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Abstract

We propose a multimodal graph convolutional network (M-GCN) that integrates resting-
state fMRI connectivity and diffusion tensor imaging tractography to predict phenotypic
measures. Our specialized M-GCN filters act topologically on the functional connectivity
matrices, as guided by the subject-wise structural connectomes. The inclusion of struc-
tural information also acts as a regularizer and helps extract rich data embeddings that
are predictive of clinical outcomes. We validate our framework on 275 healthy individuals
from the Human Connectome Project and 57 individuals diagnosed with Autism Spectrum
Disorder from an in-house data to predict cognitive measures and behavioral deficits re-
spectively. We demonstrate that the M-GCN outperforms several state-of-the-art baselines
in a five-fold cross validated setting and extracts predictive biomarkers from both healthy
and autistic populations. Our framework thus provides the representational flexibility to
exploit the complementary nature of structure and function and map this information to
phenotypic measures in the presence of limited training data.

Keywords: Graph Convolutional Networks, Functional Connectomics, Structural Con-
nectomics, Multimodal Integration, Phenotypic Prediction, Autism Spectrum Disorder

1. Introduction

Resting-State functional MRI (rs-fMRI) is a stimulus-free acquisition used to track steady-
state changes in co-activation (i.e., connectivity) across the brain (Lee et al., 2013). Com-
plementary to this functional connectivity, Diffusion Tensor Imaging (DTI) captures the
directional diffusion of water molecules in the brain as a proxy for structural connectivity
(Assaf and Pasternak, 2008). There is mounting evidence in the literature that links the
functional signaling and structural pathways in the brain (Skudlarski et al., 2008), with sev-
eral studies suggesting that this functional connectivity may be mediated by either direct
or indirect anatomical connections (Fukushima et al., 2018; Atasoy et al., 2016). Conse-
quently, multimodal integration of connectomics data has become an important topic of
study, particularly when characterizing neuropsychiatric disorders, such as autism, ADHD,
and schizophrenia (Liu et al., 2015). Traditional multimodal analyses of rs-fMRI and DTI
data largely focus on group-wise discrimination. Such methods include statistical tests
on edge/node biomarkers (Hahn et al., 2013) to distinguish subgroups in AD, data-driven
representations to discriminate schizophrenia patients vs controls (Sui et al., 2013), and
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Bayesian models to extract differential networks (Venkataraman et al., 2011, 2013, 2016)
While highly informative at the group level, these methods do not directly address inter-
individual variability, for example continuous measures of behavior or cognition.

The rise of machine learning has prompted a shift in connectomics towards subject-level
predictions. This shift has been accelerated by deep learning, which provides unparalleled
representational power. The bulk of deep learning methods focus on diagnostic classifi-
cation. These approaches range from Multi-Layered Perceptrons (Heinsfeld et al., 2018),
Deep Belief Networks (Aghdam et al., 2018), to Convolutional Neural Networks (Khosla
et al., 2018). Methods to predict finer-grained characteristics (e.g, demographics or be-
havior) are sparser and largely focus on a single modality. For example, the authors of
(Kawahara et al., 2017) introduced a convolutional neural network that mapped DTI con-
nectivity matrices to cognitive and motor measures. The work of (Lin et al., 2016) proposes
an artificial neural network for age prediction from structural connectomes. Finally, the
work of (D’Souza et al., 2019) takes the alternative approach of combining a generative
dictionary learning framework with a predictive artificial neural network to simultaneously
map multiple clinical measures. While these methods achieve good empirical performance,
they ignore the interplay between structure and function in the brain. To address this gap,
the authors of (D’Souza et al., 2019) extend their framework to combine dynamic rs-fMRI
correlations with DTI tractography using a structurally-regularized matrix decomposition
(D’Souza et al., 2020). While promising, this method does provide explicit control over the
extent to which multi-hop (indirect) structural connections mediate functional connectivity.

Graph neural networks are designed to build representations of nodes and edges within
graph structured data, and have found applications in a variety of domains where data
naturally assumes a network-like organization (Zhou et al., 2018). These architectures have
shown great promise for modeling multi-stage interactions between brain regions that also
reflect the hierarchy of brain organization. Hence, these techniques have become important
tools in brain connectivity research. Examples include: modeling dynamic functional con-
nectivity for groupwise discrimination (Gadgil et al., 2020), diagnosis of neurodevelopmental
disorders (Anirudh and Thiagarajan, 2019; Parisot et al., 2018) from rs-fMRI correlation
inputs, or structural connectivity modeling for disease classification (Song et al., 2019).
However, current approaches do not leverage the complementarity between the structural
and functional graphs or examine dimensional measures of behavior beyond diagnostic clas-
sification. We propose a multimodal graph convolutional network (M-GCN) to integrate
functional and structural connectivity from rs-fMRI and DTI data respectively, and map
this information to phenotypic measures. We employ specialized graph convolutional filters
based on (Kipf and Welling, 2016; Kawahara et al., 2017) that operate on functional con-
nectivity inputs, as guided by the subject-level structural graph topology. We demonstrate
that our framework generalizes to prediction of phenotypic measures on two separate real
world datasets and learns to extract predictive brain biomarkers from limited data.

2. Multimodal Graph Convolutional Network for Connectomics

Fig. 1 illustrates our graph convolutional framework, which consists of a representation
learning module on the connectomics data (Green Box) cascaded with a fully connected
ANN for regression (Blue Box). Let N be the number of patients and P be the number of
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Figure 1: Our M-GCN framework for predicting phenotypic measures Green Box: Graph Convo-
lutional Model for Representation Learning from Multimodal Connectomics Data. Blue
Box: Fully Connected Artificial Neural Network to map to phenotypic measures.

regions in our brain parcellation. Our framework first extracts the structural connectivity
graph G = (V, En) from DTI tractography. The nodes in V are brain ROIs defined by the
parcellation, while the edges in {En} indicate the presence of at least one fiber tract between
these regions. Let An ∈ RP×P be the adjacency matrix for G. Correspondingly, we assume
that the functional connectivity profile is a signal that rides on the fixed graph montage
and is given by rs-fMRI correlation matrices Γn ∈ RP×P .

Traditional convolutional layers assume a spatial contiguity of the input features, as in
the case of 2-D images. This assumption breaks down in general graphs, as node orderings
may be arbitrary. Thus, graph convolutional networks define a layer-wise propagation
rule designed to aggregate information efficiently at each node based on the underlying
graph topology (Bruna et al., 2013; Kipf and Welling, 2016). For a generic input signal
Xl−1 ∈ RP×Cl−1 , a graph filtering operation can be formulated as follows:

Xl = φ(LXl−1W) = φ(D̃− 1
2 ÃD̃− 1

2 Xl−1W) where Ã = IP + A; D̃ii =
∑
j

Ãij (1)

where W ∈ RCl−1×Cl denotes the filter weights, IP is an identity matrix of dimension P ,
and L = D̃− 1

2 ÃD̃− 1
2 is the graph Laplacian of the reparameterized adjacency matrix Ã

and degree matrix D̃. The authors of (Kipf and Welling, 2016) demonstrate that Eq. (1) is
a first order approximation to spectral filtering in the graph Fourier domain.

Inspired by Eq. (1), we define a graph filtering operation that acts on the input functional
connectivity matrix Γn to generate a connectivity embedding H1,m

n ∈ RP×P as follows:

H1,m
n (i, j) = φ

(
(wm

r )TLnΓn(:, j) + Γn(i, :)Lnwm
c + b1

)
m ∈ {1, . . .M} (2)

Here, M is the number of channels, each parametrized by a row and column filter wm
r ,w

m
c ∈

RP×1 and a bias term b1 ∈ RP×1, resulting in a total of (2P + 1) learnable parameters
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per channel. Effective, H1,m
n (i, j) computes a weighted sum of the functional connectivity

profile of nodes i and j, further regularized by the DTI graph Laplacian Ln. Conceptually,
Eq. (2) is similar to the cross shaped E2E filters in (Kawahara et al., 2017). We also note
that, despite the symmetry of the correlation matrices Γn, the embedding H1,m

n can be
assymmetric. This allows us to account for any laterality in functional subsystems.

Following the connectome embedding in Eq. (2), we use two more graph convolutional
layers with pooling to first compute a node-wise representation H2

n ∈ RP×1 and a whole-
graph embedding H3

n ∈ RD×1. Mathematically, these operations can be represented as:

H2
n = φ

(∑
m

LnH1,m
n fm + b2

)
H3

n = φ
(
GLnH2

n + b3
)

(3)

The filter weights are parameterized by the vectors fm ∈ RP×1 per M channel, the graph
embedding matrix G ∈ RD×P , and the bias terms b2 and b3 respectively. In total, these
layers add another (M +D)P + 2 learnable parameters. Eq. (3) parallels the computation
of centrality measures in graph theoretic literature by summarizing node-wise information
based on functional similarity, as guided by structure. Finally, our graph embedding H3

n is
input to an ANN to map to the phenotypic measures yn ∈ RS×1 for patient n. The ANN
is a simple three layered fully connected network of sizes D ×K1, K1 ×K2 and K2 × S.

Implementation Details: We train our M-GCN on a combination of `2 loss and `1 loss
between the predicted ŷn and true measures yn:

L =
1

NS

N∑
n=1

[
||yn − ŷn||2 + ||yn − ŷn||1

]
(4)

The `1 loss function has been shown to be more robust to outliers as compared to the `2
loss (Qi et al., 2020), but less stable during training due to the lack of smoothness near
the optimal solution (Friedman et al., 2001). We found that this combined loss empirically
provided a good tradeoff between stability and generalization. Layer sizes for the M-GCN
were set to M = 32 channels for the connectome embedding, D = 256 for the graph
embedding and {K1,K2} = 128, 30, as we found these choices to be sufficient to map the
connectomics data to the phenotypic measures during training. We chose a LeakyReLU
(φ(x) = max(0, x) + 0.1 ∗ min(0, x)) as the activation function with our network layers,
which we found empirically robust to saturation and exploding gradients during training.
We train our M-GCN via stochastic gradient descent (SGD) algorithm with momentum
(δ = 0.9), batch size = 16, with an initial learning rate of 0.001 decayed by 0.9 every 10
epochs. Additionally, we utilize a weight decay of 0.001 as regularization and train our
network for 40 epochs to avoid overfitting. All parameters were determined based on a
validation set of 30 additional patients from the HCP dataset. We carried forward the same
settings to the second KKI dataset.

2.1. Baselines

We compare the predictive performance of our network against the following baselines:

Multimodal ANN: We use a four layer ANN that maintains the same number of parame-
ters, activation, and loss function as the M-GCN. It operates on the vectorized P×(P−1)/2
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rs-fMRI correlations, each multiplied by the corresponding entry of the DTI Laplacian Ln.
This baseline evaluates the benefit of maintaining the graph structure of the data.

rs-fMRI only GCN: We use the same architecture as our M-GCN but omit the graph
Laplacian in Eqs. (2-3). This baseline evaluates the benefit of DTI regularization.

BrainNetCNN: We integrate multimodal connectivity data via the BrainNetCNN (Kawa-
hara et al., 2017), originally designed to predict cognitive outcomes from DTI data. We
modify this architecture to have two branches, one for the rs-fMRI correlation matrices Γn,
and another for the DTI Laplacians Ln. The ANN is modified to output S measures of
clinical severity. We set the hyperparameters according to (Kawahara et al., 2017)

Dictionary Learning + ANN: The integrated framework in (D’Souza et al., 2019) uses
static rs-fMRI correlation matrices (Γn) to simultaneously predict multiple clinical or be-
havioral measures. The model combines a dictionary learning generative term with a neural
network predictor. The two blocks are optimized jointly in an end-to-end fashion.

Dynamic Deep-Generative Hybrid: The framework in (D’Souza et al., 2020) uses a
similar joint optimization strategy but operates on dynamic rs-fMRI correlation matrices
{Γt

n} and incorporates DTI regularizer in the dictionary learning term. Overall, these last
two baselines evaluate the benefit of GCNs for implicit representational learning over a
classical decomposition strategy. We have followed the guidelines provided by the authors
to set the hyperparameters and train both of these baselines.

3. Experimental Evaluation and Results

3.1. Datasets and Pre-processing

HCP Dataset: Our first dataset contains 275 healthy individuals from the Human Con-
nectome Project (HCP) S1200 database (Van Essen et al., 2013). Rs-fMRI and DTI scans
are acquired on a Siemens 3T scanner (rs-fMRI: EPI, TR/TE= 0.72ms/0.33ms, flip angle
= 52, res = 2mm3, duration = 1200 time samples per run; DTI: EPI, SENSE factor = 1,
TR/TE = 5520/89.5ms, res = 1.25×1.25×1.25mm, b-value = 1000/2000/3000s/mm2 inter-
leaved, with 95/96/96 gradient directions respectively). To remain commensurate with clin-
ical scanning protocols, we selected a 15-minute interval from the rs-fMRI scans for our anal-
ysis. Rs-fMRI data was pre-processed according to the standard HCP pipeline (Smith et al.,
2013), which accounts for motion and physiological confounds. DTI data was processed us-
ing the standard Neurodata MR Graphs package (Kiar et al., 2016), which uses streamline
tractography to estimate fiber bundles. Our phenotypic measure was the Cognitive Fluid
Intelligence Score (CFIS) (Duncan, 2005; Bilker et al., 2012) adjusted for age, which is
obtained via a battery of tests measuring cognitive reasoning (dynamic range: 70− 150)

KKI Dataset: Our in-house clinical dataset was acquired at the Kennedy Krieger Insti-
tute. It consists of 57 children with high-functioning ASD. Rs-fMRI and DTI scans were
acquired on a Philips 3T Achieva scanner (rs-fMRI: EPI, TR/TE = 2500/30ms, flip angle
= 70, res = 3.05 × 3.15 × 3mm, duration = 128 or 156 time samples; DTI: EPI, SENSE
factor = 2.5, TR/TE = 6356/75ms, res = 0.8 × 0.8 × 2.2mm, b-value = 700s/mm2, 32
gradient directions). Our rs-fMRI preprocessing includes motion correction, normalization
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to the MNI template, spatial and temporal filtering, and nuisance regression with Comp-
Corr (Behzadi et al., 2007). We use the FDT pipeline in FSL to pre-process the DTI scans
(Jenkinson et al., 2012). Tractography is performed using the BEDPOSTx and PROB-
TRACKx functions in FSL (Behrens et al., 2007). We use three separate clinical batteries
to characterize various impairments associated with ASD. The Autism Diagnostic Obser-
vation Schedule (ADOS) (Payakachat et al., 2012) measures socio-communicative deficits
and restricted/repetitive behaviors via a behavioral evaluation (dynamic range: 0 − 30).
The Social Responsiveness Scale (SRS) (Payakachat et al., 2012) quantifies impaired social
functioning via a parent/teacher questionnaire (dynamic range: 70− 200). Finally, Praxis
(Dziuk et al., 2007; Mostofsky et al., 2006) measures the ability to perform skilled motor
gestures on command and is scored by two research reliable raters (dynamic range: 0−100).

For both datasets, we use the Automatic Anatomical Labeling (AAL) atlas (Tzourio-
Mazoyer et al., 2002) to define 116 cortical, sub-cortical and cerebellar brain ROIs for both
the functional and structural connectivity matrices. We also subtract the first eigenvector
from the rs-fMRI correlation matrices, which is a roughly constant bias, and use the residual
matrices as the inputs to all models.

3.2. Performance Characterization.

Predicting CFIS: Table 1 (and Fig. 2-Appendix) illustrates our method and baselines
for predicting CFIS for the HCP dataset in a five-fold cross validated setting. We quantify
the performance via the Median Absolute Error (MAE), the Normalized Mutual Informa-
tion (NMI) and the Coefficient of Correlation (R Stat.) between the actual and predicted
measures. Lower MAE and higher NMI/R Stat. indicate better performance. The training
performance is good for all methods. However, the M-GCN clearly outperforms the base-
lines when generalizing to unseen testing data. As a benchmark, our validation performance
(Test MAE: 13.41 ± 8.17, NMI Test: 0.71, R: 0.42) also provides similar generalization.

Multidimensional Clinical Severity Prediction: Table 2 (and Fig. 2 in the appendix)
compares the multi-output prediction performance of ADOS, SRS, and Praxis on the KKI
dataset for a five fold cross validation. Again, we observe that the M-GCN outperforms
the baselines for the prediction of all three severity measures in almost every case. Note
that, from a clinical standpoint generalization to prediction of multiple deficits is inherently

Meas. Method MAE Test NMI Test R Stat. p

CFIS

Mult. ANN 14.06 ± 10.16 0.61 0.23 0.065
rs-fMRI only GCN 14.16 ± 8.96 0.54 0.23 0.044∗

BrainNetCNN 17.90 ± 17.55 0.58 0.25 0.0015∗

Dict. Learn. + ANN 15.26 ± 13.99 0.66 0.29 0.024∗

Dyn. Deep-Gen. Hyb. 16.31 ± 15.43 0.67 0.30 0.0043∗

Our Framework 12.87 ± 9.65 0.73 0.41 -

Table 1: HCP Dataset: Evaluation using the Median Absolute Error (MAE), Normalized
Mutual Information (NMI) and R Statistic for the test set. Best performance is
highlighted in bold. Near misses are underlined p value (p) for differences in distribution
of the test MAE of the M-GCN against the baselines via the t test. ∗ denotes p < 0.05.
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Meas. Method MAE Test NMI Test R Stat. p

ADOS

Mutl. ANN 2.96 ± 2.30 0.30 0.04 0.041∗

rs-fMRI only GCN 3.14 ± 2.25 0.41 0.16 0.002∗

BrainNetCNN 3.50 ± 2.20 0.25 0.41 0.009∗

Dict. Learn. + ANN 2.71 ± 2.40 0.43 0.50 0.20
Dyn. Deep-Gen. Hyb. 2.84 ± 2.79 0.34 0.47 0.10

Our Framework 2.71 ± 2.15 0.45 0.50 -

SRS

Mult. ANN 18.47 ± 11.04 0.60 0.03 0.033∗

rs-fMRI only GCN 21.34 ± 8.58 0.62 0.16 0.019∗

BrainNetCNN 18.96 ± 15.65 0.75 0.13 0.039∗

Dict. Learn. + ANN 16.79 ± 13.83 0.89 0.37 0.13
Dyn. Deep-Gen. Hyb. 17.81 ± 16.09 0.88 0.30 0.073

Our Framework 16.50 ± 9.44 0.85 0.35 -

Praxis

Mult. ANN 17.12 ± 16.66 0.65 0.25 0.008∗

rs-fMRI only GCN 16.71 ± 16.66 0.74 0.17 0.019∗

BrainNetCNN 15.15 ± 11.49 0.19 0.3 0.024∗

Dict. Learn. + ANN 13.19 ± 10.75 0.82 0.37 0.15
Dyn. Deep-Gen. Hyb. 13.50 ± 11.55 0.85 0.31 0.089

Our Framework 12.82 ± 12.04 0.86 0.46 -

Table 2: KKI Dataset: Evaluation using the Median Absolute Error (MAE), Normalized
Mutual Information (NMI) and R Statistic for the test set. Best performance is
highlighted in bold. Near misses are underlined p value (p) for differences in distribution
of the test MAE of the M-GCN against the baselines via the t test. ∗ denotes p < 0.05.

more challenging than predicting a single phenotypic measure. This also partially accounts
for the poor performance of some of the baselines, where they perform reasonably well for
the prediction of one of the measures (for example, the rs-fMRI only GCN for ADOS), but
at the expense of generalization onto the other two measures. Overall, our experiments
on two different real world datasets allude to reproducibility and suggest that the M-GCN
generalizes effectively even with modest training sample sizes. Moreover, the performance
gains against the M-GCN baseline without the DTI indicate the benefit provided by the
multimodal integration via our graph convolutional framework.

Extracting Clinical Biomarkers: The representations learned by the row and column
filter pairs wr and wc at the input layer of the M-GCN (i.e. Eq. (2)) may illuminate key
biomarkers for each population. We first match the filter pairs across the cross validation
folds based on the average correlation coefficient between the row and column filter weights.
Fig. 2 illustrates four filter pairs out of 32 that appear most frequently across subsets of the
HCP and KKI dataset. In each case, we plot the average row filter (RF) and column filter
(CF) weights projected onto the corresponding regions of the AAL atlas. Compared with
the filters learned by the rs-fMRI only GCN (Appendix Fig. 3), the DTI regularization in
the M-GCN offers sparsity and better spatial selectivity in the patterns captured.

For the HCP dataset (Fig. 2 (a)), we observe that RF1, RF2, CF1 and CF2 display
contributions from regions of the Default Mode Network (DMN), known to play a critical
role in consolidating working memory (Sestieri et al., 2011) and is widely inferred within the
resting state literature. RF3 and CF3 highlight regions of the Frontoparietal Network (FPN)
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Figure 2: Four pairs of row & column filter weights learned by the M-GCN on the (a) HCP dataset
and (b) KKI dataset. The colorbar quantifies the filter weight for each AAL ROI.

and the Medial Prefrontal Network (MPN), believed to play a role in working memory,
attention and decision making, which are associated with cognitive intelligence (Menon,
2011). CF4 highlights regions from the Somatomotor Network (SMN) while RF4 includes
subcortical and cerebellar regions. Together, these are believed to be important functional
biomarkers of cognitive intelligence in literature (Chén et al., 2019). For the KKI dataset
(Fig. 2 (b)), we observe that RF1, CF1, CF2 and CF4 highlight areas from the DMN
and SMN. Altered connectivity within these regions is widely reported in ASD literature
(Nebel et al., 2016). RF3, RF4 and CF4 also highlight contributions from the higher order
visual processing areas and sensorimotor regions, which are in line with findings of reduced
visual motor integration in Autism (Nebel et al., 2016). RF3, RF4 and CF4 also display
contributions from subcortical regions along with the prefrontal cortex and DMN, which is
believed to be relevant to social-emotional regulation in ASD (Pouw et al., 2013).

4. Conclusion

We have introduced a novel multimodal graph convolutional framework to leverage comple-
mentary information from functional and structural connectivity. Our M-GCN is designed
to effectively utilize the underlying anatomical pathways to learn rich representations from
functional connectivity data that are simultaneously informative of multidimensional phe-
notypic characterizations. We demonstrate that this framework is able to learn effectively
from limited training data and generalize well to unseen patients. Finally, our framework
makes minimal assumptions, and can potentially be applied to study other neuro-psychiatric
disorders (eg. ADHD, Schizophrenia) as a diagnostic tool.
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