements in the final performance. In comparison, CoWorld more successfully
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Table 3: Mean rewards and standard deviations of 10 episodes in offline DMC over 3 seeds.

Model WW → WD WW → WU WW → WN CR → CD CR → CU CR → CN Avg.

Offline DV2 435±22 139±4 214±4 243±7 3±1 51±4 181
DrQ+BC 291± 10 299±15 318±40 663±15 202±12 132±33 355
CQL 46±19 64±32 29±2 2±1 52 ±57 111±157 51
CURL 43±5 21±3 23±3 26±7 4±2 11±4 21
LOMPO 462±87 260±21 460±9 395±52 46±19 120±4 291

DV2 Finetune 379±23 354±29 407±37 702±41 208±22 454±82 417
LOMPO Finetune 209±21 141±27 212±9 142±29 17±11 105±12 137
CoWorld 629±9 407±141 426±32 745±28 225±20 493±10 488

addresses these challenges by leveraging domain-specific world models and RL agents, and explicitly
aligning the state and reward spaces across domains. We also showcase the performance of multi-
source CoWorld, which achieves comparable results to the best-source model that exclusively uses
our designated source domain.

4.4 Cross-Dynamics Experiments on DMC

DMC is a widely explored benchmark for continuous control. We use the Walker and Cheetah as the
base agents and make modifications to the environment to create a set of 8 distinct tasks, i.e., Walker
Walk (WW), Walker Downhill (WD), Walker Uphill (WU), Walker Nofoot (WN), Cheetah Run (CR),
Cheetah Downhill (CD), Cheetah Uphill (CU), Cheetah Nopaw (CN). Particularly, Walker Nofoot
is a task in which we cannot control the right foot of the Walker agent. Cheetah Nopaw is a task in
which we cannot control the front paw of the Cheetah agent.

We apply the proposed multi-source domain selection method to build the domain transfer settings
shown in Table 3. It is worth noting that CoWorld outperforms the other compared models in 5 out
of 6 DMC offline datasets, and achieves the second-best performance in the remaining task. On
average, it outperforms Offline DV2 by 169.6% and outperforms DrQ+BC by 37.5%. Corresponding
qualitative comparisons can be found in Appendix B.1.

4.5 Further Analyses

Ablation studies. We conduct a series of ablation studies to validate the effectiveness of state space
alignment (Stage A), reward alignment (Stage B), and min-max value constraint (Stage C). We show
corresponding results on the offline Push Green Button dataset from RoboDesk in Figure 5(a). The
performance experiences a significant decline when we abandon each training stage in CoWorld.

Can CoWorld address value overestimation? We evaluate the values estimated by the critic
network of CoWorld on the offline Meta-World datasets when the training process is finished. In
Figure 5(b), we compute the cumulative value predictions throughout 500 steps. The true value
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Table 4: Experiments with significantly distinct observation spaces across domains. We use low-
dimensional state data as inputs for the RL agents in the source domain and high-dimensional image
observations in the target domain. MW represents Meta-World and RD stands for RoboDesk.

Method MW: Button Press → RD: Push Button MW: Window Close → RD: Open Slide

Offline DV2 347 ± 24 156 ± 46
CoWorld 393 ± 64 209 ± 43

Table 5: Experiments with significantly distinct reward formations across domains. We use sparse
rewards in the source domain while maintaining the dense rewards in the target domain.

Method MW: Button Press → RD: Push Button MW: Window Close → RD: Open Slide

DV2 Finetune 314 ± 51 173 ± 39
CoWorld 335 ± 28 184 ± 32

is determined by calculating the discounted sum of the actual rewards obtained by the actor in the
same 500-steps period. We observe that existing approaches, including Offline DV2 and CQL, often
overestimate the value functions in the offline setup. The baseline model “CoWorld w/o Max” is a
variant of CoWorld that incorporates a brute-force constraint on the critic loss. It reformulates Eq. (6)
as

∑H−1
t=1

1
2 (vξ(ẑt)− sg(Vt))2 + αvξ(ẑt). As observed, this model tends to underestimate the true

value function, which can potentially result in overly conservative policies as a consequence. In
contrast, the values estimated by CoWorld are notably more accurate and more akin to the true values.

Dependence of CoWorld to domain similarities. We further investigate the dependence of
CoWorld on domain similarity from the perspectives of different observation spaces and reward
spaces. We first explore how CoWorld performs when we only have source domains with significantly
distinct observation spaces from the target domain. As illustrated in Table 4, the agent receives
low-dimensional state inputs in the source domain (Meta-World) and high-dimensional images in the
target domain (RoboDesk). We can see that CoWorld outperforms Offline DV2 by 13.3% and 34.0%
due to the ability to leverage low-dimensional source data effectively. Notably, the finetuning method
(DV2 Finetune) is not applicable in this scenario. In Table 5, we also observe that CoWorld benefits
from a source domain, even with a significantly different reward signal. Unlike previous experiments,
we use a sparse reward function for the source Meta-World tasks. It is set to 500 only upon task
completion and remains 0 before that. The experimental results demonstrate that although excessively
sparse rewards can hinder the training process, CoWorld still achieves an average performance gain
of 6.6% compared to DV2 Finetune under the same setting.

Comparison to jointly training one world model across domains. Notably, CoWorld is imple-
mented with separate world models for the source and target domains. Alternatively, we can employ
a jointly trained world model across various domains for more efficient memory usage. In Table 6,
we compare the results from the original CoWorld and “Multi-Task DV2”. Multi-Task DV2 involves
training DreamerV2 on both offline and online data with a joint world model and separate actor-critic
models. CoWorld consistently performs better. Intuitively, using separate world models allows
the source and target domains to have different physical dynamics, observation spaces, or reward
formations, as the scenarios shown in Table 4 and Table 5.

Table 6: Comparison to jointly training one world model across domains (Multi-Task DV2).

Method MW: Button Press → RD: Push Button MW: Window Close → RD: Open Slide

Multi-Task DV2 342 ± 29 173 ± 22
CoWorld 428 ± 42 202 ± 19

Hyperparameter sensitivity. We conduct sensitivity analyses on Meta-World (DC → BP). From
Figure 6, we observe that when β2 for the domain KL loss is too small, the state alignment between the
source and target encoders becomes insufficient, hampering the transfer learning process. Conversely,
if β2 is too large, the target encoder becomes excessively influenced by the source encoder, resulting
in a decline in performance. We also find that the target-informed reward factor k plays a crucial role
in balancing the influence of source data and target reward information, which achieves a consistent
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Figure 6: Sensitivity analysis of the hyperparameters on Meta-World (DC → BP).

improvement over DV2 Finetune (2456± 661) in the range of [0.1, 0.7]. Moreover, we discover that
the hyperparameter α for the target value constraint performs well within [1, 3], while an excessively
larger α may result in value over-conservatism in the target critic.

5 Related Work

Learning control policies from images is critical in real-world applications. Existing approaches
can be grouped by the use of model-free [22, 41, 44, 48, 36] or model-based [15, 14, 16, 43, 35, 13,
28, 29, 61, 51] RL algorithms. In offline RL, agents leverage pre-collected offline data to optimize
policies and encounter challenges associated with value overestimation [23]. Previous methods mainly
suggest taking actions that were previously present in the offline dataset or learning conservative value
estimations [11, 21, 4, 55, 53, 40]. Recent approaches have introduced specific techniques to address
the challenges associated with offline visual RL [27, 7, 23, 2, 39, 52, 43, 57, 5, 25]. Rafailov et al.
[39] proposed to handle high-dimensional observations with latent dynamics models and uncertainty
quantification. Cho et al. [5] proposed synthesizing the raw observation data to append the training
buffer, aiming to mitigate the issue of overfitting. In a related study, Lu et al. [25] established a
competitive offline visual RL model based on DreamerV2 [16], so that we use it as a significant
baseline of our approach.

Our work is also related to transfer RL, which is known as to utilize the knowledge learned in past tasks
to facilitate learning in unseen tasks [64, 42, 58, 45, 59, 8, 49, 46, 12, 20, 38, 24, 33]. Most existing
approaches related to offline dataset + simulator focus on the offline-to-online setup, where the
policy is initially pretrained on the offline dataset and then finetuned and deployed on an interactive
environment [33, 60, 56, 63]. These methods aim to bridge the gap between offline and online
learning and facilitate fast adaptation of the model to the online environment. In contrast, we explore
the online-to-offline setup, which provides a new remedy for the value over-estimation problem.
Additionally, Niu et al. [34] introduces a dynamics-aware hybrid offline-and-online framework to
integrate offline datasets and online simulators for policy optimization. Unlike CoWorld, this method
primarily focuses on low-dimensional MDPs and cannot be directly used in visual control tasks. In the
context of visual RL, CtrlFormer [31] learns a transferable state representation via a sample-efficient
vision Transformer. APV [43] executes action-free world model pretraining on source-domain videos
and finetunes the model on downstream tasks. Choreographer [28] builds a model-based agent that
exploits its world model to learn and adapt skills in imaginations, the learned skills are adapted
to new domains using a meta-controller. VIP [26] presents a self-supervised, goal-conditioned
value-function objective, which enables the use of unlabeled video data for model pertaining. Unlike
previous methods, we handle offline visual RL using auxiliary simulators, mitigating the value
overestimation issues with co-trained world models.

6 Conclusions and Limitations

In this paper, we proposed a transfer RL method named CoWorld, which mainly tackles the difficulty
in representation learning and value estimation in offline visual RL. The key idea is to exploit
accessible online environments to train an auxiliary RL agent to offer additional value assessment.
To address the domain discrepancies and to improve the offline policy, we present specific technical
contributions of cross-domain state alignment, reward alignment, and min-max value constraint.
CoWorld demonstrates competitive results across three RL benchmarks. An unsolved problem of
CoWorld is the increased computational complexity associated with the training phase in auxiliary
domains (see Appendix B.7). It is valuable to improve the training efficiency in future research.
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Appendix

In this appendix, we provide the following supplementary materials: (A) Details of the proposed
model, including further descriptions of the learning schemes, the notations, the world model archi-
tecture, the behavior learning objective functions, and hyperparameters. (B) Additional experimental
results, including visualization of the learned policy, quantitative results on offline datasets with mixed
data quality, comparison to using a pre-trained foundation model such as R3M, and computational
efficiency. (C) Implementation details of the multi-source CoWorld model and further empirical
analysis on the selected source domain. (D) Detailed setups of the source and target domains. (E)
Details of the compared methods. (F) Potential social impacts of the proposed method.

A Model Details

A.1 Framework of CoWorld

As illustrated in Figure 7, the entire training process of CoWorld comprises three iterative stages:
offline-to-online state alignment (Stage A), online-to-offline reward alignment (Stage B), and online-
to-offline value constraint (Stage C). First, we feed the same target domain observations sampled
from B(T ) into the encoders and close the distance of eϕ′(o

(T )
t ) and eϕ(o

(T )
t ) in Stage A. Second,

in Stage B, the source reward predictor rϕ′(·) is trained with mixed data from both of the replay
buffers B(S) and B(T ). Notably, when we sample data from B(T ), the reward will be relabelled as the
target-informed source reward. Finally, we introduce a min-max value constraint using the source
critic to the target critic in Stage C.

Figure 7: CoWorld uses an auxiliary online environment to build a policy “test bed” that is aware of
offline domain information. This, in turn, can guide the visual RL agent in the offline domain to learn
a mildly-conservative policy, striking a balance between value overestimation and over-conservatism.
For notations, we use the superscript S and T to represent data from the source and target domains.
Additionally, subscripts (ϕ′, ψ′, ξ′) and (ϕ, ψ, ξ) are employed to distinguish model parameters for
different domains. The notations of source and target domains are summarised in Table 7.
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Table 7: Notations of the source and target domains.

Domains Model Parameters Data

Source/Online (S) World model ϕ′, Actor ψ′,
Critic ξ′

Raw data (o
(S)
t , a

(S)
t , r

(S)
t ), Relabeled reward

with infomation from both domains r̃(S)t

Target/Offline (T ) World model ϕ, Actor ψ,
Critic ξ

Raw data (o
(T )
t , a

(T )
t , r

(T )
t )

A.2 World Model

We adopt the framework of the world model used in [16]. The image encoder is a Convolutional
Neural Network (CNN). The image predictor is a transposed CNN and the transition, reward, and
discount factor predictors are Multi-Layer Perceptrons (MLPs). The discount factor predictor serves
as an estimate of the probability that an episode will conclude while learning behavior based on
model predictions. The encoder and decoder take 64× 64 images as inputs.

A.3 Behavior Learning

For the behavior learning of CoWorld, we use the actor-critic method from DreamerV2 [16]. The
λ-target V (T )

t in Eq. (6) is defined as follows:

V
(T )
t

.
= r̂

(T )
t + γ̂

(T )
t

(1− λ)vξ

(
ẑ
(T )
t+1

)
+ λV

(T )
t+1 if t < H

vξ

(
ẑ
(T )
H

)
if t = H

, (8)

where λ is set to 0.95 for considering more on long horizon targets. The actor and critic are both
MLPs with ELU activations [6]. The target actor and critic are trained with guidance from the source
critic and regress the λ-return with a squared loss. The world model is fixed during behavior learning.
The source actor and critic are:

Source Actor: â
(S)
t ∼ πψ′(â

(S)
t |ẑ(S)t )

Source Critic: vξ′(ẑ
(S)
t ) ≈ Epϕ′ ,pψ′

[∑
τ≥t γ̂

(S)
τ−tr̂

(S)
τ

]
.

(9)

We train the source actor πψ′ by maximizing

L(ψ′) = Epϕ′ ,pψ′

[H−1∑
t=1

(βH
[
a
(S)
t | ẑ(S)t

]
︸ ︷︷ ︸
entropy regularization

+ ρV
(S)
t︸ ︷︷ ︸

dynamics backprop

+ (1− ρ) lnπψ′(â
(S)
t | ẑ(S)t )sg(V (S)

t − vξ′(ẑ
(S)
t ))︸ ︷︷ ︸

REINFORCE

]
.

(10)

The source critic vξ′ is optimized by minimizing

L(ξ′) = Epϕ′ ,pψ′

[H−1∑
t=1

1

2

(
vξ′

(
ẑ
(S)
t

)
− sg

(
V

(S)
t

))2 ]
. (11)

A.4 Hyperparameters

The hyperparameters of CoWorld are shown in Table 8.

B Additional Quantitative and Qualitative Results

B.1 Visualizations on Policy Evaluation

We evaluate the trained agent of different models on the Meta-World and DMC tasks and select the
first 45 frames for comparison. Figure 8 and Figure 9 present examples of performing the learned
policies of different models on DMC and Meta-World respectively.
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(a) Policy evaluation on the DMC Walker Downhill task
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(b) Policy evaluation on the DMC Walker Uphill task
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(c) Policy evaluation on the DMC Walker Nofoot task

Figure 8: Additional qualitative results of policy evaluation on the DMC tasks.
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Table 8: Hyperparameters of CoWorld.

Name Notation Value
Co-training Meta-World / RoboDesk DMC

Domain KL loss scale β2 1 1.5
Target-informed reward factor k 0.3 0.9
Target critic value loss scale α 2 1
Source domain update iterations K1 2 · 104 2 · 104
Target domain update iterations K2 5 · 104 2 · 104

World Model

Dataset size — 2 · 106
Batch size B 50
Sequence length L 50
KL loss scale β1 1
Discrete latent dimensions — 32
Discrete latent classes — 32
RSSM number of units — 600
World model learning rate — 2 · 10−4

Behavior Learning

Imagination horizon H 15
Discount γ 0.995
λ-target λ 0.95
Actor learning rate — 4 · 10−5

Critic learning rate — 1 · 10−4

CoWorld

Offline DV2

CURL

LOMPO

t = 1 t = 5 t = 10 t = 15 t = 20 t = 25 t = 30 t = 35 t = 40 t = 45 t = 50

Figure 9: Policy evaluation on the Meta-World Button Topdown task. The model-free method CURL
cannot complete the task (green box). CoWorld achieves better performance and finishes the task in
fewer steps (red box) than Offline DV2 (blue box).

B.2 Quantitative Results on DMC Medium-Expert Dataset

Similar to the data collection strategy of the medium-replay dataset, we build offline datasets with
medium-expert quality using a DreamerV2 agent. The medium-expert dataset comprises all the sam-
ples in the replay buffer during the training process until the policy attains expert-level performance,
defined as achieving the maximum score that the DreamerV2 agent can achieve. As shown in Table 9,
CoWorld outperforms other baselines on the DMC medium-expert dataset in most tasks.
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Table 9: Performance on DMC medium-expert dataset. We report the mean rewards and standard
deviations of 10 episodes over 3 seeds.

Model WW → WD WW → WU WW → WN CR → CD CR → CU CR → CN Avg.

Offline DV2 450± 24 141± 1 214± 8 248± 9 3±0 48± 3 184
DrQ+BC 808±47 762±61 808±45 862±13 454±12 730±17 737
LOMPO 548±245 449±117 688±97 174±29 19±10 113±35 332

Finetune 784±46 671±65 851±91 858±9 428±49 833±7 738
CoWorld 848±9 774±29 919±7 871±13 475±16 844±1 789

B.3 Quantitative Results on Meta-World

Figure 10(a) compares the performance of different models on Meta-World. DV2 Finetune demon-
strates better performance in the initial training phase, thanks to its direct access to the source
environment. Instead, CoWorld introduces auxiliary source value guidance to assist the training
of the target agent. In the final phase of training, the source value guidance is more effective, and
then CoWorld outperforms DV2 Finetune. Figure 10(b) presents the ablation studies of CoWorld
conducted on Meta-World, highlighting the effectiveness and necessity of each training stage.
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(b) Ablation studies of CoWorld

Figure 10: (a) Comparison with various approaches on the Meta-World Button Press task. (b)
Ablation studies on the Meta-World Button Press task that can show the effect of state alignment
(green), reward alignment (purple), and min-max value constraint (orange).

B.4 Effect of Latent Space Alignment

We feed the same observations into the source and target encoder of CoWorld and then use the t-
distributed stochastic neighbor embedding (t-SNE) method to visualize the latent states. As shown in
Figure 11, the representation learning alignment bridges the gap between the hidden state distributions
of the source encoder and target encoder.

B.5 Additional Results on the Realistic Sim2Real Setup

Due to the limitation in experimental resources, we are unable to conduct experiments with real
robots. We make efforts to construct a more realistic sim2real setup. The experiment is conducted
with the identical robot control task for both the source and target domains. We manually introduce
two types of noise into the visual observation and action space of the target domain, trying to mimic
the complex and noisy real-world scenes.

• Visual noise: We modify the original DeepMind Control environment by replacing the static
background with dynamic backgrounds of random real-world videos.

• Action noise: We add Gaussian noises nt sampled from N (0, 1) to every dimension of the action
in Meta-World and RoboDesk, which originally ranges in (-1,1). This mimics scenarios where the
offline dataset is collected using a low-cost (less inaccurate) real robot.
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Figure 11: Visualization of the latent space alignment on Meta-World Handle Press → Button
Press task by the t-SNE method. (a) Latent space of CoWorld before alignment. (b) Latent space of
CoWorld after alignment.

Table 10: Results with more significant domain gaps.

Target Domain CoWorld DV2 Finetune

DMC Walker Walk 544 457
DMC Cheetah Run 296 220
RoboDesk Push Green (w = 1) 406 358
Meta-World Button Topdown (w = 0.1) 3752 2693
Meta-World Button Topdown (w = 1) 3567 3104
Meta-World Button Topdown (w = 5) 951 670

As shown in Table 10, we compare CoWorld with the finetuned DreamerV2 model on this new
setup. We apply noise of three magnitudes, w ∼ {0.1, 1, 5}, in the Meta-World Button Topdown task,
leading to noisy actions of areal

t = at + w · nt.
From the above results, it is evident that CoWorld consistently outperforms the naive finetuning
method in this ‘sim2real’ setup. Importantly, we assess the model under more challenging setups,
with more significant domain gaps, as illustrated in Table 1.

B.6 Comparison with Pre-trained Foundation Model R3M

R3M [32] is pretrained on Ego4D human video dataset and facilitates efficient learning of downstream
robotic tasks. R3M is shown to be a competitive model, particularly in its ability to transfer
representations across domains with diverse visual inputs. For model comparison, we leverage
the pre-trained weights of R3M from the official repository to initialize the representation model. We
then perform policy optimization based on it for downstream tasks in the Meta-World environment.
We respectively employ expert data, sourced from the official repository, alongside our own data,
which is collected from scratch with mixed data quality. And DV2 Finetune is also pretrained in
a related task and finetuned on the offline dataset. As demonstrated in Table 11, our approach
outperforms the R3M / DV2 fine-tuning model.

It is important to note that:

• Despite its generalizable representations, R3M is NOT specifically designed to solve the value over-
estimation problem, which is fundamental in offline RL. In contrast, our approach not only aligns
state representations across domains but also effectively tackles the issue of value overestimation,
and therefore achieves better performance.

• The fine-tuning process of R3M necessitates expert demonstrations for high-quality imitation
learning. However, its performance empirically deteriorates when applied to the offline dataset of
the medium-replay data.

• The pre-training process of R3M typically takes around 5 days on a V100 GPU, while the entire
training procedure of our approach takes only about 2 days on a 3090 GPU.
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Table 11: Comparison of CoWorld with using a pre-trained foundation model, R3M.

CoWorld R3M (expert data) R3M (our data) DV2 Finetune

Button Press Topdown 3889 1609 311 3499
Drawer Close 4845 N/A 4616 4273
Handle Press 4570 N/A 1603 3702

Table 12: Runtime comparisons evaluated on Meta-World (HP → BT).

Model # Training iterations Training time Inference time per episode

Offline DV2 300k 2054 min 2.95 sec
DrQ+BC 300k 200 min 2.28 sec
CQL 300k 405 min 1.88 sec
CURL 300k 434 min 2.99 sec
LOMPO 100k 1626 min 4.98 sec
DV2 Finetune 460k 1933 min 6.63 sec
DV2 Finetune+EWC 460k 1533 min 5.58 sec
CoWorld 460k 3346 min 4.47 sec

B.7 Training Efficiency

As shown in Table 12, we evaluate the training/inference time on Meta-World (Handle Press →
Button Topdown) using a single RTX 3090 GPU. Empirically, CoWorld achieves convergence (90%
of the highest returns) in approximately 14 hours; while it costs DV2 Finetune about 13 hours. These
results indicate that CoWorld requires a comparable training wall-clock time to DV2 Finetune, while
consistently maintaining better performance in terms of returns after model convergence.

C Multi-Source CoWorld

The key idea of multi-source CoWorld is to allocate a set of one-hot weights ωi=1:M
t to candidate

source domains by calculating their KL divergence in the latent state space to the target domain,
where i ∈ [1,M ] is the index of each source domain. This procedure includes the following steps:

1. World models pretraining: We pretrain a world model for each source domain and target domain
individually.

2. Domain distance measurement: At each training step in the target domain, we measure the KL
divergence between the latent states of the target domain, produced by eϕ(o

(T )
t ), and corresponding

states in each source domain, produced by eϕ′
i
(o

(T )
t ). Here, e(T )

ϕ is the encoder of the target world
model, and eϕ′

i
is the encoder of the world model for the source domain i.

3. Auxiliary domain identification: We dynamically identify the closest source domain with the
smallest KL divergence. We set ωi=1:M

t as a one-hot vector, where ωit = 1 indicates the selected
auxiliary domain.

4. Rest of training: With the one-hot weights, we continue the rest of the proposed online-to-offline
training approach. During representation learning, we adaptively align the target state space to the
selected online simulator by rewriting the domain alignment loss term in Eq. (3) as

LM-S = β2

M∑
i=1

ωiKL
[
sg(g(eϕ′(o

(T )
t ))) ∥ g(eϕ(o(T )

t ))
]
. (12)

To evaluate the effectiveness of the multi-source adaptive selection algorithm, we conducted experi-
ments on Meta-World and RoboDesk Benchmark. For each target task, two source tasks are used,
including the CoWorld best-performing task and the CoWorld worst-performing task. Additionally,
the sub-optimal source task is added for some target tasks.
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Table 13: The source domain automatically selected by Multi-Source CoWorld. MW represents
Meta-World and RD stands for RoboDesk.

Target domain Selected source domain

MW: Door Close MW: Drawer Close
MW: Button Press MW: Handle Press
MW: Window Close MW: Button Topdown
MW: Handle Press MW: Button Press
MW: Button Topdown MW: Handle Press
MW: Drawer Close MW: Door Close

RD: Push Button MW: Button Press
RD: Open Slide MW: Window Close
RD: Drawer Open MW: Drawer Close
RD: Upright Block off Table MW: Handle Press

As shown in Table 13, multi-source CoWorld can adaptively select the best source task for most multi-
source problems to ensure adequate knowledge transfer. The performance of multi-source CoWorld
is reported in Table 2. CoWorld flexibly adapts to the transfer learning scenarios with multiple
source domains, achieving comparable results to the model that exclusively uses our manually
designated auxiliary simulator as the source domain (best-source). This study significantly improves
the applicability of CoWorld in broader scenarios.

D Source and Target Domains

Meta-World. For the Meta-World environment, we adopt robotic control tasks with complex visual
dynamics. For instance, the Door Close task requires the agent to close a door with a revolving joint
while randomizing the door positions, and the Handle Press task involves pressing a handle down
while randomizing the handle positions. To evaluate the performance of CoWorld on these tasks, we
compare it with several baselines in six visual RL transfer tasks.

RoboDesk. We select Meta-World as the source domain and RoboDesk as the target domain. No-
tably, there exists a significant domain gap between these two environments. The visual observations,
physical dynamics, and action spaces of the two environments are different. First, Meta-World adopts
a side viewpoint, while RoboDesk uses a top viewpoint. Further, the action space of Meta-World
is 4 dimensional, while that in RoboDesk is 5-dimensional. Considering these differences, the
Meta-World → RoboDesk benchmark presents a challenging transfer learning problem.

DeepMind Control. We train the source agents in standard DMC environments and train the target
agents in modified DMC environments. Walker Uphill and Cheetah Uphill represent tasks in which
the ground has a 15◦ uphill slope. Walker Downhill and Cheetah Downhill represent the tasks in
which the plane has a 15◦ downhill slope. We evaluate the model in six tasks with different source
domains and target domains.

We assume that there exist notable distinctions between the source and target domains (see Table 1).
This assumption can be softened by our proposed approach that mitigates domain discrepancies
between distinct source and target MDPs. Our experiments reveal that the CoWorld method exhibits
a notable tolerance to inter-domain differences in visual observation, physical dynamics, reward
definition, or even the action space of the robots. This characteristic makes it more convenient to
choose an auxiliary simulator based on the type of robot. For example:

• When the target domain involves a robotic arm (e.g., RoboDesk), an existing robotic arm simulation
environment (e.g., Meta-World) can be leveraged as the source domain.

• In scenarios with legged robots, environments like DeepMind Control with Humanoid tasks can
serve as suitable auxiliary simulators.

• For target domains related to autonomous driving, simulators like CARLA can be used.
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E Compared Methods

We compare CoWorld with several widely used model-based and model-free offline methods.

• Offline DV2 [25]: A model-based RL method that modifies DreamerV2 [16] to offline setting, and
adds a reward penalty corresponding to the mean disagreement of the dynamics ensemble.

• DrQ+BC [25]: It modifies the policy loss term in DrQ-v2 [50] to match the loss given in [10].
• CQL [25]: It is a framework for offline RL that learns a Q-function that guarantees a lower bound

for the expected policy value than the actual policy value. We add the CQL regularizers to the
Q-function update of DrQ-v2 [21].

• CURL [22]: It is a model-free RL approach that extracts high-level features from raw pixels
utilizing contrastive learning.

• LOMPO [39]: An offline model-based RL algorithm that handles high-dimensional observations
with latent dynamics models and uncertainty quantification.

• LOMPO Finetune: It pretrains a LOMPO agent [39] with source domain data and subsequently
finetunes the pretrained agent in the offline target domain.

• DV2 Finetune: It pretrains a DreamerV2 agent [16] in the online source domain and subsequently
finetunes the pretrained agent in the offline target domain. Notably, Meta-World → RoboDesk
tasks’ action space is inconsistent, and we can’t finetune directly. Instead, we use the maximum
action space of both environments as the shared policy output dimension. For Meta-World and
Meta-World → RoboDesk transfer tasks, we pretrain the agent for 160k steps and finetune it 300k
steps. For DMC transfer tasks, we pretrain the agent for 600k steps and finetune it for 600k steps.

• DV2 Finetune+EWC: It modifies the DV2 Finetune method with EWC [19] to regularize the model
for retaining knowledge from the online source domain. The steps of pretraining and finetuning are
consistent with DV2 Finetune.

F Broader Impacts

CoWorld is a transfer learning method that may benefit future research in the field of offline RL,
model-based RL, and visual RL. Beyond the realm of reinforcement learning, this approach holds
great potential to contribute to various domains such as robotics and autonomous driving.

In real-world scenarios of healthcare applications, Zhang et al. [62] employed offline RL algorithms
to train policies using a large amount of historical dataset, determining the follow-up schedules and
tacrolimus dosages in Kidney Transplantation and HIV. There are also corresponding simulators
[17, 1] designed by medical domain experts, with parameters learned from real-world data.

Another practical use of the proposed setup is advertising bidding, where direct interactions with real
online advertising systems for training are challenging. A recent solution involves constructing a
simulated bidding environment based on historical bidding logs for interactive training, such as [30],
and mitigating the inherent differences between the virtual advertising environment and real-world
advertising systems. Therefore, in many real-world scenarios, it is possible to optimize the policies
learned from offline datasets with simulators.

A potential negative social impact of our method is the introduction of existing biases from the
additional domain. If the training data used to develop our algorithm contains biases, the model may
learn those biases, leading to unfair outcomes in decision-making processes. It’s crucial to carefully
address biases in both data and algorithmic design to mitigate these negative social impacts.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Section 4.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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a complete (and correct) proof?

Answer: [NA]
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by formal proofs provided in appendix or supplemental material.
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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whether the code and data are provided or not.
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to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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to reproduce that algorithm.
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the architecture clearly and fully.
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the model (e.g., with an open-source dataset or instructions for how to construct
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authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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versions (if applicable).
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
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• The answer NA means that the paper does not include experiments.
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or cloud provider, including relevant memory and storage.
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experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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Answer: [Yes]

Justification: The research conducted in the paper adheres to the NeurIPS Code of Ethics in
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Appendix F.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal
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26

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
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• The authors should consider possible harms that could arise when the technology is
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not involve the responsible release of data or models that have
a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We include the licenses at https://github.com/qiwang067/CoWorld.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We include the documentation at https://github.com/qiwang067/
CoWorld.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing experiments and research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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