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Abstract

The phenomenon of benign overfitting, where a trained neural network perfectly fits
noisy training data but still achieves near-optimal test performance, has been exten-
sively studied in recent years for linear models and fully-connected/convolutional
networks. In this work, we study benign overfitting in a single-head softmax
attention model, which is the fundamental building block of Transformers. We
prove that under appropriate conditions, the model exhibits benign overfitting in
a classification setting already after two steps of gradient descent. Moreover, we
show conditions where a minimum-norm/maximum-margin interpolator exhibits
benign overfitting. We study how the overfitting behavior depends on the signal-
to-noise ratio (SNR) of the data distribution, namely, the ratio between norms of
signal and noise tokens, and prove that a sufficiently large SNR is both necessary
and sufficient for benign overfitting.

1 Introduction

Neural networks often exhibit a remarkable phenomenon, known as benign overfitting, where they
achieve a perfect fit to noisy training examples and still generalize well to unseen data [1, [2]. This
phenomenon contradicts classical wisdom in machine learning, and has become a central research
question in the theory of deep learning. Existing works on benign overfitting study under what
conditions the phenomenon occurs in different architectures. These works focus on linear models,
and on shallow fully-connected and convolutional neural networks.

In recent years, Transformers [3]] have emerged as a leading neural network architecture, with
impactful applications across a wide range of domains such as natural language processing and
computer vision. The fundamental building block of Transformers is the attention mechanism, which
allows them to process sequences and focus on different parts of the input. Despite the central role of
the attention mechanism, we currently do not understand its overfitting behavior and the conditions
under which it exhibits benign overfitting.

In this work, we show benign-overfitting results for the attention mechanism. We consider classifi-
cation with a single-head softmax attention model, and study the conditions that allow for benign
overfitting. In our results, the data distribution consists of multiple tokens: a signal token, which can
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be used for correctly classifying clean test examples, and noisy tokens, which are independent of the
label but can be used for interpolating (i.e., perfectly fitting) noisy training examples. We study the
signal-to-noise ratio (SNR), namely, the expected ratio between the norms of signal and noise tokens,
that allows for benign overfitting.

Below we summarize our main contributions:

* In Theorem [3.3] (Section 3)) we show that under appropriate conditions, gradient descent
with the logistic loss exhibits benign overfitting already after two iterations. This result
holds when the SNR is 2(1/1/n), where n is the number of training samples.

* We then turn to consider other natural learning rules, which allow for benign overfitting
under the same requirement on the SNR. In Theorems .2 and [4.4] (Section ), we prove that
minimum-norm (i.e., maximum-margin) interpolators exhibit benign overfitting when the

SNR is Q(1/y/n).

* In Theorem [.6] (Section [)), we prove that the above requirement on the SNR is tight.
Namely, if the SNR is smaller than it, then the min-norm interpolator exhibits harmful
overfitting, where it fits the training data but has poor generalization performance.

* In Section[6] we complement our theoretical results with an empirical study. We show that
sufficiently large SNR and input dimension are necessary and sufficient to achieve benign
overfitting.

The paper is structured as follows. In Section 2| we provide some preliminaries and define the data
distribution and the single-head attention model. In Sections [3|and ] we state our main results on
benign overfitting with gradient descent and with min-norm interpolators. In Section 5| we discuss
the main proof ideas, with all formal proofs deferred to the appendix. Finally, in Section[6] we show
empirical results.

1.1 Related Work

Optimization in Transformers. Li et al. [4]] provided a theoretical analysis of training a shallow
Vision Transformer (ViT) for a classification task. They showed that the sample complexity required to
achieve a zero generalization error is correlated with the inverse of the fraction of label-relevant tokens,
the token noise level, and the initial model error. Ataee Tarzanagh et al. [S]] showed that optimizing
the attention layer via gradient descent leads to convergence to an Support Vector Machine (SVM)
solution, where the implicit bias of the attention mechanism depends on whether the parameters
are represented as a product of key-query matrices or directly as a combined matrix, with different
norm-minimization objectives in each case. Ataee Tarzanagh et al. [6] provided a regularization path
analysis and proved that the attention weights converge in direction to a max-margin solution that
separates locally optimal tokens from non-optimal. They also showed that gradient descent with a
specific initialization direction and without optimizing the attention head converges in direction to
the same max-margin solution. [7] expanded on their findings by identifying non-trivial data settings
for which the convergence of GD is provably global, i.e., without requiring assumptions about the
initialization direction. They also provided convergence rate bounds and analysis for optimizing both
the attention weights and the attention head, although they did not consider the case of noisy data
labels, as we do in our work. Another line of work looks at the learning dynamics of single-layer
linear attention models trained on linear regression tasks [8H10]. Additional works that consider
optimization dynamics in Transformers include [11}12].

Benign overfitting. A significant body of research has explored why neural networks (NNs) that
perfectly interpolate the training data can still generalize well [1} 2]]. This has sparked substantial
interest in studying overfitting and generalization in NN trained to fit datasets with noisy labels. The
literature on benign overfitting is broad and cannot be reasonably covered here. We refer the reader
to the surveys Bartlett et al. [[13]], Belkin [[14]. Most relevant to our work are Cao et al. [15]], Kou
et al. [L6], Meng et al. [17] that studied benign overfitting in convolutional neural networks. Their
data distribution resembles ours, as we discuss in Section [2.1] Benign overffiting in fully-connected
two-layer neural network classification was studied in Frei et al. [[18}[19], Xu et al. [20], Xu and Gu
[21]], Kornowski et al. [22]], George et al. [23]], Karhadkar et al. [24]] for various activation functions,
data distributions and loss functions (both the logistic and the hinge losses). Recently, Jiang et al.
[25] studied benign overfitting in a simplified transformer model. However, in contrast to our work,



they do not allow for label-flipping noise, which is a fundamental aspect for understanding whether
interpolation is compatible with generalization. Indeed, including label noise is the common setting in
the literature on benign overﬁttingﬂ and it plays a key role in our analysis. Concurrent with our study,
Sakamoto and Sato [26]] also examined benign overfitting (with label noise) in a similar model. They
showed that, depending on the step size, there exists a time step at which benign overfitting occurs.
However, their approach differs significantly from ours: they do not optimize the attention head and
instead assume a strong condition, namely that the angle between the fixed attention head and the
signal is bounded below by a constant (see Assumption 3.3 in their paper). Notably, this assumption
is highly restrictive; if the attention head is drawn from a standard d-dimensional Gaussian, the
probability of satisfying this condition decreases exponentially with d. In contrast, we optimize both
the attention head and the softmax weights, and we show that both learn different patterns for clean
and noisy examples. Additionally, we provide an asymptotic analysis.

2 Preliminaries

Notations. We use bold-face letters to denote vectors and matrices, and let [m] be shorthand for
{1,2,...,m}. Given a vector &, we denote by z; its j-th coordinate. Let I; be the d x d identity

matrix, and let 04 (or just 0, if d is clear from the context) denote the zero vector in R%. We let ||-||
denote the Euclidean norm. We denote a multivariate Gaussian distribution with mean vector g and
covariance matrix ¥ by N(u,3). We use standard big-Oh notation, with O(-), £2(+), O(-) hiding
universal constants and ©(-), (), O(+) hiding constants and factors that are polylogarithmic in the
problem parameters. We use I(-) to denote the indicator variable of an event. For a finite set A,
denote the uniform distribution over A by Unif(.A) and let |.A| be its cardinality.

2.1 Data Generation Setting

In this work we focus on the following data distribution:
Definition 2.1 (clean data distribution). Let p1, 2 € R? such that ||pq]| = ||p2|| = p for some
p > 0and (1, po) = 0, be two fixed orthogonal vectors representing the signal contained in each

data point. Define Dgjeyy as the distribution over RTxd » {+£1} of labelled data such that a data point
(X, ) is generated by the following procedure:

1. Sample the label § ~ Unif{£1}.

2. Generate a vector u, which represents the signal, as follows: If ¥ = +1, set w = p1; and if
y=—1,setu = us.

3. Generate i.i.d vectors &5, . . . , &7 , which represents the noise, from the Gaussian distribution
& ~N(0,I;— papf [p* — papsy [p?) forany 7 € {2,...,T}.

4. Denote X = (2™, 2@, ... x™)T, Select k ~ Unif{l,...,T} and set x*) = u. Set
the other tokens (1), ... 2® =D k+) )T tobe &,...,Er.

To study the overfitting behavior we also need to introduce label-flipping noise:

Definition 2.2 (noisy data distribution). Letn € [0,1/2) be the label flipping probability. We define
D as the distribution over R7*¢ x {41} which is the n-label-flipped version of Dejesn. Namely, to
generate (X,y) ~ D, first generate (X, ) ~ Delean, then let y = y with probability 1 — 1 and
y = —y with probability 7.

Our data distribution resembles the distributions considered by Kou et al. [[L6]], Cao et al. [15], Meng
et al. [17]]. They proved benign overfitting in two-layer convolutional neural networks, and in their
setting each data point consists of two patches x(!), 2(?) (rather than T tokens in our setting). Since
our single-head attention model is invariant to the order of the tokens, we assume without loss of
generality throughout this work that (1) is the signal token and 2(?), . .. (™) are the noisy tokens
in all data points. Note that the noise token (™) = &, is independent of the label, and that it is

*Without label noise, many existing benign-overfitting results can be trivially explained through standard
uniform convergence arguments (e.g., the classical result of Bartlett et al. [2] on benign overfitting in linear
regression).



generated from NV'(0, I; — papu] /p? — papg /p?), ensuring that it is orthogonal to the signal vector.
Note that when the dimension d is large, ||€;|| =~ v/d — 2 ~ +/d by standard concentration bounds.
Therefore, we denote the signal-to-noise ratio (SNR) as SNR = || u||/v/d = p/V/d.

We consider a training dataset {(X;, y;)}"_, of n samples generated i.i.d. from the distribution D.
Denote the index set of data whose labels are not flipped by C = {i : §; = y;} (“clean examples”),
and the index set of data whose labels are flipped by N = {i : y; = —y;} (“noisy examples™). For
indices in C, we further denote C; := C N {i : azgl) =p1},Co:=CN{i: a:l(.l) = pa}, and define
the subsets A7, N> of N analogously.

2.2 Single-Head Attention Model

Self-attention serves the core building block of transformers. Given an input consisting of 7" tokens
X = (W, 2@ ... 2M)T ¢ RT*4 self-attention with key-query matrix W € R**? and value
matrix V' € R%*% _ the self-attention model is defined as follows:

f(X)=S(XWX "XV,

where S : R? — R is the softmax function. In practice, additional tokens are often appended to the
raw input features X, and this position is used for the model prediction. For example, a [CLS] token
is added for classification purposes [27]], and prompt vectors can be appended to adapt pretrained
models to new tasks. Let ¢ € R¢ denote the tunable token ([CLS] token or prompt vector) and
concatenate it to X to form X, := [q X T]T € R(T+1 x4 The cross-attention features derived from
X4 and X are given by:

S(g'WX")

f(X)=S(X,WX XV = [S(XWXT)

] XV, 1)

Then we can use the upper term for classification, set £ = 1 and denote v = V' € R?. This brings us
to our attention model of interest:

FX;Wov) =0 XTS(XW'q) by
Here the trained parameters are W and v. We note that self-attention with respect to such a tunable
token was considered in several other theoretical works (see, e.g., [6, 26]).

In this work, we follow Ataee Tarzanagh et al. [6] and consider the following model:
[(X;v,p) =v' X 'S(Xp). 3)

Here, the trained parameters are v,p € R Note that our model corresponds to fixing ¢ =
(1,0,...,0) " inEq. (2). We note that Ataee Tarzanagh et al. [6]] showed that in the model from Eq. (2)),
gradient iterations on W (with fixed q) and on q (after setting W = I;) admit a one-to-one mapping
(see Lemma 1 from their paper), and hence the dynamics in models (2)) and (3) are essentially similar
for any choice of a fixed q. Thus, instead of the key-query matrix W we have a vector p that controls
the attention. We denote the output of the softmax layer S(X;p) by s; = (s;.1,Si2,- .-, sin)T, and
denote the output of the attention layer XZTS7 by ; = s; 1 + Si2&i2 + -+ + S, 7€ 7, where
0<si1,...,8ir <1,8;1+---+s;, =1 are the attention on 7T tokens of the ¢-th sample.

3 Benign Overfitting with Gradient Descent

In this section, we study the joint optimization of the head v and attention weights p using the logistic
loss function. We show that the model exhibits benign overfitting after just two iterations of gradient
descent (GD). Formally, for a training dataset {(X;,y;)}? , we define the empirical risk as

L(v,p) = %Zf(yi - f(Xi30,p)),

where £(z) = log(1 + exp(—2)) is the logistic loss function, and f is the model from Eq. (3). We
consider GD optimization. Starting from py = 0 and vy = 0, we have

Vip1 = Uy — BV L(ve, pr) and Py = pr — BVpL( V4, pr),



where 3 is the step size. When we discuss some fixed ¢, we sometimes write in the subscript “t = -7,
e.g., pr—2 instead of ps.

We make the following assumptions:

Assumption 3.1 (Assumptions for GD with SNR = (1/+/n)). Let 6 > 0 be a desired probability of
failure. Let ¢, > 6(T" — 1) be a parameter that controls the signal strength. For any constant ¢y > 2,
there exists a sufficiently large constant C' = C'(¢r) that may depend on cr, such that the following
conditions hold:

1. Number of samples n should be sufficiently large: n > C'log(1/4).

2. Dimension d should be sufficiently large: d > C - n?log(n/d).

3. Signal strength is: p = ¢,+/d/n.

4. Label flipping rate n: 0 < n < 1/C.
5. The step size 3 satisfies: 5 € [z,1.02 - z] for z = cg - n/d, where cg := cg(n, c,, T').
6. Initialization at zero: ||vg|| = ||pol| = 0.

7. The number of token 71 satisfies: 2 < T < ¢r.

Item [T] is required to estimate the number of clean examples compared to noisy examples. The
assumption of high dimensionality (Item 2 is important for enabling benign overfitting (see Figure 4]
in the appendix), and implies that noise tokens from different training samples are nearly-orthogonal.
This assumption appears in many prior works on benign overfitting in neural network classification
(e.g., Cao et al. [[15], Kou et al. [[16], Meng et al. [[17], Frei et al. [18.[19], Xu et al. [20], Kornowski
et al. [22]], Xu and Gu [21])). Item [3|states that the signal-to-noise ratio (SNR) is % =Q(1/y/n). In

Section[3] we will discuss how the SNR affects the dynamics of GD.

Interestingly, SNR of €(1/1/n) matches the 40
tight lower bound of the required SNR that al-
lows for benign overfitting with the min-norm
(i.e. max-margin) learning rule that we will
study in Section[d] Item [ ensures the flipping
rate is small enough to allow the model to learn
the signal token. Item 3]is required to achieve
benign overfitting after two iterations; with a
smaller step size, the model will need more it-
erations to fit the noisy samples, which we will
demonstrate empirically in Section [6} Item [7] 0.0
ensures that the number of tokens is constant.

Sample Size n
N

Remark 3.2 (random initialization). The as-

i Figure 1: A heatmap of the test accuracy (aver-
sumption of zero initialization (Item [6)) is with-

aged over 5 runs) after achieving training accuracy

out loss of generality, as the model is smooth
around 0. Indeed, the gradient with respect to
the softmax weight p is Lipschitz (as shown in
Lemma 6 of Ataee Tarzanagh et al. [6]), and the
same also holds for the gradient with respect to
the attention head v, since f(X; v, p) is linear
in v. Consequently, the loss and gradient for any
sample under random initialization with zero ex-
pectation and sufficiently small variance closely

100%, plotted across varying signal-to-noise ra-
tios (SNR) and sample sizes (n). The red curves
represent the expression SNR? = 2.1 /m. This
validates our tight bound of SNR = Q(1/4/n) to
achieve benign overfitting, and with a smaller
SNR the model exhibits harmful overfitting. Pa-
rameters: d = 900,7 = 5,84 = 0.015,n =
0.1, test sample size = 2000.

resemble the loss and gradient under zero initialization. Thus, our result can be easily extended to
small random initialization. This is also demonstrated empirically in Figure §]in the appendix.

We now state our main result on benign overfitting with GD:

Theorem 3.3. Suppose that Assumption holds. Then, with probability at least 1 — § over the
training dataset, after two iterations of GD we have:



* The classifier X > sign(f(X;vi=a, pt=2)) correctly classifies all training data points:
yi = sign(f(X;; v—2, Pi=2)), Vi € [n].
o The classifier X s sign(f(X;vi—2, p1=2) generalizes well:

P v # sign(f(X; v, prs))) < + exp(—v/n/2) + exp (—Cind/ () 'n'?)),

where Cy := Cy(cr) > 0 is a constant. We can also conclude that for the clean-labeled
distribution D jeqn, we have

(X yﬁm (y # sign(f(X;vi—a, pi=2))) < exp(—v/n/2) + exp (—=Cind/(c5'n'?)),

which approaches zero as d and n grow (see items in assumption .

* High softmax probability for “optimal” tokens:

1
1+(T - 1)0,2)’

9 1

Vi L L I —
’LEC 811 71—|—(T 1)217

Vi e N : Zst2>1—

T=2

where s; ; is the softmax probability of the 3™ token in the i sample at time t.

The third item in Theorem [3.3] provides insight into how benign overfitting occurs in attention
mechanisms. After two iterations of gradient descent, the model assigns enough attention to the
signal tokens for clean examples and to the noise tokens for noisy examples. This enables the model
to interpolate noisy training examples using the noise tokens while still achieving good generalization
performance through the signal tokens.

Remark 3.4. When c,, is a constant (i.e., the constant C'in Assumption@may also depend on c)),
the bounds on the attention probabilities can be improved to s; 12 > T A foralli € C.

4 Benign Overfitting of Max-Margin Solution

In the previous section we showed that GD exhibits benign overfitting in a setting where the SNR is
Q(1/+/n). We now turn to study the overfitting behavior of single-head attention models, when using
another learning rule, which returns solutions that interpolate the training data with large margin
while keeping the parameters norms small. As we will show, such a learning rule allows us to obtain
benign overfitting under the same requirement on the SNR.

We note that learning rules that return min-norm (or max-margin) solutions are considered natural,
and hence understanding properties of min-norm interpolators has attracted much interest in recent
years, even in settings where the implicit bias of GD does not necessarily lead to a min-norm solution
(see, e.g., Savarese et al. [28], Ongie et al. [29], Ergen and Pilanci [30]], Hanin [31]], Debarre et al.
[32]], Boursier and Flammarion [33]]). More directly related to our work, min-norm interpolation with
Transformers has been studied in Ataee Tarzanagh et al. [6, 5], and benign/tempered overfitting in
min-norm univariate neural network interpolators has been studied in Joshi et al. [34].

The motivation for analyzing min-norm solutions also arises since they roughly correspond to training
using GD with weight decay (which encourages norm minimization). Thus, while in the previous
section we showed that GD exhibits benign overfitting after two iterations, in this section our results
suggest that GD with weight decay may exhibit benign overfitting also after long training.

We first consider the following learning rule:

(V(r,R): P(r,r)) = argmax miny; - f(Xi;v,p), “
ol <r,|lpl <R €]
where f is the model from (@). The learning rule returns a solution that maximizes the margin
min;ep, ¥i - f(Xi; v, p) under a restriction on the norms. We make the following assumption:

Assumption 4.1 (Assumptions for max-margin with SNR = Q(1/4/n)). Let § € (0,0.5) be a desired
probability of failure. For any constant ¢ > 2 there exists a sufficiently large constant C' = C(cr)
that may depend on cr, such that the following conditions hold:



1. Dimension d is sufficiently large: d > Cn?log(n/d).

[\

. Number of samples n is sufficiently large: n > C'log(1/96).

. Signal strength: p > C'+/d/n.
. Label flipping rate: 0 < n < 1/C.

5. Norm constraint of p satisfies: R > C'y/nn/d + 1/p?log(Tpn).
6. Number of tokens: 2 < T < Cr.

W

Items [1] [2] and [4] are similar to Assumption Item 3| requires SNR > Q(1/+/n), as in Assump-
tion [3.1] We will show later a lower bound on the required SNR for benign overfitting, implying that
the Q(1/+4/n) bound is tight. Itemprovides the lower bound for the norm constraint of p so that
the model can allocate enough attention on signal tokens to achieve benign overfitting. Note that the
norm constraint  for v can take any positive value. Intuitively, since the model is linear in v, once p
is properly learned, v can achieve accurate classification even with a small norm.

With these assumptions in place, we give our result on benign overfitting with the learning rule ().

Theorem 4.2. Suppose that Assumption holds, and consider the classifier X —
sign(f(X;v(.r), P(r,r))) Where (v(, gy, P(r,r)) is a solution to Problem . Then, with prob-
ability at least 1 — § over the training dataset, we have:

* The classifier sign(f(X; v(, r), P(r,r))) correctly classifies all training data points:
yi = sign(f(Xs; v p), Prr))), Vi € [n].
* The classifier sign(f(X;v(, gy, P(r,r))) generalizes well on test data:

P sign X;’U r s P(r
<X,y)~p(y # sign(f(X;v(-r), P(r.R))))

(=0 _loslm)y

<0 exp(-9(d/n?) +exp (-~ (=2 - 2

where ¢ = \/nm/d + 1/p?, ¢ = O(plog(Tpn)/R).
Remark 4.3. To see why Theorem 4.2]implies benign overfitting, consider the limit R — co. Then,
the upper bound for test error becomes 71 + exp(—Q(d/n?)) + exp(—O((1/p? + nn/d) 1)), which
can be arbitrarily close to 7 if d is large (see Assumption[4.1] item T).

Next, we consider the following learning rule, which explicitly requires to minimize the parameters
norms while allowing interpolation with margin at least :

(vy,py) = argmin s.t. miny; f(X;0,p) >, (5)
)2+ €]

where f is the model from Eq. (3). We show that under Assumption[4.1} the solution (v.,, p,) exhibits
benign overfitting for large enough ~ and d:

Theorem 4.4. Suppose that Assumption d.1| (Items [I| through 4} and [6) holds, and consider the
classifier X — sign(f(X; v, p,)), where (v, p,) is a solution of Problem (5). Then there exists
Yo such that for any vy > g , with probability at least 1 — 0 over the training dataset, we have:

* The classifier sign(f(X;v., py)) correctly classifies all training data points:
yi = sign(f(X4; v, ), Vi € [n].
* The classifier sign(f(X;v., py)) generalizes well on test data:

P o # sign(f(X5vy,))) < 0+ exp(—Q(d/n%) +exp(~O((1/p" +1m/d)™").

Thus, for large enough ~, the theorem implies that the trained model interpolates the training data,
and the test error approaches 7 as d — oo.



Note that Theorems andhold only when SNR = Q(1/+/n). This raises the question: what
is the overfitting behavior of min-norm interpolators when the SNR is smaller? We now consider

the two-token case where p < 4/1/Cn for some sufficiently large universal constant C. We will
show that in this case, although the model can correctly classify all training samples, the test error of
learning rule (@) is at least a universal constant, indicating that benign overfitting does not happen.
Formally, we make the following assumptions:

Assumption 4.5 (Assumptions for max-margin with SNR = O(1/y/n)). Let § € (0,0.5) be a
desired probability of failure. Consider the case where every sample is composed of two tokens,
X; = (p;,&;)". There exists a sufficiently large constant C' such that the following hold:

1. Dimension d is sufficiently large: d > Cn?log(n/d)
2. Number of samples 7 is sufficiently large: n > C'log(1/9).

. Signal strength: p < /d/Cn.
. Label flipping rate is a constant: 1 € (0,1/2).

~ W

5. The norm of p should be sufficiently large: R > C'\/% log (%£).

Compared with Assumption [4.1] the main difference is in the second item, namely that SNR <
O(1/+/n). Additionally, the condition on 7 is relaxed, as in our analysis clean and noisy samples
can be treated equivalently when the norm of the signal token is sufficiently small. With these
assumptions in place, we can state the following theorem which characterizes the training error and
test error of the single-head attention model when the SNR is small:

Theorem 4.6. Suppose that Assumption holds, and consider the classifier X —
sign(f(X;v(.r), P(r,r))) Where (v(,. gy, P(r,r)) is a solution of Problem . Then, with prob-
ability at least 1 — § over the training data, we have:

* The classifier sign(f(X;v(,.g), P(r,r))) correctly classifies all training data points:
yi = sign(f(Xs;v0.m), Prr))), Vi € [n].

* The classifier sign(f(X; v(,,r), P(r,r))) does not generalize well on test data:

1
P i X; >
(XW)NDM(Z/ # sign(f(X;v(r,Rr), P(r,Rr)))) = 6

5 Proof ideas

Proof ideas for Section 3] Here, we discuss the main proof idea of Theorem Since the
initialization is at zero, v, is a linear combination of the training data tokens. Specifically, we can
express vi—1 as AXi= g + A5 o + SO0 v 007t ZZZQ & .-, where \i=1 > 0,A571 < 0. Note
that \Y > 0, A5 < 0 holds since |C| > |N|. We begin by analyzing the first step of GD. We show

that after one step, the coefficients of v;—; can be estimated as [A}=!| ~ %(1 —2n),k € [2]
and 91=" = _2_ i € [n]. Moreover, we have p;—; = 0, and hence for a training sample (X; =

2T ’ . .
(r, &2, - - ,€TSL, y;), the margin is:

T

1 1 T 1 — 2 1 = 2

yif (Xjivmn, pem) = ool @)+ @)~ Sy il + 0570 D 11611
T=2

where in the last approximate equality we use the high dimensional setting (i.e. by item [2]in our

assumption d >> n? log(n)) to neglect the > i) £Gor) Yili 0;215;53-_’7, term, since it is much

smaller (in absolute value) than the other terms. Indeed, we have w.h.p. that |€1T L& < Vdlog(n),

&, > ~ d and recall that ||p||> = c(d/n) (itemin our assumption). Therefore, for a clean
sample j € C and large enough c,, the margin is y; f(X;;vi=1,Pt=1) = ¢g > 0, where cg is
a parameter that controls the step size 5. On the other hand, for a noisy sample j € N, we
have y; f(Xj;vi=1,P=1) = —cg < 0. This implies that after one iteration of GD the classifier
sign(f(X;vi=1, pt=1)) does not correctly classify noisy training samples, but still correctly classifies
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Figure 2: The top panel shows the train and test accuracies during training. It shows that benign
overfitting occurs after 2 iterations. After the first iteration, the model correctly classifies the clean
training examples, but not the noisy ones. In the bottom panel, we show the softmax probability of
the signal token for clean and noisy samples (average of the softmax probabilities s;l over C and N
respectively). We see that after 2 iterations, the attention focuses on signal tokens for clean examples,
and on noise tokens for noisy examples. This aligns with Theorem [3.3]and Remark [3.4] Parameters:
n = 200,d = 40000,T = 2, 8 = 0.025, p = 30, n = 0.05, test sample size = 2000.

clean training samples. Together with p;—; = 0, the classifier sign(f(X;vi=1, pi=1)) will also
correctly classify, with high probability, a clean test sample. Moreover, since the loss function
¢ is decreasing, the loss of noisy samples, denoted ¢;—; ;,j € N, dominates the loss of clean
samples ¢;—; ;,i¢ € C. This implies that after two iterations, the coefficients |9§:2\,j € N, of the

noisy tokens in v;—s, corresponding to noisy samples, grow faster than the coefficients |\!=2| of
the first (signal) tokens. This property is important to allow for interpolation of noisy examples.
We also show that p;—, focuses on optimal tokens, namely, on noisy tokens for noisy samples

Ge ST, s3> > 1/14 (T — 1)c2,Vi € N), and on the signal token for clean training and test
samples. Using this property we conclude that the model parameterized by (vi—2, p;—2) exhibits

benign overfitting.

Remark 5.1. Note that our proof implies the following behavior of GD. After the first iteration, the
model correctly classifies only the clean training samples, resulting in an expected training accuracy
of 1 — 7. Additionally, the model successfully classifies a clean test sample w.h.p., leading to the
same expected test accuracy. After the second iteration, the model interpolates the training data,
achieving a training accuracy of 1. This is shown empirically in Figure 2 When using a smaller
step size, we empirically observe a similar trend: after the first iteration, the model learns the signal
tokens, and with more iterations, it captures the noisy tokens of the noisy samples and fits the entire
dataset. This behavior is shown in Figure 3]

Proof ideas for Section[d, We now discuss proof idea for Theorem Consider the behavior
of p(,,g) and v, gy as R,r — oo. The main insight is that p converges to a direction that focuses
on signal tokens for clean samples, and v approximates the corresponding max-margin classifier
over the attention outputs. First, we consider the attention output 7; = X,' S(X;p) as a selection
of signal and noise tokens based on softmax probabilities. We define a learning rule that selects the
signal token g, for clean samples and a fixed noise token &; o for noisy ones. Then we show that any
p which is not aligned with this rule (that is, does not select clean tokens for clean samples) leads
to a strictly smaller margin. This implies that the optimal solution also tends to select signal tokens
for clean samples. Since test data shares the same signal tokens, the attention output on test samples
also concentrates on the signal token when R is large. Combined with a near-maximal margin vector
v(r,R)» the model predicts correctly on test samples with high probability.

6 Experiments

We complement our theoretical results with an empirical study on benign overfitting in single-head
softmax attention. We trained single-head softmax attention models (Eq. (3)) on data generated as
specified in Section 2.T|using GD with a fixed step size and the logistic loss function. In all figures,
the x-axis corresponds to the time and has a log scale. We add 1 to the time so that the initialization
t = 0 can be shown in the log scale (i.e. iteration 10° is the initialization).

In Figure[2] we consider a setting similar to Theorem [3.3] and demonstrate that benign overfitting
occurs after two iterations, and that the behavior of GD aligns with our discussion in Remark
We also plot how the softmax probabilities evolve during training, and see after two iterations a
behavior similar to the last item of Theorem [3.3]and Remark 3.4] In Figure 3| (Appendix [A.4), we



consider a similar setting, but with a smaller step size. Here, benign overfitting occurs after about
150 iterations. In Figure[I] we present a heatmap of the test accuracy across varying SNR and sample
sizes, validating the SNR threshold of ©(1/1/n) established in this work. Additional experiments are
provided in Section[A.4] including investigation of the overfitting behavior for different dimensions,
self-attention w.r.t. the first token, multi-layer transformers, GD with weight decay (which encourages
norm minimization, as in our learning rule from Section E]) and experiments with real-world datasets
(MNIST and CIFAR-10). These experiments demonstrate that our results capture the overfitting
behavior also in more complex settings.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification:

The abstract and introduction clearly describe the main contributions of the paper, including
theoretical results on benign overfitting in single-head softmax attention models, the role
of signal-to-noise ratio (SNR), and conditions under which gradient descent and min-norm
interpolators exhibit benign overfitting. These claims are matched by the formal results and
empirical validations presented in the main body. The scope and limitations, such as the
dependence on SNR and model structure, are also properly stated.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification:

The paper discusses several important limitations throughout the introduction and main
results. Specifically, the theoretical guarantees rely on assumptions such as a sufficiently
large signal-to-noise ratio (SNR) and a simplified single-head attention architecture. These
assumptions are clearly stated, and the paper analyzes the tightness of the SNR condition by
showing that lower SNR leads to harmful overfitting. Additionally, the empirical results are
limited to controlled synthetic settings, and the paper does not claim generalization to real-
world datasets or multi-head models. These limitations are acknowledged and contextualized
in the appropriate sections of the paper.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification:

All theoretical results in the paper are clearly stated with a full set of assumptions. Each theo-
rem is numbered and referenced in the main text. The main paper provides proof sketches to
convey the core ideas and intuition, and all formal proofs are included in the appendix. The
assumptions, such as the signal-to-noise ratio requirement and model structure, are explicitly
stated either in the theorem statements or in the surrounding discussion. The results build on
standard tools and are self-contained, with all dependencies clearly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification:

The paper fully discloses the necessary information to reproduce the main experimental
results. All experiments are synthetic and based on simple, well-specified setups. The main
text describes the model architecture (single-head softmax attention), the data generation pro-
cess (signal and noise token distributions), and key parameters such as signal-to-noise ratio
(SNR), input dimension, number of tokens, and learning rate. In the appendix (Section [A.4),
the authors provide additional experiments under varied settings, including smaller step sizes,
self-attention variants, Gaussian initialization, multi-layer and multi-head architectures, and
gradient descent with weight decay. These results not only confirm the robustness of the
main claims but also provide detailed context for reproduction. While code is not released,
all critical implementation details and parameters are clearly documented in the paper and
supplement.

13



. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification:

The paper includes synthetic experiments that support the theoretical findings. Although the
code is not released at the time of submission to preserve anonymity, we plan to release the
full implementation, including data generation scripts and instructions for reproducing all
figures, upon publication. The code will include details on environment setup and execution
commands to ensure faithful reproduction of the experimental results.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification:

The paper specifies all relevant experimental details necessary to understand and interpret
the results. Since the experiments are based on synthetic data, there is no train/test split in the
traditional sense. The model structure (e.g., single-head softmax attention), data generation
process (signal and noise tokens), optimization method (gradient descent or GD with weight
decay), initialization schemes, step size, and number of iterations are all described in the
main text and in Appendix These details are sufficient for reproducing the setup and
understanding the empirical trends presented.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification:

The paper does not report error bars or confidence intervals in the experimental figures.
The experiments are designed to illustrate theoretical trends in synthetic and deterministic
settings, and each experiment is run with fixed parameters without multiple random seeds.
While this suffices to support the qualitative conclusions drawn in the paper, we acknowledge
that reporting statistical variability (e.g., over multiple random initializations or data draws)
would further strengthen the empirical analysis, and we leave this to future work.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification:

The experiments in the paper are computationally lightweight and were run on a single
NVIDIA T4 GPU. We will include a note in the appendix specifying the compute environ-
ment and approximate runtime for reproducing the experiments. No large-scale compute or
specialized infrastructure is required.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification:

The research is theoretical in nature and uses only synthetic data. It does not involve
human subjects, personal data, sensitive attributes, or any real-world deployment. The work
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12.

13.
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15.

follows all ethical standards outlined in the NeurIPS Code of Ethics, including transparency,
reproducibility, and fair representation of results. All authors have reviewed the Code of
Ethics and confirm compliance.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification:

The paper is purely theoretical and does not involve real-world data, human subjects, or any
deployed systems. It studies simplified attention-based models under synthetic settings and
is not expected to have any direct societal impact. We therefore consider this question not
applicable.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

This paper does not involve the release of pretrained models, real-world datasets, or other
assets that carry a risk of misuse or dual use. All experiments are conducted using synthetic
data, and the work is purely theoretical. Therefore, safeguards for responsible release are
not applicable to this research.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification:

The paper does not use any third-party assets such as datasets, pretrained models, or existing
codebases. All data is synthetically generated, and all model architectures are defined within
the paper. Therefore, no external licenses or terms of use apply.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:

The paper does not release any new assets such as datasets, pretrained models, or software
packages. All experiments are based on synthetic data generated according to procedures
described in the paper. No additional artifacts are bundled or released as part of this
submission.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:

The paper does not involve any crowdsourcing or research with human subjects. All experi-
ments are conducted using synthetic data without any human participation or annotation.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:

The paper does not involve any research with human subjects. All experiments are conducted
using synthetic data and do not pose risks to individuals or require IRB approval.
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification:

No large language models (LLMs) were used as part of the core methods, theoretical analysis,
or experiments in this research. Any potential use of LLMs was limited to minor language
editing and did not affect the methodology, rigor, or originality of the paper. Therefore, this
question is not applicable.
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Remark A.1. Throughout our proofs, we assume without loss of generality that p1; = (p, 0,0, ...,0) T,
o = (0,p,0,...,0)" and & = (0,0,€7) for & ~ N(0,I; 5). Indeed, since p; and o are
orthogonal, we can find orthogonal matrix A € R?*? such that Au; = (p,0,0,...,0)7, Ay =
(0,p,0,...,0)" and A& ~ N (A0, A(I; — pipi /p? — papg /p?)AT), which mean that AE; =
(0,0,&7) for & ~ N(0, I;_5). We emphasize that an orthogonal transformation does not affect our
results.

A.1 Proofs for Sec.[3]
A.1.1 Notations for Sec. 3

Given a, b, ¢ € R, we denote by c(a £ b) the close segment [c(a — b), c(a + b)]. Given vector x, we
denote by x[i] the i" coordinate of x, and x[i : j] denotes the subvector containing the elements
from the i™ to the 5, inclusive. We also list some key notations used in this section for convenience.

Table 1: Usefull notation.

Tij j" token in the i sample

¥ yiv, x; ; i.e. jM token score in time ¢

aﬁ) ;  softmax probability of the 7™ token in the i sample in time ¢
e ; (X5 ve, pr)

We remind that C, NV C [n] denotes the indices of clean and noisy training examples, and C, Ny
denotes the clean and noisy examples from cluster & € {1,2}. For example if i € Cq, then z; 1 = g
and y; = 1, and for j € N; we have that z;; = p; and y; = —1. Let S'(v) := VS(v) =
diag(S(v)) — S(v)S(v) " denote the Jacobian of the softmax function S(v) at v € R%.
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A.1.2 Additional Lemmas & Definitions for Sec3

The following equations will be useful throughout the proof:

1 n
VoL(v,p) = Zéi— -4 X; S(Xip) 6)
VpL(v Zé' X,'S'(Xip)yi, where ~v; =yv' X; @)
U(x) =-1/(1+ eXP( ) ®)
§'(v) = diag(S(v)) - S(v)S(v) " ©)

Definition A.2 (Good Training Set). We say that a training set (X1, ..., X,,) is good if exsists some
universal constant c¢p (that may depends just on the number of tokens 7') s.t.

e &i-l13 € (1 £0,(1))d, foralli € [n],7 € {2,...,T}.
* (& &) <cp-+/dlog(n/d),forany i,j € [n], 7,7 € {2,...,T} such that (i, 7) #
(4, 7).

© [Nil € Z(n+on(1))and [Ck| = 5(1 —n =+ o0n(1)), for k € {1,2}.

Definition A.3 (Good Test Sample). We say that a test sample (X = (x1, @2, ...,27),y) is good
w.r.t. a training set (X1,...,X,,) and Cy if

d
[{xir,xr)| < m, Vi€ [n], 7,7 €1{2,...,T} st. 7#7

Next we write Lemma [A.68]slightly different, and also add a formal proof for completeness:

Lemma A4. Let 6 > 0 and C > 0. Suppose that Assumption [3.1|(item[I)) holds with constant C,
then with probability at least 1 — /2 we have that

ICk| € = 1—7):|:\/2/C INVE| G 2/C), Vke{1,2}.
Moreover, we have

Cil € S —nton(1), Wil €ZmEon(1)), Ve {1,2}.

Proof. By Hoeffding’s inequality,

P(|ic)l - S0 —m)| = Vulog(16/5)/2) < é/s,

which means that with probability at least 1 — §/8 we have that |C;| € $(1 —n % ¢,), where

= /2nlog(16/d)/n. Hence, if n > Clog(16/4), then ¢,, = +/210g(16/d)/v/n < /2/C.

Slmllarly, we can estimate |N| for k& € {1,2}, and by union bound, the result follows.

The next lemma[A.5]allows us to analyze V,, £ as a function of the score gap.

Lemma A.5. Let z,v,p € R” and let o = S(p). Define Ymin := min,>a2 Vr, Ymaz := Max,>2 Yr,
Y= (’Ymin + 77nuw)/2 and € := (’Ymax - ’Ymin)/z' Then

T
zTS'(p)'y Em—71—-a)o (zl iz Zlal) + € (2 ZzlozZ + og Zzzal (1- al)a1z1>

17041
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Proof. Observe that 37 a; = 1. Therefore,

T T T
ZTS'(p)'y = sziag(a)'y - zTaaT'y = Z 2V — Z 2,00 Z Vit
i=1 i= i=1

T T T
€ znimar+ (v +e) Zziai - (21041 + Z Zi%‘) (’71041 +(r£e) Z%‘)
i=2 i i=2
T
= ((*yzi:e) - (al’yl +(vy=xe) Z )) Zz’zal ( - <oz171 + (V:I:e)ZaZ)) 1721
i—2 i=2
=((v+e)—(am+(rxe)(l —a)) Z Zi0 + (11 + (v e)(1 —a))) arz
T
=(a1(yte) —aryr = 2€) Z zig; + (1 —a1)(m —y £ e)arz
i=2
T
(v—m ZzlalJr (1—a1)(m —7y)arz1 e (2Zzlaz+alzzla, 1a1)a121>
=2
Sy zic
=(mn—-—70-a))a [z — f—Qal +e 2240@—&-04222(1z (1—-aq)arz

O

We will show that in our setting the score difference between noisy tokens (i.e. € from Lemma[A.3)) is
relatively small and thus the second term in Lemmal[A.3]is negligible compare to the first term.

Remark A.6. To prove Thm. [3.3] we demonstrate that V;,£ can be expressed as a function of the
score gap between the optimal token to the noisy tokens. Specifically as a function of v; 1 — i -,

where ~; 1= yivTX i 1s the vector score of the ¢ sample, and with some additive term that depends
on the score gap between any two distinct noisy tokens, defined as €; := max, 2 |7, » — 7.+ | (see
LemmalA.5)). We establish that in our case ¢; is relatively small. This technique is noteworthy on
its own, as it enables the analysis of softmax weights in a multiple-token setting without relying on
potentially unnatural assumptions, such as all non-optimal tokens having identical scores [6[7] or the
presence of a single noisy token with a larger norm compared to other noisy tokens [25].

Lemma A.7. Let x1,2a,. .., T, be independent random variables such that E[x;] = 0 and x; €
[—b, b] almost surely. Consider the sum of these random variable S, = x1 + -+ + x,,. Then
Hoeffding’s theorem states that

Pr[S, > n "] < exp(—2n'b%/4b?n) = exp(—n"?"/2)
A.1.3  Proof of Thm. 3.3
Proof. To simplify the proof, we express the step size [ in an alternative form:
1673 ‘ 1673
0.998(T — 1) 0.998(T —
B=cs-n/(c]d), (10)

which is equlvalent to Item E} We emphasize that cg can be arbitrarily larger than any constant
whenever 7 is small enough i.e. C from Assumption [3.1]is large enough.

cg = Cry/log(c,)/n where Cy € [

Next, under Assumption we argue that with probability at least 1 — § the training set is good

(Def.[A2) i.e.:
* [Ck| € 5(n*xon(1)) and Ny, € 5(1 —n=£o0,(1)), for k € {1,2}.
o [|€&+]13 € (1 +0,(1))d, forany i € [n],7 € {2,...,T}.
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|<§zn£JT | <c¢p - +/dlog(n/d), forany i,j € [n], 7,7 € {2,...,T} such that (i, 7) #
(47,

where ¢p is some universal constant. Indeed, this holds by Lemma[A.65] Lemma[A.4] and the union
bound. We emphasize that the notation o, (1) represents a term that becomes arbitrarily small as n
increases, and thus it can be bounded by a small constant if C' from Assumption|[I]is large enough.

Next, we show that under a good training set, the model exhibits benign overfitting, already after two
iterations. See Remark [A.T|for the data setting used throughout the proof.

GD after 1 iteration. We start by analyzing the first coordinate of v; (i.e. v after one iteration of
GD). By assumption [3.1] (item @), we have that py = v = 0, which implies that £, ; = —1/2, for
any ¢ € [n]. Hence

B < B
—BVuL(vo, po)[l Z 00 viia[l] = s> YiP + 50 Z Yip
" Tn 2Tn -
i=1 1€Cy 1€N1
ﬂ
= o (Gl = [M)p
B " 2 . s
S E(l —2nto0,(1))p good” training set
In the same way, we can estimate the second coordinate of v;—1:
V12 QTnZmerf ZszE—f 121+ 0,(1))p,
1€Ca €N
where we remind that y; = —1, when i € Cy, hence v;—1[2] has the same bounds as v;—1 [1], just

with opposite sign. We move to analyze the rest of the coordinates of v;—1:

B n T
= Tn ;%;EH

Overall, we can write v;—1 as A\\= py + N5~ g + S0, 4,071 27 €, with

t=1 ﬂ . t=1 7& . t=1 _ _P
N e (=2 F0a(1), AT E — (L= mEon(1)), 67 = o (11)

Moreover, since 'yf:O = 0 for every i € [n], we have that p; = 0 (see Eq. .

Preparation for next iteration. To estimate (v;—2, Pi—2), we first need to estimate the loss for
clean/noisy samples and the score ; , (see Table E[)

We remind that || [|* = p? = cd/n (Assumption(item). For j € Cy, where k € {1,2} we
have that

1 .
Y f( X5 vi=1, Pt=1) = T 'yj’UtT:1 ij,r since p; =0
1 t=1 2 1 t=1 — 2 B t=1
€ Tp‘k [ [eell” + Tej Z 1€5.-1I" £ Eon(d) Yy >0 (12
T=1

where the last inequality holds since the training set is “good” and 7" is a constant i.e.

> & & € o,(1) - d.
b7 (7))
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Since the training set is “good” then by Eq. we can bound y; f(X;; vi=1, pr=1) as follows:

d T-1
Y f (X5 vi=1,P=1) < %(1 =2+ 0,(1)) - €5 - n T %d(l Fon(D) + g on(d)
2 o _
< Cp(l 27]) + ii(rj; 1) + On(l)> ) % Assumption@(item@
1—2n) 4+ 2(T — 1)/ + 0,(1
w.(( 1)+ 2T~ 1/ +on >> Fa. [0
_ Ll (13)

— 4T2 )
where the last inequality holds since ¢, > 5(T — 1), which implies that 2(T" — 1) /c2 + 0,(1) < 0.1.
Similarly, we have that

B d., B B
Y; f( X3 vi=1,P1=1) = @(1 —2n—on(1)) 'Ci " + 2T2nd(1 —on(1)) — 50(d)
- (1 =2n) +2(T —1) —0,(1) pd
- 472 n
(1 - 20) +2(T — 1)/ — 0,(1)

- AT?

0.965
>
> (14)

For j € Ny, where k € {1,2} we have that
1 T
Yi [ (X3 vi=1, pt=1) = T 'yj'v;l Z Tjr since p; =0

T=1
1 t=1 2 1 z&:lT_1 2 B t=1
€ = Hlell” + 5057 D 115017 £ —o(d)  yi ATt >0 (1)
T=1

where the last inequality holds since that the training set is “good” and 7' is a constant. Since the
training set is “good” then by Eq. we can bound y; f(X;; vi—1, Pt=1) as follows:

d T-1
U F(X v i) < — g (= 2m = 0u(0) -3 4+ PV a1 40,10+ 2 o)
201 _
. ( 2(1 - 2n) +42T(2T 1) +on(1)> ,% Assumption[T] item()
< —0.9¢g (16)

— 4T2 b
where the last inequality holds since ¢, > 5(T'—1), which implies that 2(7'—1) /5 +2n+0,(1) < 0.1.
Similarly, we have that

d
03 (X 0t Pem) 2 — s (L= 20 0n (1)) & 4 21— 00 (1)) ~ Zo(d)
N <c‘;‘(1 —2) +2(T - 1) — on(1)> Bd
- 4772 n
—(1—2n) +2(T - 1)/cj — on(1)
G AT
—1.1cg a7

T 4717?
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We remind that —¢} ; = 1/(1 4 exp(y; f(Xy; vi=1,P1=1))) and that 5 = ¢ - n/(dc2) (Eq. .
Combine with Eqgs. ﬂ;%l and[[4] we have that

i€C, —lj_y,; >1/(1+exp(l.lcg/AT?)) :==m& " >0 (18)
i €C, —li_y,; <1/(1+exp(0.9c3/4T?)) := M < 1/(4(T —1)c2), (19)

where the last inequality holds since ¢ > log(c,)//1 and since 1 4 exp(0.9¢,) > 4¢3 for any
cp > 6.

Moreover, by Eqs. [T6and[I7] we have that
JEN, —li_y; > 1/(1+exp(—0.9¢5/4T?)) := miF" > 0.99 (20)
JEN, —li_y; <1/(1+exp(—1.1¢s/4T?)) := M7' <1 (21)

The notations M/ and m); (M}, and m}) denote the upper and lower bounds, respectively, on the
derivative of the loss for clean (noisy) samples at time ¢, and we use them throughout the proof. We
remind that v} . = y;v, @; ;. Then by Eq. 11} for i € C;, we have that

B

2
vt € I —2mEo.(1))p” = 4T(1—2nion(1))
5 e% d(lj:on(l)):—(1/02j:on(1)),VT€{2,...7T}
Wi ket € H(1 -2/t~ mE0,(1) (22)

where in the calculation of %{ we use Z n) YiY; ZT#T, 6;':75]-77/ € +o0,(1) - d, which holds
since the training set is good. For ¢ € NV, we have that

B 2o CB .
e — (L= 2% 0y(1)p? = — (1= 20+ 0,(1)
i 16% d(lj:on(l)):0—5(1/0210"(1)),VT€{2,...,T}
W3 =l € (1 2/ — mE0,(1)) (23)

GD after 2 iterations.
Analysis of v;—o.
Observe that

—BVuL(v1,p1) ——leflz yi X, S(Xip1) __72 1 yzzmz.

We start by analyzing the first coordinate of V., L(v1, p1).

B /
—BVyL(v1,p1)[1 Z —0 ;- yiwia 1] + T Z =0 yizia[l]
z€C1 ieN1
ﬁ Z !
o IR S
Tn i€Cy " jen
Yol by e (24)
1€Cq jGNl
Observe that
Z —0y,; — Z ;> —g(n +0,(1)) - My good training set
i€Cy JEN
n
>—§(77+0n(1)) Eq.[21]
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Substituting it into Eq. [24] we obtain that

VL1, p0)[1] > — (0 0u(1)p.

On the other hand, by Eq. 24] we can upper bound the first coordinate of the gradient of v by

VLo p)l1] < 2 (Z ea,i) p

1€Cy
< 1$T p —t;,; <1/17,Eq.[T9
Similarly, we can estimate the second coordinate of V, £(v1, p1):
D+ 0u()p = 8V Llwn, p)[2) >~
Write vi—g = N2y + AN572p0 + >0 | 40072 23711 &;. Together with Eq. |11}, we get that
N =N = BV L () p < S Hon() + o s o e9)
N2 - -0, (1) 26)
N = A - BV Lo ) 2 — (o) - hm 2 28 @)
N s - L -4 — a1 29)

Next, we analyze the rest of the coordinates of V L(vl,pl)

T
VLo )3 d) = 234 Zez SN S 3
T=2

zeC ]EN

and use it to analyze the coefficients of the noise (second) tokens in v;—o, i.e., 0522. Indeed, fori € C
we have that

9f=2 = 9?1 - %6/11 = %(_ /1,1‘ +0.5) Eq. [T1]
€ |:7?n (me¢ +0. 5) b (Mc + 0. 5):| (29)
For j € N we have that
g B
077 =07 — -0 = 7-(=1,; +0.5) Eq.[T]
€ [f (mar +0.5), B(MN+O5)} (30)

Next we move to analyze p;—».
pi—2 focuses on noisy tokens for noisy samples.

Define Yi,min = minTZ2 Yi,rs Vi,mazx = maXTZ2 ’Yiﬂ'a Yi = ('_wan + '-Y’maa")/Q and € = (’Ymaac -
Ymin) /2. In Words v; min, % maz and €; are the maximun, minimum and the gap among the scores

of the noisy tokens of the i sample respectively. By Eqs. ﬂ and.we have that ¢; = on(l) - cg for
any ¢ € [n]. Observe that py = —V,L(v1, p1). Therefore, forany j € Ny and 7 € {2,...,T} we
have:

Py (1 —xj,)

_(wj,l - wj,T)Tﬂvpﬁ('vt,pt) = (xj,l - wj,r)TS Z _E/l,i ) Xi—rSI(Xipt)’YfZI

= gZ*gll,i : ij,lXiTS/( iP)Yi Z —y jTTXiTS'(Xipt)szl. (31)
i=1
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Write 21 ; ; := X;x;1. Observe that 21 ; ; = (z],;,1,0,...,0) fori € Ct UNj, and 21, ; = 0
otherwise. By Lemma@ we can lower bound thé first term in Eq.[BT]as

5 B - - —1\ =
Z -2z ”S (Xipe )y~ > = Z 0y, (’Yf,ll -%hHa - O‘E,ll)a;ll(l - On(l))w;,rle,l

iECk

S G A - a0l (1 ou()a

lE./\/ k
where the (1—o0,,(1)) term is from the second tern in Lemmam IA.5] Now we move to the second term of

Eq. . Write 2, ; ; := X;x; ;. Observe that X;x;» = (0,&] @ ,,..., 2] @, ... ,mIijyT).
By Lemma[A.5} we can lower bound the second term in Eq. [3T|as

B < _
- EZ_E/L : Iz ]S/( th)’Yf !
=1

B - - - -
T (T-1Dn Dl (T =D = i)l (1 - oa(1 Z LirTjr

i=1 =1

T
B _ _ —1y i 2
2 (T — 1)n(*€/1,j) : (7;,11 - ’Y; DI 0‘;,11)04§,11(1 —on(1) | llzs- " + Z mITfacj,T
l#T
ﬁ g/ t= 1 1
T T-1n D A e e Y (et IR o | Zw”,wﬂ,

1ENIFE]

where once again where the (1 — 0,,(1)) term is from the second tern in Lemma|[A.3] Overall,

> (=6 ,) (08 - 7}:11)(1 = aj)aja(l = on(1) (lzsall® + el /(T = 1)

B - -
—= Y A (=T - el on(D)alT @] i)
iGCk i#j
Py - =L AN - al5)alT (1 - 0n (1) (2] @)
zENk i#£j

5 _ _ T
- m Z _gll,i : |’7i, % 2 | (1- 0‘5,11)0‘2,11(1 + 0, (1)) Z (w;—rw’b )

i€[n]riA] T'=2

Observe that o' = 1/T and that (1 — o ;1)1 = (T’ — 1)/T? for any i € [n]. In Egs. Eand.
we calculate the score (e.g. vﬁl) Overall, we can lower bound the above equatlon by:

> (a4 2/~ 2= 0,(1) - d(1 — 0,(1))
(T-1)8

T e, ((1 —n—on(1))- % Mc :,;(1 —2/c2 — 2 — on(1))zc§)

+(T_21)6<|Nk| m <L (1+2/c —277+0n(1))502)

T%n 4T
_ (TT%)'@ (n- My (1 42/¢2 = 20+ on(1))ep dlog(n/5)) -
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By Assumption (item[2 d > n?log(n)), the first term dominates the last term. Then we can
lower-bound the above term by

—(TT%W <(1—n—0n( ) - g Me = (1—2/c§—2n—on(1))zc§)

+(TT1)(|N| mu T(1+2/c QTHO”(I))ZC?’)

> —% ((1 —n—on(1))- Mcﬁ(l —2/ck -2 —on(l))>
w (77- (1—o0n(1))-m 41T(1+2/c —277+0n(1))>,

where in the last inequality we use 3 = (cg - n)/(dc?). Next, we argue that the second term in the
above Eq. is at least 1000 times the absolute value of the first term (i.e. the second term dominates
the other terms). Indeed for ¢z > 1/n we have that M¢ < 0.00027 for small enough 7 (Eqgs. and
[21). This means that m - 7 > 0.0002M¢. Then we can conclude that the second term is at least
1000 times bigger than the absolute value of the first term. Overall, for any ¢ € A/ we have that:

T —1)c?
p;(azjﬁ —x;1)>0.999- % (77- (1 —o0,(1)) -m 41T(1 + 2/c —2n+ on(l)))

T-1
> 0.999 - ¢4 - <8T3> (m - (1 =21 — on(1))

, (T-1

> 2log(c,),
where that last inequality holds since c% >2 log(cp)n_1 . (%) (Eq. . We conclude that,
s 1 1 1
al 1 = T T = 2 = 2
1+ exp(pg (zjr —xj1)) 1+ (T —1exp(log(cy)) 1+ (T —1)c;
1
< . 32
S (32)
We also conclude that for any j € N we have that
1
=2 < =2>1- 3T -1 33
G ST T ) ZO‘ 1+ (T -1 33)

In the next part, we assume that C' from Assumption@may depend on ¢, and we show that p;—»
focuses on the signal tokens for clean sample.

pi—2 focuses on the signal tokens for clean sample. Similarly to the previous case, for any j € C
and 7 € {2,...,T} we have

P (zj1 — x; ;)

>0 < 0 )05 = = ag)aga (L= on(D) (leall® + el /(T = 1)

Z ~l - (in = DA = o) (A = o ()i (2 2i)

" ieCk oy
Z —l (T =i (= af el (- on (D) (&)1 @in)
ZENk i#]
B T
T > Z T =25 (- alT)alT (1 + 0n(1) S (@], i)
i€[n]iity T =
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Observe that o 7" = 1/T and that (1 — a1 )a;1 = (T — 1)/T? for any i € [n]. In Egs. and
we calculate the score (i.e. 'yfil). Overall, we can lower bound the above equation by:

_Tf( 4T<1f2/c =20~ 0n(1)) - d(1 - 0n(1)))

n d ,
- 1—-2/c¢5 —2n—o0,(1))—
( D)5 megall - 2/et — 20 - on(1) 53
ﬁ n d
— - My 14+2/cc —2 —
1+ on(D) 5 - My g1+ 2/, = 20+ on(1) e
ﬁ( Z+2/E =2+ on1 ))cm/dlog(n/(s)). (34)
Observe that the ﬁrst two terms are non-negative. Then we can lower-bound the above term by
(T-1)B n d o
2 (14 0u(1) - 5 Ma (1422 — 20+ 0a (1)) 2
(Tr-1)p
- (n My 4T(1+2/c — 2+ on(1 ))cD«/dlog(n/5)>
(Tfl)c%

r-1 62 og(n
B (T# (M 2 (142/¢2 = 2+ 0, (1)epn- 1\/%(63/5)>

By Assumption[3.1|(item[2) the first term dominates the second term whenever C' from that assumption
is large enough, which means that we can lower bound the displayed equation by 1.0002 the first
term i.e. by

(T —1)c3 1 1 2
= 1.0002 - ——5—= (n+on(1)) -3 MN4T(1 +2/c2 — 20+ on(1))
(T - 1)0% )
> —1.0002 - —z (4 0n(1)) - Mar(1+2/c — 20+ 0n(1)))
(T-1) ,

> —2.11og(cp),
where the last inequality holds by Eq. @[ ‘We conclude that
1 1
2= > (35)
1+ 23:2 exp(p;r(:cj; —x;1)) 1+ (T — 1) exp(2.11og(c,))
1
14 (T 1)t

t
7

Q; 1

Together with Eq. [33] this proves the last part of the Thm.

p:—2 focuses more on the signal tokens for clean sample when ¢, is a constant. In this part, we
prove Remark@ In this case, C' from Assumption @ may depend on c¢,. We can start directly
from Eq. 3 that states that for any j € Cy and 7 € {2,...,T} we have

Py (Tj1 — xj7) (36)

Z T, (mc : %(1 =2/ —2n—o0n(1)) - d(1 — on(l))>

O (== 0nW)- G mea -2/ =2 - 0,(1) 262
- O (e onta) - 5 MR+ 2/ - 20t ou1) 2 )
(-1

_W<n My 4T(1+2/c — 24 0,(1 ))cD\/W),
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Since C' from Assumption [3.1|may depend on c,. Then Myr, mc are also constants. Overall, the first

term dominates the last term since d > n+/dlog(n/d) (see Assumption [3.1[(item ). The second
term dominates the third term for small enough 7 (see Assumption[d)). Overall, we obtain that for any
T €{2,...,T} that

P (zj1 —xj7) >0, (37)
which means that for any ¢ € C we have:

1 1
=2 = — . 38
1 >T (38)

t
] T
' 1+ 3, exp(py (x5, — ®51))

(67

Next, we move to our original assumption and don’t assume that C' from Assumption 3.1 may depend
on c,. We show that:

The classifier sign(f(X;v;=2, pt=2)) classifies correctly clean training samples. Let (X; =
(xj1,...,xj7),y;) for j € C. We remind that x; ; = py, for k € {1,2} and x; , = &; . we have
that,

T
) =2 T t=2 T
[(Xj;vi=2,p1=2) = 77V ;1 + E O Uy T 7,

T=2

and it suffices to prove that

y; (f(Xj;v2,p2)) > 0.

Indeed,

T
. _ t=2_.T t=2_.T
yif(Xj50,p) = yjolTPv] @i +y; Y ol TPu] @,
=2

T T
= 2 = 2 = =

= o2 el + >0l 220, 116017 + D ol TPy, > il 26 & YAk > 0

T=2 T=2 i€[n], T A VTET!
T
. 2 2 = =
2 max Qe min{| A el 05 15,7117+ ol Py, > e I I
T T=2 1€[n], 7 AV TET!

1 d
> T - min <56T . EC?” QnLT -d(1— on(l))) - nTz%(MN +0.5)cpy/dlog(n/d) Egs. [30} 26| and [2§]

> 0, d > nepy/dlog(n/d)

as required.

The classifier sign(f(X;v,—2, pi=2)) classifies correctly noisy training samples. Let (X; =
(@j1,...,xjr),y;) for j € N. We remind that ¢, = py, for k € {1,2} and x; , = &; . we have
that,

T
. _ =2, T t=2, T
[(Xj;v4=2, Pr=2) = Q1" Vg Tj1 + E A+ Vg Ljry

T=2

and it suffices to prove that

y;i (f(Xj5v2,p2)) > 0.
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Indeed,
yif(Xj30,p) =yl v 21 +y; Zat g a

:*aﬁ-iz\kklllﬂkH%rZa 20, 1151 +Zaﬂyj > yili €0 & Y <0
T=2

i€ n], T AV TET!

—ajy? (16T> n p+Z i B —(m +0.5)d(1 = 0,(1))

— Za Tﬁ (Mpr + 0.5)cpy/dlog(n/d) Eqs. 30| 23] and 27

> < > <1565T) 2 4 (1 - ;) Tﬁn(mN +0.5)d(1 — 0,(1))

—n(T — 1)%(MN+O.5)CD\/dlog(n/5) Eq.[33]
>0, d > ncp+/dlog(n/d)

as required.
The classifier sign(f(X; v;—2, pi—2)) classifies correctly clean test samples.

Let (X = (z1,...,x71),y) be a fresh clean sample i.e. (X,y) ~ Deean- Observe that 1 = py,
for some k € {1,2} and y = 1iff £ = 1. By Remark m, exists some constant c¢; such that with
probability at least 1 — nexp(—d/ciCan'-) for some Cy = Cs(c,, 1/n) that will be chosen later,
we have that (X, y) is a good test sample w.r.t. C (Def. , ie. |z ;| < d/Con®75. We work
under the event that (X, y) is a good test sample and show that y = sign(f(X; vi—2, p1=2). Recall
that p, = —3VL(v1, p1) and therefore (similar to the clean sample case) for any 7 € {2,...,T}:

P;— (‘Bl —x.)

Z — YA - alT)alT (1 - 0u(1) (@] ®41)
eCyg
Z — T - af5HalTH 1 — (1)) (@] @41)
iENG
/B T
- Z Z —C T =T (=l T)alT U+ 0 (1) D (@) @)
ZE[n]T 2 =2

Observe that 7" = 1/T and that (1 — a; 1)a;1 = (T — 1)/T? for any i € [n]. In Egs. and
we calculate the score (e.g. vfil) Overall, we can lower bound the above equation by:

# O (= on) G ome 0206520 a1 )
7% (<n+on<1>>~’; My 4T(1+2/c 2n+on(1)>ic§>
- % (nojs,MNZ;@ +2/c2 —277+0n(1))02;lo,75) :

Observe that the first term is positive, and the second term is 100 times smaller than the last term
whenever Cy > 201/ (ncﬁ). Then we can lower bound the above equation by 1.01 times the second
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term i.e. by

_LOL-(T-1)8 ((n +on(1)) -

n
2 NaT

‘g d,
o - My —=(1 +2/c — 21+ o,(1 ))ncp)

1.01- (T —1)c? n 1
:*T—Znﬁ ((nJron( )5 My (1+2/c,2,2n+0n(1)))
1.02- (T —1) )
=T w19
—2.11og(c,),

where the last inequality holds for c% < 2.1n7 ' log(c,) (#;_1)) (see Eq. and note that
8-2.1/1.02 < 1.02% - 16/0.98). We conclude that
1 1
1= > (39)
! 1+ 23:2 exp(pg (¢, —x1)) 1+ (T — 1) exp(2.1log(cp))
B 1
1 (T —-1)e2!

t
z

Letaxy = py fork € {1,2} and @, = &, forT € {2,... T}. We have that,

(X012, pr—s) = of2v) T + Z =2, x,,

and it suffices to prove that

y(f(X;v2,p2)) > 0.
Indeed,

f(va'U D) _y]al '02 w1+y2at QUQT:JST

T=2
T
- 2 - —
= o7l + Dty > w6 YA > 0
T=2 i€[n], 7’

Note that 1= is independent of £,-. Moreover, since yyzﬁj &, 1s a symmetric random variable with
|£ L&/ < d/Can® 75 (assuming the test sample is good with respect to Cy), by Lemmaw1th
probablhty atleast 1 —exp(—n®?/2) we have thaty 3, ¢,y - vifi =& & > —n"" max; [0=2]-
d/(Cyn®7). Overall, we can lower bound the displayed equation by

d
>t =2 Nl e ])® — Za T-1) ma><|9|
_ d B d
> of=2 B Z2—(T-1 My Egs.
=g <4T+1> nc ( )? 7 +05)O2 qs. 30} 26 and 28]

1 B \d B d
Z(lJr(Tl)c%l) <4T+1> nG oD Oy + 055

>0,

where the last inequality holds for Cy = Cj - cg'l, where Cj is large enough constant which depends
on T'. Overall by choosing Cy = max(C3c) ', 1/n) and union bound, we have that

IP)(X Y) ND( # sign(f(X;vi—2, P1=2)))
<N+ Px )~ Do (Y 7 sign(f(X; vi=2, Pt=2)))
< n+exp(—vn/2) + eXp(fdn/C’gcg'lnl'E’ + log(n)).
This proves the last part of the theorem. O
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A.2  Proofs for Sec. [d
A.2.1 Proof Idea for Section[d

We first provide the proof sketch for Theorem Our key proposition is that p(,, gy will converge
to a direction that focuses on the signal token for clean samples, and v(,. gy will converge to the
corresponding max-margin solution. To begin, consider the output of the attention layer r; =
X,"S(X;p) which is a combination of signal and noise tokens. This can be considered as a “token
selection” based on softmax probabilities. Consider the following second-token selection rule:

i = o) =, i € Gk € {1,2}
r = aP =€, i€ N

This selects the signal token for all clean samples and the first noise token for all noisy samples.
Following this token selection rule, we define the corresponding max-margin solution as pg.. and

vSEC .

Definition A.8 (p-SVM for Second-token Selection).

Psec = argmin ||pH subject to:
peRd

pT(w(»a") - wz(-t)) >1, a;=1 for i €C

and ozl-:é for ie N, te{l,....,T}\ {a;}.
Let 2 := 1/||Psec|| be the margin induced by pgec.
Definition A.9 (v-SVM for Second-token Selection).
Vgee := argmin ||[v|| s.t. y; - v 7 > 1, foralli € [n],
veER?

Let Tsee := 1/||Vsec|| be the label margin induced by vge.

We prove that p(, gy has a direction that selects the signal token for every clean sample, since

otherwise it will induce a max-margin at most I'sec — . m%x(l — 8;1), where s; 1 is the
i€ ’ ’

_c
l[veec 1370
attention probability on signal tokens. This is strictly smaller than I'y,.

Then, we show that when jointly optimizing p and v for @), we obtain solutions that induce similar
max-margin as pge. and vge. as R, r — oo. To be specific, we have

. TIETE%I}]pEL’R)(Mk —&.-) > (1—-¢ERforalli € Cyx,k € [2], where = is the margin

induced by pgec.
* The label margin for clean samples induced by v(,. g)/r in SVM is at least (1 — 7).

Here, ¢,y are some small value quantifying the difference between (p(,, r), V(r,r)) and (Psec, Vsec)-
As R — oo, both ¢ and y converge to 0. Thus, for sufficiently large R, we conclude that p(TT’ R) (nr —
&) becomes large for i € Cy.

This ensures that p(,. gy captures sufficient information about signal tokens, which enhances the
accuracy of test sample predictions. Since the signal token remains invariant between training and
test data, for a given test sample (X, y) with X = (u*, &3, ..., &%), w.h.p. the attention layer p(,. )
will focus on p* when R is sufficiently large. As a result, the signal token p* will dominate the
attention layer’s output. As v, g) converges to the corresponding max-margin solution, it can make
accurate predictions on (p*, y). Thus, the component induced by the signal token y - (v(, gy, p*) is
large enough to eliminate the randomness introduced by the noise token (denoted by A(&*) here)
and the model will make an accurate prediction with high probability: y - f(v(,,., R)»P(r,R); X) >

y vl gyt — AE*) 2 0.

A.2.2 Notation for Section[d]

We first introduce some additional notations. Denote
n1:|C|, 712:|./\/‘|7 n17:|Cl|, ng,-:|./\/;;|f0ri:1,2.
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Denote the output of the softmax layer S(X;p) by
si=(1-8,06)".
Denote the output of the attention layer X zT sibyr; = (1 — Bi)p; + Bi&, where 0 < 5; < 1is the

attention on the noise token of each sample. Then f(X;; v, p) = (v,7;) can be treated as a linear
classifier on (y;,7;)ic[n). Additionally, from the property of log function, item |I|in Assumption

[.1] can be understood as d > C'n?log(poly(n)/§) and the same is for item 5| For the proof of this
section, we consider the case when 7' = 2 in Assumption [4.1and have the following theorem.

Theorem A.10. Suppose that Assumption holds when T' = 2, and consider the classifier
X — sign(f(X;v(,Rr), P(r,r)))> Where (V(y Ry, P(r,r)) is the solution to Problem (E]) Then, with
probability at least 1 — § over the training dataset, we have:

* The classifier sign(f(X; v(,.r), P(r,r))) correctly classifies all training data points:
yi = sign(f(Xs; v r), P(rr))), Vi € [n].
* The classifier sign(f(X;v(, r), P(r,r))) generalizes well on test data:
Px y)~p(y # sign(f(X;v(r,r), P(r,Rr))))
<+ exp(—Q(d/n?)) + exp ( -

1-9 10g(n))2)

Vmfd+1/p2 R 7T
where { = O(y/nn/d + 1/p?log(pn)/R).

A.2.3 Proof of Thm. [A.10

Proof Sketch

There are two main parts in our proof. In the first part, we prove that only by selecting signal tokens
for clean samples and noise tokens for non-clean samples can we reach the maximum margin when
doing SVM on (y;, 7¢)icn]-

Definition A.11 (Optimal Token). We define the “optimal token" for sample (X;,y;) as

ri=p;, i €C

rf=¢&,ieN (40)
Next we define the respective max-margin solution for p and v. We will show that when jointly

optimizing parameters p and v for (@), they will converge to their respective max-margin solutions as
R,r — oo, which are p,,,.,, and v,,.,, defined as follows.

Definition A.12. (p-SVM)
Pmm = argmin ||pH
p

subjected to

p(mi—&)>1ieC

P &—p)>LieN (41)
forall i € [n]. 2 = 1/||pmm | is the margin induced by Py, .
Then for a given p, we define v(p) as the standard max-margin classifier on (y;, 7;)ic[n] and Vpm,

as the standard max-margin classifier on (y;, 7} );c[,) Which can be understood as the limit scenario
when p = pym and R — 400 .

Definition A.13. (v-SVM)

v(p) = argmin ||v| s.t. y; - v r; > 1, foralli € [n]. 42)
veR

I'(p) = 1/||v(p)]| is the label margin induced by v and p. When r; = r},i € [n],

Uy = argmin ||[v| s.t. y; - v rF > 1, foralli € [n]. 43)
vERD

I = 1/||vmm|| is the label margin induced by v,,,,.
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After proving the convergence direction of p(, gy and v, gy, we can utilize their properties similar to
Pmm and v,,,, to proceed with the training and test error analysis. Therefore proving that the model
exhibits benign-overfitting.

It is worth noting that in the first part, we show the optimality of the token selection in {@0) is strict
in the sense that mixing other tokens in r; will shrink the label margin. We formalize this into the
following proposition:

Proposition A.14 (Optimal Token Condition). Under Caézdition for all p, the token selection

under p results in a label margin of at most I' — i mz[n]c(l — Sia;) in (A.13) where
mm i€[n

a; =1(i € C) + 21(i € N) and C > 0 is some constant.

We now highlight some aspects of the technical novelty of our work compared to Ataee Tarzanagh
et al. [6], Jiang et al. [25]. Unlike Ataee Tarzanagh et al. [6], our results are in a non-asymptotic
setting, while their work focuses on the case where both R, — oco. Additionally, we do not rely
on any additional, unnatural assumptions about the data distribution. In contrast, Ataee Tarzanagh
et al. [[6] specifies the optimal token indices that achieve the maximum margin, and Jiang et al. [25]]
assumes that for each sample, the first noise token has a much larger norm than the other noise tokens.

We give detailed proof in the following.

Optimal Token Condition
Since vy, satisfies the KKT conditions of the max-margin problem ({#2)), by the stationarity condition,
we can represent Uy, as

Vmm = Mg + Aot + Y yibiki. (44)

1€[n]

Note that the conditions in (#2)) can be written as:

Condition 1 (Optimal tokens).
vip >1
—vpy >1
yv' & > 1ieN

Plugging ({@4) in the condition[I} we can rewrite these conditions as:

A lpa]? > 1
Az - 2 > 1
0; - 1€ 11* + yiye 12‘91"(51‘,&0 >lLieN

Then we introduce a lemma to estimate the coefficients 6; of v,,,, under this condition:

Lemma A.15 (balanced noise factor for KKT points). Suppose that Assumption[d.1| holds, under
Condition E] we have that for Vpm,

9;=0, i€C; (45)
' [ (1 — k)d — 4ngy/dlog(6n2/9) 1 } PeN
"L 4 k)A((1 — k)d — 2ny\/dlog(6n2/0)) (1 — k)d — 2ny\/dlog(6n2/5) .’ '

(40)

Proof of LemmalA.15] Note that Condition [I]does not have any constraint for samples with i € C.
Thus we have 6; = 0 for any i € C in the representation (@4)). For 6; with ¢ € N, we first prove the

upper bound by contradiction. Denote j = argmax ;. Then we have
ieN

g & = biy0:(& &) = 01& 15+ D viyibiléin &)

iEN i£§ A EN
>0;- (1 —k)d—nebj-2+/dlog(6n2/6),
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where the inequality is from Lemma[A-63]and the definition of j. Consider the contrary case when
0; > ! we have

(1—r)d—2n2+/dlog(6n2/5)’

WG o Ty (e 2R = 1

By the complementary slackness, if yj'uTéj > 1, then we must have ¢; = 0, and thus we reach a
contradiction.

Then we prove for the lower bound. For Vj € N we have
1< 0115 + Z viy;0i(&i, &;)
1#£J,1EN
<0 (14 K)d + nymax6; - 2¢/dlog(6n° /)
S

n2
<0;-(1+r)d+ -2v/dlog(6n2/6).
R O N I T(IEIL) 8(6n%/0)

The second inequality is due to Lemma[A.65]and the last inequality is from the upper bound we just
get. Therefore, we have

9. > (1 — K)d — 4nay/dlog(6n?/J)
P (U (1 = w20 /dTog(En7/3))

This completes the proof. O

Then we introduce a lemma to estimate ||V, ||:

Lemma A.16 (Norm of v,,,,). Suppose that Assumption 1| holds, for the solution v, of @2)
under the token selection ({#0), we have
2 2

Z 4+ < L e et

1 nn
fonmll =6y + %)

Proof of Lemma[A16] As vy, is the max-margin solution and satisfies KKT condition, it can be
represented as

This implies

Vmm = M1 + dopa + > yibibi + Y vibié. 47
ieC ieN

As v,,,,, satisfies Condition we have \; > 1/ p2 and Ay < —1/ p2. So we could lower bound
[ Vrmm || as

omm 1 2 A2l + Nllpez I+ D OF1EN7 + D > wins0i65(€i. &)

1EN iEN JEN
2 ng(l—k) n’n? 2 nn
>+ —F——=4+0 > = 4 —.
_p2Jr d + d3/? _p2+2d

The second inequality is from Lemma that 6; = ©(1/d) for i € N and the last inequality is
from Assumption @1}

Then to upper bound ||V, ||, consider the following possible solution ¥
V=pp1—p Pps+ Z 2y;&:/d.
ieN
For ¢ € C, we have

Yo i =yo > 1.
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And for i € N/, we have
it =y & =20&lP/d+ Y 2yai(6i &) /d
JEN j#i
> 2(1 — k) — 2ng+/log(6n2/4)/d > 1.

The first inequality is from Lemmal[A.63|and the second inequality is from Assumptiond.1] Therefore,
v is a possible solution of SVM problem when p converges to p,,,,. So we have

2
[omm® < 1B1* = 2/0% + > 4I&GI°/d* + D D~ 4yiy; (&, &5)/d° < 5 + i
iEN iEN JEN
The last inequality is from Lemma- [A.65] Lemma [A.68 and Assumption[d.1] Combine the results
above, we have [[v,m||* = (55 + ). O

Based on the lemmas above, we introduce our main proposition in this section:

Proposition A.17 (Optimal Token Condition). Under Cogtdition“ for all p, the token selection

under p results in a label margin of at most I' — mz[u]((l — Sia,) in (A.13) where
1€n

HUMMHS"P2

a; =1(i € C) + 21(: € N) and C > 0 is some constant.

Proof of Proposition The main idea is to show the optimality of the token selection rule in the
sense that mixing any other tokens will shrink the label margin. For a given p, we say a sample x; is
a “mixed sample” if r; # r}. We say r; is a mixture of optimal token and non-optimal token in this
case. Note that for any p with finite norm, r; # 7. This notation is introduced for the clearness of
the proof.

We use contradiction to prove Proposition [A.T4]by showing that any token selection different from
(@0) can only result in a strictly smaller label margin than that for the max-margin problem #2).
Since v satisfies the KKT conditions of the max-margin problem, we can write v as

v =X+ dopa+ > yibiki + Y vibiks. (48)
ieC ieN
For a given p, denote v’ as the max-margin solution in (#2)), and I = 1/||v’|| as the new label margin.
According to Lemma[A.T6] we have

1 nn
ol =0 25 + 5 ) = 21/6%),

Then we have o o
F—i-maxl—sl, >F_7>7
TommlPrg? et~ S0 20 g e 2 5
for sufficiently large d. Here the last inequality uses ||V, |2 = Q(1/p?). Thus we only need
consider the case when the new label margin I > I'/2, or equivalently,

[0l < 2]l vmm|l- (49)

—

Assume that there are k samples (0 < k < n) that violdate the token selection rule (40) and among
them, p samples are from clean set C and k& — p samples are from label-flipped set /. Denote the
indices of the k£ samples as I,,. Then we consider the following three scenarios:

1. p# 0,k — p = 0. (All mixed samples come from C)

2. p=0,k —p # 0. (All mixed samples come from N\)

3. p# 0,k — p # 0. (Mixed samples are from both sets)
We will separately discuss each scenario and show that Proposition [A.T4] holds in all cases.
Casel: p#£0,k—p=0

Under this scenario, we have:
I,NnC=1,, I,NN=a.
We proceed to analyze this scenario by dividing it into three distinct subcases.
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. p<n1,Ivﬂ617é®,IvﬂC27é®
e p<ny, I,NC, #2,I,NCy ZQ,(i,iIE [2],27&2/)
*p=m

Casel.1p<ny, I,NC1 # 2, [,NCy # O

In this case, both clusters exist clean samples that are not mixed. Denote the index of mixed samples
I, as {ki, ko, ..., k, }. For every mixed sample k;, we have vy, = B, poi; + (1 — Bk, )€k, - Then the
conditions under Case 1.1 become

Condition 2 (p clean samples violating optimal token selection).

v >1

—vlpy >1
yi’l}—rgi Z l,Z € N
yv'r; > 1,0 e,

From the condition above, we could see that in this case, mixing one more clean sample is equal to
adding one more constraint. Therefore, mixing p samples will not result in a better solution than only
mixing one sample, i.e. larger max-margin in our setting. So we can reduce this case to mixing only

one clean sample with index k* = argmin 3;. Denote 7« = B« + (1 — 8)&x+ for some 8 € [0, 1).
iel,
Without loss of generality, we assume px« = 1, yx+ = +1. Then the conditions become:

Condition 3 (one clean sample violating optimal token selection).

v >1

*’UT[,LQ >1
yv'& > 1ieN
Y0 T > 1

Denote v’ as the optimal solution under this condition. v’ can also be written in the form of (48] with
coefficients denoted as A\, \; and 0}, ¢ € [n]. Plugging this representation into the condition|3] we
have:

X > 1

=Xy - flpell? >1

0 |&N1 + X yiyar0), (&, &) > 1i e N
12

BAL - [lpall® + (1 = B) (O 1€k 12 + ; Y yiti(€i, €)= 1

First, we introduce another lemma similar to Lemmato characterize the scale of 8,4 € [n] in
this case.

Lemma A.18. Suppose that Assumption d.1| holds, under Condition[3) we have
;=0, ieC\{k}

e [( (1 — k)d — 4ngy/dlog(6n2/9) 1 }7 PeN

14 k)d((1 — K)d — 2n2+/dlog(6n2/58))” (1 — k)d — 2ny+/dlog(6n2/5)
Proof of LemmalA.18 Same as Condition [I] Condition [3|does not have any constraint for samples
with ¢ € C\{k*}. Thus we have ¢, = 0 for any ¢ € C\{k*}.

Meanwhile, Condition 3] introduces an additional constraint compared to Condition[T} Consequently,
the feasible region for {6 };c»r under Condition[3|is a subset of the feasible region for {6; };c s under
Condition |1} Therefore, the bounds established in Lemma remain applicable to {0, };cnr. O

From this lemma, We can see that 6, = ©(1/d) for i € N. To proceed, we introduce a crucial
lemma:
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Lemma A.19. Suppose that Assumptionholds, denote v and v’ as the optimal solutions under
condition[I|and condition 3| respectively. We have

Ci(1=BMp*)? | =7 m
e 1= BN 50
13 = omml3 2 75 O am)

where 0 < Cy < 1 is a constant.

Proof of Lemma We consider two cases under this scenario:

* 0, =0inv’

In this case, from Lemma we have S\] > (1 + o(1))/p? and all other conditions are
the same as the optimal selection. In order to get min ||v||, we have A} = (1 + o(1)) / Bp?.
Consider another solution vy which has parameters \p; = 1/p~, )\02 =X, 00 = 0i(i €
[n]). As vy satisfies all the inequities under Condition[I] we have I'y < T' So we have

1 1 (A1 = AD) - )P
1'\2 _ 1—\/2 2 F2 1—\/2 _ _ 01 1
0 [voll2 [[v']|? [vol|? - [|lv’[|?
_o)F -1 _ (48— +o) .  1-8
[vo|? - [[v']| Bl lv'[2  [lwoll? - [[v'[2
Therefore,
- /— /17B2 /2Z 1;5 72"
(Lo + I [Jvo|? - [[v'[|2 — 2T0l[vo|? - [|v']]
Set ¢ = QFOHvOﬁQ.Hv,HQ = 2Hvo\|1\|v’\|2' we have IV < T' — ¢(1 — 3). Moreover, we could

upper bound c as

N S
2fwollllv"I* — 2rf

The last inequality is from ||v’|| > ||vo|| = Tmm.
e 0, #0inv
From KKT condition, we have
e (BN a1+ (1= B) (O 1€k 117 + D wne ity (&ir &x)) — 1] = 0.
ik
As 0}, > 0, we have
BAL - Ml |? 4 (1= B) (O 1€x+11” + > wa 0i0;0(&:, €x+)) =
ieEN

So we can estimate 92* as

1 —
0. |- 1% = 6A =3 w8 &) < — = =Nt max 0;/dlog(6n2/0)
ieEN B
1 — BN, p? 2 dl 2/§
_ L=pNe” nay/dlog(6n?/9) _ (50)

1-p (1 — k)d — 2ng+/dlog(6n2/9)

The first inequality is from Lemma[A.63]and the last equality is from Lemma[A.T8] We can
also lower bound it as

1—
6)\ Z Y Yil0; (€, En) > # —2no max9 dlog(6n?/d)

ieN IB
11— ﬁ)\’lp2 B 2n2+/dlog(6n?/0)
1-8 (1 — K)d — 2ny+/dlog(6n2/5)

O | €1 |12

61y}
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The first inequality is from Lemma [A65]and the last equality is from Lemma[A-T8] There-

fore, we have 6}. = @(1(_162'1)22) + O(%)_

Then from the third inequality in Condition 3} we have
0; - 1&l1* + Z Yiyir 0 (&ir &ir) > 1 — yiyp- Oy« (&, En)
i EN I #iQ
1 — BN p? nm
>1—|— 288 L o2 | (g, Exe
= (1—ﬂ)(1+,‘<&)d+ (d3/2> |<€z;€k >
~2(1 = BNp?)/log(6n2/8) 5(@)

=1 (1-B)(1+r)Vd d
24/log(6n?/0) ~/mn

21 === - o)

1 34/log(6n?/d) 52)

NG :
The second inequality is from (30); The third inequality is from Lemma[A:63]and the last
inequality is from the first inequality in Condition that \j p? > 1.

Consider v = X1M1 + Xgug + > yigifi, which has \; = A, Ay = AL, 0, = 0l/(1 —
i€[n]

%\/an/&) fori € A and 5; = 0 for ¢ € C. We can verify that v satisfies all conditions

for Vp,y,. For Vi € N, we have

0; 1€ + > yiyir O (€, Ev)

i EN i i
34/log(6n2 /6
=[9§ &l + Z yiyi’9§’<£i7£i’>:|/<l - \ﬁg / )> > 1.
i EN il i

The last inequality is from . Meanwhile, we have Aq||p]2 = Xlﬁ,u1||2 > 1,

—Xallp2]l? = —Ay||p2]|2 > 1. So @ is a possible solution for Condition [3| which im-
plies [[vpm || <[]

Next we estimate the difference between ||v’||? and ||v]|%. We write the expansion of ||v|?
and ||v’||%:

1917 = Xl I + MBlaoal® + D G21&1° + > viws 038 (6.,
1EN 1,JEN;i#]

W12 = APl I+ 02 2P+ D0 BRIGIP D w6856 &),
iENU{k*} i, ENU{k* };i#j5

From the construction of ¥, we have \] = A1, A\ = A2. So we have

I = 1[B1% 202 16 1> + D (07 = 6D 1€l + > Y vt €)

1EN 1ENU{k*} jeNU{k*}\{:}
I I
- Z Z yiy;0:0; (&, €5) -
iEN JEN\{i}
I3
From (51)), we have

1— BN p? ~(nn

0. ||€x|| > ! -0 ).

e - (1-8)v/(1 +r)d d
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We then bound the last three terms respectively. First we have

|h=§]@—$mg2sQuhf )3 el

ieN ieN
. _ONd ma(1 + r)d
T (1-001/Vd)? (1= k)d - 2ny+/dlog(6n2/5))
=0(57)
The first inequality is from the definition of 51-; The second inequality is from Lemma
and Lemma|A.65]

Then we bound |I5 — I3] as:

=I5l = D (86— 0/6)) - (€ &) + 0 Y 011(&-, &)

ieN jeN\{i} ieN
1
= (((1/\f )gfﬂg%\:{l 065 - 1(€i: &5)| + naby- - max ;- |(€r-, &)
o(/vd) (n2)*2/dlog(6n2/5) N
= (1—0(1/V/d))? (1-r)d— 27771\/0310g(6n2/(5))2 O @<\/ﬁ>

n°n m
-o("5) e ()
_O<d3/2>

The first inequality is from the definition of 0;; The second inequality is from Lemma
and Lemma[A.65] Combining the above results, we finally have

Ci(1 = BN p*)?
/ 1
- mm O( )
H’U ||2 ||U ||2 = (1 . 5)2(1 + Kl)d + d3/2
O
Now we can prove the main proposition in this case.
Proof of Proposition|A.14|in Case 1.1. From Lemma[AT9 we have
1— BAp?)? 1\ _ Ci(1 = BNp?)?
N2 = (v |2 > Ci( 1 ) s 1 1—-8)=T(1—3).

||U H2 H’U ||2 = (1 . 6)2(1 T /‘i)d +o d = (1 + H)d ( 6) ( B)

In the last equation we substitute 7' = %’W > 0. Then we have
2 _ 2 _
popes 1 L P el TO-9)
[omml[2 [[V[2 0 [[omm]? - [0]2 7 [[omm]? - [V

Therefore,

Pps_ TU-B) T-5 __TO-p) _TO-p)

T+ [omml? - 10712 7 20 [omm 2 - 012 2fommllo]2  2[0"]?
The last inequality is from ||v’|| > ||V ||. This implies
T(1-p) Gy
"<l —><I'- ———(1- 7).
2[[v"]? [Vmm|*np?

The last inequality is from our assumption that ||v’|| < 2||v,um|| and p? = Q(d/n). O
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Next we consider the other case.

Case 1.2 p =ny

Next we consider the case when all clean samples are mixed. In this case, all samples in clean set are
mixed, so the first two inequalities in Condition [3|do not hold, which means that \{ may be smaller
than A\;. But we could still prove that Lemma holds. We first write down the condition in this
case:

Condition 4 (All clean samples violate optimal token selection rule).

yivTEi > 1,4 eN
yv'r; >1,ieC

Plugging the representation (@8) into the condition, we have:

07 - 1€ 11* + %;yiyi/@;/(fﬁi,&ﬁ >lLieN
Bixi - Nall® + (1 = B3)(0; - [I&1* + ; viy;0i(€i,€5)) 2 1,i€C
B2

Proof of Lemma[A19 First we assume that max{\} - [|p1]|%, =X} - [|p2]|*} = ¢ in optimal v'. If
q > 1, this is the same as Case 1.3. So we assume that ¢ < 1. Denote k* = argmin 1{_—%‘1 and
iec '
8 = By+, consider the following condition
Condition 5 (Relaxed version of Condition [).
0 - 1€ ll® + X viyir 0, (€ &) > 1,i e N
i
0; - 1|&w]I? + ; yiye 0 (&, &) > 58 i e C
=)

Compared with Condition 4} the second inequality is relaxed for ¢ € C. Therefore, denote the max-

margin solution as ¥ under Condition we must have ||| < ||v’||. Then we will prove that Lemma
‘

.19|still holds between ||v,,,,|| and [[9]|, which indicates [|[v’||2 — ||vmm |2 > |0]12 — [|[Vmm]|3 >
Ci(1=BAp°)°
(1-8)2(1+k)d d
lemma to estimate ¢;. Here we denote o = 111%(; for convenience.

Lemma A.20. Suppose that Assumptiond.1| holds, under Condition[5] we have

e e (1o Oy o

' (1+r)d (1 — k)d — 2n+/dlog(6n2/5) ) ((1 — K)d — 2n\/dlog(6n2/5)
[ 1 (1 3 2an+/dlog(6n2/9) ) «

(1+r)d (1 — k)d — 2n\/dlog(6n2/3) ) (1 — k)d — 2n+/d1og(6n2/5)

Proof of Lemma Denote j = argmax 6;, we have
i€[n]

0; - €12 + Zyiyjé\i<€i7£j> > é\j||€j|‘2 — nHAj\/dlog(GnQ/d)
J#i
> 0;((1 — K)d — 2n+/dlog(6n2/5)).

The two inequalities are from Lemma[A.65]and our definition of j. Consider the contrary case when

0; > (1—r)d—2n\/dlog(6n23)” have

+ 0(5). Denote the parameters in © are A1, Ao and é;, we first introduce the following

>

],z‘ec,

)

>
<

],ie/\/.

=T
y;v & > o

By the complementary slackness condition, if y; ﬁTE j > o > 1, then we must have HAJ = 0, and thus
we reach a contradiction.
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Then we lower bound 9:, for i € C we have
a < 0; 1€+ yiyi0i(&i.€5) < 0:(1 + k)d + 2nmax 0;\/dlog(6n? /3)
gy 1€[n]
N 2 1 2
<G+ r)d+ any/dlog(6n?/4) .
(1 — Kk)d — 2n+/dlog(6n?/0)

The second inequality is from Lemma and the last inequality is from the upper bound of 9: we
just derived. Therefore, we have

G>_ @ (1 3 2n+/dlog(6n?/9) >
T (1+k)d (1 — k)d — 2n+/dlog(6n2/3) )

Similarly, for i € N, we have

g 1 (1 B 2an/dlog(6n2/5) >
T (14 k) (1 — k)d — 2n+/dlog(6n2/5) )

Y

O

Note that we only consider the case when ||| < ||[v']| < 2||vsmm |- And from Lemma we have
0; = ©(a/d) for i € C. So we must have « = O(logn) is some constant. Otherwise, for i € C we

have =R ~
Oil&l* > o = yiyirbi(&i &) = Qa).
il i
It further yields that
817 = a(h) + ™)+ Rl = ok + 1y ) gty s
P> d vl p?d d d ’

ieC
which contradicts with [|v"|| = ©(y/1/p? + nn/d).

Then the difference between ||v,,,||3 and ||7]|3 becomes

1511 = llommI* 2 Z@QH&HQ —2/p* + Z@Z —ONENIP+ D D w6 (&)

ieC ieN i€[n] je[n]\{i}
I, Iz
- Z Z Yiy;0:0; (&, &) -
€N jeN\{i}
I3

We will bound every term sequentially. For ¢ € C, we have

Ol > o~ 37 yli(& o) > o~ nmaxd; - 2y/dlog(6n2/3)

i’ €[n], i’ #i
o 2am+/log(6n?/4) :a—é(n)
(1 — &)Vd — 2n+/log(6n2/0) Vd)

The second inequality is from Lemma [A.65} The first equality is from Lemma[A.T8|and the last
equality is from Assumption[d.1] This implies

2 2 ~(n Coma?  ~( n
Ple 22> M2 g\ Cmae® 5000y
; &l =2/0" 2 g7 — B2 ) = 1+ r)d &2
The second inequality is due to the SNR condition p/+v/d = Q(1//n) so there exists a constant Cs

2 (1—02)n10¢2
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Then for |I;| we have

|| < (max@ —m1n9 Z &1
ieN

<( 1= ) - 2nnl¢w>2‘((Hlm)d(l‘<1—;Z%)>2>'”2“””
VI +k)d 2 - (1 - k)d — 4nn+/dlog(612/8) \ ° |
( 1— (6n2/5)) (1 ( ) > n

k)d — 27m dlog (1+k)d
-

®< log(6n2 /5))
-o(%)

Vd
The second inequality is from Lemma[A.T5|and Lemma[A.20} The third inequality is from the fact
that n < 1.

IN

Ul

As for the last two terms, we bound them respectively, for Io we have

L] < Z > lyiy;0:0, (€, &) < n max9 dlog(6n2/9)
ic[n] j€[n]\{i}
2

<n? a -21/dlog(6n2/9)

— ((1 = kK)d —2n+/dlog(6n?/6))?

-o(aw)

The first inequality is from triangle inequality; The second inequality is from Lemma[A.65} The third
inequality is from Lemma Last for I3, we have

LI <Y D Iyiwifi6; (€. &) < (n2)? max6? - 2/dlog(6n2/)

iEN GEN\{i}

ny)? 1 -24/dlog(6n2/6
< ) T T o Jdloa (om0 8(6n%/0)

n°n
o(dw).

The first inequality is from triangle inequality; The second inequality is from Lemma[A.65} The third
inequality is from Lemma[A.T35] Combining the results above, we have

Cyni (1 — Bq)? n’ Ci(1 = Bg)?
- B2+ nd +O(cl?>/2> = A- B8R+ myd

Therefore, we could then use the same method as above to prove that Proposition[A.T4]also holds in
this case.

Casel3p<ny, I,NC; #3, [,NCy =

/||2

111 = Nwmmll* >

For the case when only one of the clusters in clean sets are all mixed, we can follow similar method
in Case 1.2 to prove that Lemmal[A.T9still holds. Without losing generality, assume all clean samples
with label y; = +1 violate optimal token selection while only part of clean samples with label
y; = —1 violate. we have

Condition 6 (One cluster and a clean sample in the opposite cluster violating optimal token selection).

—’UTHQ >1

yv' &> 1ieN
yi’UTT‘i 2 1,2 € C+1
yi’UTTi >1,ieC_1NI,
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Similar to previous analysis, mixing multiple samples with label —1 will not result in a better solution
than only mixing one sample with label —1. Thus we can reduce this case to mixing only one clean
sample and denote this mixed sample as k_;. Therefore, we have

=2 - el > 1
0; - €1 + _;_yiyi'%(&,ii') >lieN
Y BNy - [[pe2ll® + (1 = B)(0)_, - [1€r_ [1* + g; Y1 Yi0i (i k1)) > 1

i#£k;

Denote g = )\’1 . ||/1,1||2 and g < 1. Denote k* = aregénin 117_7%;1 and 3 = [, we can further reduce
i€Cq1

the condition to
Condition 7 (Relaxed version of Condition [6).

0; - 1€x11” + _%é:_yiyi’9§/<£ia£i’> >1lieN

0; - 1|&w]* + 2 viyir 0 (&, &) > 2580 € Cy
i/ #4

Condition relax the constraints in Condition@ Meanwhile, it differs from Condition E] only in that
the last inequality holds for clean samples with label +1. Therefore, we can follow the proof above
to show that Lemma[A.19Istill holds in this case.

O

Then we consider the second scenario.

Case2: p=0,k—p#0

Similar to the previous part, there are two cases we need to consider under this scenario:

1. k—p < no.
2. k—p=no.

We will go over every case sequentially.

Case2.1k—p <nso

In this case, part of noisy samples are mixed. Denote the mixed samples as k1, k2, ..., kx—p. And
for every mixed sample k;, we have r; = 3;&x, + (1 — 5;)px, . Then the conditions under Case 2.1
become:

Condition 8 (k — p noisy samples violating optimal token selection rule).

vTul >1

—v s >1

Yo € > i€ Nyi ¢ [k—p)
ykiv—rrki Z 172 € [k _p]

We could also write the last inequality as

Y, Biv " €k, + yn, (1= Bi)v i, > 1,0 € [k —p).
Therefore,
kv & > (1 =y (1= Bi)v ") /Bivi € [k —pl.
For noisy samples, we have y; = —1 when p; = pq and y; = 1 when p; = po, so ykivTuki <0

and thus (1—yg, (1—8;)v " px,)/B; > 1. Compared to the constraint in Condition|l]that yx, v " s, >
1,7 € NV, the new condition is strengthened. So mixing 1 more noisy samples is equal to strengthening
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1 constraint in the original setting. Therefore, mixing k£ — p samples will not result in a better solution
than only mixing 1 noisy sample. Similarly, we can simplify this case to mixing only 1 noisy sample
and denote this sample as k.. We have r» = 8~ + (1 — B) g~ and assume that £« = pq.

Denote v” is the optimal solution under this condition, and the parameters in v are A}, A} and 6} .
Then the conditions become:

Condition 9 (1 noisy sample violating optimal token selection rule).

vTul >1

—v g > 1

yi’UTgi Z 1,Z EN,i?ék*
Yprv T > 1

Plugging the representation (@8)) into the condition, we have:

Mo ml*>1

—XJ 2> > 1

07 &+ X yiyirb0(€i &) > 1,0 € Nyi # k*
i

—(L =B - llpall* + BOOK - [16r+ 117 + gkf yreyi0] (i €kr)) 2 1

We first introduce the following lemma which estimates the parameters of the noises. We define

_ 14+ (1= B |?
B

for the convenience of the following proof.

Lemma A.21. Suppose that Assumption .| holds, under Condition[9) we have
a

9;;* S
(1 — k)d — 2ng+/dlog(6n2/4)

s o <1 3 dlog(6n?/9) )
=1+ k)d (1= k)d — 2ng+/dlog(6n2/5)
max 07 < (1 - K)d+2(a — ng)y/dlog(6n?/0)
ieNjizk* " T (1 = k)d — 2ng+/dlog(6n2/6))?2

2
win 07 > 1 . <1 B 2amg+/dlog(6n?/0) )
iEN iEk* (1+r)d (1 — k)d — 2ns+/dlog(6n2/5)

Proof of Lemma From the last inequality in Condition [9| we have
Ple P+ >0 vk, 0] (& &) = a > 1

PEN ik,

The last inequality is because \/||pt1||?> > 1 and 0 < 3 < 1. Denote j = argmax 6, we have
1€[n]

yj’UNT€J 9”||£]H2+ Z yzy] 517£J>

1EN i#]
>07(1 - k)d —ny max 0 - 2¢/dlog(6n2/5)
i€n
= 0’4’((1 — k)d — ng - 2+/dlog(6n2?/9))
The first inequality is due to Lemma@] and the last equation is from our definition of j. Consider
the contrary case when ¢ > we have
(1-kr)d— 2n2\/dlog(6n2/5)

yj'u”TSj > .
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By the complementary slackness condition, if y;v"T¢&; > then we must have

0! = 0, and thus we reach a contradiction. Therefore, we have 0}/, < ¢/ < o .
J ’ J (1-kr)d— 2n2\/dlog(6n2/5)

1A (1= B) ||l pa |
B

Then denote j' = argmax 0, we have

i€[n] ik
v " Ty =00 0E 1P+ DD w0 (& &)
i€N i#5
> 07 (1 = K)d —ng max 0 - 2¢/dlog(6n2/0) — 0} \/dlog(6n2/5)
i€[n],i
2ay/dlog(6n2/§
> 07((1 — K)d — ny - 2¢/d1og(6n2/3)) — g(6n7/0)

(1 — k)d — 2ng+/dlog(6n2/5)

The first inequality is from Lemma and the second inequality is from the upper bound of 67/,
(1—rk)d+2(a—n2)/dlog(6n2/5)

((1—r)d—2n2 \/d log(6n2/5))2 » We have

we just get. Consider the case when 67, >

yj/’UNTrSj/ > 1.

By the complementary slackness condition, if y; v” Tﬁj/ > 1 then we must have 9;-’, = 0, and thus
we reach a contradiction.

Then we estimate the lower bound of 0/ when j # k... We have
L<y" & = 071617+ D w0 (€ &) < 07(1+ r)d + npmax 6} - 2/dlog(6n/5)
i1€[n],i#£] i€n]
LN =Bl
B((1 — k)d — 2ny+/dlog(6n?/6)

<07(1+r)d+ dlog(6n2/d),

where the last inequality is from the upper bound we just get. Therefore, we have
e T MRS L [T
(14 x)d (1 — k)d — 2ny+/dlog(6n2 /) B

forall j € N and j # k..
Lastly we lower bound 6 . We have

_ " 2
1+ (1 BB))W ||ll'1|| < yk*’U//Tgk* — 9;@’ (]_ + /i)d + no m?}](e dlog(6n2/5)
e|n
Similarly, we have
PR SRS & ey )P 2 (1 B 2ny+/dlog(6n%/9) )
B = 1+ r)d B (1 — k)d — 2ny+/dlog(6n2/5) )

After getting the bound of parameters, we could derive the norm difference as above

Lemma A.22. Suppose that Assumption[d.1| holds, denote v and v"' as the optimal solutions under
condition[I|and condition 9 respectively. We have

Cs(1 - )
d 9

10”113 = llommll3 >
where C5 = O(1).
Proof of Lemma[A22] From the third inequality in Condition[9] for i € N, # k* we have

0 &P+ D yivrbi (& &) > 1 — yiyes O (i €nr).
/#Zk*
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Y L* ; * i — 9 _ a—1 "
Then we add v,y w(&;, €x+) on both sides, where we set w = 0}/, iy /isonts) = < 0y

Then we have
07 € 1>+ D yivir0(&i &) + viyerw(€i €xe) = 1 =y (07 — w) (&, i)
ik
>1—2(0). —w)\/dlog(6n?/5)

_ (1 +r)d —2a4/dlog(6n?/0) (54)

(14 kK)d —2y/dlog(6n2/5)

The second inequality is from Lemma|A.65| Now consider a new v = A1 + dapa + > yi0:&;
1€[n]

with _ _
A=A A=A
0; = 0!/(1 —2(0). —w)\/dlog(6n2/s)) fori € [n],i # k*

and
— w

0 * = .
YT 122001, — w)\/dlog(6n2/0)
We can prove that v satisfies all constraints for v,,,, .

From the first two inequalities in Condition |9} we have A1[[p1]|2 = M/[|pa]® > 1, —Xo|pal® =

~Aj|la]> > 1. Then by dividing 1 — 2(6}. — w)+/dlog(6n?/3) on both sides of (54), for
Vi € N,i # k* we have

0; - 1€ + Zyiyi'§i<£i7€i’> >1
i #i
Lastly we prove that O+ ||€x+[|? + Y. viyk+0;(&i, Ex+) > 1. From the last inequality in Conditionﬂ
i#k
we have

NEw N+ v i (& xe) > @
i#£k*

Dividing 1 — 2(8}., — w)+/dlog(6n?/J) on both sides, we get

ot | £ v Bl € > o .
1—2(07. —w)y/dlog(6n2/6) ~ 5. i " 1—2(8), — w)y/dlog(6n2/3)

Therefore we have

a— (O —wl&1>  _  e— (0 —w)(l+r)d

O 162 12 + D w0 (& e} >
ikt
The second inequality is from Lemma and the last equality is by our definition 0}, — w =

a—1 . f . oy _
a2y /alosoni/)” Thus, T is a possible solution under Condltlonﬂand 1Tl > [[vmml|-

1—2(07. — w)\/dlog(6n2/8) — 1—2(0/. — w)\/dlog(6n2/8)

Next we estimate the difference between ||v”||? and ||©]|%. The expansion of ||v||? and || ||? are:

o/ 12 = N2l | + A2 all® + 32 021607 + 30 S iy 076 (€0 ).

1EN iEN JEN
_ —2 —2 —2 ——
[B1* = Nlleel* + Nallpsal® + D G NEN> + D D win;0:0,(&:, &)
iEN iEN jEN

According to the condition 9), we have ||v" || < 2||vm| = ©(\/1/p? + nn/d), which implies
that « = O(y/nlogn). Otherwise, we have

H ke l? > = >y i (€, e = o).
i#£k*
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It further yields that

1 o o nlog®n

//2 2
* I I = Q
Pl = 2 + T + %) = 9
which contradicts with ||[v”|| = ©(1/1/p2 + nn/d). We decompose the difference between ||v”||?

and ||v||? into four terms:

|2 — B)2 = (012 = Fe)lle 112+ > (@2 = ODlEl® =S viy,00,(&:.€;)

)+ () +6

1
lv"[|* = Q%

I, PEN ik ieEN jEN
Iy I3
+ Z Z ywﬂ”w gm €J> .
€N JEN
Iy

We now estimate I to I sequentially. For the first term,
—92 a n
(0//2 —0,)(1 —k)d = ( Z* — O )( g* + 0, ) (1 — k)d
_ _ " 2
_ (= 1)(1 — 207 /dlog(6n2/0)) Q(l) (1= r)d

(14 K)d — 2+/dlog(6n2/5) d
a—1
=0
()

where the first inequality is from Lemma@]; the second equality is from Lemma[A.20} and the last

equality uses the fact that « = O(y/nlogn). Then we can further upper bound ma;(k* 0 as
1—r)d+2(a— dlog(6n2/6 1
max g < Lo mdx 20 ne) VdlosOn /o) _ g 1) (59)
iEN i#k* ((1 — k)d — 2n2+/dlog(6n?/6))? d

For the second term I, we have

LI < Y (0 —6")(1+r)d
1EN i£k*

< < ! - 1) max 60/%-ngn(l + k)d
(1 — (0. —w)+/dlog(6n?/6))? iEN itk
(. — 1)4/dlog(6n2/9) (Un) ((a - 1)77n)
(1+ k)d — /dlog(6n2/3) )

The second inequality is from Lemma[A.20] The first equality is from (53 and the last equality is
from Assumption .1}

Then we bound | — I3 + I, as:

|_[3+]4‘<Z Z 10:0; — 6767 - (&, &;)]

ieN jeN\{i}
< YD 1000707 [& €)1 +2 0 D [0k-0r — 0107 | - [(€re, &)
1€EN\{k*} jEN\{k*,i} teN\{k*}

max 0/ - 2+/dlog(6n2/5)

2 1 B
=tm) ((1 — (6}, —w)+/dlog(6n2/6))? 1) iEN i£k*
i gk*

i nn( Moo 200/ —w) dlog(6n2/5)> iej\rr/l,?;(k*
(0= )G (1) a1
(1+k)d— \/W d3/2 d

:O((a— 1)n%n? N (oz—l)nn).

0741/ dlog(6n2/4)

.O(mﬂ1

g ) - 2+/dlog(6n2/6)

d2 d3/2
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The third inequality is from Lemma[A.T5|and Lemma[A.20; The fourth inequality is from the fact
that

1 gk* . 9;6/* - gk* — QHZ* (0;9/* - U)) dlog(6n2/5)

0. —
M1 2(0y, — w)\/dlog(6n2/0) 1—2(8¢, —w)\/dlog(6n2/9)
(274 — o2t

T 1— 207, — w)\/dlog(6n2/0)

So we have 6}, — Yy )gi"}dl ) < 6. — Ox~; The last equality is from Assumption
=200}, —w og(6n

Combining the above results, we have
np2 2 a—1 (04—1)77” C3(1_5)
1913 = ol = 0( 251 ) + (L2 ) > SUZE),
Here C's = ©(1) is a constant. O

Now we can prove the main proposition in this case.

Proof of Proposition under Case 2.1. From Lemma[A.22] we have
Cs5(1—p)

1113 = [[ommllz > ———7—= =T'(1 = B).
Here we substitute 77 = % > (0. Then we have
e 11 Pl T0-8)
[vmml* (o[> [[" ]2 omml* 7~ [[0"]] - lomm]?
Therefore,
e TR TU-p T _TO-H
T T lomm - 02T 20 o |12 - 0712 2l vmm |[[l07]2 T 2]0" (P
The last inequality is from ||v”|| > ||V |- This implies
(1 -78) Cq
I"<l'n-—2<I'——————(1- 7).
B o
The last inequality is from our assumption that ||v” || < 2||v,um || and p? = Q(d/n). O

Then we consider the other case.

Case2.2k —p=no

In this case, all noisy samples are mixed. From previous analysis, this is equivalent to strengthening
all conditions ;v " €; > 1 while other conditions remain the same. As mixing k& — p samples will not
result in a better solution than only mixing 1 noisy sample, the proof is the same as Case 2.1 and we
omit it for convenience.

Finally, we consider the last scenario.

Case3:p#0,k—p#0

This scenario is more complex as both clean and noisy sets are mixed. There are four cases to consider
1. p < ni1,k —p < ne. (Both clean and noisy sets are partially mixed)
2. p < ni,k —p = ny (Clean set is partially mixed, noisy set is all mixed)
3. p=mn1,k — p < ng (Clean set is all mixed, noisy set is partially mixed)

4. p=nq,k — p = ng (Both clean and noisy sets are all mixed)
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We will go over every case to prove Proposition [A.T4] holds.

Case3.1p <ni,k—p<ng

This case is simple because from the analysis above, mixing 1 more clean sample is equivalent to
adding 1 more constraint and mixing 1 more noisy sample is equivalent to strengthening 1 original
constraint. So mixing both sets will not result in a better solution than only mixing 1 clean sample.
Therefore, the proof is the same as Case 1.1 and we omit is for convenience.

Case3.2p <ni,k—p=ng

In this case, all noisy samples and part of clean samples are mixed. We can consider this case as an
extension of Case 2.2 by mixing some clean samples. From previous analysis, mixing 1 more clean
sample is equivalent to adding 1 more constraint. So this case will not result in a better solution than
Case 2.2. The following proof is the same as Case 2.2 and we omit it for convenience.

Case3.3p=mn1,k—p<ng

In this case, all clean samples and part of noisy samples are mixed. We can consider this case as an
extension of Case 1.2 by mixing some noisy samples. From previous analysis, mixing 1 more noisy
sample is equivalent to strengthening 1 original constraint. So this case will not result in a better
solution than Case 1.2. The following proof is the same as Case 1.2 and we omit it for convenience.

Case3.4p=ni,k—p=no

This case is more complex. We cannot simply consider it as an extension of Case 2.2 because the
analysis of Case 2.2 is based on the condition that there exist clean samples that follow optimal token
selection rule. Denote r; = B;u; + (1 — 3;)&; fori € C and r; = (1 — B;)p; + B;&; fori € N. The
condition in this case becomes

Condition 10 (All samples are mixed).
yi’UHTTi Z 1.
This indicates

BiyiX | wil® + (1 = Ba) (07 [1&:1* + Z Yiy;07 (61, 5)) 2 1,i € C,
(1= Bi)yi N llpeil® + Bi (67 1€:lI* + Z Yiy; 07 (€, &5)) 2 1,i € N

Assume that min{\} - [|pe1]|?, =} - [|2]|?} = ¢ in optimal v”. If ¢ > 1, we can directly follow the
proof in Case 2.2. Otherwise, denote o = 1 ﬁ‘q . Wehave o > 1duetog < 1land 0 < §; < 1.

Without losing generality, we assume A - ||u1 H2 = ¢ < 1. Then consider the following relaxed
condition

Condition 11 (Relaxed version of constraints in Condition[I0).

0r11€:12 + > yiy07 (€, €5) > i € Ca.
JAi

Denote the optimal solution under Condition|11|as © and the corresponding coefficients in © as A, Ao
and éi, i.e.
b= A1 + Aopo + Z 0:€;.
i€[n]
Since the constraints in Condition [11]is a subset of the constraints in Condition[I0] we have [|9]| <
[lv”]|. Meanwhile, we have the following lemma to estimate 6;:
Lemma A.23. Suppose that Assumptiond.1| holds, under Condition[I1} we have

0; = 0,i € [n]\Cr;

J { « <1 B n+/dlog(6n?/9) > a
(1 (1 — k)d — ny/dlog(6n2/8) ) (1 — k)d — 2n11/dlog(6n2/8)

7i€C1.
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Proof of Lemma[A.23] Note that Condition [TT] does not have any constraint for samples with i €
[n]\C;. Thus we have 6; = 0 for any 7 € [n]\C; in the representation (@4)). Denote j = argmax 6;,
i€Cy
then we have
0; - 16117 + > yryi0n (&, &5) > 0;11& 17 — 20;n11/dlog(6n2/8) > 6;((1 — k)d — 2n11+/dlog(6n2/9)).

k#j

The two inequalities are from Lemma[A.65]and our definition of j. Consider the contrary case when

0; > (1—r)d—2n11/dlog(6n23)” " © have

o T
y;0 & > o

By the complementary slackness condition, if y;% " &€; > «, then we must have 9} = 0, and thus we
reach a contradiction.
Then we lower bound 6;. For Vi € C; we have

a <0117+ viy0i (€. &) < 0:(1 + K)d + 2n1y max 6;1/dlog(6n?/5)
o i€[n]
2anq1+/dlog(6n2/6)

(1 — k)d — 2n11+/dlog(6n2/5)

The second inequality is from Lemma and the last inequality is from the upper bound of 0; we
just derived. Therefore, we have

< 6;(14 r)d +

5 « _ 2n11 leg(6’ﬂ2/(5)
= (1+r)d (1 (1-r)d— 2n11\/d10g(6n2/5)>'

O

From this Lemma we have §; = O(«a/d) for i € C;. Similar as , under our assumption
18] < 2[|Vmmll, we have a = O(log(n)). Next we estimate the difference between ||%]|? and
|vmm||?. We can prove that Lemma still holds in this case.

Proof of Lemma[A22] Under this case, the difference between ||9]|3 and ||v,,.,||3 becomes

1917 = lomml® = Y (0F = 0)1&17 = (AT = D) lpal® = (A3 = A) |z 1

i€[n]
Iy
—Z Z yiyj0i8j<£i7£j>+z Z yiy;0:0; (&, &)
i€EN jeNM\{i} i€Cy jeC1\{i}

Ig IS
We then bound I; ~ I3 respectively. For I; we have
L] > > 01I&N* = D 0711&% — 2/p% > nay min 6" (1 — w)d — nomax 07(1 + k)d — 2/p?
1€C1 1EN i€ln] ieN

o?nir (1 — k) 24/dlog(6n2/9)
= 1+ nr)2d ( C(1-k)

)

The second inequality is from Lemma[A.65} The third inequality is from Lemma[A.T5|and [A.23} The
last equality is due to the SNR condition p/v/d = Q(1/1/n) so that p% < 4y For I, we have

na (1 + k)d 2

d— 2n11\/d10g(6n2/6)> B ((1 — kK)d — 2nq4/dlog(6n2/4))? P2

\/72 _
|| < Zné%wf.g dlog(6n2/5) < 2n9+/dlog(6n2/6) ___ 5 ﬁ |
ien " (1 — Kk)d — 2ng+/dlog(6n2/4))
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The first inequality is from Lemma[A.65} The second inequality is from Lemma[A.T5] Similarly, for
|I3| we have

2n1102/dlog(6n2/8 ~( n
|I5] < Zmax@Q 2y/dlog(6n2/§) < 1 (6n°/0) :O(d'g,/z>'

e ((1 = K)d — 2n11+/dlog(6n2/4))?

The second inequality is from Lemma[A.23] Combining the above results, we have

" ni1 ~f an(l—ﬂ)
19715 - ol 2 (41 ) - 6 3 ) = 2020

The remaining proof is the same as Case 2.1 and we omit it for convenience. O

Therefore, we complete the proof for all possible scenarios. O

Training and Test Error Analysis

From Proposition[A.T4] we can analyze the properties of both parameters to estimate the training
and test error. In this section, we first get the convergence direction of parameters p and v. The
main difference between our setting with Ataee Tarzanagh et al. [0] is that they only consider the
infinite case and their results hold only when R, r — oco. We extend their results to the finite case.
Specifically, given fixed upper bound R and r for ||p|| and ||v|| respectively, we denote the solution
of the constrained optimization (4)) as (v(n R)> P(r, R)) in this section for brevity.

Our main theorem in this section estimates the corresponding deviation of p(,. )/ R and v(, gy /7
from their convergence direction Py, /||Pmm || @0d Oy /|| Vmm |- For a given p, it is elementary that
the margin induced by p is min; ¢, £a, (Tia; — Tit, )T = 1, the margin becomes
min ¢, 2o, (Tia, — Tit;) | p- And for a given v, the label margin induced by v is min; y;v " r;/||v|.
Recall that the label margin induced by v, is I' and the margin of p-SVM induced by p,,,,, is =.

First we introduce a lemma to estimate the norm of ||, ||. This will benefit our proof of the main
theorem.

Lemma A.24 (Norm of pyy,.,). Suppose that Assumption.1|holds, recall that the solution of (p-SVM)
iS Dymm. With probability at least 1 — § on the training dataset we have

1 2 8§ 1mmn

1 nn
ol =0y 5+ ).

Proof of Lemma First we prove the upper bound. Consider the following possible solution p:

~ 2w
5 M1 —|— ll:2 Z 451 (56)
1eEN

This implies

We then proved that p satisfies (#1). For k € C we have

Pl — &) =2y 45020 €z7§k> > 12 dl(;g(w/é) > 1
ieEN

The first inequality is from the definition of d in Lemma [A.65] and the second inequality is from
Assumption[d.1} And for k € N, we have

~T _ £Z7£k> 51751@
p (£k—uk)——2+24 > —2+4(1 + 0y 4
ieEN zENz;élc
dngy/d1 275
> 24 41— k) + (:ig((m/)m

The first and second inequalities are from Lemma[A.65} The last inequality is from Assumption 4.1
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Therefore, the max-margin solution p;,,,,, must have no greater norm than p. So we can upper bound
Pmm as

~ 8 16
Ipmonl < 1817 = 5+ G (&P + 3 (667)
ieN i,JEN i#]
8 16 8 17
S — + ﬁ((l + Kk)nad + 2n3+/dlog(6n?/6)) < — + %

The second inequality is from Lemma The last inequality is from the definition of d in
Assumption 4.1}

Then we prove for the lower bound. AS P, is the max-margin solution and satisfies KKT condition,
it can be expressed as the sum of signal and noise tokens. Then we decompose prm = pj;"™ + pg'™

where pii™ = f{""p1 + f3"" po and pg™t = Zie[n] g;""&;. Note that pu; L & forall j €

{#1},7 € [n]. From Lemmal|A.29| we have f*™ > 0.9/p*, so we can lower bound ||p};" (|5 as
2-0.92 1

= —

I1” + > .
p? p

™ 13 = f" 2l | + £57" | 122

As for ||p"™|2, from p-SVM condition, for every noisy sample we have
pmm (5 I‘L'L) > 17
which indicates
PE" & = Prn&i = 1+ Pt > 1.9,

The last inequality is from Lemma[A.29] Sum up the inequality for all noisy sample, we have

> P TE > Lony.
1EN

Thus,

1.9n9 1.9n9 1.9n9 S nn

e H‘HZ&H \/znanu > (€:6) ¢2 ng-(L+r)d  V d’

i,jEN

The second inequality is from Lemma[A.63|and the last inequality is from Assumption .1} Therefore,
1 nm
1 |* = |Pj™ 115 + 2™ 113 > R

Combining the results above, we have

1 nn
2 __
| P _@<p2+ d>'

O
Definition A.25. Let f : R? — R%. We say that
Jm f(z,y) =L
iff Ve > 0 3M such that Vz,y > M we have that || f(z,y) — L|| < e.
Remark A.26. Let g : R — R be a function with lim, ,», g(z) = oo. Assume that

lim, o0 f(z,y) = L, then lim,_, o f(z,g(z)) = L and lim,_,, f(g(z),z) =L
Now we introduce our key theorem:

Theorem A.27. Suppose that Assumption[d_1| holds, with probability at least 1 — § on the training
dataset, we have

* The margin induced by p(, ry/ R in p-SVM is at least (1 — )=, where

log(4y/p + (L+ £)d|[wmm *dp?)
(= =
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* The label margin induced by v, ry/r in v-SVM is at least (1 — ), where v =
24/ p?2+(1+k)d

Texp(1-C)R=)"

Proof of Theorem[A.27] From Proposition[A.14] we have that for any ||p
is at most

, the label margin 1/||v(p)||

Omaxie[n](l — Smi)
[Vsm [|1p?
where o; = 1 fori € C and o; = 2 for i € N. Recall that s; = S(X;p) is the softmax probability

vector. We define ¢ = 1 — s;,, to measure the amount of non-optimality (attention on non-optimal
token).

)

We first consider the convergence of p(, zy and use contradiction to prove the first statement. Denote
PE™ = RPmm/||Pmm| which has the same norm as p(,, gy and the direction of p;,,,,. Suppose
the margin induced by p(, r)/R is at most (1 — ()2, i.e. ming ¢, 4o, (Tia, — Tir,) ' Prr)y <
(1 — {)RE,Vi € [n]. Note that here each sequence only has two tokens, thus ¢;,«; € [2], and
ti =3- (67

According to Lemma[A.24] we have

E = Pmmlly" = O((m/d+1/p?)~1/?).

mm

Following the definition of ¢ above, we set Gyaz = SUD; ¢y ¢’ ™ and gk, ., = sup; cln] @& to
be the worst non-optimality in p(,, gy and pz™. Then we have
prm exp(zf pE™) exp(x, pi™)

¢ < exp(—R2).

Vi exp(@pE™) T explal, pR™)
The last inequality is from the definition of p,,,.,, that p,) . (Tia, — i) > 1,50 PR T (Tia, — mit). >
R/||pmm| = RE. Thus, g5, ,, = SUP;¢y] g™ < exp(—RE). Then denote the output of attention
layer 7; = X' S(X;pi™). Define ¢; = |[r; — @iq, ||, we have y; - 7/ vimm > ¥ - @, Vmm —
i = @ia; || - [|Vmmll > 1 — € /T Soif we set €00 = SUP; e[y €is Vimm achieves a label margin of
atleast I' — €02 ON (Y3, 7i)ic[n)- TO better estimate €pqz, we define M = sup;cp,) i — &l <

p? + (1 + k)d, then we have
€maz = M - o < M exp(—RE). (57)

This implies the max-margin achieved by (p(mr’g), v?;’;lé)) is at least
Yif (V0 Ry PO Ry Ti) = yiv™™ T > 0T — repan > T — rM exp(—RE). (58)
The first inequality is from y; - 7, v™™ > r(T' — ¢;) and the last inequality is from .

Then we consider the case when min; ¢, zq, (Tia, — Tit, )Tp(r’ r) < (1 — ¢)RE the minimal margin

constraint is ¢-violated by p, ). Without losing generality we assume that 1 = argmin[(;a, —
i€[n]
Zit) | P(r.r))t#a,- Then we have

exp(x 1y, P(r,R)) 1 exp(e{;, P(r,r)) N 1

a\maw > = =z —.
Zte[z] eXp(mirtp(r,R)) 2 exp(mfalp(r,R)) 2 exp((l - C)R‘:‘)

From Proposition optimizing v-SVM on (y;, 7;);[] can achieve the max-margin at most

C _
min y; f (v, ), ) <D ———— . (1-ORE, 59
miny (Ve Ry, P R); ®i) < Mo [Prp? (59)

And from the definition ¢ = 7= 10g(2M ||V [|*np?/C), we have
C
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for sufficiently large R, which implies

Hel[lff] Yi - f(V(r,R), P(r,R); Ti) < 12[17111] yi - fF(PR™ v ).

This contradicts with the problem definition (4) to maximize the margin.
Then we prove for the second statement. When the margin induced by p(, )/ R in p-SVM is less than

(1—¢)E., we can use the proof above to derive a contradiction, s0 (Tia, — Ti) ' P(r.r) = (1 — () RE
must hold. Then set 7; = X,;" S(X;p(, r)), we have that
min yiv(—g R)?i < min yiv(—'; R)Tia; + SUP |vgﬂ R) (Pi — Tia,)|
i€[n] ’ i€[n] ' i€[n] '
< (I —=y)I'r+ Mexp(—(1 = ()RE)r
< (1—=~/2)Tr.
The second inequality is from previous analysis that (;q, — i) ' P(r ) = (1—()RE, s0 [F;—x1 | <
M exp(—(1 — {)RE); The last inequality is from our definition v = WN—IC)RE)'
Therefore, combining with (58], we have
AI'r/2 > rM exp(—RE),

which implies

112[11111] Yi - f(V(r,R), P(r,R); Ti) < min yi - fg™, "™ ).

Again this contradicts with the problem definition (@). O

Then we have the following lemma to bound the derivation ¢ and ~:

Lemma A.28. Suppose that Assumption 1| holds, consider the same setting in Theorem[A.27} we
have ( < 0.2 and~y < 0.1.

Proof of Lemma[A28 From the definition of ¢ in Theorem we have

n/d+ 1/p2
O VI 0 o Mo [Pr?)

 10g(2M[0mm [*np?/C)

¢ RE -t R
Vm/d+1/p? n*(p® +d)(p*nm+d)*\ _ Csy/qn/d+1/p?
< = 2.
< Cy 7 log R 7 log(pn) < 0.2

Here C1, Cs,C3 = O(1). The first inequality is from the upper bound of ||¥,, || in Lemma
and the last inequality is from the definition of R in Assumption[.1] And for -y, we have

2M , M|vgm|| <! \/(p2 +d)(7m/d+ 1//)2)

T Texp(1-ORD)  ep(B/[vmnl) = 7 exp(R/mid 1)

Here C{, C4 = ©(1). The first inequality is from the lower and upper bound of ||v,., || in Lemma
[A-T6]and the last inequality is from the definition of R in Assumption O

Then we can estimate (p(,. r), pt) with the following lemma:

Lemma A.29. Suppose that Assumption {1\ holds, with probability at least 1 — & on the training
dataset, p(, ry should satisfy

0.5(1 = Q)R=E < (p(r,r), j) < Rp
forje{1,2}.
Proof of Lemma The upper bound is given by

PRy 1) < [Py 511 = Rp.
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Then we use contradiction to prove for the lower bound. From Theorem@ D(r,R) Satisfies
Plop (i —&) > (1-CQ)RE,ieC
Pl (& — pi) = (1= QRE i €N (60)
If (p(r,r), ;) < 0.5(1 — ¢)RE, then for every clean sample from cluster j we must have
(P(r,R), &) < —0.5(1 — ¢)RE and thus
Perr): Y &)= (Do) &) < —0.5(1 — ()REny;.
i€C; i€C;

So we could estimate ||p(,, r)|| as follows

1 1
1Pyl > 0.5(1 — Q)RE - nyji—s— = 0.5(1 — Q)RE - ny;
2 &l Y &I2+ X (&)
i€C; i€eC; 1,j€C;
1 .
> 0.5(1 — ¢)RE - =

n1; > 04Rz  ————.

\/2'n1j'(1+li)d 2(1+/€)d
The first inequality is from the property of innerproduct; The second inequality is from Lemma[A.63]
and the definition of d in Assumption A1} The last inequality is from Lemma[A28] Meanwhile,

from Lemma we have ||pm || < +/8/p2 + 17nn/d. Recall that = = ||y, ||t Therefore,

we further have

0.42n1j

VI
V2 r)d ~\ (8/p? +1Tim/d) - 2(1 + k)d

0.04(n — nn — O(y/n))
= \/(8/p2 FTn/d) (L ryd T

The second inequality is from Lemma[A:24} The third inequality is from Lemma[A.68]and the last
inequality is from Assumption[d.T]about SNR and 7). This leads to a contradiction.

P m) || = 0.4RE -

O

Now we can estimate the output of attention layer for some test sample (X, y).
Lemma A.30. Suppose that Assumption {1\ holds, with probability at least 1 — § on the training
dataset, for a given a test sample X ,y, where X = (u*,£*), p* can be p1 or pa, we have with
probability at least 1 — exp ( — 1(3(1 — ()Z — K/R)?) that

<p(T,R)a IJ‘*> - <p(’r‘,R)7 £*> > K7
where K < %(1 — ¢)RE and (, Z are defined in Theorem

Proof of Lemma[A.30, Note that p &* follows Gaussian distribution \/(0, R?), we have

]P)(<p(7“,R)7IJ’*> - <p(T.,R)a£*> < K) = P(<p(T,R)a£*> > <p(T,R)al'l’*> - K) S P(pz;,R)é* > %(1 - C)RE’
<exp(— (30— Q= K/RP).

The first inequality is from Lemma [A:29] and the second inequality comes from the property of
Gaussian tail probability.

We also have the following lemma to estimate v, ry. We first prove that v(,. ) can be expressed as
the sum of signal and noise tokens.

Lemma A.31. The solution of constrained optimization problem (E]) v(r,R) Can be expressed in the
form that

Virr) = M1+ dopz + Y 0iki.
i=1
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Proof of Lemma[A.31} Similar to Theorem [A.27| define 7; = X, S(X;p(,,r)) as the output of
attention layer, we have

V(r,p) = argmax min yi'vTri. (61)
wl|<r #€[n]

Then denote s = m[ln] y;v ' r; and s, = m[lrﬁ yiv(TT p)Ti- Then || can be written as
i€[n i€n ’

(v(r,r), 5r) = argmax s, s.t. yv'r;>s, 1<i<n

v,s

[[v]| <.

The corresponding Lagrangian function is
L(s,¢) = —s+ i%yi(s — v ry) +o(|[v]* - 7).
i=1
Take derivative of this function on (s, v), we have
- i Yiyiri + 2¢ov = 0.

=1

Therefore from the last equation we can get

1 n
V=5 Yiyirs.-

Asr; = Bipi + (1 — B;)&; for every ¢ € [n], v can be expressed as the combination of signal and
noise token of every sample:

Vir) = M1+ dopa + Y 0iki.
i=1

Based on this representation, we can then bound the parameters in v, g):

Lemma A.32. Suppose that Assumption 4.1\ holds, denote v, gy = A\1pt1 + Aapo + Y 0:&;. Then
i€[n]
with probability at least 1 — 0 on the training dataset, we have

A > (1=)Ir/p?,
Ao < —(1=9)r/p?,

10;| < 2+/1/p% + Bnyn/d - Tr/Vd.

Proof of LemmalA.32] The first two statements are obvious because from Theorem[A.27) we have
yz"U(j;yR)Mi > (1 —9)r,
for Vi € C. This implies |[\;| > (1 — y)['r/p? for j € {1,2}. Meanwhile, we decompose
V(p,R) = Uy + V¢ Where vy, = A1 + Aopro and ve = > 0;€;. And we can upper bound ||vg|| as
1€[n]
[vell? = lwemy I = lwull® <72 = A2p? = A3p? <r2(1—2(1 —7)°T?/p?).

The first inequality is from ||v|| < r and the second inequality is from the first two statements we just
proved. Therefore, denote j = argmax 6;, we have

1€[n]

OF1&5117 < llvell® < r*(1 —2(1 —9)T?/p?).
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7’2 /p?) /(1 — k)d

Then we can upper bound |6;] as
07 <r*(1—-2(1—9)°T%/p*)/I&I* < r*(1 - 201
_ 2(1 - 9)? 1
2 <1 o)1= <7 (1= e /-
]_'\2?,.2
2d

2 1 577n>

2
1+57)np/d. r (Lo
(1-r)d p? d

T oy Snnp?/d
The second inequality is from Lemma [A.63} The third inequality is from Lemma [A.T6] that
2vpetan)d W' The last inequality is from

|vmm|l < /2/p? + 5nn/d and our definition of v = o (IO RS)’
|Vmm|| =t > (2/p* 4+ 5nyn/d)~t. Thus, we can bound |6;] as
d

1051 < 27/1/p2 + 5yn/d - Tr/Vd.
O

Therefore, we can prove the main theorem
First we show that the model can perfectly classify all training samples

Proof of Theorem
From Theorem we have
yiv(TT)R)ri > ( — ’y)F?" >0

(1", €"), 1* can be iy

for Vi € [n]. The last inequality is from Lemma Thus y; = sign(f(Xi; v(r,r), P(r,r))) for all
i € [n]. Then we bound the test error. Given a test sample X, y, where X = (u*, £*),
_ 2
(62)

| € |n.
or pt2. From RemarkA.66} with probability at least 1 — 6n exp(—d/4C1n?)
d
*
M < ——.
€ el < o

According to Lemma|A.30| with probability at least 1 — exp ( — (3 (1 — () — K/R)?), we have
<yv(r,R)7€KN* + &%) > eK(l _ V)FTHH*W _ 1 Z 10;] - (&, €]
= p2(€K+1) eK +1 " 4 s .

(63)

>
- eX +1

Y- f(verR), P(rR); X)

1

¢)RE. By uniform bound, we have that with

131 -Q=-K/R)?),

Let K = log(v/d\/1/p2 +nn/d) + C <
probability at least 1 — 61 exp(—d/4C1n?) — exp (
K (1~ )T — - d/(Cun) - 2/ T T apafd- T/
Y- f(v Ry, Pir,R); X) > s /
096KI‘r—f/Cl 2y/1/p* +nn/d - Tr

1+ eX

>0,
where the first inequality uses (62), (63) and Lemma[A.32} The second inequality is from Lemma

[A728] and the last inequality is from’Assumption@ and our selection of K. Therefore
1 K
(5(1 = OF = 2)?) + exp(—Qd/n?))

= log(Vd+\/1/p% +nn/d) + C =

P(y # S (vr,m), Py X)) < ex

where ¢ — 108(2M ||V [|*1p?) _ ®<\/nn/§+1/l72 log(pn)>, K
2

O(log(\/d/p? +nn) and Z = ||ppm|lz* = ©((nn/d+1/p?)~1/2). Plugging in the order of = and
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K, we have

Pix yy~p(y # sign(f(X; v r), P(rRr))))
= Px )~p(y # sign(f(X;v(.r), P(rR))), ¥ = —V)
+Pix )~y # sign(f(X; v, Ry, P(r,R))): Y = )
=n+Px )~y # sign(f(X; v r) Pr,R))), Y = )
2
<+ exp(—d/Cin?) + exp ( -0( \/% _ log(\/d/Rp + nn))z)
1-¢ 10%(”))2)
Vm/d+1/p2 R T

where { = © (7W log(pn)). This completes the proof. O

=n+ exp(—Q(%)) + exp ( -

A.2.4 Proof of Thm. 4.2
(r

In the case of multiple tokens setting, we denote the 7-th token in input ;

the definition of Combined Noise Token.

Definition A.33 (Combined Noise Token). EZ is called combined noise token if El = 2322 ti+&ir
and ¢, € [0,1], "0, ¢, = 1.

) as & . And we introduce

Then we have the following lemma to estimate the norm and innerproduct of these combined noises:
Lemma A.34 (Properties of Combined Noise Tokens). Suppose that § > 0 and k' =

O(y/log(6n/8)/d) = O(1/+/d) .IfLemmaholds, we have

(1= #)d/T < [|&]5 < (1+#)d

(€, €;)] < 27°y/dlog(6n?/0)

foranyi,j € [n].

Definition A.35. If the event in Lemma[A.63|and[A.34] occur, let us say we have a good run.
Lemmas and show that a good run occurs with probability at least 1 — §. In what follows,
we will assume that a good run occurs.

Because the optimal tokens are data specific and not fixed, we consider the following token selection
rule:

i = a:l(l) = py, i € Cp, k € {1,2}

7% = wgz) =&, 1€EN. (64)
This selects signal token for all clean samples and the first noise token for all noisy sample. Following
this new token selection rule, we redefine the p-SVM and v-SVM:

Definition A.36 (p-SVM for Second-token Selection).

Psec = argmin ||p||  subject to:
peR?

p (™ — 2y >1 a;=1for ieC and a; =2 for i € N, te[2,T\{a;}. (65

i
Let = := 1/||Psec|| be the margin induced by pse...
Then for a given p, we define v(p) as the standard max-margin classifier on (7;,y;)ic[n] and Vsee

as the standard max-margin classifier on (77°°, y;);c[) Which represents the limiting case when
P = Psec and R — +o0.

Definition A.37 (v-SVM for Second-token Selection).

v(p) := argmin ||[v| s.t.y; v > 1,  foralli € [n]. (66)
vER?
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I'(p) := 1/||lv(p)]| is the label margin induced by v(p). When r; = r¢,i € [n], we define

Vsee := argmin ||[v| s.t. y; - v v > 1,  foralli € [n]. (67)
veER?

I := 1/||vsec]| is the label margin induced by vse..

Since v, satisfies the KKT conditions of the max-margin problem (66)), by the stationarity condition,
we can represent Vge. as

T
Vsec = )\1H1 + )\QIJ'Z + Z Zeiﬂ'gi,r- (68)

i€ln] T=2
Note that the conditions in (66) can be written as:
Condition 12 (Second-token Selection).
v >1
7’UT[142 >1
yiv' €ia > 1i €N

Plugging ({@4) in the condition[I} we can rewrite these conditions as:

A lpa]? > 1

Az - 2 > 1

Yi(io - €2+ > Oy (i i) > 1Li €N
i'€[n],
7'€[3,T)

Then we introduce a lemma to estimate the coefficients 6; , of vs.. under this condition:

Lemma A.38 (balanced noise factor for KKT points). Under Condition.1|and[I2] on a good run,
we have that for Ve,

0;r =0, i€C,re3,ThieN (69)

o c [ (1 — k)d — 4ny+/dlog(6n2/4) } e N

i i :
2 (1+k)d((1 — kK)d — 2nyT\/dlog(6n2/8)) (1 — k)d — 2n2T\/dlog (6n2/4)

(70)

Proof of Lemma[A.38] Note that Condition [I2] does not have any constraint for noise tokens with
indexi € C,i € N, 7 # 2. Thus we have 6; . = O forany ¢ € C, i € N, 7 # 2 in the representation
(©8). For 6; » with i € \V, we first prove the upper bound by contradiction. Denote j = argmax 6; o.
ieEN
Then we have
yjv &0 = Z Yiyi0i2(€i2, €52) = 0;211€52115 + Z Yiy;0i2(&i2,€5.2)
ieN i#j €N

>032(175)d7n2T9J22 leg 6712/5

where the 1nequahty is from Lemma[A.65]and the definition of j. Consider the contrary case when

9]2 (1—-r)d— 2n2T\/dlog(6n2/5) we have

k)d —noT - 24/dlog(6n?/6)) =1

vl E '
yjv &2 > (1—k)d— 2n2T\/W ((1

By the complementary slackness, if ;v &; 2 > 1, then we must have 6; » = 0, and thus we reach a
contradiction.

Then we prove for the lower bound. For V5 € N/ we have

1<6;2/1€;[l5 + Z Yiy;ti2(&i 2, €5,2)

i#jiEN

<2 (1+K)d+no Ig&}\)/(&i,g -24y/dlog(6n?/9)

UP)
<0;,9-(1+k)d+ 2
<O QT g6 0)

dlog(6n2/9).
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The second inequality is due to Lemma[A.65]and the last inequality is from the upper bound we just
get. Therefore, we have

(1 = k)d — 4ng+/dlog(6n2/9)

(1+ k)d((1 — k)d — 2nyT+/dlog(6n2/3))

This completes the proof. O

Ojo >

Then we introduce a lemma to estimate ||vsec||:

Lemma A.39 (Norm of v,..). Under Condition on a good run, for the solution v of (66)
under the token selection ((64), we have
2 o _ 2 577n

2
Bl < 0
5 T+ 20d = < |vseell 2 + d

1 n
ol =0/ 25+ 7).

This lemma is the same as Lemma:A.1§ except that we substitute &; with &; ». So we omit the proof
for clarity. The remaining proof idea is similar to that of two-token setting: 1) Prove the (relative)
optimality of this second token selection. 2) Prove the convergence of parameters and training/test
error.

This implies

We first prove the optimal token for clean samples from the max-margin they induced.
Proposition A.40 (optimal token condition). Suppose that Assumption holds, on a good run, for
all p that 3i € C,7 € [2,T],(p, i — & 7) < |Pll2/ | Pscell2, the token selection under p results in
a label margin (Def. |A.37) of at most I'g. — macx(l — Si1).

1€

H’quCHQHP

Proof of Proposition[A.40) As we consider the non-asymptotic case here, s;; cannot be exactly 1 for

T
Vi € [n], so we only consider the case that all clean samples are mixed. Denote r; = 3 @-szm =
Bitvi + (1 — 3;)€, fori € C, where €, is the combined noise token in Definition The condition
in this case becomes
Condition 13 (Mixed clean samples, multiple case).

yv" ey > 1.

This indicates

Biyi X llmall® + (1= B (071617 + > wiy;07 (€, €;)) > Li€C

J#i
Assume that min{\} - ||1]|%, =\ - |2]|?} = ¢ in optimal v”. Similar to the two-token scenario,
we consider the case when ¢ < 1. Denote o = 1;—%'1 We have o > 1 due to ¢ < 1 and

0 < B; < 1. Without losing generality, we assume A/ - ||1]|> = ¢ < 1. The special condition
(p, i — & ) < ||p|l2/]|Psecl|2 here is to guarantee that there always exists an upper bound for ;.
Then consider the following relaxed condition:

Condition 14 (Relaxed version of constraints in Condition [13).

07 1E017 + > wiy;0) (€, €;) > ai €Cy.
J#i

Denote the optimal solution under Condition as © and the corresponding coefficients in © as ;\1, As
and 0, i.e.
b= Aipr + dopa + Y 0, (71)
1€[n]
Since the constraints in Condition [14]is a subset of the constraints in Condition[13} we have |9 <
|[v"]|. Meanwhile, we have the following lemma to estimate 6;:
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Lemma A.41. Under Condition.1|and[I4] on a good run, we have
0; = 0,3 € [n]\Ci;

o [ « ( 272111/ dlog(6n2/5) « cc
_ ,i .
(1—-+ !

i € (1+r")d Yd/T — 2T2nq, dlog(6712/5)>7 ((1 = &"d/T — 2T?n411+/dlog(6n?/6)

Proof of LemmalA.41} Note that Condition [I4] does not have any constraint for samples with i €

[n]\C1. Thus we have §; = 0 for any 7 € [n]\C; in the representation (7I). Denote j = argmax 6;,
1€Cy
then we have

0 &2+ vy (€.€,) = 01|€,11* — 27%0;m11+/dlog(6n%/6) > 0;((1 — K')d/T — 2T%n11+/dlog(6n2/0)).
k#j

The two inequalities are from Lemma[A.65]and our definition of j. Consider the contrary case when

0; > (1=#")d/T—2T?ny11/d1og(6n2/3) we have

oT
y;0 & > o

By the complementary slackness condition, if yjt”;TEj > «, then we must have 0} = 0, and thus we
reach a contradiction.
Then we lower bound 6;. For Vi € C; we have

a <0 1€+ viy0i(€,€;) < 0:(1 + &')d + 2T°n11 max 0;+/dlog(6n2 /)
i i€[n]
2T2%any1+/dlog(6n2/6)
(1 — &")d/T — 2T2ny1+/dlog(6n2/5)

The second inequality is from Lemma and the last inequality is from the upper bound of d; we
just derived. Therefore, we have

<0:(1+r)d+

g > « <1 B 2T2n11+/dlog(6n2/9) >
T (14 rw)d (1 — K)d/T — 2T2n11+/dlog(6n2/5)

O

From this Lemma we have §; = ©(a/d) for i € Cy. Similar as , under our assumption
[|9]] < 2||lvsecl|s we have o = O(log(n)). Next we estimate the difference between ||%]|* and
[[vsec||?. We can prove the following Lemma similar to Lemma [A.22}

Lemma A.42. Suppose that Assumption .1 holds, denote v, and  as the optimal solutions under
condition[I2|and condition[I4] respectively. We have

C3(1 - B)

1913 = vseell > ————,

where C'3 = ©(1).
Proof of Lemma[A:42] Under this case, the difference between ||9]|3 and ||vsc. |3 becomes

1517 = losecll® = > GFIE N = 6711€N1° — (AF = Al aall* — (O3 = A3)l ez

1€[n]
I
=0 w00 (€ g+ D yiy0i0;(€E)
i€EN jEN\{i} 1€Cy jeCi\{i}

12 13
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We then bound I; ~ I3 respectively. For I; we have

111 = D0 FNENP =D 6F1&l* —2/07 = nua(l - O(n/Vd)) min 6 — o max 07 (1 + x)d — 2/p®

1€Cy ieN
nia? <1 B 2T%n11+/dlog(6n2/6) > B no(1+ k)d 2
~ (1++)d (1 — k"d/T — 2T?n11+/dlog(6n2/5) (1 — k)d — 2ng+/dlog(6n2/6))2  p?

-+()

The second inequality is from Lemma[A.63} The third inequality is from Lemma[A.38]and[A-4T} The

last equality is due to the SNR condition p/v/d = Q(1/+/n) so that piz < 44 For I, we have

2ng+/dlog(6n?/0) ~< n )
L] < 6% . 21/dlog(6n2/8) < =0(—=).
| 2‘ _lEZJ\[IZIé%( 4 Og( n / )— ((l—n)d—2n2 /dlog(6n2/5))2 d3/2

The first inequality is from Lemma[A.63} The second inequality is from Lemma[A-38] Similarly, for
|I5| we have

. 272 2,/dlog(6n2/5) ~
L] < Y max? - 272 \/dlog(6n2/3) < nuo”y/ dlog(6n?/9) _ o<f2>.
£ e (1 — #)d/T — 2T%n11\/d1og(6n2/9))? &/

The second inequality is from Lemma[A:4T] Combining the above results, we have

"2 2 n A" an(l—ﬂ)
o1 - 1ol > 0(5) 077 ) = G

O

The remaining proof is the same as Case 2.1 for two-token scenario and we omit it for convenience.
O

In this way, we prove the relateve optimality of this second token selection rule. Then we introduce a
lemma to estimate the norm of ||psec||. This will benefit our proof of the main theorem.

Lemma A.43 (Norm of ps..). Suppose that Assumption[d.1|holds, recall that the solution of (p-SVM)

iS Psec. On a good run, we have
1 nn 9
ﬁ+7 < |Psecll Sp*—Fi.

This implies

1 n
Ipacl =6y 5+ 0):

Proof of Lemma First we prove the upper bound. Consider the following possible solution p:

_ 2 i
pzi(ul—gu2)+z4%. (72)

P iEN

We then proved that p satisfies (65). For k € C, 7 € [2,T] we have

B (ke — ) =2 S a2 8hr) 5o dny/dlog(6n%/3) |

iEN d - d
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The first inequality is from the definition of d in Lemma and the second inequality is from
Assumption And for k € N, 7 € [3,T], we have

~T _ £7, 27€k 2> 57, 2)£k2
P (Epo — ) = 2+Z4T> —24+4(1 + 0y g
ieN i€Ni#£k
2

> 94 4(1— k) — 4no dl(;g(fin /9) 51

D L I e

iEN iEN zeN i#k iEN
2

> 41— k) — 8ng dl(zlg(6n /0) > 1

The first and second inequalities are from Lemma[A.65} The last inequality is from Assumption 4.1}

Therefore, the max-margin solution pg.. must have no greater norm than p. So we can upper bound
Psec a8

Pecel? < 1817 = 54 5 (S lal?+ Y (€2.652)

iEN 1,JEN i#]
8 16 8 1mnn
< d2 (1 + K)nad 4 2n3/dlog(6n2/5)) < -+ 0
The second inequality is from Lemma The last inequality is from the definition of d in
Assumption d.T]

Then we prove for the lower bound. As p,.. is the max-margin solution and satisfies KKT condition,
it can be expressed as the sum of signal and noise tokens. Then we decompose psec = Py + pg*

where pi7¢ = f7°°p1 + f3°°p2 and pg*© = Zie[n] gs¢°€;. Note that p; L &; - forall j € {£1},i €
[n],T € [T] We first prove that (psec, tt5) > 0.5 by contradiction.

If (Psec, pj) < 0.5, then for every clean sample from cluster j we must have (psec, &,2) < —0.5 and
thus

(PrR), Z i) = Z<p(r,R)a€i,2> < —0.5n4;.

i€C; i€Cy

So we could estimate ||psc.|| as follows

1
sec|| = 0.9 j =7 =
Pecell 2 05ma =] > €alP+ > (Eakra)

iGCj 1eC i ,jecjvi#j
1 V1
Z O.5’I’Llj = il .
V2-ny - (L+rk)d  /8(1+k)d
The first inequality is from the property of innerproduct; The second inequality is from Lemma [A.63)]

and the definition of d in Assumption Meanwhile, we have ||p|| < /8/p? + 17nn/d which also
satisfies (63). Therefore, we further have

|Pscell > ——=—=——=—= > /8/p? + 1Tnn/d > ||p||.

8(1 tr

The second inequality is from Assumptlon This leads to a contradiction. So we have (pgec, pt;) >
0.5. This directly indicates f7°° > 0.5/p, so we can lower bound ||p5c°(|3 as

2.0.52 1
-2 2 2 2 _
Ip5cclls = f1% |l pall® + f5°% lpal® > Ry

2, from p-SVM condition, for every noisy sample we have

Plec(&in — mi) > 1,

Sec

As for || pg
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which indicates
P o =Plockia > 1+ Ploctti > 1.5,

The last inequality is from Lemma[A.29] Sum up the inequality for all noisy sample, we have

> P T > 150y,

ieN
Thus,
Ipgeell > e = Lon SO N
X el [ fealP+ 2 (€a&a) V2ome(Grmd -V d
ieEN ieN i, JEN i#£]
The second inequality is from Lemma[A.63|and the last inequality is from Assumption .1} Therefore,
1 nn
2 _ 2 2
[Psecll” = Pl + lpellz = w2t

Combining the results above, we have

1 nn
2 _
Hpsecll - 9(02 + d )
O

With the above lemmas in place, we can conduct the analysis of the convergence direction of p,., r)
and v, g, which is similar to Theorem@

Theorem A.44. Suppose that Assumption 1| holds, on a good run, we have

. Tg[lzi%“] p?nR)(“k — &) > (1=C)ERforVi € Cy, k € [2], where Z is the margin induced

by psec and ¢ = % log(2T/p? + (1 + &) Td||vsec|*np?/O).

s the label margin for clean sample induced by v, g)/r in SVM is at least (1 — )T sec, where

24/ p2+(14+K)Td

T Teccexp((I-C)RE)

Proof of Theorem[A.44] From Proposition [A.40} we have that for all p that 3i € C,7 €
2,7, (p, i — &i,7) < |IPll2/||Psecl|2. the label margin 1/||v(p)]|| is at most

C
- . a 1 — Si1).
TomealBnp? el = sa)

Fsec -

Recall that s; = S(X;p) is the softmax probability vector. We define ¢¥ = 1 — s;; fori € C to
measure the amount of non-optimality (attention on non-optimal token).

We use contradiction to prove the convergence of p(,, ry. Denote pi® = Rpsec/||Psec|| which has

the same norm as p(,. zy and the direction of ps... Suppose the margin induced by p(, r)/R is at
most (1 — ()=, i.e. rr[121r%] Pl (i — &ir) < (1—QER, Vi € [n].
TE(2, ’

According to Lemma[A:43] we have

E= Hpsecl\gl =0O((nn/d+ 1/p2)—1/2).

sec

Following the definition of ¢ above, we set Gmaz = SUP;c(n) @i " and @hgy = SUP;c) 61" 1O
be the worst non-optimality in p(,. gy and p3%“. Then we have
)T 6T
Sexp(a’pi) T el pie)
P = t#1 1 < Texp(—RE).

(t)'l— sec) -

B nT Sec
Zte[T] exp(x;” P o )

exp(x; ' PSS
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The last inequality is from the definition of ps.. that p], .(x; ®_ (t)) > 1fort # 1,s0 pisc’ (wl(-l) —
E)) > R/||psecll = RE. Thus, g5, = supep, @7 < exp(—RE). Then denote the output
of attention layer r; = X,'S(X;pi©). Define ¢; = ||r; — 1], we have y; - 7] Vsee > v -
) Vsee — |7 — it || - |Vseell = 1 — €;/Tsec. Soif we set €par = SUD;cpn] €is Vsec achieves a
label margin of at least I'scc — €02 00 (ys, ri)ie[n]- To better estimate €,,,,,, we define M =
SUP;e ) ter) i = 224 inm Gitll < V/p? + (1 + K)Td, then we have
€maz = M - @row < MT exp(—RE). (73)
This implies the max-margin achieved by (p P(rR): v(sfcR)) is at least
Yif (P Ry sy i) = Yivy® i 2 1Tsee — Témaz > 1Tsee — TMT exp(—RE).  (74)
The first inequality is from y; - 7,/ v3¢¢ > 7(T'se. — €;) and the last inequality is from .
Then we consider the case when min p(T R) (e — &-) < (1 — ¢)ER the minimal

i€Cy,TE[2,T)
margin constraint is ¢-violated by p(, ry. Without losing generality we assume that 1 =

argmln[TrrelEn] p(r ry (i — &i.7)]. Then we have

1€Cx
1— (,]\ _ exp(y&rp(r,R)) _ 1
e exp(@ pe)  1F [Z ]GXP(@LT ~ HLPeR)
TE[2,T
1 1
< < —-
1+ eXp(Tren[gL{}] exp((§1,r — H1,P(rR))) ~— 1+exp(—(1—()RE)
This indicates Gmaz > Trempa—grs) = 3 ©XP(—(1 — ()RE). From Proposition A.40| optimizing
v-SVM on (y;, T;)ic|n) can achieve the max-margin at most
Cr =
min ylf U(r,R)s P(r,R); Ti < Fsecr PN TETE S _(1_C)RH~ (75)
Rinud om0, PRy ) A [

And from the definition ¢ = 3z 1og(2M T ||vsec|*np? /C), we have

5 exp(—(1 — ¢)RE) > MT exp(—RE),

2[|[vsec|l3np
for sufficiently large R, which implies
min y; - f(V(r,r), PRy i) < miny; - f (07, pr @)
i€[n] i€[n]

This contradicts with the problem definition (@) to maximize the margin.

Then we prove for the second statement. When rr[un ]p(r ry(Hi —&ir) S (1 —CQ)ER,Vi € [n], we
TE(2

can use the proof above to derive a contradiction, so (p; — &;.-) " P(r,r) = (1 — ()RE must hold
forVi € C,7 € [2,T]. Then set r; = X;S(X,»p(hR)) for i € C, assume vy, ) achieves the label
margin at most (1 — )T'sc.r on clean samples, we have that
WD i, )i < MR Y0,y i + sup Vi) (Ti — )|
< (1 - ’Y)Fsecr + MeXp(_(l - C)RE)T
< (1 - 7/2)Fsec7“~
The second inequality is from previous analysis that (p; —&;.-) " P(rr) = (1— ) RE, so [7; — pi| <

M exp(—(1 — {)RE); The last inequality is from our definition v = W

Therefore, combining with (74), we have
Yl seer/2 > M exp(—RE),
which implies

nel[l?{l] Yi - f(V(r,R)s P(rR) Ti) < 12[1713] Yi - f(PRS, 077 @),
Again this contradicts with the problem definition (@). O
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Then we have the following lemma to bound the derivation ¢ and ~:

Lemma A.45. Under Condition consider the same setting in Theorem we have ( <
0.2,7<0.1

Proof of LemmalA From the definition of ¢ in Theorem[A.44] we have

log(2MT || Vsec||Pnp?/C n/d+
¢ = BTl 0(O) _ ¢, VITTEF 071, g
Jmjd+ 12 2( 2 2 3
<0y nn/d+1/p log (™ T+ d)p™n+d)°\ _
R p2d?

Here Cy, Cy = ©(1). The first inequality is from the upper bound of ||v..|| in Lemma and the
last inequality is from the definition of R in condition 1]

And for =, we have
2M _ o Mlvseel o VPP +d)(n/d+1/p7)
Taccexp((1 = Q)RE) — 'exp(R/||vseell) = exp(R//yn/d + 1/p?)

Here C7,C5 = O(1). The first inequality is from the lower and upper bound of ||vs.|| in Lemma
[A39]and the last inequality is from the definition of R in condition 4.1} O

’y:

Then we can estimate (p(,, r), pt) With the following lemma:
Lemma A.46. Suppose that Assumptionholds, on a good run, p(, gy should satisfy

0.5(1 = Q)R= < (p(r,r); i) < Rp
forje{1,2}.

Proof of Lemma The upper bound is given by

(P(r,r)s 1) < o0 m) 5]l = Rp.
Then we use contradiction to prove for the lower bound. From Theorem[A.44] p ;. r) satisfies

ir) > (1—-—0R=ieC,te(2,T 76
Tg[lzlnﬂmm)( —&ir) > (1-QRE,i (2,T] (76)

If (p(r.R)» 1) < 0.5(1 — ¢)RE, denote 7; = argmlnp(r R) (p; — &+ ), then for every clean sample
T€[2,T]
from cluster j we must have (p(,, ), & r,) < —0.5(1 — () RE and thus

(P(rR)> Z &) = Z<p(r,R)7£i,n> < —0.5(1 — ¢)REny;.
iec, iec,

So we could estimate ||p(,, r)|| as follows

1
IPerr)ll = 0.5(1 = Q)RE - nyji—=—F—7 = 05(1 = ()R=E - n
HZéwz Y il + X (€ &im)
ieC; i€C; i,j€C;
1 N
> 0.5(1 — ()RE - > 0.4RE . Y

nij 04R=E —f——.
Y2y A+ R)d 21 + #)d
The first inequality is from the property of innerproduct; The second inequality is from Lemma
and the definition of d in Assumption .1} The last inequality is from Lemma [A.45] Meanwhile,

from Lemma we have ||psee|| < 1/8/p2 + 17Tnn/d. Recall that = = ||psec || ~t. Therefore, we
further have

\/@ > 0.42n1j ) R
V2L +wNd — \ (8/p* +1Tyn/d) - 2(1 + «')d
S \/ 0.04(n —nn — O(y/n))
&/ + Ttqn/d) - (1 + #')d

The second inequality is from Lemma[A:43} The third inequality is from Lemma[A-68]and the last
inequality is from Assumption[&.T]about SNR and 7). This leads to a contradiction. O

[Per.myll = 0ARE -

-R > R.
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Now we can estimate the output of attention layer for some test sample (X, y).
Lemma A.47. Under Condition for the test sample (X ,y) ~ Dejean, X = (', &), with

probability at least 1 — exp ( — 1(5(1 — ()= — K/R)?) we have
<p(7',R)7/‘I> - <p(7‘,R)7£I> > K’
where K < 3(1 — ()RE and ¢, = are defined in Theorem

Proof of Lemma Note that p "¢’ follows Gaussian distribution A'(0, R?), we have

1
PU(p(r, ), 1) — (P(r.1) &) < K) = P((p(r.R), €) > (Prmy, ) — K) < PR, )€ > (1= ORE-K)
<o (- 5500~ K/R)).

The first inequality is from Lemma [A:46] and the second inequality comes from the property of
Gaussian tail probability. O

Then we can follow the proof of Lemma@to prove that v, ry can be expressed as the sum of
signal and noise tokens.

Lemma A.48. The solution of constrained optimization problem (EI) V(r,R) Can be expressed in the
form that

n
Vor) =M1+ dopz + Y D birkir
i=17€[2,T]
Based on this representation, we can then bound the parameters in v, g):

Lemma A.49. Under Condition denote v(, gy = A\1pt1 + Aot + S > 60i:& .+ Then
TE€[2,T)
we have

A > (1—)Tr/p?,
Ay < —(1=)Tr/p?,
10;.-| < 2y/1/p? + 5yn/d - yeer/ V.

Proof of Lemma The first two statements are obvious because from Theorem [A.44] we have
yi’ugl;’R)/J/i Z (1 - V)Fsecry

for Vi € C. This implies [\;| > (1 — v)Dseer/p? for j € {1,2}. Meanwhile, we decompose
V(p,R) = Uy + Vg Where vy, = A1 + Ao and ve = > 0;€;. And we can upper bound ||vg|| as
1€[n]

lvell® = llve,m) I = loall® < 7% = A2p? = A3p* < 72(1 = 2(1 — 7)*T2ee/P?).

The first inequality is from ||v|| < r and the second inequality is from the first two statements we just

proved. Therefore, denote j,7; = argmax 60;,, we have
i€[n],7€[2,T]

07 2 1€5.7 117 < lloell* <721 = 2(1 = 4)°T2./p%).

sec

Then we can upper bound |6, | as
07, < r2(1 =201 =) T/ 0*)/ &), |7 < 72(1 = 201 = 9)°T2.c/p*) /(1 = w)d
2(1 — )2 1
=r2(1— 1—r)Yd<7%(1- 1—k)d
sz )/ ) o/ s )
2 2 2 2
_ 1+5mnp?/d T y < ( 1 N 5nn) e

T 2+45mp?/d (1—k 02 d 2d
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The second inequality is from Lemma[A 65} The third inequality is from Lemma that | vgee|| <

v/2/p? + 5nn/d and our definition of v = %; The last inequality is from T'g.. =

[[Vseel| ™t > (2/p* + 5nn/d)~*. Thus, we can bound |6, -, | as
| ]T_]| <2y/1/p? +577n/d'rsecr/\/a-

Therefore, we can prove the main theorem.

Proof of Theorem First we show that the model can perfectly classify all training samples. From
the construction of pgec, Ve, We have

Yol e > (0, TE) > 0

for Vi € [n]. Here r°°° is the token selected by p3;°. Thus y; = sign(f(X;; v(,.7R),p(,.7R))) for all
i € [n]. Then we bound the test error. Given a test sample X, y, where X = (u*, £*), pu* can be
or po. With probability at least 1 — ¢ a good run will occur. Similar to the proof of Lemma[A.63]
with probability at least 1 — exp(—Q(d/n?)),

(€, &i.r)| < 24/dlog(6n2/6). (77)

According to Lemma|A 47| with probability atleast 1 —exp (— 2(3(1 - Q)= — K / R)?), we have

<yv(r R)» eKﬂ* +&%) eK(l - 'Y)FsecTH“*Hz
y'f(v(r,R)ap(r,R);X)Z : K Z 2K Z Z |017|
et +1 P (6 T 1) Le[n] TE[2,T)
(78)

Let K = log(nT'\/1/p* + nn/d) + log(log(6n?/§)) + C < 1(1 — ¢) RE. By uniform bound, we

have that with probability at least 1 — exp(—Q(d/n?)) — exp (— 3(3(1 — ()= — K/R)?),

K(1 — y)Tseer — nT/dlog(6n2/6) - 2\/1/p2 + qn/d - Tseer /Vd
14 ek

S 0.9¢XTseer — nT+/dlog(n2/8) - 24/1/p% + nn/d - Tseer/Vd

- 14 ek

Y- f(v(r Ry, P(r,r); X) >

>0,

where the first inequality uses (77), (78) and Lemma[A:49} The second inequality is from Lemma
[A-45]and the last inequality is from Assumptionlzf;fl and our selection of K. Therefore,

K
Ply # (00 Py X)) < oxp (= 3 (51— OF = 2)7) + exp(~0(d/n%)),
where C _ log(ZAITHfl;:ceC”?»np?/C) _ (\/Un/dJrl/P lo (7;2T(nn+;iz/§§)3(p2+d)))’ K =

10g nT\/l/p +nn/d) + log(log(6n?/8)) + C = O(log(nT+/1/p% + nn/dlog(6n?/5)) and

E = |psecllzt = @((nn/d—!— 1/p%)~1/2). Pluggmg in the order of = and K, we have
(1-¢)  log(n)

P (X y)~Dorenn (Y 7 sign(f( X500 r), P(r.R)))) < exp(—Q(d/n?))+exp (*Q(

VTRV

where ( = © (7W log (nzT(n"+Z2/532 (" 4d) )) . This completes the proof. O

A.2.5 Proof of Thm. 4.4

Lemma A.50. Consider the next joint-constrained max margin solution:

(v, p) = argmax miny, f(Xi;v,p). (79)
\|v\|2+npn2<t '

(ve, pt) = (v )1 P(re, Ry))» where (V(v, R\ P, Ry)) iS5 @
solutlon to Problem Moreover under Assumptlon @( items - 3 ) with probability at least 1 — ¢
over the random data generation, we have that ry — 0o, Ry — 00 ast — oo.
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Proof. By Proposition|A.40} with probability at least 1 — §, for all p € RY, the token selection under
p results in a label margin of at mostI" — ¢ - macx(l — sP) in|A.13|(with r; = X" S(X;p)), where
1€

s? = S(X;p) is the softmax probabilities, and ¢ := C/|vs.||*np? is some constant (which may
depends on n and d, but not in ?).

Observe that as the norm of v increases, the margin increases; thus, it’s easy to verify that ||v;|| — oo
as t — oco. We argue that also ||p:|| — oo as ¢ — oo. To see that, assume by contradiction that
lpe]l < Ro for some arbitrary large ¢ that will be determined later. SetI' = 1/ ||vsec|| , ||ve|l = 74,
Vsee = (11 — 1)T e Hence t = r? + R2 and ||'1~)sec||2 = (r — 1)2. The idea is that by decreasing
[|lo || by 1, we can choose p with ||p||* + (r, — 1)2 = ¢t = r2 + R2, ie., |p|* = 2r, — 1 + R2, which
can be arbitrary large for large enough ¢. Set IT := 1/ ||psec|| and Psec 1= /271 — 1 + R31Ipgeec.
The proof strategy is obtaining a contradiction by proving that (Vsc., Dsec) is a strictly better solution
compared to (v, p;). Define qf =1 — s;1 for i € C to be the amount of non-optimality softmax
probability. Then we have that

max ¢t > K
(2

where x > 0 is a constant that depends just on R and data parameters (e.g. n, d, p, §). On the other
hand, for every ¢ > 0, we have that

. _ Dsece
¢ = maxg, <,

for large enough r; i.e. large enough ¢. Therefore, By Proposition[A.14] (see the first paragraph in the
proof), we can upper bound the margin induced by v; on (Y;, ;) for r; = X,'S(X;p;) by

min yivt—rri < ry(T = k),
i€[n]

for some constant ¢ > 0. On the other hand, the margin induced by V.. on (Y;, r;) for r; = @4, is
(r+ — 1)I". This means that we margin induced by U, on (y;, ;) for r; = X;'—S(Xiﬁsec) is at least

o T~ T~ Al @
Hliln YiT; Usec = miln YiTin,Vsec —q ||T; = — X, ”vsecH

> (ry — 1)(T — Me),
@ _

where M = sup;,, ||x;

%@) H Observe that this lower bound is bigger than the previous upper
bound when

(ry = )T — Me) > r (T — ck)
Me < —(T — Me)/ry + ck.
Choose large enough ¢ such that (I' — Me)/ry < c¢x/2 and Me < cr/2, gives us the desired

contradiction. Recall that R; := ||p;|| and r; := ||v¢||. Since r? + R? < t, we have that (v, p; is a
solution to Problem[ with 7 = r;, R = Ry, and (v(,,,r,)s P(r,.R,)) is a solution to Problem 79}

O

Proof of Thm. By Thm. with probability at least 1 — §, the training set is feasible, i.e. exists
(v, p) such that min;cp,,) yi f (X5 v, p) > 0. Therefore, for any v > 0, with probability at least 1 — 4,
we have that min;e(,,) v f(Xs; vy, Py) > v > 0, which proves the first part of the Thm. Next, we
show that the classifier sign(f(X; v, p~)) generalizes well, for large enough ~. Recall the next
joint-constrained max margin solution:

(ve,pe) = argmax miny; f(Xs;v,p), (80)
lel*+lpl?<t *

which was introduced in Lemma Fix v > 0, and let (v, p,) be the solution of Problem

Define t(7) := ||v,||*> + |[p,||°>. We argue that (v.,,p,) is a solution to Problemfor t = t(y).
Indeed, let

m:= max min y; f(X;; v, p)
loll®+llpl®<t(y) i€[n]
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be the maximum margin for Problem with ¢ = ¢(-y). Assume by contradiction that
min ny(pr’W U’y) <m,
i€ [n]

which implies that

v < min yif(Xﬁpw UW) <m.
i€[n]

Let (v*,p*) be a solution to Problem [80] with ¢ = t(v) ie. |[v*|* + ||p*]|> = t(7) and
min;ep, yi f (Xe; p*,v*) = m > . Write v’ := (y/m) - v*. We remind that f(X;v,p) =
v X TS(Xp) and overall we get that

2 w2 ) w12 w2 w2
< 7+ et = (v/m)? [[o*]]7 + ¥ < lo*]]” + [1p*]1” = t(v)

* miniep, yi f(Xi; p*,v') = L mingep) vi f (X33 p*,v") = L -m =7,

which contradicts the optimality of (v.,, p,) to Problem We conclude that (v, p-) is a solution
to Problemfor t = t(7), ie. (vy,Py) = (Ve(y), Pi(y))> Where (vy(,), Pi(+)) is a solution for

Problemwith t =1t(7). Letryy) := ||'vt(7) H and Ry () = ||pt(y) || By Lemmawe have

(v’)’7p"/) = (vt(V)’pt(“/)) = (/U(Tt(w),Rt(w))7p(Tt(«,),Rt(»y))) ) 8D

and that ;) — 00, Ry(,) — 00 as t(y) — oo. Clearly t(y) — oo as y — oo. By Thm. The
classifier sign(f(X; v(,.g), P(r,r))) generalizes well on test data:
Px y)~p(y # sign(f(X;v(,r), P(r,r))))

=n+ exp(—Q(d/n2)) + exp ( . @( (1-9) B IOg(d))g)

1 R
VT T

In particular, there exists g, Ry such that for any » > ro, R > Ry, the above probability can be
upper bound by 1+ exp(—Q(d/n?)) +exp(—O((1/p* +nn/d)~1)) (see Remark[4.3). Choose large
enough 7o such that for any v > o we have that 74,y > ro and R,y > Ro. Then we conclude

P(x )~ (y # sign(f(X;vy,py)))
=Px,y~p (y 7 sign (f(X? v("'t(v)vRt(v))’p(rt(v)vRt(v)))>)
<+ exp(—Q(d/n?)) + exp(—=O((1/p* + nn/d) ")),
where the first equality is from Eq. [81] as required. O

A.2.6 Proof of Thm.

Proof Sketch
First we prove that in this case, only by selecting the noise token for every sample can we achieve the
largest margin in the downstream task,

r; =§&;,Vi € [n] (82)

Similarly, we define the respective max-margin solution for p and v in this case.

Definition A.51 (p-SVM, negative case). p should satisfy

pmm(a) = argmin ||p||
p

subjected to

P& —pi) > 1, (83)
forall1 <i <mn.Z=1/||pmml is the margin induced by p,,.
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Definition A.52 (v-SVM, negative case).

v(p) = argmin ||| s.t. y; - v r; > 1, foralli € [n]. (84)
vER?
I'(p) = 1/||v(p)]| is the label margin induced by v and p. When r; = &;,i € [n],
UV = argmin ||v| s.t. y; -v' & > 1, foralli € [n]. (85)
vERY

T = 1/||vmm|| is the label margin induced by V.

To prove this token selection is optimal, we need to explain that the optimality of the token choice is
strict in the sense that mixing other tokens will shrink the label margin. We formalize this into the
following proposition:

Proposition A.53 (Optimal Token Condition). Suppose that Assumptiond.5| holds, with probability
at least 1 — 6 on the training dataset, for all p, the token selection under p results in a label margin
of at mostT' — ¢ - mz[u]((l — Si2).

i€n

Then we derive the convergence direction of p and v by Theorem[A.27] Note that as ||p|| — oo, the
attention is more focused on the noise token for every training sample. Therefore, the output of signal
token is upper bounded by a small value.

Consider a test sample (X,y), X = (¢/,€&’). As ||p| increasing, the noise token & will will
dominate the overall output if p(TT_’ R)£ " > 0, which indicates the output of attention layer will close to
the noise token, " — &’. Meanwhile, we can prove that p(,. ) and v, ) are near orthogonal, so
p(T,r, R)é’ and 'U(T, R)é’ are nearly independent variables subjected to Gaussian distribution. Therefore,

the probability that yiv(TT R)é" < 0 1is at least constant order.

Optimal Token Condition
First we find the optimal token selection in this case.

Proposition A.54 (Optimal Token Condition). Suppose that Assumption|.5| holds, with probability
at least 1 — 6 on the training dataset, for all p, the token selection under p results in a label margin
of atmostT' — ¢ - ma>]<(1 — Si2).

i€[n

Proof of Proposition[A.53] Similar as above, we consider the following three situations:

1. p# 0,k — p = 0. (All wrong token selections come from clean set)
2. p =0,k — p # 0. (All wrong token selections come from noisy set)

3. p# 0,k — p # 0. (Wrong token selections are from both sets)

We will discuss each situation specifically and prove that Proposition holds in every possible
case.

Situation 1: p A0,k —p=20
First, let’s see the condition under the optimal choice of tokens:
Condition 15 (Original Condition).

yv' & > 1€ [n]

Similarly, vy, also satisfies the KKT conditions of the max-margin problem (@2)) in this case, so we
could write v as

v =g+ Aapa + Y Gibik. (86)
i1€[n]
Plugging in the condition [I5] we can rewrite these conditions as:
0; - 1&I° + Zyiyi’ei’<£i7£i’> > 1,i € [n].
i i
Then we introduce a lemma to estimate the parameters of optimal solution under this condition:
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Lemma A.55 (Balanceing noise factor for KKT point). Suppose that Assumption[d.3] holds, under
Condition[I3] we have

max6; < ! )
i€[n] (1 — Kk)d — 2n+/dlog(6n?/0)
_ _ 2
min g, > (1= k)d — 4n+/dlog(6n?/9) .
i€[n] (14 k)d((1 — k)d — 2n+/dlog(6n?/0))

Proof of Lemma[A-53] First we prove the upper bound. Denote j = argmax 6;, we have
i€[n]

yiv' & = Y iyl &) = G1&15+ DY viys0il€i &)

i€[n] i#£j,1€[n]
>0 (1—k)d—nb,-2+/dlog(6n?/d)

The last inequality is because Lemma[A.65]and the definition of j. Consider the contrary case when

; i
ej ~ (1—k)d—2n+/dlog(6n2/5)’ we have

yiv' & > . (@
J J (1—r)d— ZnW

By the KKT conditions, if y;v " &; > 1 then we must have #; = 0, and thus we reach a contradiction.

—k)d —n-24/dlog(6n2/§)) = 1.

Then we prove the lower bound. For Vj € [n] we have

1< 0,013 + Z yiy;0i(&i, &) <0, - (1 +rK)d+ nnel?)](& -2¢/dlog(6n2/5)

i#7,1€[n]

<6; - (1+r)d+ (L r)d = 2n/dlog(62/3) - 24/dlog(6n?/0).

The second inequality is due to Lemma[A-65]and the last inequality is from the upper bound we just
get. Therefore, we have

0. > (1 — k)d — 4n\/dlog(6n?/0)
T (14 k)d((1 — K)d — 2n+/dlog(6n2 /)

This completes the proof.

O

As for the signal parameters \; and Ao, to achieve the minimal norm for v, it is obvious that
A1 = A2 = 0. Then we can estimate || v, || in this case:

Lemma A.56 (Norm of v,,,,,). Suppose that AssumptionE.3| holds, with probability at least 1 — § on
the training dataset, for the solution v, of (&2) under the token selection (82), we have
on

< vam”2 < d

n
2d

n
ol =0(y/%):

Proof of Lemma[A-56] As vy, is the max-margin solution and satisfies KKT condition, it can be
represented as

This implies

Vmm = Mpa + Xophs + > yibibi + > vibi&s. 87
iec i€[n]
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As there is no constraint on Ay, Ao, both of them can take O to achieve max-margin. So we could
lower bound ||v;,,,, || as

2 2 2 n
Ol > Z}e &> + ZH z[:]yzyﬂ 056,65 > o(dm) > 1
i€[n] j€[n

The second inequality is from Lemmal[A.55|that §; = ©(1/d) for i € [n] and the last inequality is
from Assumption 5]

o= 2y&i/d

1€[n]
For i € [n], we have
it =y & =20&lP/d+ D 2050 &5)/d
jeln],j#i
> 2(1 — k) — 2n+/log(6n2/8)/d > 1.

The first inequality is from Lemma[A.65|and the second inequality is from Assumption[d.5] Therefore,
v is a possible solution of SVM problem when p converges to Py, SO we have

- 5
[omm1> < 812 = Y allgal®/d® + 3" > dyiy; (€ &5)/d> < 2

i€[n] i€[n] j€[n]

The last inequality is from Lemma- [A.65] Lemma [A.68 and Assumption[d.5] Combine the results
above, we have [[v,,[|? = O(%).

O

Denote the mixed samples as k1, kg, ..., kp. And for every mixed sample k;, we have r, = (1 —
Bi)k; + Bi€k,. Without losing generality, we assume that y,, = +1 for all ¢ € [p]. Then the
conditions under Situation 1 become

Condition 16 (p clean samples violating optimal token selection).

{ i T&i> 1€ [n)\[p]

virg, > 1,0 € p]

Denote the max-margin solution under this condition as v’ with parameters A}, A5, 6. Plugging this
representation into the condition[T6] we have:

0; - [1€1I” + ‘%é:yillz"e;f(ﬁm&» > 1,i € [n]\[p]
(1= B - |l + Bi(0, - + ;k Yir i (& €ir)) = 1,0 € [p]

We consider two cases: A [|p1]|? < 1and X, ||pe1]|? > 1. First when \} ||p1]|? < 1, the condition for
mixed clean sample becomes:

1— (1= B\ 2
2 + Z yi'eé’ <£ki7£i/> Z ( g) 1”“1” > 17
V' #£k; ¢

which indicates that the condition for 9;% is strengthened. So mixing 1 more clean sample is equal to
strengthening 1 constraint in the original setting. Therefore, mixing p samples will not result in a
better solution than only mixing 1 clean sample. Then we can simplify this case to mixing only 1
clean sample and denote this sample as k., rp, = (1 — 8)p1 + BEk, . Now the condition becomes:

Condition 17 (1 clean sample violating optimal token selection).

Pl + Z yiyi0 (&, &) > 1,0 € [n]\{k.}

(1= PN, - Hulll2 + 60y, - 2+ ;ﬁ Y0 (€k.. §r)) = 1
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Similarly, we introduce the following lemma which estimates the parameters in v’. We define

_i-(- g»anmu?

for the convenience of the following proof.

Lemma A.57. Suppose that Assumption .3 holds, under condition[I7} with probability at least 1 — §
on the training dataset, we have

= U= md—20y/dloa62/0)
, ! 2n+/dlog(6n2/9)
. 2 (1+r)d (1 N (1—-r)d— Qn\/dlog(6n2/6))’
max @ < (1 —k)d+2(a —n)y/dlog(6n2/§)
icm\{k-} "7 ((1 — k)d — 2n+/dlog(6n2/4))2
(1= m)d— 20/ dToa(o )

min

iclm\k.y ©— (1+k)d

Proof of Lemma Denote j = argmax 6}, we have
i€[n]

yj’U/TEj = 9;“6]“2 + Z yzy]9£<€u£]>
i€[n],i#j
> 03(1 — k)d — nmax; - 2/dlog(6n2/9)

i€[n]
=05((1 — k)d — n - 2y/dlog(6n?/9)).

The first inequality is due to Lemma[A.65]and the last equation is from our definition of j. Consider

the contrary case when 6", « , we have
y W J = (171{)d72n\/dlog(6n2/5) W v

yv' € >

’ 2
By the KKT conditions, if ij’ Tfj > M then we must have 93» = 0, and thus we reach

a contradiction. Therefore, 6], < 9;- < e . Then denote j' = argmax 6!, we
* (1—r)d—2n+/dlog(6n2/5)

i€[n], itk
have
yj/,v/TEj/ = 9;/“€J/||2 + Z y7yj/6;<€,“€]/>
i€[n],i#£j’
>0, (1—r)d—n_max_0;-2y/dlog(6n?/3) - b, \/dlog(6n?/0)
i€[n],i£j’

2 dlog(6n2/6
> 0((1— k)d —n - 2y/dlog(6n2/5)) — ay/dlog(6n2/6) |
(1 — k)d — 2n+/dlog(6n?/0)
The first inequality is from Lemma and the second inequality is from the upper bound of 0;6*

we just get. Consider the case when 0;-/ > (tan)d)—j(:_\% “1 dizggﬁ/rg;f ) >
—K)d—2n og(6n

we have

yj/’l)/—rgj/ > 1.

By the complementary slackness condition, if y; v” Te 4+ > 1 then we must have 93-, = 0, and thus
we reach a contradiction.
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Next we estimate the lower bound of 99 when j # k.. We have
1 <y;0'T¢;
=061+ D vibil&i &)
i€[n] i)
<0;(1+r)d+ nmfa]c&; -24/dlog(6n?/5)
‘ 1€(n
a
<O (1+k)d+ - 2n+/dlog(6n?/o
i ) (1 = k)d — 2n+/dlog(6n?/d) 8(6n%/0)

The last inequality is from the upper bound of ¢;,  we just get. Therefore, we have

0> 1 ' (1 3 2nay/dlog(6n?/0) )
P (14 k) (1 — k)d — 2n+/dlog(6n2/5)

forall j € [n] and j # k..

Last we lower bound ¢, . We have

a <y €,
=0, (1+r)d+ n max 0, - 2y/dlog(6n?/6)
€e|n

Similarly, we have

, .o (1_ 9n\/dlog(612/3) )
B = 0+ R)d\ (1 - k)d—2n\/dlog(6n2/5) )

Therefore, we could estimate the difference between ||v’||? and || v, [|%

Lemma A.58. Suppose that Assumption|.3| holds, with probability at least 1 — & on the training
dataset, denote v and v’ as the optimal solutions under conditionand condition respectively.
We have

Ci(1-5)

[0'1 = l[omm 2 =2

where Cy = O(1) is a constant.
Proof of Lemma[A-38] From the first inequality in Condition[17] for i[n], 7 # k, we have
;- 1&1° + D a0 (& &) > 1 — yiyn, 0}, (& €x.)-

i/ ik,

. . 1 _n _ a—1 /
Then we add y;yx, w(&;, €k, ) on both sides, where we set w = 0. REVSPREN i eey s < 0.

Then we have
0; - 1€ |1” + Z Yivir0pr (i, €ir) + vivk, w(€i, €,) > 1 — Yy, (O — w)(&is Ex,)
ey
>1—2(0,, —w)+/dlog(6n?/0)

(14 r)d —2a4/dlog(6n?/0) (88)
(14 k)d — 2y/dlog(6n2/0)

The second inequality is from Lemma|A.65] Now consider anew v = A1 + Ao + > v:8,&;
i€[n]

with
A= )‘/13 Ay = )\/2§

0, = 0,/(1 — 260, — w)/dlog(6n2/5)) fori € [n],i # ks

-1
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and
w

1—2(0, —w)y/dlog(6n%/5)

We can prove that v satisfies all constraints for v, .
By dividing 1 — 2(6}, — w)/dlog(6n?/4) on both sides of l| for Vi € [n], i # k. we have

H£Z||2+Zyzyz (&i, & >

Qk* =

i
Then we prove that 0. ||€x+]|* + >~ Yiyk,0;(&i, k. ) > 1. From the last inequality in Condition
we have o
Or, €k I + > vr i} (&, &n) > @
ik
Dividing 1 — 2(0;, — w)+/dlog(6n2/5) on both sides, we get

1—2(0;, —w) dlog(6n2/5)

O, 1€k |17
1 —2(8;, —w)y/dlog(6n?/6)

+ Z yzyk*,l £za€k >
i#ky

Therefore we have
— O~ a0 —w)(1+ R

O 1€k 17 + D vitn, 0,(&i, €r,) >

o 1- 2(9’ —w)y/dlog(6n?/5) — 1 —2(0;, —w)./dlog(6n?/) N

The second inequality is from Lemma and the last equality is by our definition 0 — w =
ol . Thus, v is a possible solution under Conditionand lvll > |vmml|-

(1+K,)d—2\/d log(6n2/6)

Next we estimate the difference between ||v’||? and ||v||?. The expansion of ||v’||? and ||v||? are:

11 = APl P+ NF a1+ D0 021&N7 + D0 Y wiv; 00653 €)),

i€[n] i€[n] j€[n]
[l = Al |I® + Ml + D OZ1I&N1° + D Z Yiy;0,0;(&i, &5)-
1€[n] i€[n] j€[n]

Similar to the condition @9), we have ||v'|| < 2||vmm| = ©(y/n/d), which implies that & =
O(y/nlogn). Otherwise, we have

el P = o= gk, wibi (& €x,) = Q).
ik,
It further yields that

N2 _ ﬁ
oI = 2(3)

which contradicts with ||v’|| = ©(y/n/d).

+ 0 [1€x. 117 =

aul3
QU

We decompose the difference between ||v’||? and ||v||? into four terms:

117 = lel® = 02 — )€ P+ > (07 —eD)ll&l® ~ ZZM/] ;(&ir &)

T i€[n],i#£k, [n] j€[n]
12 I3
+ Z Z yzy] Sza€j>
i€[n] j€[n]
Iy

75



We now estimate /; to I, sequentially. For the first term,
L > (67 — 67.)(1 = k)d = (6}, —0;,)(0), +6,,)(1 — K)d

_ (a —1)(1 —26;,_+/dlog(6n?/9)) . Q(1> (1 w)d
(1+ k)d — 24/dlog(6n2/9)

d
a—1
=Q
()
where the first inequality is from Lemma[A.65} the second equality is from Lemma[A.57} and the last

equality uses the fact that « = O(y/nlogn). Then we can further upper bound ﬂa); . 0! as
i€[n],i

) < (1 —k)d+2(a —n)\/dlog(6n2/§) _0 1

max 0; < =0(5).
i€[n] ik, (1 — k)d — 2n+/dlog(6n?/5))>? d

For the second term I, we have

Ll < ) (87 -1+ k)d
i€[n],i#£k,

(89)

! 2
) <“ — (6;, —w)y/dlog(6n?/2)> 1) ey, 0 n(l+r)d
(o — 1)y/dlog(6n?/6) n. ~((a-Dn
_\/(W'O(d)—()( 7 )

The second inequality is from Lemma[AZ57] The first equality is from (89) and the last equality is
from Assumption .3]

Then we bound | — I3 + I, as:

=L+ I <> Y 10,0, — 00 - (&, &)l
i€[n] je[n\{i}

< > S 100, - 0051 (& &) +2 0 Y 104,08, — 04,01 - [(€k, . &)
i€[n]\{kx} j€[n]\{k«,i} te[n]\{k.}

1
max 0% -2+/dlog(6n2/6)

( )
(1= (8}, — w)+/dlog(6n?/5))? i€in),ith,
0.

+nl6, — — ) ma 041/ dlog(6n2/5)
(’“ 1—2(0, — w)\/dlog(6n2/9) y 8(6n%/0)

[n], ik

<n?

(a — 1)4/dlog(6n?/6) n%(1+ k) a—1 n

<1+;@d Jdlog(6n?/3) e R
a—1)n a—1)n
:O(( d2) L d3/2) )

The third inequality is from Lemma[A.55]and Lemma[A.57} The fourth inequality is from the fact
that

dlog(6n2/0)

. 0. _ 0%, — Oy, — 205 (0), —w)y/dlog(6n?/0)
oo 2(0},, — w)y/dlog(6n?/6) 1 —2(0;,, —w)y/dlog(6n?/9)
_ et -otEh
1 —2(0;, —w)y/dlog(6n?/5)
/ ak* r_ . . . .
So we have 0 TR A < 0}, — 0y, ; The last equality is from Assumptlon

Combining the above results, we have
a—1 (a—1nn Ci(1-5)
1913 = ol > 0 254 ) + oL ) > AU,
Here Cy = ©(1) is a constant. O
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Then we consider the case when \}|[pe1 /> > 1. In this case, the condition for mixed clean sample

becomes:
1- 61 )\/ M1 2
0 €I+ vyt (6 0) > B) leeall”,
ik ¢
and w < 1, which indicates that the condition for ¢ _is relaxed. So mixing 1 more

clean sample is equal to relaxing 1 constraint in the original setting. Therefore, mixing all clean
samples will achieve the best result. From the data generalization model, there are (1 —n)n/2 + o(n)
clean samples with label +1 and denote S, as their set. Now the condition becomes:

Condition 18 (All clean samples violating optimal token selection).
0; - 1€ 11* + %:yzyz@i (€i,&)) = Li € [n]\ St
(1= BN, -l + B 1P + 3 wiwi (€1, 0) = L € S

We have another lemma to estimate the scale of parameters in the max-margin solution in this case.
— _~ / 2 = .
Here o = =U=BNImIE 44 5 = min{3;}.
B i€[n]

Lemma A.59. Suppose that Assumption d.5| holds, under Condition[I8} we have

1
max 0, <

i€n] © T (1 — k)d — 2n+/dlog(6n2/5)’
ng > (1 — k)da — 2n+/dlog(6n?/0)(a + 1)

2tz (14 &)d((1 — K)d — 2n\/dlog(6n2/5))’

Proof of Lemma First we prove the upper bound. Denote j = argmax 6;, we have
i€[n]
yiv & = viyi0i(éi, &)
1€[n]
=0;1613+ Y wiy0iéi. &)
i#j,i€[n]
>0;-(1—k)d—nb;-2/dlog(6n?/J)
The last 1nequa11ty is because Lemma[A.63]and the definition of j. Consider the contrary case when

0; > (1—r)d— 2n\/dlog(6n2/5) we have

1

yv & > rd o Jdlea ) (1 = k)d —n - 2+/dlog(6n2/5)) =

By the KKT conditions, if yj'va ; > 1 then we must have §; = 0, and thus we reach a contradiction.

Then we prove the lower bound. For Vj € S; we have
a < 0;)1&l5 + Z Yiy;0:(&i, &5)
i#7,i€[n]

<0;-(1+r)d+ nm?o](@i -24/dlog(6n?/4)
1N

<b;-(1+k)d+ dlog(6n?/9).

(1 — k)d — 2n+/dlog(6n?/5) 2

The second inequality is due to Lemma[A.65]and the last inequality is from the upper bound we just

get. Therefore, we have
0. > (1 — Kk)da — 2n+/dlog(6n2/d)(a + 1)
7T (14 K)d((1 — K)d — 2n+/dlog(6n2/8))

This completes the proof
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Then we can estimate the difference between ||v’||? and || v, ||? with the following lemma:

Lemma A.60. Suppose that Assumptionholds, denote v and v’ as the optimal solutions under
condition[I3] and condition[I8 respectively. We have

02(1—5).

1113 = [vmml3 > e

where Cy = O(1) is a constant.

Proof of Lemma[A.60} Recall the expansion of ||v,,,||? and [|v’[|?:

||'Umm||2 Z 92H£ZH2 + Z Z Yiy;0:0;(&:. &),

i€[n] j€[n]

lv']|* = A’QHMIIQ + Z OPIEN" + D D viys0i0;(&i€))-

i€[n] j€[n]
Then we have

1112 = N 1> = M2l 2 + > (0 = ) 1&il1* = D > wiy;0:8:(60. &)

I, i€[n] i€[n] j€[n]

Iz
+ Z Z yiy; 0707 (&, &) -

Iy

I3

(1A 2
We now estimate I; to I, sequentially. Here we use the same notation o = % and

B = m[m]{BZ} as in Lemma|A.59| First from our assumption X |1 ]|? > 1 we have
€N

L= M\P(|lpa® > 1/p°.

Then for I5, we have

|| < n(max9 — min 0%) - (14 x)d

€[n] i€[n]

1 B 1 (a B 2n+/dlog(6n2/9) )2> (14 K)dn
( )

) <((1 — x)d —2n\/dlog(6n?/3))>  (1+K)*d 1 — x)d — 2n\/dlog(6n2/5
1= g (1= w)da = 2(a+ 1ny/dlog(6n%/3))?

=d(1+r)n (1 — w)d — 2n+/dlog(6n2/3))?

ofs)

The second inequality is from Lemma[A-55]and Lemma[A:59]
Then we bound | — I3 + I4] as:

=T+ L[ <) Y (60— 0:0;) - |(6:,&)|
i€[n] je[n]\{i}

< (n)Q(m?o]( 07 — m[ln] 6?) - 24/dlog(6n2/0)
i€[n i€n

)2 1 2 (1 — K)d — 4n+/dlog(6n?/5) al —
= [<<1—Fv>d—2nww> <(1+R)d((l—n)d—2n\/m)> ] 2/ dlog(6n?/9)

~ H’FLQ ’I’L2
~0(m)=o(=)
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The third inequality is from Lemma[A:55|and [A-59} The last two equalities are from Assumption 4.3}
Combining the above results, we have

c n\ _ Co(l—B)
me _ 2 X w >27'
[0z = lvmmllz = P2 +0<d) z =

Here Cy = O(1) is a constant. O

Therefore, combining Lemma [A.58]and [A.60, we have the following statement for the difference
between ||v’|| and ||Vym ||

Cs3(1—p
/13~ oy > S22 ¥ ! (90)
Here C's = O(1) is a constant. The inequality is from the SNR condition that p = o(+/d/n).
Now we can prove the main proposition in this scenario.
Proof of Proposition[A.53|in case 1. From (90) we have
Cs(1—5)
o3~ lol3 > 25— 50— )
Here we substitute S = % > (0 Then we have
el L1 Wl S0-8)
ol oIz 2 - ol o)1 - [loll?
Therefore,
r—r'= 5:(1—5) mz = S(lz_ﬁ)/z'
(C+T)ol2 - o[> = 2T [jv][* - [lo']]
Setc = 2F|\v|\§~|\v/\l2 = QHUHﬁU,HQ ,wehave IY <T — ¢(1 — ). And we can upper bound c as
S < S < Cs
c= < < .
20loflllvlI* T i T Tmd
The first inequality is from ||v’|| > ||v|| and the second equality is from S = %.
O

Situation2: p =0,k —p #0

Then we consider the case when all wrong token selections come from noisy set. Same as above,
denote the mixed samples as ki, k2, ..., kx—p. And for every mixed sample k;, we have rj, =
(1 — Bi)pw, + Bi&k,. Without losing generality, we assume that yi,, = +1 for all i € [k — p), so the
corresponding signal token is g5. Then the conditions under Situation 2 become

Condition 19 (Change k-p noisy samples).

yiv' & > 1,0 € [n)\[k — p]
{ virg, >1i€k—p

Denote the max-margin solution under this condition as v’ with parameters A}, A%, 67,

the condition for parameters:
0; - 1€ 11* + %ﬁ:‘yiyi/eg'@iagi» > 1,i € [n]\[k - p]
(1= B Xy - llall* + BiCO, - 1€r1* + 32 w0 (€is €i1)) = 1,4 € [k — p]

i’ #k;

we can interpret

Compare with Codition|[16} the only difference is that we substitute \; |[21]|2 with A5 |2 ||?. From
the symmetry, we can see that the two conditions are actually the same. Thereofre, we can follow the
proof of Situation 1 to prove for Proposition[A.53] under this situation.
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Situation 3: p £ 0,k —p #0

Last we consider the case when wrong tokens come from both clean and noisy sets. Denote the
mixed clean samples as k1, k2, ..., k, and the mixed noisy samples as ¢, g2, ..., gx—p. Without losing
generality, we assume that y, = +1 for ¢ € [p] and y,, = —1 for ¢ € [k — p], which indicates that
their signal tokens are all p1. Then the conditions under Situation 2 become

Condition 20 (p clean samples and k-p noisy samples violating optimal token selection).
yiv' & > 1,0 € [n]\[]
vlrg, > 1,0 € [p]
—v'ry, > 1,0 € [k—p)

Denote the max-margin solution under this condition as v” with parameters \{, A\, 8/, we can

interpret the condition for parameters:
07 - 11& 11 + 27; Yiyir0ir (&, &ir)) = 1,0 € [n]\[K]
(L= B -l ll® + Bi (O, - 1€k, I1* + ; YnsYir 05 (Eis, &) = 1,1 € [p]
0 BNl = 50 €l + 5 w0 &) 2 10 € B

We consider three cases: \/||p1||? > 1,1 > A/[|p1||? > —1 and N ||p1])? < —1.

* Mgl =1

IT?

First when A/ || g1 |||* > 1, we have < 1, which indicates that the condition

for mixed clean samples’ parameter ¢}, is relaxed. Meanwhile, for the mixed noisy samples
we have

1-(1=B) A lpa |1
Bv

1 + 1-— 51 )\// M 2
203 gyl &) > ( 6’) teal® 5
i'#q; g

which indicates that the condition is strengthened. Therefore, this case is an extension of the
second case of Situation 1 with strengthening some constraints. These constraints will not
result in a better solution than Situation 1. The following proof is the same as Situation 1
and we omit it for convenience.

* 1> Mp* = -1

In this case, the constraints for both mixed clean and noisy samples are strengthened. So
this can be taken as an extension of the first case in Situation 1 with strengthening some
constraints. The following proof is the same as Situation 1 and we omit it for convenience.

*9:1,,; : ||€ql

* Ml < -1

In this case, the constraints are strengthened for mixed clean samples while relaxed for the
mixed noisy samples. So we consider it as the extension of Situation 2 when X ||p1]]? < —1
with strengthening some constraints. The following proof is the same as Situation 2 and we
omit it for convenience.

Therefore, we complete the proof for all possible situations. O

Training and Test error analysis

From Proposition @] we can derive the convergence direction of p and v, i.e. P,y and V,p.,. Note
that Theorem[A.27|does not depend on the selection of optimal tokens, so it still holds in this case
when optimal tokens are noise tokens for all samples. We restate it here for convenience:

Theorem A.61. Suppose that Assumption[d.5] holds, with probability at least 1 — § on the training
dataset, we have

* the margin induced by p(, ry/ R in p-SVM is at least (1 — ()Z, where

_ log(4+/(1 + %) d||Vmm [|*dp?)
R= '
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* the label margin induced by v, g)/r in v-SVM is at least (1 — )T\, where v =

(14k)d
Texp(I—Q R5)"

Then we could estimate the test error in this case. From Theorem [A.61] we have

Plgy(& — wi) > (1= Q)RE,Vi € [n] 1)

Yiv( & > (1—7)I'r,Vi € [n]. 92)

Here ¢,v,E, T are the same as the definition in Theorem [A-61] Similarly, we have the following
lemma for ¢, 7.

Lemma A.62. Suppose that Assumption {3\ holds, with probability at least 1 — & on the training
dataset, consider the same setting in Theorem[A.27} we have ¢ < 0.2 and v < 0.1.

Proof of Lemma[A.62] First we upper bound ||y, ||. Consider the following possible solution p:

~ &i
p= Z 2. (93)
i€[n]
We then proved that p satisfies (83). For V& € [n], we have
Pl —pi) =) 2 é’f’” > 2(1 Z
i€[n] [n],i#
2n4/d1 2
> 91— k) + 05("/6)21.

The first and second inequalities are from Lemma [A63} The last inequality is from Assumption &3]

Therefore, the max-margin solution py,,,, must have no greater norm than p. So we can upper bound
Pmm as

Pl < 1817 = 5 (S &>+ S (68
i€[n] i,JE€[n],iF#]

> (14 k)nd + 2n*y/dlog(6n2/6)) < 5n

g‘,,;

The second inequality is from Lemma [A.65} The last inequality is from the definition of d in
Assumption[4.3]

Then from the definition of ¢ in Theorem[A-27] we have

log(4+/(1 + K)d||Vmm||Pdp? n/d
¢ = BV E N nnlP) < 0 VI g 4 (T4 R0 )
n/d n?
< — 2.
< Cy R log ( ] ) < 0.2

Here C1, Co = O(1). The first inequality is from 2~ = ||pym|| < 1/5n/d; The second inequality
is from the upper bound of ||V, || in Lemma and the last inequality is from the definition of R
in Assumption 43| And for ~, we have

y = 2M - M| vmm|| < ! d-(n/d)
Fon((1 = ORD) ' oxp(B] [omml) = exp(f) /ufd)

Here C, C = O(1). The first inequality is from the lower and upper bound of || v, || in Lemma
[A-T6]and the last inequality is from the definition of R in Assumption[d.1]}

Then we have the following lemma to estimate the innerproduct of p(;. ry and signal token:
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Lemma A.63. Suppose that Assumption {3\ holds, with probability at least 1 — § on the training

dataset, we have
(PR, )| < 0.9(1 = Q) RE
forje{1,2}.
Proof of Lemma[A-63] First we use contradiction to prove for the lower bound. Assume that
(P, Ry, 1j)| > 0.9(1 — () RE. We can estimate ||p(,, )| as
Ipemyll? > (0.9(1 — Q)RE)?/p® > (0.522/p%) - R* > (0.1d/np?) - R* > R>.

The second inequality is from Lemma ; The third inequality is from 22 = ||pym|| =2 > d/(5n);
The last inequality is from our SNR condition p = o(4/d/n). This leads to a contradiction.

L]
From Lemma@ we can denote v(, gy as
V(r,R) = A1 + Aopo + Z Yi0i&;-
i€[n]

Denote vg = Zie[n] y:0;&; as the noise part of v(, ry. Then we prove that p(, r), v¢ are near
orthogonal

Lemma A.64. Suppose that Assumption {3\ holds, with probability at least 1 — § on the training
dataset, we have

‘<p(r,R)7 ’U5>| <c

for some constant ¢ € (0,1).

Proof of Lemma First plugging in the parameters in vg we have

<p(r,R)>U€> = Z yleng‘xR)gl

1€[n]
= Y 0plpbi— D 0Pt
yi=+1 yi=—1

< (n1 + Tl21)(miaX9i)(RE + O(Rp)) — (n12 + ﬂ22)(miiﬂ 0:)((1 = Q)R= — O(Rp))
< (n/2)(m?x 0; — min 0;)RE + O(\/ﬁ)(mlax 0;)RE+ n(mzax 0;)(CR=+ O(Rp)) .

I I I3

The first inequality is from Theorem [A.61|that (1 — ¢)RE < pgrr’R) (& — ;) < RE and p?r’R)ui =

O(Rp) and the second inequality is from Lemmal|A.68| Then we bound I; ~ I3 respectively. For I,
we need to first bound 6;. From Theorem[A.61] we have

(I-Ir< yiU(TnR)fi <TI'rVie [n].

Denote j = argmax; 0;, we have
Y506 € = 0;11€5117 + nbj/dlog(6n?/6) > 6;((1 — k)d + n\/dlog(6n2/3)).
Therefore, we can upper bound 6; as

9. < yj'U(—;’R)éi < I'r
7 (1= k)d +ny/dlog(6n2/0) ~ (1 — k)d + ny/dlog(6n2/3)

Then we can lower bound 6; as

T'rny/dlog(6n2/9)
vl & < 0;1E11% + nbA/dlog(6n2/8) < (1 + k)db; + .
Yiv( & < 0il|&:|" + nb; g(6n2/d) < (1+ k) (1= n)d -+ nv/dlog(6n2)3)

(94)




Therefore,
(1 —9)(1 = k)I'rd — 4Trny/dlog(6n2/5)

(14 k)d(1 — k)d + ny/dlog(6n?/6)

0; >

So we can estimate I; as

I < (nRE/2)~( L (1 =7)(1 = K)lrd — yTrny/dlog(6n2/5) >

(1= k)d+ ny/dlog(6n?/f) (14 k)d(1 — K)d 4+ ny/dlog(6n?/0)
1 - =00=r) + ~n log(6n?/3)
< RVnd/2 -Tr- ( Ltn (1+r)d )

(1 — k)d + n\/dlog(6n?/0)

< Rr(k+7).
The second inequality is from = = ||pn|| = ©(y/d/n) and the last inequality is from I' =
[V || 71 = @(\/‘1/7)
Then we bound I5. From we have max; 6; = ©(T'r/d). Therefore,
I, < O(VR)O(Tr/d)RE < R - O(1/v/m),
The last inequality is from T', = = ©(,/d/n).
Last we bound I5 as
I3 =nO((T'r/d)(CRE 4+ O(Rp))

< O(ry/n/d)(10g(4y/(1 + K)d|| vy |*dp®) + O(Rp))

< Rr-O(p\/n/d).
The first inequality is from I', = = @(\/c%) and the last inequality is from Assumption
Combining the results above, we have

(Prr)ve) <1 + 1o+ I3 < Rr-O(\/1/n+py/n/d) < c
for sufficiently large d and n. Here the last inequality comes from Assumption .3} O

With the lemmas above, we could prove for the main theorem
Proof of Theorem First we show that the model can perfectly classify all training samples. From
Theorem[A.27] we have

Yiv( T = YiBiv (e my&i + ¥i(1 = Bi)vg, gyps > Bi(1—7)Tr —0.9(1 — i) (1 —7)Tr >0,

for Vi € [n]. The last inequality is from Lemma Thus y; = sign(f(Xi; vy, r), P(r,r))) forall
i€ [n].

Then we bound the test error. This is equivalent to estimate y - f(v(,, ry, P(r,r); X ) and we could
write it as

exp((Pr,r)s )V gy '+ exP((D(r R): €)) V() €
exp((P(r,r)> ') + exp((P(r,R), &)

We first upper bound the term y - exp((p(y, r), 1 ))vg; K- From Theorem A.61} the non-optimality
of ¢-th sample is

Y- f(veR), PR X) =Yy~

(P, 1)) ) 1
exp((prrys 1)) + xp((Piey &) ~ 1+ exp(1— OR)

The last inequality is from the first statement in Theorem[A.61] Consider the sample that contains the
same signal token as ', we have

1-8i=

forall i € [n].

exp((P(r, ), 1)) V(. gy Hi
exp((P(r,r)s i) + exp((P(r ), &i))

(1= B)v pypi =
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Therefore,

y - exp((P(r, vy W)V myt < exp((D(r, Ry, 1)) [0y, py il < exp(<p(r1?el:>2(+ GXP)(< )TR)@»
2exp((P(r,R), &) ol il < L() v gyl
exp(1 - QZR) P (1 g=R)

< 2exp(CER) - pr = 4m||vmm|\3dp ). pr < Cn3/2
935)

for some constant C' > 0. Here the third inequality is from p(TT R) (& — p;) > 0; The fourth inequality

is from the fact that (p(,. gy, &;) < ER and the last inequality is from ||v(, g)|| < 7, ||| < p. Then
we can bound the test error as

P(y - f(v(r, Ry P(r.Ry; X) < 0) = Py - exp((D(r,r), )V gyt + ¥ - exD((D(r, 1), €))0 (1 gy € < 0)
> P(y - eXP(<p(r,R)7€/>)U(T7-,R)€' < —Cn*?pr)

P(:U”ggl < _e_R/C : Cn3/2p37“ ‘ <p(r,R)/R7 £/> € [1/07 C])

vV
N S s

cC + Cexp(—R/C)n3/2p3) S

(1 1
2 2m(1 — ¢2) ~ 16

The first inequality is from (93)); the second inequality use the fact that there exists a constant C' > 0
such that P(N(0,1) € [1/C, C]) > 1/4; the third inequality comes from Lemma[A.69]and the last
inequality uses Assumption O

A.3 Supplement Lemmas

Here we list some technical lemmas for the main proof.

Lemma A.65. (Properties of Training Data) Suppose that 0 > 0. Then exists some constant cp > 0

(that depends just on the number of tokens T) and k < cp+/log(n/8)/d = O(1/\/d) such that with
probability at least 1 — §, we have

(1-r)d <|l&i-3 < (1 +r)d,Vie n],7€{2,....T}
(& & )| < cepy/dlog(n/d) Yi,j € [n], 7,7 € {2,..., T} s.t.(i,7) # (4, 7).

Proof of Lemma[&-63] Note that E[||&; - ||°] = d, then by Bernstein’s inequality (see Theorem 2.8.1
in Vershynin [35]]), with probability at least 1 — 6/(3n) we have

1&i.+113 = d| < e1 - \/dlog(n/d)),
where ¢; is some universal constant. Therefore, for k < ¢1+/log(n/d)/d we have that

(1= r)d < &3 < (1 +r)d.

Moreover, (§; -, &;,-) has mean zero for any ¢, j € [n], 7,7’ € {2,...,T} such that (¢, 7) # (j, 7).
By Bernstein’s inequality, with probability at least 1 — 6/(37%n?) we have

[(&irs &) | < cav/dlog(n/d),
where ¢, is some universal constant. Applying a union bound and setting ¢p = max(cq, ¢a)

completes the proof. O

Following Lemma[A.63] we conclude the next remark:
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Remark A.66. (Properties of New Test Sample) Let (X = (ug,&o2,...,&7),y) ~ D. Then exists
universal constant c¢p such that for any C; > 0, with probability at least 1 — n exp(—d/C?c%n), we
have

d

|<£7‘7£i,7">‘ S a

foranyi € [n]and 7,7’ € {2,...,T}.

Proof. Similarly to the proof of Lemma[A.63] exists some constant c¢p such that with probability at

least 1 — § we have that
|(&i,7,&5.r)| < epy/dlog(n/d)

Setting § = nexp(—d/c2,C?) completes the proof. O

Lemma A.67 (Proper}ies of Combined Noise Tokens). Suppose that § > 0 and K =
O(y/log(6n/6)/d) = O(1/+/d) .IfLemmaholds, we have

(1= r"d/T < &3 < (1 ++")d
|<Ez5g_7>| < 2T V/dlog(6n?/6)
foranyi,j € [n].

Proof of Lemma[A34) Note that §; = 22:2 t; & - and Zf:z tir = 1. Lemma holds for

each noise token §; -, so for the composed noise token we have,

T
€13 = 1) tir€irlls
T=2

T T
Z th?,‘rnéiﬂ'”g - Z Z ‘tﬁt‘f'z <£i,7'1’£i77'2>‘
T=2

T1=2 To#T1

T T
> (1 - "{)dztir —2 dlog(6n2/5) Z Z |t‘r1t7'2‘
T=2

T1=2 To#T1

> (1 - R)d/T - 2/dlog(6n2/5) - T*0(1)
> (1—rx)d/T.
The first inequality is from triangle inequality; The second inequality is from Lemma[A.63} The third
inequality is from Cauchy—Schwarz inequality that i t3.-T > (ZT: ti-)? =1landt, , t,, = O(1);
The last inequality is from the definition x'. T:2 T:2

To upper bound ||, |2, we have

T
€113 = 11D tir&irll3
T=2

T T
< thz,‘rnéiﬂ'”g + Z Z ‘tTlth <£i,7'1’€i77'2>‘
T=2

T1=2 To#T1

T T
< (L4 R)dY 17, +2y/dlog(6n?/8) > Y |tr ]
T=2

T1=2 To#T1

< (1 + K)d 4 2v/dlog(6n2/5) - T*O(1)

< (14 &')d.
The first two inequalities are similar as above; The third inequality is from tiT <t,,fort;, €0,1],
) 22;2 t7, < 2322 t;» = 1; The last inequality is from the definition of x'.
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Last we consider the innerproduct of composed noise tokens. For Vi, j € [n],i # j we have

E E |_|Z thn J T2 €1Tl’£jT2>|

T1=2T9=2

T T
< 2y/dlog(6n2/8) - | 3 3" tirtm

7'1:2 7'2:2
< 2T%/dlog(6n2/9).

The first inequality is from triangle inequality and the second inequality is due to ¢; -, ,¢; -, € [0, 1].
This completes the proof. O

Lemma A.68. With probability at least 1 — 60,

1 1
IC] = n(1=m)| < \/nlog(5):  [N]=nn| < y/nlog(5);
n(l —mn) 1 nn 1 .
||Q|*T| < ﬂlOg(g)? ||M|*?| < nlog(g), 1=1,2.

Proof. Note that |C| ~ Binom(n, 1 — 7). Applying Hoeffding’s inequality, we have
ot 2
IP’(HC| (1-n n‘ > t) <2€Xp(——).
n

Lett = y/nlog(1/0). We have that with probability at least 1 — 6,

el — (1 =] < \/nlos(3).

Similarly, note that |[N'| ~ Binom(n,n),|C1| ~ Binom(n, (1 — 1)/2),|C2| ~ Binom(n, (1 —
n)/2),|N1| ~ Binom(n,n/2) and |[N3| ~ Binom(n,n/2), we have that each of the following
events holds with probability at least 1 — §:

1
V| = nn| < y/nlog(=

1
[[C] = n(1 —n)| < 1/nlog(= 5);

5); |

|1Ci| = n(1 —n)/2| < y/nlog( i=1,2;

5)’
1 )

[ING| = na/2] < y[nlog(s), i=1.2

O

Lemma A.69. Suppose X ~ N(0,1,), and v,p € R? are two vectors with |v|| = ||p|| = 1,v p <
¢ for some constant ¢ € (0,1). Given some constant C > 1, for z < 0,

1 1 cC—z

Proof of Lemma[A.69 Denote z,, = v' X ~ N(0,1),2, = p"X ~ N(0,1). Then we have
Ty, Tp ~ N(0,1). Denote the covariance between ., x,, by o, then we have
= Cov(z,,2,) =v Cov(X)p=v'p<ec.
Note that
2y L comy + /1 — 2,

where r ~ N(0, 1) is independent of z,,. It follows that

1 Z— CoT 1 z—cC 1 1 C—=z
Play <zlop € [5,C) =P(r < %| p €5 CD) 2P0 < m) 25" o Vi
O
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A.4 Additional Experiments

In this section, we present additional experiments, including various architectures (different from
Eq. (@)), alternative relationships between parameters (e.g., deviating from Assumption[3.1]), and
gradient descent with weight decay, and more. Additionally, all experiments were conducted on a
single NVIDIA T4 GPU with 16GB memory. Each individual run was completed in under a minute.
The total compute cost for all experiments presented in the paper and appendix is negligible. No
parallelization or distributed training was used.

In Figure 3] we use the same settings and parameters as in the main paper (i.e. as in Figure [2), but
with a smaller step size. In contrast to Theorem [3.3]and Figure [2] benign overfitting occurs after
about 150 iterations. This provides empirical validation for Remark [5.1]

In Figure 4] we explore the relationship between the number of samples n and the input dimension d.
We observe that even when d = n, the model exhibits benign overfitting. For intermediate values of
d, the model demonstrates harmful overfitting, where the test error increases. For smaller values of d,
the model fails to fit the data.

In Figure[5] we examine self-attention with respect to the first token, as in [7]. Here, the model
exhibits benign overfitting with behavior similar to that observed under self-attention with respect to
tunable token (Remark [5.1). Additionally, the attention probabilities are consistent with those in the
tunable token attention model (see the resemblance to Figure [2).

In Figure[6|and[7] we set the number of tokens to 7' = 5. The results show benign overfitting after
two iterations. Furthermore, for clean samples, the softmax probability of the signal token, s;-’l,
dominates the overall attention. In contrast, for noisy samples, the softmax probabilities of the noise

tokens, ZT t _dominate. This align with Thm.

S
T=2 7,7’
In Figure[§] we use the same settings and parameters as in Figure 2] but with Gaussian initialization
instead of zero initialization. The results remain consistent, providing empirical validation for Remark
[3.2)that states that zero initialization is without loss of generality.

In figure @ we consider a four-layer attention model defined as f(X) = fi(f2(f3(f2(X)))),
where f; : RITDxd  RIT+HDxd for j € {23, 4} is defined in Eq. (T) and f; : RT+VX4 5 R s
defined in Eq. (@). The results show benign overfitting after roughly 20 iterations. Moreover, the
softmax probabilities in the first layer align with the behavior observed in the single-layer model.

In Figure[I0} we consider a four-head attention model which concatenates the results from all heads
as the attention output. The results show benign overfitting after roughly 2 iterations. Moreover, the
softmax probabilities in the first layer align with the behavior observed in the single-layer model.

In Figure[T1] we examine GD with weight decay, which encourages norm minimization (or margin
maximization). Here, benign overfitting occurs after approximately 150 iterations. Also here the
attention mechanism continues to separate signal tokens from noise tokens.

To further validate our theoretical findings, we conducted additional experiments on real-world
datasets, including MNIST and CIFAR-10. In both cases, we trained a one-layer Transformer model
(d = 1024) to perform binary classification. Since the signal-to-noise ratio (SNR) is fixed for each
dataset, we varied the training sample size n to examine how train and test accuracy evolve with
n. The results in table 2] and [3| indicate that while training accuracy remains near 100%, the test
accuracy improves as n increases. This corresponds to our SNR threshold ©(1/+/n) that determines
the transition between benign and harmful overfitting.
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Figure 3: The left panel shows train and test accuracies during training with a small step size.

The clean training samples are correctly classified already after one iteration, but in contrast to
Theorem [3.3]and Figure 2] benign overfitting occurs after about 150 iterations. In the right panel, we
see that the attention starts separating signal and noise tokens shortly before benign overfitting occurs.
Parameters: n = 200, d = 40000,7 = 2,5 = 0.0001, p = 30,7 = 0.05, test sample size = 2000.
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Figure 4: Comparing train (solid lines) and test (dashed lines) accuracies with different dimensions.
Here, we see that for small d (purple line), the model is unable to fit the data (at least in the
first 10° first iterations), and both the train and test accuracies are at the noise-rate level. For
intermediate values of d (green and blue lines), the model exhibits harmful overfitting, and for larger
d (yellow line) the model exhibits benign overfitting. We note that benign overfitting occurs here
for d = 2n < n?, which suggests that the assumptions on d in our theorems are loose. Parameters:
n =500,5 =0.02,7 =5, p = 30,17 = 0.1, test sample size = 10000.
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Figure 5: Self-attention experiments. The model: X — v ' X7S(XWa()), same as Vasudeva
et al. [7]. The left panel shows the train and test accuracies during training. It shows that benign
overfitting also occurs after 2 iterations. In the right panel, we show the softmax probability of the
signal token for clean and noisy samples (average of the softmax probabilities 8;-71 over C and N
respectively). We see that after 2 iterations, the attention focuses on signal tokens for clean examples,
and on noise tokens for noisy examples. This indicates that our results also capture the behavior
in a self-attention mechanism. Parameters: n = 200,d = 40000,T=2,3 = 0.025,p = 20,n =
0.05, test sample size = 2000.
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Figure 6: The left panel shows train and test accuracies during training. It shows that benign
overfitting occurs after 2 iterations. In the right panel, we see that after 2 iterations, the attention
focuses on signal tokens for clean examples, and on noise tokens for noisy examples. Parameters:
n = 200,d = 40000,7 = 5,8 = 0.1, p = 40,7 = 0.05, test sample size = 2000.
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Figure 7: The left panel shows train and test accuracies during training with a small step size. The
clean training samples are correctly classified already after one iteration, but benign overfitting occurs
after about 22 iterations. In the right panel, we see that the attention starts separating signal and
noisy tokens shortly before benign overfitting occurs. Parameters: n = 200, d = 40000,7 = 5, =
0.003, p = 50,1 = 0.05, test sample size = 2000.
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Figure 8: The left panel shows the train and test accuracies during training (with Gaussian ini-
tialization, where each entry has variance 0.01). As in Figure 2] It shows that benign overfitting
occurs after 2 iterations. After the first iteration, the model correctly classifies the clean train-
ing examples, but not the noisy ones. In the right panel, we show the softmax probability of the
signal token for clean and noisy samples (average of the softmax probabilities 3371 over C and
N respectively). We see that after 2 iterations, the attention focuses on signal tokens for clean
examples, and on noise tokens for noisy examples. This aligns with Theorem [3.3] Parameters:
n = 200, d = 40000, 8 = 0.025, p = 30,n = 0.05, test sample size = 2000.
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Figure 9: Multi-layer experiments. The left panel shows the train and test accuracies during training
in a 4-layer single-head attention model. It shows that benign overfitting occurs after roughly 20
iterations. After the first iteration, the model correctly classifies the clean training examples, but not
the noisy ones. In the right panel, we show the softmax probability of the signal token for clean and
noisy samples (average of the softmax probabilities st»)l over C and V respectively) in the first layer.
We see that the attention focuses on signal tokens for clean examples, and on noise tokens for noisy
examples. This indicates that our results essentially capture the behavior also in multi-layer models.
Parameters: n = 200,d = 10000,7 = 2, 8 = 0.025, p = 20, = 0.05, test sample size = 2000.
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Figure 10: Multi-head experiments. The left panel shows train and test accuracies during training in
a4-head attention model. The clean training samples are correctly classified already after one iteration,
and benign overfitting occurs after 2 iterations. In the right panel, we see that after 2 iterations,
the attention focuses on signal tokens for clean examples, and on noise tokens for noisy examples.
Parameters: n = 200,d = 10000,7 = 2,5 = 0.3, p = 15,7 = 0.05, test sample size = 2000.
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Figure 11: The left panel shows train and test accuracies during training with GD with weight decay.
The clean training samples are correctly classified already after one iteration, and benign overfitting
occurs after about 150 iterations. In the right panel, we see that the attention starts separating
signal and noise tokens shortly before benign overfitting occurs. Parameters: weight decay = 0.01,
n = 200,d = 40000,T = 2, 8 = 0.0001, p = 30,n = 0.05, test sample size = 2000.
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Eval Training Size n

80 400 800 2000
Train acc 100% 100% 99.9% 99.9%
Test acc (on clean data) 87.6% 91.9% 94.1% 95.8%

Table 2: Training and test accuracy on label-noisy (n = 0.1) MNIST dataset for 500 iterations in
one-layer, two-head Transformers.

Eval Training Size n
va 40 400 4000 40000
Train acc 100% 100% 100%  100%

Test acc (on clean data) 77.6% 80.9% 86.6% 88.9%

Table 3: Training and test accuracy on label-noisy (7 = 0.05) CIFAR-10 dataset for 500 iterations in
one-layer, four-head Transformers.
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