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Abstract

The phenomenon of benign overfitting, where a trained neural network perfectly fits
noisy training data but still achieves near-optimal test performance, has been exten-
sively studied in recent years for linear models and fully-connected/convolutional
networks. In this work, we study benign overfitting in a single-head softmax
attention model, which is the fundamental building block of Transformers. We
prove that under appropriate conditions, the model exhibits benign overfitting in
a classification setting already after two steps of gradient descent. Moreover, we
show conditions where a minimum-norm/maximum-margin interpolator exhibits
benign overfitting. We study how the overfitting behavior depends on the signal-
to-noise ratio (SNR) of the data distribution, namely, the ratio between norms of
signal and noise tokens, and prove that a sufficiently large SNR is both necessary
and sufficient for benign overfitting.

1 Introduction

Neural networks often exhibit a remarkable phenomenon, known as benign overfitting, where they
achieve a perfect fit to noisy training examples and still generalize well to unseen data [1, 2]. This
phenomenon contradicts classical wisdom in machine learning, and has become a central research
question in the theory of deep learning. Existing works on benign overfitting study under what
conditions the phenomenon occurs in different architectures. These works focus on linear models,
and on shallow fully-connected and convolutional neural networks.

In recent years, Transformers [3] have emerged as a leading neural network architecture, with
impactful applications across a wide range of domains such as natural language processing and
computer vision. The fundamental building block of Transformers is the attention mechanism, which
allows them to process sequences and focus on different parts of the input. Despite the central role of
the attention mechanism, we currently do not understand its overfitting behavior and the conditions
under which it exhibits benign overfitting.

In this work, we show benign-overfitting results for the attention mechanism. We consider classifi-
cation with a single-head softmax attention model, and study the conditions that allow for benign
overfitting. In our results, the data distribution consists of multiple tokens: a signal token, which can
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be used for correctly classifying clean test examples, and noisy tokens, which are independent of the
label but can be used for interpolating (i.e., perfectly fitting) noisy training examples. We study the
signal-to-noise ratio (SNR), namely, the expected ratio between the norms of signal and noise tokens,
that allows for benign overfitting.

Below we summarize our main contributions:

• In Theorem 3.3 (Section 3) we show that under appropriate conditions, gradient descent
with the logistic loss exhibits benign overfitting already after two iterations. This result
holds when the SNR is Ω(1/

√
n), where n is the number of training samples.

• We then turn to consider other natural learning rules, which allow for benign overfitting
under the same requirement on the SNR. In Theorems 4.2 and 4.4 (Section 4), we prove that
minimum-norm (i.e., maximum-margin) interpolators exhibit benign overfitting when the
SNR is Ω(1/

√
n).

• In Theorem 4.6 (Section 4), we prove that the above requirement on the SNR is tight.
Namely, if the SNR is smaller than it, then the min-norm interpolator exhibits harmful
overfitting, where it fits the training data but has poor generalization performance.

• In Section 6, we complement our theoretical results with an empirical study. We show that
sufficiently large SNR and input dimension are necessary and sufficient to achieve benign
overfitting.

The paper is structured as follows. In Section 2, we provide some preliminaries and define the data
distribution and the single-head attention model. In Sections 3 and 4 we state our main results on
benign overfitting with gradient descent and with min-norm interpolators. In Section 5 we discuss
the main proof ideas, with all formal proofs deferred to the appendix. Finally, in Section 6 we show
empirical results.

1.1 Related Work

Optimization in Transformers. Li et al. [4] provided a theoretical analysis of training a shallow
Vision Transformer (ViT) for a classification task. They showed that the sample complexity required to
achieve a zero generalization error is correlated with the inverse of the fraction of label-relevant tokens,
the token noise level, and the initial model error. Ataee Tarzanagh et al. [5] showed that optimizing
the attention layer via gradient descent leads to convergence to an Support Vector Machine (SVM)
solution, where the implicit bias of the attention mechanism depends on whether the parameters
are represented as a product of key-query matrices or directly as a combined matrix, with different
norm-minimization objectives in each case. Ataee Tarzanagh et al. [6] provided a regularization path
analysis and proved that the attention weights converge in direction to a max-margin solution that
separates locally optimal tokens from non-optimal. They also showed that gradient descent with a
specific initialization direction and without optimizing the attention head converges in direction to
the same max-margin solution. [7] expanded on their findings by identifying non-trivial data settings
for which the convergence of GD is provably global, i.e., without requiring assumptions about the
initialization direction. They also provided convergence rate bounds and analysis for optimizing both
the attention weights and the attention head, although they did not consider the case of noisy data
labels, as we do in our work. Another line of work looks at the learning dynamics of single-layer
linear attention models trained on linear regression tasks [8–10]. Additional works that consider
optimization dynamics in Transformers include [11, 12].

Benign overfitting. A significant body of research has explored why neural networks (NNs) that
perfectly interpolate the training data can still generalize well [1, 2]. This has sparked substantial
interest in studying overfitting and generalization in NNs trained to fit datasets with noisy labels. The
literature on benign overfitting is broad and cannot be reasonably covered here. We refer the reader
to the surveys Bartlett et al. [13], Belkin [14]. Most relevant to our work are Cao et al. [15], Kou
et al. [16], Meng et al. [17] that studied benign overfitting in convolutional neural networks. Their
data distribution resembles ours, as we discuss in Section 2.1. Benign overffiting in fully-connected
two-layer neural network classification was studied in Frei et al. [18, 19], Xu et al. [20], Xu and Gu
[21], Kornowski et al. [22], George et al. [23], Karhadkar et al. [24] for various activation functions,
data distributions and loss functions (both the logistic and the hinge losses). Recently, Jiang et al.
[25] studied benign overfitting in a simplified transformer model. However, in contrast to our work,
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they do not allow for label-flipping noise, which is a fundamental aspect for understanding whether
interpolation is compatible with generalization. Indeed, including label noise is the common setting in
the literature on benign overfitting 5, and it plays a key role in our analysis. Concurrent with our study,
Sakamoto and Sato [26] also examined benign overfitting (with label noise) in a similar model. They
showed that, depending on the step size, there exists a time step at which benign overfitting occurs.
However, their approach differs significantly from ours: they do not optimize the attention head and
instead assume a strong condition, namely that the angle between the fixed attention head and the
signal is bounded below by a constant (see Assumption 3.3 in their paper). Notably, this assumption
is highly restrictive; if the attention head is drawn from a standard d-dimensional Gaussian, the
probability of satisfying this condition decreases exponentially with d. In contrast, we optimize both
the attention head and the softmax weights, and we show that both learn different patterns for clean
and noisy examples. Additionally, we provide an asymptotic analysis.

2 Preliminaries

Notations. We use bold-face letters to denote vectors and matrices, and let [m] be shorthand for
{1, 2, . . . ,m}. Given a vector x, we denote by xj its j-th coordinate. Let Id be the d× d identity
matrix, and let 0d (or just 0, if d is clear from the context) denote the zero vector in Rd. We let ∥·∥
denote the Euclidean norm. We denote a multivariate Gaussian distribution with mean vector µ and
covariance matrix Σ by N(µ,Σ). We use standard big-Oh notation, with Θ(·),Ω(·), O(·) hiding
universal constants and Θ̃(·), Ω̃(·), Õ(·) hiding constants and factors that are polylogarithmic in the
problem parameters. We use I(·) to denote the indicator variable of an event. For a finite set A,
denote the uniform distribution over A by Unif(A) and let |A| be its cardinality.

2.1 Data Generation Setting

In this work we focus on the following data distribution:
Definition 2.1 (clean data distribution). Let µ1,µ2 ∈ Rd such that ∥µ1∥ = ∥µ2∥ = ρ for some
ρ > 0 and ⟨µ1,µ2⟩ = 0, be two fixed orthogonal vectors representing the signal contained in each
data point. Define Dclean as the distribution over RT×d × {±1} of labelled data such that a data point
(X, ỹ) is generated by the following procedure:

1. Sample the label ỹ ∼ Unif{±1}.

2. Generate a vector u, which represents the signal, as follows: If ỹ = +1, set u = µ1; and if
ỹ = −1, set u = µ2.

3. Generate i.i.d vectors ξ2, . . . , ξT , which represents the noise, from the Gaussian distribution
ξτ ∼ N (0, Id − µ1µ

⊤
1 /ρ

2 − µ2µ
⊤
2 /ρ

2) for any τ ∈ {2, . . . , T}.

4. Denote X = (x(1),x(2), . . . ,x(T ))⊤. Select k ∼ Unif{1, . . . , T} and set x(k) = u. Set
the other tokens (x(1), . . . ,x(k−1),x(k+1) . . . ,x(T ))⊤ to be ξ2, . . . , ξT .

To study the overfitting behavior we also need to introduce label-flipping noise:
Definition 2.2 (noisy data distribution). Let η ∈ [0, 1/2) be the label flipping probability. We define
D as the distribution over RT×d × {±1} which is the η-label-flipped version of Dclean. Namely, to
generate (X, y) ∼ D, first generate (X, ỹ) ∼ Dclean, then let y = ỹ with probability 1 − η and
y = −ỹ with probability η.

Our data distribution resembles the distributions considered by Kou et al. [16], Cao et al. [15], Meng
et al. [17]. They proved benign overfitting in two-layer convolutional neural networks, and in their
setting each data point consists of two patches x(1),x(2) (rather than T tokens in our setting). Since
our single-head attention model is invariant to the order of the tokens, we assume without loss of
generality throughout this work that x(1) is the signal token and x(2), . . .x(T ) are the noisy tokens
in all data points. Note that the noise token x(τ) = ξτ is independent of the label, and that it is

5Without label noise, many existing benign-overfitting results can be trivially explained through standard
uniform convergence arguments (e.g., the classical result of Bartlett et al. [2] on benign overfitting in linear
regression).
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generated from N (0, Id −µ1µ
⊤
1 /ρ

2 −µ2µ
⊤
2 /ρ

2), ensuring that it is orthogonal to the signal vector.
Note that when the dimension d is large, ∥ξi∥ ≈

√
d− 2 ≈

√
d by standard concentration bounds.

Therefore, we denote the signal-to-noise ratio (SNR) as SNR = ∥µ∥/
√
d = ρ/

√
d.

We consider a training dataset {(Xi, yi)}ni=1 of n samples generated i.i.d. from the distribution D.
Denote the index set of data whose labels are not flipped by C = {i : ỹi = yi} (“clean examples”),
and the index set of data whose labels are flipped by N = {i : ỹi = −yi} (“noisy examples”). For
indices in C, we further denote C1 := C ∩ {i : x(1)

i = µ1}, C2 := C ∩ {i : x(1)
i = µ2}, and define

the subsets N1, N2 of N analogously.

2.2 Single-Head Attention Model

Self-attention serves the core building block of transformers. Given an input consisting of T tokens
X = (x(1),x(2), . . . ,x(T ))⊤ ∈ RT×d, self-attention with key-query matrix W ∈ Rd×d, and value
matrix V ∈ Rd×k, the self-attention model is defined as follows:

f(X) = S(XWX⊤)XV ,

where S : Rd → Rd is the softmax function. In practice, additional tokens are often appended to the
raw input features X, and this position is used for the model prediction. For example, a [CLS] token
is added for classification purposes [27], and prompt vectors can be appended to adapt pretrained
models to new tasks. Let q ∈ Rd denote the tunable token ([CLS] token or prompt vector) and
concatenate it to X to form Xq := [q X⊤]⊤ ∈ R(T+1)×d. The cross-attention features derived from
Xq and X are given by:

f(X) = S(XqWX⊤)XV =

[
S(q⊤WX⊤)
S(XWX⊤)

]
XV , (1)

Then we can use the upper term for classification, set k = 1 and denote v = V ∈ Rd. This brings us
to our attention model of interest:

f(X;W ,v) = v⊤X⊤S(XW⊤q) , (2)
Here the trained parameters are W and v. We note that self-attention with respect to such a tunable
token was considered in several other theoretical works (see, e.g., [6, 26]).

In this work, we follow Ataee Tarzanagh et al. [6] and consider the following model:

f(X;v,p) = v⊤X⊤S(Xp) . (3)

Here, the trained parameters are v,p ∈ Rd. Note that our model corresponds to fixing q =
(1, 0, . . . , 0)⊤ in Eq. (2). We note that Ataee Tarzanagh et al. [6] showed that in the model from Eq. (2),
gradient iterations on W (with fixed q) and on q (after setting W = Id) admit a one-to-one mapping
(see Lemma 1 from their paper), and hence the dynamics in models (2) and (3) are essentially similar
for any choice of a fixed q. Thus, instead of the key-query matrix W we have a vector p that controls
the attention. We denote the output of the softmax layer S(Xip) by si = (si,1, si,2, . . . , si,T )

⊤, and
denote the output of the attention layer X⊤

i si by ri = si,1µi + si,2ξi,2 + · · · + si,T ξi,T , where
0 ≤ si,1, . . . , si,τ ≤ 1, si,1 + · · ·+ si,τ = 1 are the attention on T tokens of the i-th sample.

3 Benign Overfitting with Gradient Descent

In this section, we study the joint optimization of the head v and attention weights p using the logistic
loss function. We show that the model exhibits benign overfitting after just two iterations of gradient
descent (GD). Formally, for a training dataset {(Xi, yi)}ni=1 we define the empirical risk as

L(v,p) = 1

n

n∑
i=1

ℓ(yi · f(Xi;v,p)),

where ℓ(z) = log(1 + exp(−z)) is the logistic loss function, and f is the model from Eq. (3). We
consider GD optimization. Starting from p0 = 0 and v0 = 0, we have

vt+1 = vt − β∇vL(vt,pt) and pt+1 = pt − β∇pL(vt,pt),
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where β is the step size. When we discuss some fixed t, we sometimes write in the subscript “t = ·”,
e.g., pt=2 instead of p2.

We make the following assumptions:

Assumption 3.1 (Assumptions for GD with SNR = Ω(1/
√
n)). Let δ > 0 be a desired probability of

failure. Let cρ ≥ 6(T − 1) be a parameter that controls the signal strength. For any constant cT ≥ 2,
there exists a sufficiently large constant C = C(cT ) that may depend on cT , such that the following
conditions hold:

1. Number of samples n should be sufficiently large: n ≥ C log(1/δ).

2. Dimension d should be sufficiently large: d ≥ C · n2 log(n/δ).

3. Signal strength is: ρ = cρ
√
d/n.

4. Label flipping rate η: 0 ≤ η ≤ 1/C.

5. The step size β satisfies: β ∈ [z, 1.02 · z] for z = cβ · n/d, where cβ := cβ(η, cρ, T ).

6. Initialization at zero: ∥v0∥ = ∥p0∥ = 0.

7. The number of token T satisfies: 2 ≤ T ≤ cT .

Item 1 is required to estimate the number of clean examples compared to noisy examples. The
assumption of high dimensionality (Item 2) is important for enabling benign overfitting (see Figure 4
in the appendix), and implies that noise tokens from different training samples are nearly-orthogonal.
This assumption appears in many prior works on benign overfitting in neural network classification
(e.g., Cao et al. [15], Kou et al. [16], Meng et al. [17], Frei et al. [18, 19], Xu et al. [20], Kornowski
et al. [22], Xu and Gu [21]). Item 3 states that the signal-to-noise ratio (SNR) is ρ√

d
= Ω(1/

√
n). In

Section 5 we will discuss how the SNR affects the dynamics of GD.
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Figure 1: A heatmap of the test accuracy (aver-
aged over 5 runs) after achieving training accuracy
100%, plotted across varying signal-to-noise ra-
tios (SNR) and sample sizes (n). The red curves
represent the expression SNR2 = 2.1/n. This
validates our tight bound of SNR = Ω(1/

√
n) to

achieve benign overfitting, and with a smaller
SNR the model exhibits harmful overfitting. Pa-
rameters: d = 900, T = 5, β = 0.015, η =
0.1, test sample size = 2000.

Interestingly, SNR of Ω(1/
√
n) matches the

tight lower bound of the required SNR that al-
lows for benign overfitting with the min-norm
(i.e. max-margin) learning rule that we will
study in Section 4. Item 4 ensures the flipping
rate is small enough to allow the model to learn
the signal token. Item 5 is required to achieve
benign overfitting after two iterations; with a
smaller step size, the model will need more it-
erations to fit the noisy samples, which we will
demonstrate empirically in Section 6. Item 7
ensures that the number of tokens is constant.
Remark 3.2 (random initialization). The as-
sumption of zero initialization (Item 6) is with-
out loss of generality, as the model is smooth
around 0. Indeed, the gradient with respect to
the softmax weight p is Lipschitz (as shown in
Lemma 6 of Ataee Tarzanagh et al. [6]), and the
same also holds for the gradient with respect to
the attention head v, since f(X;v,p) is linear
in v. Consequently, the loss and gradient for any
sample under random initialization with zero ex-
pectation and sufficiently small variance closely
resemble the loss and gradient under zero initialization. Thus, our result can be easily extended to
small random initialization. This is also demonstrated empirically in Figure 8 in the appendix.

We now state our main result on benign overfitting with GD:

Theorem 3.3. Suppose that Assumption 3.1 holds. Then, with probability at least 1 − δ over the
training dataset, after two iterations of GD we have:
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• The classifier X 7→ sign(f(X;vt=2,pt=2)) correctly classifies all training data points:

yi = sign(f(Xi;vt=2,pt=2)), ∀i ∈ [n].

• The classifier X 7→ sign(f(X;vt=2,pt=2) generalizes well:

P
(X,y)∼D

(y ̸= sign(f(X;vt=2,pt=2))) ≤ η + exp(−
√
n/2) + exp

(
−C1ηd/(c

0.1
ρ n1.5)

)
,

where C1 := C1(cT ) > 0 is a constant. We can also conclude that for the clean-labeled
distribution Dclean we have

P
(X,y)∼Dclean

(y ̸= sign(f(X;vt=2,pt=2))) ≤ exp(−
√
n/2) + exp

(
−C1ηd/(c

0.1
ρ n1.5)

)
,

which approaches zero as d and n grow (see items 1, 2 in assumption 3.1).

• High softmax probability for “optimal” tokens:

∀i ∈ C : st=2
i,1 ≥ 1

1 + (T − 1)c2.1ρ

, ∀i ∈ N :

T∑
τ=2

st=2
i,τ ≥ 1− 1

1 + (T − 1)c2ρ
,

where sti,j is the softmax probability of the jth token in the ith sample at time t.

The third item in Theorem 3.3 provides insight into how benign overfitting occurs in attention
mechanisms. After two iterations of gradient descent, the model assigns enough attention to the
signal tokens for clean examples and to the noise tokens for noisy examples. This enables the model
to interpolate noisy training examples using the noise tokens while still achieving good generalization
performance through the signal tokens.
Remark 3.4. When cρ is a constant (i.e., the constant C in Assumption 3.1 may also depend on cρ),
the bounds on the attention probabilities can be improved to st=2

i,1 ≥ 1
T for all i ∈ C.

4 Benign Overfitting of Max-Margin Solution

In the previous section we showed that GD exhibits benign overfitting in a setting where the SNR is
Ω(1/

√
n). We now turn to study the overfitting behavior of single-head attention models, when using

another learning rule, which returns solutions that interpolate the training data with large margin
while keeping the parameters norms small. As we will show, such a learning rule allows us to obtain
benign overfitting under the same requirement on the SNR.

We note that learning rules that return min-norm (or max-margin) solutions are considered natural,
and hence understanding properties of min-norm interpolators has attracted much interest in recent
years, even in settings where the implicit bias of GD does not necessarily lead to a min-norm solution
(see, e.g., Savarese et al. [28], Ongie et al. [29], Ergen and Pilanci [30], Hanin [31], Debarre et al.
[32], Boursier and Flammarion [33]). More directly related to our work, min-norm interpolation with
Transformers has been studied in Ataee Tarzanagh et al. [6, 5], and benign/tempered overfitting in
min-norm univariate neural network interpolators has been studied in Joshi et al. [34].

The motivation for analyzing min-norm solutions also arises since they roughly correspond to training
using GD with weight decay (which encourages norm minimization). Thus, while in the previous
section we showed that GD exhibits benign overfitting after two iterations, in this section our results
suggest that GD with weight decay may exhibit benign overfitting also after long training.

We first consider the following learning rule:

(v(r,R),p(r,R)) = argmax
∥v∥≤r,∥p∥≤R

min
i∈[n]

yi · f(Xi;v,p) , (4)

where f is the model from (3). The learning rule returns a solution that maximizes the margin
mini∈[n] yi · f(Xi;v,p) under a restriction on the norms. We make the following assumption:

Assumption 4.1 (Assumptions for max-margin with SNR = Ω(1/
√
n)). Let δ ∈ (0, 0.5) be a desired

probability of failure. For any constant cT ≥ 2 there exists a sufficiently large constant C = C(cT )
that may depend on cT , such that the following conditions hold:
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1. Dimension d is sufficiently large: d ≥ Cn2 log(n/δ).

2. Number of samples n is sufficiently large: n ≥ C log(1/δ).

3. Signal strength: ρ ≥ C
√
d/n.

4. Label flipping rate: 0 ≤ η ≤ 1/C.

5. Norm constraint of p satisfies: R ≥ C
√
ηn/d+ 1/ρ2 log(Tρn).

6. Number of tokens: 2 ≤ T ≤ CT .

Items 1, 2 and 4 are similar to Assumption 3.1. Item 3 requires SNR ≥ Ω(1/
√
n), as in Assump-

tion 3.1. We will show later a lower bound on the required SNR for benign overfitting, implying that
the Ω(1/

√
n) bound is tight. Item 5 provides the lower bound for the norm constraint of p so that

the model can allocate enough attention on signal tokens to achieve benign overfitting. Note that the
norm constraint r for v can take any positive value. Intuitively, since the model is linear in v, once p
is properly learned, v can achieve accurate classification even with a small norm.

With these assumptions in place, we give our result on benign overfitting with the learning rule (4).
Theorem 4.2. Suppose that Assumption 4.1 holds, and consider the classifier X →
sign(f(X;v(r,R),p(r,R))), where (v(r,R),p(r,R)) is a solution to Problem (4). Then, with prob-
ability at least 1− δ over the training dataset, we have:

• The classifier sign(f(X;v(r,R),p(r,R))) correctly classifies all training data points:

yi = sign(f(Xi;v(r,R),p(r,R))), ∀i ∈ [n].

• The classifier sign(f(X;v(r,R),p(r,R))) generalizes well on test data:

P
(X,y)∼D

(y ̸= sign(f(X;v(r,R),p(r,R))))

≤ η + exp(−Ω(d/n2)) + exp
(
− Ω

( (1− ζ)

φ
− log(n)

R

)2)
,

where φ =
√
ηn/d+ 1/ρ2, ζ = Θ(φ log(Tρn)/R).

Remark 4.3. To see why Theorem 4.2 implies benign overfitting, consider the limit R→ ∞. Then,
the upper bound for test error becomes η + exp(−Ω(d/n2)) + exp(−Θ((1/ρ2 + ηn/d)−1)), which
can be arbitrarily close to η if d is large (see Assumption 4.1, item 1).

Next, we consider the following learning rule, which explicitly requires to minimize the parameters
norms while allowing interpolation with margin at least γ:

(vγ ,pγ) = argmin
∥p∥2+∥v∥2

s.t. min
i∈[n]

yif(Xi;v,p) ≥ γ , (5)

where f is the model from Eq. (3). We show that under Assumption 4.1, the solution (vγ ,pγ) exhibits
benign overfitting for large enough γ and d:
Theorem 4.4. Suppose that Assumption 4.1 (Items 1 through 4, and 6) holds, and consider the
classifier X → sign(f(X;vγ ,pγ)), where (vγ ,pγ) is a solution of Problem (5). Then there exists
γ0 such that for any γ ≥ γ0 , with probability at least 1− δ over the training dataset, we have:

• The classifier sign(f(X;vγ ,pγ)) correctly classifies all training data points:

yi = sign(f(Xi;vγ ,pγ)), ∀i ∈ [n].

• The classifier sign(f(X;vγ ,pγ)) generalizes well on test data:

P
(X,y)∼D

(y ̸= sign(f(X;vγ ,pγ))) ≤ η + exp(−Ω(d/n2)) + exp(−Θ((1/ρ2 + ηn/d)−1)).

Thus, for large enough γ, the theorem implies that the trained model interpolates the training data,
and the test error approaches η as d→ ∞.
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Note that Theorems 4.2 and 4.4 hold only when SNR = Ω(1/
√
n). This raises the question: what

is the overfitting behavior of min-norm interpolators when the SNR is smaller? We now consider
the two-token case where ρ ≤

√
1/Cn for some sufficiently large universal constant C. We will

show that in this case, although the model can correctly classify all training samples, the test error of
learning rule (4) is at least a universal constant, indicating that benign overfitting does not happen.
Formally, we make the following assumptions:
Assumption 4.5 (Assumptions for max-margin with SNR = O(1/

√
n)). Let δ ∈ (0, 0.5) be a

desired probability of failure. Consider the case where every sample is composed of two tokens,
Xi = (µi, ξi)

⊤. There exists a sufficiently large constant C such that the following hold:

1. Dimension d is sufficiently large: d ≥ Cn2 log(n/δ)

2. Number of samples n is sufficiently large: n ≥ C log(1/δ).

3. Signal strength: ρ ≤
√
d/Cn.

4. Label flipping rate is a constant: η ∈ (0, 1/2).

5. The norm of p should be sufficiently large: R ≥ C
√

n
d log

(
nρ
d

)
.

Compared with Assumption 4.1, the main difference is in the second item, namely that SNR ≤
O(1/

√
n). Additionally, the condition on η is relaxed, as in our analysis clean and noisy samples

can be treated equivalently when the norm of the signal token is sufficiently small. With these
assumptions in place, we can state the following theorem which characterizes the training error and
test error of the single-head attention model when the SNR is small:
Theorem 4.6. Suppose that Assumption 4.5 holds, and consider the classifier X →
sign(f(X;v(r,R),p(r,R))), where (v(r,R),p(r,R)) is a solution of Problem (4). Then, with prob-
ability at least 1− δ over the training data, we have:

• The classifier sign(f(X;v(r,R),p(r,R))) correctly classifies all training data points:

yi = sign(f(Xi;v(r,R),p(r,R))), ∀i ∈ [n].

• The classifier sign(f(X;v(r,R),p(r,R))) does not generalize well on test data:

P
(X,y)∼Dclean

(y ̸= sign(f(X;v(r,R),p(r,R)))) ≥
1

16
.

5 Proof ideas

Proof ideas for Section 3. Here, we discuss the main proof idea of Theorem 3.3. Since the
initialization is at zero, vt is a linear combination of the training data tokens. Specifically, we can
express vt=1 as λt=1

1 µ1 + λt=1
2 µ2 +

∑n
i=1 yiθ

t=1
i

∑T
τ=2 ξi,τ , where λt=1

1 > 0, λt=1
2 < 0. Note

that λt1 > 0, λt2 < 0 holds since |C| > |N |. We begin by analyzing the first step of GD. We show
that after one step, the coefficients of vt=1 can be estimated as |λt=1

k | ≈ β
4T (1 − 2η), k ∈ [2]

and θt=1
i = β

2Tn , i ∈ [n]. Moreover, we have pt=1 = 0, and hence for a training sample (Xj =
(µk, ξ2, . . . , ξT ), yj), the margin is:

yjf(Xj ;vt=1,pt=1) =
1

T
yjv

⊤
t=1(x

(1)
j + · · ·+ x

(T )
j ) ≈ 1

T
yjλ

t=1
k ∥µk∥2 +

1

T
θt=1
j

T∑
τ=2

∥ξj,τ∥2 ,

where in the last approximate equality we use the high dimensional setting (i.e. by item 2 in our
assumption d≫ n2 log(n)) to neglect the

∑
i,τ,τ ′:(i,τ) ̸=(j,τ ′) yiyjθ

t=1
j ξ⊤i,τξj,τ ′ term, since it is much

smaller (in absolute value) than the other terms. Indeed, we have w.h.p. that |ξ⊤i,τξj,τ ′ | ≤
√
d log(n),

∥ξj,τ∥2 ≈ d and recall that ∥µk∥2 = c2ρ(d/n) (item 3 in our assumption). Therefore, for a clean
sample j ∈ C and large enough cρ, the margin is yjf(Xj ;vt=1,pt=1) ≈ cβ > 0, where cβ is
a parameter that controls the step size β. On the other hand, for a noisy sample j ∈ N , we
have yjf(Xj ;vt=1,pt=1) ≈ −cβ < 0. This implies that after one iteration of GD the classifier
sign(f(X;vt=1,pt=1)) does not correctly classify noisy training samples, but still correctly classifies
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Figure 2: The top panel shows the train and test accuracies during training. It shows that benign
overfitting occurs after 2 iterations. After the first iteration, the model correctly classifies the clean
training examples, but not the noisy ones. In the bottom panel, we show the softmax probability of
the signal token for clean and noisy samples (average of the softmax probabilities stj,1 over C and N
respectively). We see that after 2 iterations, the attention focuses on signal tokens for clean examples,
and on noise tokens for noisy examples. This aligns with Theorem 3.3 and Remark 3.4. Parameters:
n = 200, d = 40000, T = 2, β = 0.025, ρ = 30, η = 0.05, test sample size = 2000.

clean training samples. Together with pt=1 = 0, the classifier sign(f(X;vt=1,pt=1)) will also
correctly classify, with high probability, a clean test sample. Moreover, since the loss function
ℓ is decreasing, the loss of noisy samples, denoted ℓt=1,j , j ∈ N , dominates the loss of clean
samples ℓt=1,i, i ∈ C. This implies that after two iterations, the coefficients |θt=2

j |, j ∈ N , of the
noisy tokens in vt=2, corresponding to noisy samples, grow faster than the coefficients |λt=2

i | of
the first (signal) tokens. This property is important to allow for interpolation of noisy examples.
We also show that pt=2 focuses on optimal tokens, namely, on noisy tokens for noisy samples
(i.e.

∑T
τ=2 s

t=2
i,τ ≥ 1/1 + (T − 1)c2ρ,∀i ∈ N ), and on the signal token for clean training and test

samples. Using this property we conclude that the model parameterized by (vt=2,pt=2) exhibits
benign overfitting.
Remark 5.1. Note that our proof implies the following behavior of GD. After the first iteration, the
model correctly classifies only the clean training samples, resulting in an expected training accuracy
of 1 − η. Additionally, the model successfully classifies a clean test sample w.h.p., leading to the
same expected test accuracy. After the second iteration, the model interpolates the training data,
achieving a training accuracy of 1. This is shown empirically in Figure 2. When using a smaller
step size, we empirically observe a similar trend: after the first iteration, the model learns the signal
tokens, and with more iterations, it captures the noisy tokens of the noisy samples and fits the entire
dataset. This behavior is shown in Figure 3.

Proof ideas for Section 4. We now discuss proof idea for Theorem 4.2. Consider the behavior
of p(r,R) and v(r,R) as R, r → ∞. The main insight is that p converges to a direction that focuses
on signal tokens for clean samples, and v approximates the corresponding max-margin classifier
over the attention outputs. First, we consider the attention output ri = X⊤

i S(Xip) as a selection
of signal and noise tokens based on softmax probabilities. We define a learning rule that selects the
signal token µk for clean samples and a fixed noise token ξi,2 for noisy ones. Then we show that any
p which is not aligned with this rule (that is, does not select clean tokens for clean samples) leads
to a strictly smaller margin. This implies that the optimal solution also tends to select signal tokens
for clean samples. Since test data shares the same signal tokens, the attention output on test samples
also concentrates on the signal token when R is large. Combined with a near-maximal margin vector
v(r,R), the model predicts correctly on test samples with high probability.

6 Experiments

We complement our theoretical results with an empirical study on benign overfitting in single-head
softmax attention. We trained single-head softmax attention models (Eq. (3)) on data generated as
specified in Section 2.1 using GD with a fixed step size and the logistic loss function. In all figures,
the x-axis corresponds to the time and has a log scale. We add 1 to the time so that the initialization
t = 0 can be shown in the log scale (i.e. iteration 100 is the initialization).

In Figure 2, we consider a setting similar to Theorem 3.3, and demonstrate that benign overfitting
occurs after two iterations, and that the behavior of GD aligns with our discussion in Remark 5.1.
We also plot how the softmax probabilities evolve during training, and see after two iterations a
behavior similar to the last item of Theorem 3.3 and Remark 3.4. In Figure 3 (Appendix A.4), we
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consider a similar setting, but with a smaller step size. Here, benign overfitting occurs after about
150 iterations. In Figure 1, we present a heatmap of the test accuracy across varying SNR and sample
sizes, validating the SNR threshold of Θ(1/

√
n) established in this work. Additional experiments are

provided in Section A.4, including investigation of the overfitting behavior for different dimensions,
self-attention w.r.t. the first token, multi-layer transformers, GD with weight decay (which encourages
norm minimization, as in our learning rule from Section 4), and experiments with real-world datasets
(MNIST and CIFAR-10). These experiments demonstrate that our results capture the overfitting
behavior also in more complex settings.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification:
The abstract and introduction clearly describe the main contributions of the paper, including
theoretical results on benign overfitting in single-head softmax attention models, the role
of signal-to-noise ratio (SNR), and conditions under which gradient descent and min-norm
interpolators exhibit benign overfitting. These claims are matched by the formal results and
empirical validations presented in the main body. The scope and limitations, such as the
dependence on SNR and model structure, are also properly stated.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification:
The paper discusses several important limitations throughout the introduction and main
results. Specifically, the theoretical guarantees rely on assumptions such as a sufficiently
large signal-to-noise ratio (SNR) and a simplified single-head attention architecture. These
assumptions are clearly stated, and the paper analyzes the tightness of the SNR condition by
showing that lower SNR leads to harmful overfitting. Additionally, the empirical results are
limited to controlled synthetic settings, and the paper does not claim generalization to real-
world datasets or multi-head models. These limitations are acknowledged and contextualized
in the appropriate sections of the paper.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification:
All theoretical results in the paper are clearly stated with a full set of assumptions. Each theo-
rem is numbered and referenced in the main text. The main paper provides proof sketches to
convey the core ideas and intuition, and all formal proofs are included in the appendix. The
assumptions, such as the signal-to-noise ratio requirement and model structure, are explicitly
stated either in the theorem statements or in the surrounding discussion. The results build on
standard tools and are self-contained, with all dependencies clearly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification:
The paper fully discloses the necessary information to reproduce the main experimental
results. All experiments are synthetic and based on simple, well-specified setups. The main
text describes the model architecture (single-head softmax attention), the data generation pro-
cess (signal and noise token distributions), and key parameters such as signal-to-noise ratio
(SNR), input dimension, number of tokens, and learning rate. In the appendix (Section A.4),
the authors provide additional experiments under varied settings, including smaller step sizes,
self-attention variants, Gaussian initialization, multi-layer and multi-head architectures, and
gradient descent with weight decay. These results not only confirm the robustness of the
main claims but also provide detailed context for reproduction. While code is not released,
all critical implementation details and parameters are clearly documented in the paper and
supplement.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification:
The paper includes synthetic experiments that support the theoretical findings. Although the
code is not released at the time of submission to preserve anonymity, we plan to release the
full implementation, including data generation scripts and instructions for reproducing all
figures, upon publication. The code will include details on environment setup and execution
commands to ensure faithful reproduction of the experimental results.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification:
The paper specifies all relevant experimental details necessary to understand and interpret
the results. Since the experiments are based on synthetic data, there is no train/test split in the
traditional sense. The model structure (e.g., single-head softmax attention), data generation
process (signal and noise tokens), optimization method (gradient descent or GD with weight
decay), initialization schemes, step size, and number of iterations are all described in the
main text and in Appendix A.4. These details are sufficient for reproducing the setup and
understanding the empirical trends presented.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification:
The paper does not report error bars or confidence intervals in the experimental figures.
The experiments are designed to illustrate theoretical trends in synthetic and deterministic
settings, and each experiment is run with fixed parameters without multiple random seeds.
While this suffices to support the qualitative conclusions drawn in the paper, we acknowledge
that reporting statistical variability (e.g., over multiple random initializations or data draws)
would further strengthen the empirical analysis, and we leave this to future work.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification:
The experiments in the paper are computationally lightweight and were run on a single
NVIDIA T4 GPU. We will include a note in the appendix specifying the compute environ-
ment and approximate runtime for reproducing the experiments. No large-scale compute or
specialized infrastructure is required.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
The research is theoretical in nature and uses only synthetic data. It does not involve
human subjects, personal data, sensitive attributes, or any real-world deployment. The work
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follows all ethical standards outlined in the NeurIPS Code of Ethics, including transparency,
reproducibility, and fair representation of results. All authors have reviewed the Code of
Ethics and confirm compliance.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification:
The paper is purely theoretical and does not involve real-world data, human subjects, or any
deployed systems. It studies simplified attention-based models under synthetic settings and
is not expected to have any direct societal impact. We therefore consider this question not
applicable.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:
This paper does not involve the release of pretrained models, real-world datasets, or other
assets that carry a risk of misuse or dual use. All experiments are conducted using synthetic
data, and the work is purely theoretical. Therefore, safeguards for responsible release are
not applicable to this research.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification:
The paper does not use any third-party assets such as datasets, pretrained models, or existing
codebases. All data is synthetically generated, and all model architectures are defined within
the paper. Therefore, no external licenses or terms of use apply.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:
The paper does not release any new assets such as datasets, pretrained models, or software
packages. All experiments are based on synthetic data generated according to procedures
described in the paper. No additional artifacts are bundled or released as part of this
submission.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:
The paper does not involve any crowdsourcing or research with human subjects. All experi-
ments are conducted using synthetic data without any human participation or annotation.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

15



Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
The paper does not involve any research with human subjects. All experiments are conducted
using synthetic data and do not pose risks to individuals or require IRB approval.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
No large language models (LLMs) were used as part of the core methods, theoretical analysis,
or experiments in this research. Any potential use of LLMs was limited to minor language
editing and did not affect the methodology, rigor, or originality of the paper. Therefore, this
question is not applicable.
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Remark A.1. Throughout our proofs, we assume without loss of generality that µ1 = (ρ, 0, 0, ..., 0)⊤,
µ2 = (0, ρ, 0, ..., 0)⊤ and ξi = (0, 0, ξ⊤) for ξ ∼ N (0, Id−2). Indeed, since µ1 and µ2 are
orthogonal, we can find orthogonal matrix A ∈ Rd×d such that Aµ1 = (ρ, 0, 0, ..., 0)⊤,Aµ2 =
(0, ρ, 0, ..., 0)⊤ and Aξi ∼ N (A0,A(Id − µ1µ

⊤
1 /ρ

2 − µ2µ
⊤
2 /ρ

2)A⊤), which mean that Aξi =
(0, 0, ξ⊤) for ξ ∼ N (0, Id−2). We emphasize that an orthogonal transformation does not affect our
results.

A.1 Proofs for Sec. 3

A.1.1 Notations for Sec. 3.

Given a, b, c ∈ R, we denote by c(a± b) the close segment [c(a− b), c(a+ b)]. Given vector x, we
denote by x[i] the ith coordinate of x, and x[i : j] denotes the subvector containing the elements
from the ith to the jth, inclusive. We also list some key notations used in this section for convenience.

Table 1: Usefull notation.

xi,j jth token in the ith sample
γt
i,j yiv

⊤
t xi,j i.e. jth token score in time t

αt
i,j softmax probability of the jth token in the ith sample in time t
ℓt,i ℓ(Xi;vt,pt)

We remind that C,N ⊆ [n] denotes the indices of clean and noisy training examples, and Ck,Nk

denotes the clean and noisy examples from cluster k ∈ {1, 2}. For example if i ∈ C1, then xi,1 = µ1

and y1 = 1, and for j ∈ N1 we have that xj,1 = µ1 and y1 = −1. Let S′(v) := ∇S(v) =
diag(S(v))− S(v)S(v)⊤ denote the Jacobian of the softmax function S(v) at v ∈ Rd.
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A.1.2 Additional Lemmas & Definitions for Sec 3.

The following equations will be useful throughout the proof:

∇vL(v,p) =
1

n

n∑
i=1

ℓ′i · yiX⊤
i S(Xip) (6)

∇pL(v,p) =
1

n

n∑
i=1

ℓ′i ·X⊤
i S′(Xip)γi, where γi = yiv

⊤Xi (7)

ℓ′(x) = −1/(1 + exp(x)) (8)

S′(v) = diag(S(v))− S(v)S(v)⊤ (9)

Definition A.2 (Good Training Set). We say that a training set (X1, . . . ,Xn) is good if exsists some
universal constant cD (that may depends just on the number of tokens T ) s.t.

• ∥ξi,τ∥22 ∈ (1± on(1))d, for all i ∈ [n], τ ∈ {2, . . . , T}.

• |⟨ξi,τ , ξj,τ ′⟩| ≤ cD ·
√
d log(n/δ), for any i, j ∈ [n], τ, τ ′ ∈ {2, . . . , T} such that (i, τ) ̸=

(j, τ ′).

• |Nk| ∈ n
2 (η ± on(1)) and |Ck| = n

2 (1− η ± on(1)), for k ∈ {1, 2}.

Definition A.3 (Good Test Sample). We say that a test sample (X = (x1,x2, . . . ,xT ), y) is good
w.r.t. a training set (X1, . . . ,Xn) and C1 if

|⟨xi,τ ,xτ ′⟩| ≤ d

C1
√
n
, ∀i ∈ [n], τ, τ ′ ∈ {2, . . . , T} s.t. τ ̸= τ ′

Next we write Lemma A.68 slightly different, and also add a formal proof for completeness:

Lemma A.4. Let δ > 0 and C > 0. Suppose that Assumption 3.1 (item 1) holds with constant C,
then with probability at least 1− δ/2 we have that

|Ck| ∈
n

2
(1− η ±

√
2/C), |Nk| ∈

n

2
(η ±

√
2/C), ∀k ∈ {1, 2}.

Moreover, we have

|Ck| ∈
n

2
(1− η ± on(1)), |Nk| ∈

n

2
(η ± on(1)), ∀k ∈ {1, 2} .

Proof. By Hoeffding’s inequality,

P
(∣∣∣|Cj | − n

2
(1− η)

∣∣∣ ≥√n log(16/δ)/2) ≤ δ/8,

which means that with probability at least 1 − δ/8 we have that |Cj | ∈ n
2 (1 − η ± cn), where

cn =
√
2n log(16/δ)/n. Hence, if n ≥ C log(16/δ), then cn =

√
2 log(16/δ)/

√
n ≤

√
2/C.

Similarly, we can estimate |Nk| for k ∈ {1, 2}, and by union bound, the result follows.

The next lemma A.5 allows us to analyze ∇pL as a function of the score gap.

Lemma A.5. Let z,γ,p ∈ RT and let α = S(p). Define γmin := minτ≥2 γτ , γmax := maxτ≥2 γτ ,
γ := (γmin + γmax)/2 and ϵ := (γmax − γmin)/2. Then

zTS′(p)γ ∈ (γ1 − γ)(1− α1)α1

(
z1 −

∑T
i=2 ziαi

1− α1

)
± ϵ

(
2

T∑
i=2

ziαi + α1

T∑
i=2

ziαi + (1− α1)α1z1

)
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Proof. Observe that
∑T

i=1 αi = 1. Therefore,

zTS′(p)γ = zTdiag(α)γ − zTαα⊤γ =

T∑
i=1

ziγiαi −
T∑

i=1

ziαi

T∑
i=1

γiαi

∈ z1γ1α1 + (γ ± ϵ)

T∑
i=2

ziαi −

(
z1α1 +

T∑
i=2

ziαi

)(
γ1α1 + (γ ± ϵ)

T∑
i=2

αi

)

=

(
(γ ± ϵ)−

(
α1γ1 + (γ ± ϵ)

T∑
i=2

αi

))
T∑

i=2

ziαi +

(
γ1 −

(
α1γ1 + (γ ± ϵ)

T∑
i=2

αi

))
α1z1

= ((γ ± ϵ)− (α1γ1 + (γ ± ϵ)(1− α1)))

T∑
i=2

ziαi + (γ1 − (α1γ1 + (γ ± ϵ)(1− α1)))α1z1

= (α1(γ ± ϵ)− α1γ1 ± 2ϵ)

T∑
i=2

ziαi + (1− α1)(γ1 − γ ± ϵ)α1z1

= α1 (γ − γ1)

T∑
i=2

ziαi + (1− α1)(γ1 − γ)α1z1 ± ϵ

(
2

T∑
i=2

ziαi + α1

T∑
i=2

ziαi + (1− α1)α1z1

)

= (γ1 − γ)(1− α1)α1

(
z1 −

∑T
i=2 ziαi

1− α1

)
± ϵ

(
2

T∑
i=2

ziαi + α1

T∑
i=2

ziαi + (1− α1)α1z1

)

We will show that in our setting the score difference between noisy tokens (i.e. ϵ from Lemma A.5) is
relatively small and thus the second term in Lemma A.5 is negligible compare to the first term.
Remark A.6. To prove Thm. 3.3, we demonstrate that ∇pL can be expressed as a function of the
score gap between the optimal token to the noisy tokens. Specifically as a function of γi,1 − γi,τ ,
where γi := yiv

⊤Xi is the vector score of the i sample, and with some additive term that depends
on the score gap between any two distinct noisy tokens, defined as ϵi := maxτ ̸=τ ′ |γi,τ − γi,τ ′ | (see
Lemma A.5). We establish that in our case ϵi is relatively small. This technique is noteworthy on
its own, as it enables the analysis of softmax weights in a multiple-token setting without relying on
potentially unnatural assumptions, such as all non-optimal tokens having identical scores [6, 7] or the
presence of a single noisy token with a larger norm compared to other noisy tokens [25].
Lemma A.7. Let x1, x2, . . . , xn be independent random variables such that E[xi] = 0 and xi ∈
[−b, b] almost surely. Consider the sum of these random variable Sn = x1 + · · · + xn. Then
Hoeffding’s theorem states that

Pr[Sn ≥ n0.75b] ≤ exp(−2n1.5b2/4b2n) = exp(−n0.5/2)

A.1.3 Proof of Thm. 3.3

Proof. To simplify the proof, we express the step size β in an alternative form:

cβ := C1

√
log(cρ)/η where C1 ∈

[√
16T 3

0.998(T − 1)
, 1.02 ·

√
16T 3

0.998(T − 1)

]
β = cβ · n/(c2ρ · d), (10)

which is equivalent to Item 5. We emphasize that cβ can be arbitrarily larger than any constant
whenever η is small enough i.e. C from Assumption 3.1 is large enough.

Next, under Assumption 3.1, we argue that with probability at least 1 − δ the training set is good
(Def. A.2) i.e.:

• |Ck| ∈ n
2 (η ± on(1)) and Nk ∈ n

2 (1− η ± on(1)), for k ∈ {1, 2}.

• ∥ξi,τ∥22 ∈ (1± on(1))d, for any i ∈ [n], τ ∈ {2, . . . , T}.
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• |⟨ξi,τ , ξj,τ ′⟩| ≤ cD ·
√
d log(n/δ), for any i, j ∈ [n], τ, τ ′ ∈ {2, . . . , T} such that (i, τ) ̸=

(j, τ ′),

where cD is some universal constant. Indeed, this holds by Lemma A.65, Lemma A.4, and the union
bound. We emphasize that the notation on(1) represents a term that becomes arbitrarily small as n
increases, and thus it can be bounded by a small constant if C from Assumption 1 is large enough.

Next, we show that under a good training set, the model exhibits benign overfitting, already after two
iterations. See Remark A.1 for the data setting used throughout the proof.

GD after 1 iteration. We start by analyzing the first coordinate of v1 (i.e. v after one iteration of
GD). By assumption 3.1 (item 6), we have that p0 = v0 = 0, which implies that ℓ′0,i = −1/2, for
any i ∈ [n]. Hence

−β∇vL(v0,p0)[1] = − β

Tn

n∑
i=1

ℓ′0,i · yixi,1[1] =
β

2Tn

∑
i∈C1

yiρ+
β

2Tn

∑
i∈N1

yiρ

=
β

2Tn
(|C1| − |N1|)ρ

∈ β

4T
(1− 2η ± on(1))ρ “good” training set

In the same way, we can estimate the second coordinate of vt=1:

vt=1[2] =
β

2Tn

∑
i∈C2

yiρ+
β

2Tn

∑
i∈N2

yiρ ∈ − β

4T
(1− 2η ± on(1))ρ,

where we remind that yi = −1, when i ∈ C2, hence vt=1[2] has the same bounds as vt=1[1], just
with opposite sign. We move to analyze the rest of the coordinates of vt=1:

vt[3 : d] =
β

2Tn

n∑
i=1

yi

T∑
τ=2

ξi,τ .

Overall, we can write vt=1 as λt=1
1 µ1 + λt=1

2 µ2 +
∑n

i=1 yiθ
t=1
i

∑T
τ=2 ξi,τ with

λt=1
1 ∈ β

4T
(1− 2η ± on(1)), λ

t=1
2 ∈ − β

4T
(1− 2η ± on(1)), θ

t=1
i =

β

2Tn
. (11)

Moreover, since γt=0
i = 0 for every i ∈ [n], we have that p1 = 0 (see Eq. 7).

Preparation for next iteration. To estimate (vt=2,pt=2), we first need to estimate the loss for
clean/noisy samples and the score γi,τ (see Table 1).

We remind that ∥µj∥2 = ρ2 = c2ρd/n (Assumption 3.1 (item 3)). For j ∈ Ck, where k ∈ {1, 2} we
have that

yjf(Xj ;vt=1,pt=1) =
1

T
· yjv⊤

t=1

T∑
τ=1

xj,τ since p1 = 0

∈ 1

T
|λt=1

k | ∥µk∥2 +
1

T
θt=1
j

T−1∑
τ=1

∥ξj,τ∥2 ±
β

n
on(d) yjλ

t=1
k > 0 (12)

where the last inequality holds since the training set is “good” and T is a constant i.e.∑
i,τ,τ ′:(i,τ )̸=(j,τ ′)

ξ⊤i,τξj,τ ′ ∈ ±on(1) · d.
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Since the training set is “good” then by Eq. 11, we can bound yjf(Xj ;vt=1,pt=1) as follows:

yjf(Xj ;vt=1,pt=1) ≤
β

4T 2
(1− 2η + on(1)) · c2ρ ·

d

n
+
β(T − 1)

2T 2n
d(1 + on(1)) +

β

n
· on(d)

≤

(
c2ρ(1− 2η) + 2(T − 1) + on(1)

4T 2

)
· βd
n

Assumption 3.1 (item 2)

= cβ ·

(
(1− 2η) + 2(T − 1)/c2ρ + on(1)

4T 2

)
Eq. 10

≤ 1.1cβ
4T 2

, (13)

where the last inequality holds since cρ ≥ 5(T − 1), which implies that 2(T − 1)/c2ρ + on(1) ≤ 0.1.
Similarly, we have that

yjf(Xj ;vt=1,pt=1) ≥
β

4T 2
(1− 2η − on(1)) · c2ρ ·

d

n
+

β

2T 2n
d(1− on(1))−

β

n
o(d)

≥

(
c2ρ(1− 2η) + 2(T − 1)− on(1)

4T 2

)
· βd
n

= cβ ·

(
(1− 2η) + 2(T − 1)/c2ρ − on(1)

4T 2

)

≥ 0.9cβ
4T 2

(14)

For j ∈ Nk, where k ∈ {1, 2} we have that

yjf(Xj ;vt=1,pt=1) =
1

T
· yjv⊤

t=1

T∑
τ=1

xj,τ since p1 = 0

∈ − 1

T
|λt=1

k | ∥µk∥2 +
1

T
θt=1
j

T−1∑
τ=1

∥ξj,τ∥2 ±
β

n
o(d) yjλ

t=1
k > 0 (15)

where the last inequality holds since that the training set is “good” and T is a constant. Since the
training set is “good” then by Eq. 11, we can bound yjf(Xj ;vt=1,pt=1) as follows:

yjf(Xj ;vt=1,pt=1) ≤ − β

4T 2
(1− 2η − on(1)) · c2ρ ·

d

n
+
β(T − 1)

2T 2n
d(1 + on(1)) +

β

n
· o(d)

≤

(
−c2ρ(1− 2η) + 2(T − 1) + on(1)

4T 2

)
· βd
n

Assumption 3.1 (item 2)

≤ −0.9cβ
4T 2

, (16)

where the last inequality holds since cρ ≥ 5(T−1), which implies that 2(T−1)/c2ρ+2η+on(1) ≤ 0.1.
Similarly, we have that

yjf(Xj ;vt=1,pt=1) ≥ − β

4T 2
(1− 2η + on(1)) · c2ρ ·

d

n
+

β

2T 2n
d(1− on(1))−

β

n
o(d)

≥

(
−c2ρ(1− 2η) + 2(T − 1)− on(1)

4T 2

)
· βd
n

= cβ ·

(
−(1− 2η) + 2(T − 1)/c2ρ − on(1)

4T 2

)

≥ −1.1cβ
4T 2

(17)
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We remind that −ℓ′1,j = 1/(1 + exp(yif(Xi;vt=1,pt=1))) and that β = cβ · n/(dc2ρ) (Eq. 10).
Combine with Eqs. 13 and 14, we have that

i ∈ C, −ℓ′t=1,i ≥ 1/(1 + exp(1.1cβ/4T
2)) := mt=1

C > 0 (18)

i ∈ C, −ℓ′t=1,i ≤ 1/(1 + exp(0.9cβ/4T
2)) :=M t=1

C ≤ 1/(4(T − 1)c2ρ), (19)

where the last inequality holds since cβ ≥ log(cρ)/
√
η and since 1 + exp(0.9cρ) ≥ 4c2ρ for any

cρ ≥ 6.

Moreover, by Eqs. 16 and 17, we have that

j ∈ N , −ℓ′t=1,j ≥ 1/(1 + exp(−0.9cβ/4T
2)) := mt=1

N ≥ 0.99 (20)

j ∈ N , −ℓ′t=1,j ≤ 1/(1 + exp(−1.1cβ/4T
2)) :=M t=1

N ≤ 1 (21)

The notations M t
C and mt

C (M t
N and mt

N ) denote the upper and lower bounds, respectively, on the
derivative of the loss for clean (noisy) samples at time t, and we use them throughout the proof. We
remind that γti,τ = yiv

⊤
t xi,τ . Then by Eq. 11, for i ∈ Ck we have that

γt=1
i,1 ∈ β

4T
(1− 2η ± on(1))ρ

2 =
cβ
4T

(1− 2η ± on(1))

γt=1
i,τ ∈ β

2Tn
· d(1± on(1)) =

cβ
2T

(1/c2ρ ± on(1)),∀τ ∈ {2, . . . , T}

γt=1
i,1 − γt=2

i,2 ∈ cβ
4T

(1− 2/c2ρ − 2η ± on(1)) . (22)

where in the calculation of γt=1
i,τ we use

∑
i∈[n] yiyj

∑
τ ̸=τ ′ ξ⊤i,τξj,τ ′ ∈ ±on(1) · d, which holds

since the training set is good. For i ∈ Nk, we have that

γt=1
i,1 ∈ − β

4T
(1− 2η ± on(1))ρ

2 = − cβ
4T

(1− 2η ± on(1))

γt=1
i,τ ∈ β

2Tn
· d(1± on(1)) =

cβ
2T

(1/c2ρ ± on(1)),∀τ ∈ {2, . . . , T}

γt=1
i,2 − γt=2

i,1 ∈ cβ
4T

(1 + 2/c2ρ − 2η ± on(1)) . (23)

GD after 2 iterations.
Analysis of vt=2.
Observe that

−β∇vL(v1,p1) = −β
n

n∑
i=1

ℓ′1,i · yiX⊤
i S(Xip1) = − β

Tn

n∑
i=1

ℓ′1,i · yi
T∑

τ=1

xi.

We start by analyzing the first coordinate of ∇vL(v1,p1).

−β∇vL(v1,p1)[1] =
β

Tn

∑
i∈C1

−ℓ′1,i · yixi,1[1] +
β

Tn

∑
i∈N1

−ℓ′1,i · yixi,1[1]

=
β

Tn

∑
i∈C1

−ℓ′1,i · ρ−
β

Tn

∑
i∈N1

−ℓ′1,i · ρ

=
β

Tn

∑
i∈C1

−ℓ′1,i −
∑
j∈N1

−ℓ′1,j

 · ρ . (24)

Observe that∑
i∈C1

−ℓ′1,i −
∑
j∈N1

−ℓ′1,j ≥ −n
2
(η + on(1)) ·MN good training set

> −n
2
(η + on(1)) Eq. 21,
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Substituting it into Eq. 24, we obtain that

−β∇vL(v1,p1)[1] > − β

2T
(η + on(1))ρ.

On the other hand, by Eq. 24, we can upper bound the first coordinate of the gradient of v by

−β∇vL(v1,p1)[1] ≤
β

Tn

(∑
i∈C1

−ℓ′1,i

)
· ρ

≤ β

17T
· ρ − ℓ′1,i < 1/17,Eq. 19.

Similarly, we can estimate the second coordinate of ∇vL(v1,p1):
β

2T
(η + on(1))ρ ≥ −β∇vL(v1,p1)[2] ≥ − β

17T
· ρ.

Write vt=2 = λt=2
1 µ1 + λt=2

2 µ2 +
∑n

i=1 yiθ
t=2
i

∑T−1
τ=1 ξi. Together with Eq. 11, we get that

λt=2
1 = λt=1

1 − β∇vL(v1,p1)[1]/ρ ≤ β

4T
(1 + on(1)) +

β

17T
≤ 5β

16T
(25)

λt=2
1 ≥ β

4T
(1− 4η − on(1)) (26)

λt=2
2 = λt=1

2 − β∇vL(v1,p1)[2] ≥ − β

4T
(1 + on(1))−

β

17T
≥ −5β

16
(27)

λt=2
2 ≤ − β

4T
(1− 4η − on(1)) . (28)

Next, we analyze the rest of the coordinates of ∇vL(v1,p1).

−β∇vL(v1,p1)[3 : d] =
β

Tn

∑
i∈C

−ℓ′1,i · yi
T∑

τ=2

ξi +
β

Tn

∑
j∈N

−ℓ′1,j · yj
T∑

τ=2

ξj ,

and use it to analyze the coefficients of the noise (second) tokens in vt=2, i.e., θt=2
i . Indeed, for i ∈ C

we have that

θt=2
i = θt=1

i − β

Tn
ℓ′1,i =

β

Tn
(−ℓ′1,i + 0.5) Eq. 11

∈
[
β

Tn
(mC + 0.5),

β

Tn
(MC + 0.5)

]
. (29)

For j ∈ N we have that

θt=2
j = θt=1

j − β

Tn
ℓ′1,j =

β

Tn
(−ℓ′1,j + 0.5) Eq. 11

∈
[
β

Tn
(mN + 0.5),

β

Tn
(MN + 0.5)

]
. (30)

Next we move to analyze pt=2.

pt=2 focuses on noisy tokens for noisy samples.

Define γi,min := minτ≥2 γi,τ , γi,max := maxτ≥2 γi,τ , γi := (γmin + γmax)/2 and ϵi := (γmax −
γmin)/2. In words γi,min, γi,max and ϵi are the maximun, minimum and the gap among the scores
of the noisy tokens of the ith sample respectively. By Eqs. 22 and 23 we have that ϵi = on(1) · cβ for
any i ∈ [n]. Observe that p2 = −β∇pL(v1,p1). Therefore, for any j ∈ Nk and τ ∈ {2, . . . , T} we
have:

p⊤
2 (xj,1 − xj,τ )

= −(xj,1 − xj,τ )
⊤β∇pL(vt,pt) = (xj,1 − xj,τ )

⊤ β

n

n∑
i=1

−ℓ′1,i ·X⊤
i S′(Xipt)γ

t=1
i

=
β

n

n∑
i=1

−ℓ′1,i · x⊤
j,1X

⊤
i S′(Xipt)γ

t=1
i − β

n

n∑
i=1

−ℓ′1,i · x⊤
j,τX

⊤
i S′(Xipt)γ

t=1
i . (31)
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Write z1,i,j := Xixj,1. Observe that z1,i,j = (x⊤
i,1xj,1, 0, . . . , 0) for i ∈ Ck ∪ Nk and z1,i,j = 0

otherwise. By Lemma A.5, we can lower bound the first term in Eq. 31 as

β

n

n∑
i=1

−ℓ′1,i · z⊤
1,i,jS′(Xipt)γ

t=1
i ≥ β

n

∑
i∈Ck

−ℓ′1,i · (γt=1
i,1 − γt=1

i )(1− αt=1
i,1 )αt=1

i,1 (1− on(1))x
⊤
i,1xj,1

− β

n

∑
i∈Nk

−ℓ′1,i · (γt=1
i − γt=1

i,1 )(1− αt=1
i,1 )αt=1

i,1 (1− on(1))x
⊤
i,1xj,1,

where the (1−on(1)) term is from the second tern in Lemma A.5. Now we move to the second term of
Eq. 31. Write zτ,i,j := Xixj,τ . Observe that Xixj,τ = (0,x⊤

i,1xj,τ , . . . ,x
⊤
i,τxj,τ , . . . ,x

⊤
i,Txj,τ ).

By Lemma A.5, we can lower bound the second term in Eq. 31 as

− β

n

n∑
i=1

−ℓ′1,i · z⊤
τ,i,jS′(Xipt)γ

t=1
i

=
β

(T − 1)n

n∑
i=1

−ℓ′1,i · (γt=1
i − γt=1

i,1 )(1− αt=1
i,1 )αt=1

i,1 (1− on(1))
T∑

τ ′=1

x⊤
i,τ ′xj,τ

≥ β

(T − 1)n
(−ℓ′1,j) · (γt=1

j,1 − γt=1
j )(1− αt=1

j,1 )αt=1
j,1 (1− on(1))

∥xj,τ∥2 +
T∑

τ ′ ̸=τ

x⊤
j,τ ′xj,τ


− β

(T − 1)n

∑
i∈n:i̸=j

−ℓ′1,i · |γt=1
i − γt=1

i,1 | · (1− αt=1
i,1 )αt=1

i,1 (1 + on(1))

T∑
τ ′=2

x⊤
i,τ ′xj,τ ,

where once again where the (1− on(1)) term is from the second tern in Lemma A.5. Overall,

p⊤
2 (xj,τ − xj,1)

≥ β

n
(−ℓ′1,j)(γt=1

j − γt=1
j,1 )(1− αj,1)αj,1(1− on(1))

(
∥xj,1∥2 + ∥xj,τ∥2 /(T − 1)

)
− β

n

∑
i∈Ck:i ̸=j

−ℓ′1,i · (γt=1
i,1 − γt=1

i )(1− αt=1
i,1 )(1 + on(1))α

t=1
i,1 (x⊤

j,1xi,1)

+
β

n

∑
i∈Nk:i ̸=j

−ℓ′1,i · (γt=1
i − γt=1

i,1 )(1− αt=1
i,1 )αt=1

i,1 (1− on(1))(x
⊤
j,1xi,1)

− β

(T − 1)n

∑
i∈[n]:i ̸=j

−ℓ′1,i · |γt=1
i,1 − γt=1

i,2 | · (1− αt=1
i,1 )αt=1

i,1 (1 + on(1))

T∑
τ ′=2

(x⊤
j,τxi,τ ′) .

Observe that αt=1
i,1 = 1/T and that (1− αi,1)αi,1 = (T − 1)/T 2 for any i ∈ [n]. In Eqs. 22 and 23

we calculate the score (e.g. γt=1
i,τ ). Overall, we can lower bound the above equation by:

≥ β

T 2n

(
mN · cβ

4T
(1 + 2/c2ρ − 2η − on(1)) · d(1− on(1))

)
− (T − 1)β

T 2n

(
(1− η − on(1)) ·

n

2
·MC

cβ
4T

(1− 2/c2ρ − 2η − on(1))
d

n
c2ρ

)
+

(T − 1)β

T 2n

(
|Nk| ·mN

cβ
4T

(1 + 2/c2ρ − 2η + on(1))
d

n
c2ρ

)
− (T − 1)β

T 2n

(
n ·MN

cβ
4T

(1 + 2/c2ρ − 2η + on(1))cD
√
d log(n/δ)

)
.
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By Assumption 3.1 (item 2, d ≫ n2 log(n)), the first term dominates the last term. Then we can
lower-bound the above term by

− (T − 1)β

T 2n

(
(1− η − on(1)) ·

n

2
·MC

cβ
4T

(1− 2/c2ρ − 2η − on(1))
d

n
c2ρ

)
+

(T − 1)β

T 2n

(
|Nk| ·mN

cβ
4T

(1 + 2/c2ρ − 2η + on(1))
d

n
c2ρ

)
≥ −

(T − 1)c2β
2T 2

(
(1− η − on(1)) ·MC

1

4T
(1− 2/c2ρ − 2η − on(1))

)
+

(T − 1)c2β
2T 2

(
η · (1− on(1)) ·mN

1

4T
(1 + 2/c2ρ − 2η + on(1))

)
,

where in the last inequality we use β = (cβ · n)/(dc2ρ). Next, we argue that the second term in the
above Eq. is at least 1000 times the absolute value of the first term (i.e. the second term dominates
the other terms). Indeed for cβ > 1/η we have that MC < 0.0002η for small enough η (Eqs. 19 and
21). This means that mN · η ≥ 0.0002MC . Then we can conclude that the second term is at least
1000 times bigger than the absolute value of the first term. Overall, for any i ∈ N we have that:

p⊤
2 (xj,τ − xj,1) ≥ 0.999 ·

(T − 1)c2β
2T 2

(
η · (1− on(1)) ·mN

1

4T
(1 + 2/c2ρ − 2η + on(1))

)
≥ 0.999 · c2βη ·

(
T − 1

8T 3

)
(mN · (1− 2η − on(1))

≥ 0.998 · c2βη ·
(
T − 1

8T 3

)
≥ 2 log(cρ),

where that last inequality holds since c2β ≥ 2 log(cρ)η
−1 ·

(
8T 3

0.998(T−1)

)
(Eq. 10). We conclude that,

αt=2
i,1 =

1

1 +
∑T

τ=2 exp(p
⊤
2 (xj,τ − xj,1))

≤ 1

1 + (T − 1) exp(log(c2ρ))
=

1

1 + (T − 1)c2ρ

≤ 1

(T − 1)c2ρ
. (32)

We also conclude that for any j ∈ N we have that

αt=2
j,1 ≤ 1

1 + (T − 1)c2ρ
,

T∑
τ=2

αt=2
j,τ ≥ 1− 1

1 + (T − 1)c2ρ
. (33)

In the next part, we assume that C from Assumption 3.1 may depend on cρ and we show that pt=2

focuses on the signal tokens for clean sample.
pt=2 focuses on the signal tokens for clean sample. Similarly to the previous case, for any j ∈ Ck
and τ ∈ {2, . . . , T} we have

p⊤
2 (xj,1 − xj,τ )

≥ β

n
(−ℓ′1,j)(γt=1

j,1 − γt=1
j )(1− αj,1)αj,1(1− on(1))

(
∥xj,1∥2 + ∥xj,τ∥2 /(T − 1)

)
+
β

n

∑
i∈Ck:i ̸=j

−ℓ′1,i · (γt=1
i,1 − γt=1

i )(1− αt=1
i,1 )(1− on(1))α

t=1
i,1 (x⊤

j,1xi,1)

− β

n

∑
i∈Nk:i ̸=j

−ℓ′1,i · (γt=1
i − γt=1

i,1 )(1− αt=1
i,1 )αt=1

i,1 (1− on(1))(x
⊤
j,1xi,1)

− β

(T − 1)n

∑
i∈[n]:i ̸=j

∑
τ ′:

−ℓ′1,i · |γt=1
i,1 − γt=1

i,2 | · (1− αt=1
i,1 )αt=1

i,1 (1 + on(1))

T∑
τ ′=2

(x⊤
j,τxi,τ ′) .
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Observe that αt=1
i,1 = 1/T and that (1− αi,1)αi,1 = (T − 1)/T 2 for any i ∈ [n]. In Eqs. 22 and 23

we calculate the score (i.e. γt=1
i,τ ). Overall, we can lower bound the above equation by:

≥ β

T 2n

(
mC · cβ

4T
(1− 2/c2ρ − 2η − on(1)) · d(1− on(1))

)
+

(T − 1)β

T 2n

(
(1− η − on(1)) ·

n

2
·mC

cβ
4T

(1− 2/c2ρ − 2η − on(1))
d

n
c2ρ

)
− (T − 1)β

T 2n

(
(η + on(1)) ·

n

2
·MN

cβ
4T

(1 + 2/c2ρ − 2η + on(1))
d

n
c2ρ

)
− (T − 1)β

T 2n

(
n ·MN

cβ
4T

(1 + 2/c2ρ − 2η + on(1))cD
√
d log(n/δ)

)
. (34)

Observe that the first two terms are non-negative. Then we can lower-bound the above term by

− (T − 1)β

T 2n

(
(η + on(1)) ·

n

2
·MN

cβ
4T

(1 + 2/c2ρ − 2η + on(1))
d

n
c2ρ

)
− (T − 1)β

T 2n

(
n ·MN

cβ
4T

(1 + 2/c2ρ − 2η + on(1))cD
√
d log(n/δ)

)
= −

(T − 1)c2β
T 2

(
(η + on(1)) ·

1

2
·MN

1

4T
(1 + 2/c2ρ − 2η + on(1))

)
−

(T − 1)c2β
T 2

(
MN

1

4T
(1 + 2/c2ρ − 2η + on(1))cDn ·

√
log(n/δ)√
dc2ρ

)
By Assumption 3.1 (item 2) the first term dominates the second term wheneverC from that assumption
is large enough, which means that we can lower bound the displayed equation by 1.0002 the first
term i.e. by

− 1.0002 ·
(T − 1)c2β

T 2

(
(η + on(1)) ·

1

2
·MN

1

4T
(1 + 2/c2ρ − 2η + on(1))

)
≥ −1.0002 ·

(T − 1)c2β
8T 3

(
(η + on(1)) ·MN (1 + 2/c2ρ − 2η + on(1))

)
≥ −1.0001 · (T − 1)

8T 3
· c2βη

≥ −2.1 log(cρ),

where the last inequality holds by Eq. 10. We conclude that

αt=2
i,1 =

1

1 +
∑T

τ=2 exp(p
⊤
2 (xj,τ − xj,1))

≥ 1

1 + (T − 1) exp(2.1 log(cρ))
(35)

=
1

1 + (T − 1)c2.1ρ

Together with Eq. 33, this proves the last part of the Thm.
pt=2 focuses more on the signal tokens for clean sample when cρ is a constant. In this part, we
prove Remark 3.4. In this case, C from Assumption 3.1 may depend on cρ. We can start directly
from Eq. 34 that states that for any j ∈ Ck and τ ∈ {2, . . . , T} we have

p⊤
2 (xj,1 − xj,τ ) (36)

≥ β

T 2n

(
mC · cβ

4T
(1− 2/c2ρ − 2η − on(1)) · d(1− on(1))

)
+

(T − 1)β

T 2n

(
(1− η − on(1)) ·

n

2
·mC

cβ
4T

(1− 2/c2ρ − 2η − on(1))
d

n
c2ρ

)
− (T − 1)β

T 2n

(
(η + on(1)) ·

n

2
·MN

cβ
4T

(1 + 2/c2ρ − 2η + on(1))
d

n
c2ρ

)
− (T − 1)β

T 2n

(
n ·MN

cβ
4T

(1 + 2/c2ρ − 2η + on(1))cD
√
d log(n/δ)

)
.
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Since C from Assumption 3.1 may depend on cρ. Then MN ,mC are also constants. Overall, the first
term dominates the last term since d≫ n

√
d log(n/δ) (see Assumption 3.1 (item 2)). The second

term dominates the third term for small enough η (see Assumption 4). Overall, we obtain that for any
τ ∈ {2, . . . , T} that

p⊤
2 (xj,1 − xj,τ ) > 0, (37)

which means that for any i ∈ C we have:

αt=2
i,1 =

1

1 +
∑T

τ=2 exp(p
⊤
2 (xj,τ − xj,1))

>
1

T
. (38)

Next, we move to our original assumption and don’t assume that C from Assumption 3.1 may depend
on cρ. We show that:
The classifier sign(f(X;vt=2,pt=2)) classifies correctly clean training samples. Let (Xj =
(xj,1, . . . ,xj,T ), yj) for j ∈ C. We remind that xj,1 = µk for k ∈ {1, 2} and xj,τ = ξj,τ . we have
that,

f(Xj ;vt=2,pt=2) = αt=2
j,1 v⊤

2 xj,1 +

T∑
τ=2

αt=2
j,τ v⊤

2 xj,τ ,

and it suffices to prove that

yj(f(Xj ;v2,p2)) > 0.

Indeed,

yjf(Xj ;v,p) = yjα
t=2
j,1 v⊤

2 xj,1 + yj

T∑
τ=2

αt=2
j,τ v⊤

2 xj,τ

= αt=2
j,1 |λk| ∥µk∥2 +

T∑
τ=2

αt=2
j,τ θj ∥ξj,τ∥

2
+

T∑
τ=2

αt=2
j,τ yj

∑
i∈[n],τ ′:i ̸=j∨τ ̸=τ ′

yiθ
t=2
i ξ⊤i,τξj,τ ′ yjλk > 0

≥ max
τ∈[T ]

αj,τ min{|λk| ∥µk∥2 , θj ∥ξj,τ∥2}+
T∑

τ=2

αt=2
j,τ yj

∑
i∈[n],τ ′:i ̸=j∨τ ̸=τ ′

yiθ
t=2
i ξ⊤i,τξj,τ ′

≥ 1

T
·min

(
β

5T
· d
n
c2ρ,

β

2nT
· d(1− on(1))

)
− nT 2 β

Tn
(MN + 0.5)cD

√
d log(n/δ) Eqs. 30, 26 and 28

> 0, d≫ ncD
√
d log(n/δ)

as required.
The classifier sign(f(X;vt=2,pt=2)) classifies correctly noisy training samples. Let (Xj =
(xj,1, . . . ,xj,T ), yj) for j ∈ N . We remind that xj,1 = µk for k ∈ {1, 2} and xj,τ = ξj,τ . we have
that,

f(Xj ;vt=2,pt=2) = αt=2
j,1 v⊤

2 xj,1 +

T∑
τ=2

αt=2
j,τ v⊤

2 xj,τ ,

and it suffices to prove that

yj(f(Xj ;v2,p2)) > 0.
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Indeed,

yjf(Xj ;v,p) = yjα
t=2
j,1 v⊤

2 xj,1 + yj

T∑
τ=2

αt=2
j,τ v⊤

2 xj,τ

= −αt=2
j,1 |λk| ∥µk∥2 +

T∑
τ=2

αt=2
j,τ θj ∥ξj,τ∥

2
+

T∑
τ=2

αt=2
j,τ yj

∑
i∈[n],τ ′:i ̸=j∨τ ̸=τ ′

yiθ
t=2
i ξ⊤i,τξj,τ ′ yjλk < 0

≥ −αt=2
j,1

(
5β

16T

)
d

n
c2ρ +

T∑
τ=2

αt=2
j,τ

β

Tn
(mN + 0.5)d(1− on(1))

−
T−1∑
τ=2

αt=2
j,τ n(T − 1)

β

Tn
(MN + 0.5)cD

√
d log(n/δ) Eqs. 30, 25 and 27

≥
(

1

c2ρ

)(
5β

16T

)
d

n
c2ρ +

(
1− 1

c2ρ

)
β

Tn
(mN + 0.5)d(1− on(1))

− n(T − 1)
β

Tn
(MN + 0.5)cD

√
d log(n/δ) Eq. 33

> 0, d≫ ncD
√
d log(n/δ)

as required.
The classifier sign(f(X;vt=2,pt=2)) classifies correctly clean test samples.

Let (X = (x1, . . . ,xT ), y) be a fresh clean sample i.e. (X, y) ∼ Dclean. Observe that x1 = µk

for some k ∈ {1, 2} and y = 1 iff k = 1. By Remark A.66, exists some constant c1 such that with
probability at least 1− n exp(−d/c21C2n

1.5) for some C2 = C2(cρ, 1/η) that will be chosen later,
we have that (X, y) is a good test sample w.r.t. C2 (Def. A.3), i.e. |x⊤

τ xi,τ ′ | ≤ d/C2n
0.75. We work

under the event that (X, y) is a good test sample and show that y = sign(f(X;vt=2,pt=2). Recall
that p2 = −β∇pL(v1,p1) and therefore (similar to the clean sample case) for any τ ∈ {2, . . . , T}:

p⊤
2 (x1 − xτ )

≥ β

n

∑
i∈Ck

−ℓ′1,i · (γt=1
i,1 − γt=1

i )(1− αt=1
i,1 )αt=1

i,1 (1− on(1))(x
⊤
1 xi,1)

− β

n

∑
i∈Nk

−ℓ′1,i · (γt=1
i − γt=1

i,1 )(1− αt=1
i,1 )αt=1

i,1 (1− on(1))(x
⊤
1 xi,1)

− β

(T − 1)n

∑
i∈[n]

T∑
τ=2

−ℓ′1,i · |γt=1
i,1 − γt=1

i | · (1− αt=1
i,1 )αt=1

i,1 (1 + on(1))

T∑
τ ′=2

(x⊤
τ xi,τ ′) .

Observe that αt=1
i,1 = 1/T and that (1− αi,1)αi,1 = (T − 1)/T 2 for any i ∈ [n]. In Eqs. 22 and 23

we calculate the score (e.g. γt=1
i,τ ). Overall, we can lower bound the above equation by:

+
(T − 1)β

T 2n

(
(1− η − on(1)) ·

n

2
·mC

cβ
4T

(1− 2/c2ρ − 2η − on(1))
d

n
c2ρ

)
− (T − 1)β

T 2n

(
(η + on(1)) ·

n

2
·MN

cβ
4T

(1 + 2/c2ρ − 2η + on(1))
d

n
c2ρ

)
− (T − 1)β

T 2n

(
n0.75 ·MN

cβ
4T

(1 + 2/c2ρ − 2η + on(1))
d

C2n0.75

)
.

Observe that the first term is positive, and the second term is 100 times smaller than the last term
whenever C2 ≥ 201/(ηc2ρ). Then we can lower bound the above equation by 1.01 times the second
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term i.e. by

− 1.01 · (T − 1)β

T 2n

(
(η + on(1)) ·

n

2
·MN

cβ
4T

(1 + 2/c2ρ − 2η + on(1))
d

n
c2ρ

)
= −

1.01 · (T − 1)c2β
T 2n

(
(η + on(1)) ·

n

2
·MN

1

4T
(1 + 2/c2ρ − 2η + on(1))

)
≥ −1.02 · (T − 1)

8T 3
· η · c2β

≥ −2.1 log(cρ),

where the last inequality holds for c2β ≤ 2.1η−1 log(cρ)
(

8T 3

1.02·(T−1)

)
(see Eq. 10 and note that

8 · 2.1/1.02 < 1.022 · 16/0.98). We conclude that

αt=2
i,1 =

1

1 +
∑T

τ=2 exp(p
⊤
2 (xτ − x1))

≥ 1

1 + (T − 1) exp(2.1 log(cρ))
(39)

=
1

1 + (T − 1)c2.1ρ

Let x1 = µk for k ∈ {1, 2} and xτ = ξτ for τ ∈ {2, . . . , T}. We have that,

f(X;vt=2,pt=2) = αt=2
1 v⊤

2 x1 +

T∑
τ=2

αt=2
τ v⊤

2 xτ ,

and it suffices to prove that

y(f(X;v2,p2)) > 0.

Indeed,

yf(Xj ;v,p) = yjα
t=2
1 v⊤

2 x1 + y

T∑
τ=2

αt=2
τ v⊤

2 xτ

= αt=2
1 |λk| ∥µk∥2 +

T∑
τ=2

αt=2
τ y

∑
i∈[n],τ ′

yiθ
t=2
i ξ⊤i,τξτ ′ yλk > 0

Note that θt=2
i is independent of ξτ ′ . Moreover, since yyiξ⊤i,τξτ ′ is a symmetric random variable with

|ξ⊤i,τξτ ′ | ≤ d/C2n
0.75 (assuming the test sample is good with respect to C2), by Lemma A.7 with

probability at least 1−exp(−n0.5/2) we have that y
∑

i∈[n],τ ′ yiθ
t=2
i ξ⊤i,τξτ ′ ≥ −n0.75 maxi |θt=2

i | ·
d/(C2n

0.75). Overall, we can lower bound the displayed equation by

≥ αt=2
1 |λk| ∥µk∥2 −

T−1∑
τ=2

αt=2
τ (T − 1)max

i
|θi|

d

C2

≥ αt=2
1

(
β

4T + 1

)
d

n
c2ρ − (T − 1)2

β

Tn
(MN + 0.5)

d

C2
Eqs. 30, 26 and 28

≥
(

1

1 + (T − 1)c2.1ρ

)(
β

4T + 1

)
d

n
c2ρ − (T − 1)2

β

Tn
(MN + 0.5)

d

C2

> 0,

where the last inequality holds for C2 = C3 · c0.1ρ , where C3 is large enough constant which depends
on T . Overall by choosing C2 = max(C3c

0.1
ρ , 1/η) and union bound, we have that

P(X,y)∼D(y ̸= sign(f(X;vt=2,pt=2)))

≤ η + P(X,y)∼Dclean(y ̸= sign(f(X;vt=2,pt=2)))

≤ η + exp(−
√
n/2) + exp(−dη/C3c

0.1
ρ n1.5 + log(n)).

This proves the last part of the theorem.
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A.2 Proofs for Sec. 4

A.2.1 Proof Idea for Section 4

We first provide the proof sketch for Theorem 4.2. Our key proposition is that p(r,R) will converge
to a direction that focuses on the signal token for clean samples, and v(r,R) will converge to the
corresponding max-margin solution. To begin, consider the output of the attention layer ri =
X⊤

i S(Xip) which is a combination of signal and noise tokens. This can be considered as a “token
selection” based on softmax probabilities. Consider the following second-token selection rule:

rsec
i = x

(1)
i = µk, i ∈ Ck, k ∈ {1, 2}

rsec
i = x

(2)
i = ξi,2, i ∈ N .

This selects the signal token for all clean samples and the first noise token for all noisy samples.
Following this token selection rule, we define the corresponding max-margin solution as psec and
vsec:
Definition A.8 (p-SVM for Second-token Selection).

psec = argmin
p∈Rd

∥p∥ subject to:

p⊤(x
(αi)
i − x

(t)
i ) ≥ 1, αi = 1 for i ∈ C

and αi = 2 for i ∈ N , t ∈ {1, . . . , T} \ {αi}.
Let Ξ := 1/∥psec∥ be the margin induced by psec.
Definition A.9 (v-SVM for Second-token Selection).

vsec := argmin
v∈Rd

∥v∥ s.t. yi · v⊤rsec
i ≥ 1, for all i ∈ [n] ,

Let Γsec := 1/∥vsec∥ be the label margin induced by vsec.

We prove that p(r,R) has a direction that selects the signal token for every clean sample, since
otherwise it will induce a max-margin at most Γsec − C

∥vsec∥3
2nρ

2 ·max
i∈C

(1 − si,1), where si,1 is the

attention probability on signal tokens. This is strictly smaller than Γsec.

Then, we show that when jointly optimizing p and v for (4), we obtain solutions that induce similar
max-margin as psec and vsec as R, r → ∞. To be specific, we have

• min
τ∈[2,T ]

p⊤
(r,R)(µk − ξi,τ ) ≥ (1 − ζ)ΞR for all i ∈ Ck, k ∈ [2], where Ξ is the margin

induced by psec.
• The label margin for clean samples induced by v(r,R)/r in SVM is at least (1− γ)Γsec.

Here, ζ, γ are some small value quantifying the difference between (p(r,R),v(r,R)) and (psec,vsec).
As R→ ∞, both ζ and γ converge to 0. Thus, for sufficiently large R, we conclude that p⊤

(r,R)(µk −
ξi) becomes large for i ∈ Ck.

This ensures that p(r,R) captures sufficient information about signal tokens, which enhances the
accuracy of test sample predictions. Since the signal token remains invariant between training and
test data, for a given test sample (X, y) with X = (µ⋆, ξ⋆2 , ..., ξ

⋆
T ), w.h.p. the attention layer p(r,R)

will focus on µ⋆ when R is sufficiently large. As a result, the signal token µ⋆ will dominate the
attention layer’s output. As v(r,R) converges to the corresponding max-margin solution, it can make
accurate predictions on (µ⋆, y). Thus, the component induced by the signal token y · ⟨v(r,R),µ

⋆⟩ is
large enough to eliminate the randomness introduced by the noise token (denoted by ∆(ξ⋆) here)
and the model will make an accurate prediction with high probability: y · f(v(r,R),p(r,R);X) ≥
y · v⊤

(r,R)µ
⋆ −∆(ξ⋆) ≥ 0.

A.2.2 Notation for Section 4

We first introduce some additional notations. Denote

n1 = |C|, n2 = |N |; n1i = |Ci|, n2i = |Ni| for i = 1, 2.
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Denote the output of the softmax layer S(Xip) by

si = (1− βi, βi)
⊤.

Denote the output of the attention layer X⊤
i si by ri = (1− βi)µi + βiξi, where 0 ≤ βi ≤ 1 is the

attention on the noise token of each sample. Then f(Xi;v,p) = ⟨v, ri⟩ can be treated as a linear
classifier on (yi, ri)i∈[n]. Additionally, from the property of log function, item 1 in Assumption
4.1 can be understood as d ≥ Cn2 log(poly(n)/δ) and the same is for item 5. For the proof of this
section, we consider the case when T = 2 in Assumption 4.1 and have the following theorem.
Theorem A.10. Suppose that Assumption 4.1 holds when T = 2, and consider the classifier
X → sign(f(X;v(r,R),p(r,R))), where (v(r,R),p(r,R)) is the solution to Problem (4). Then, with
probability at least 1− δ over the training dataset, we have:

• The classifier sign(f(X;v(r,R),p(r,R))) correctly classifies all training data points:

yi = sign(f(Xi;v(r,R),p(r,R))), ∀i ∈ [n].

• The classifier sign(f(X;v(r,R),p(r,R))) generalizes well on test data:

P(X,y)∼D(y ̸= sign(f(X;v(r,R),p(r,R))))

≤ η + exp(−Ω(d/n2)) + exp
(
− Ω

( (1− ζ)√
ηn/d+ 1/ρ2

− log(n)

R

)2)
,

where ζ = Θ(
√
ηn/d+ 1/ρ2 log(ρn)/R).

A.2.3 Proof of Thm. A.10

Proof Sketch
There are two main parts in our proof. In the first part, we prove that only by selecting signal tokens
for clean samples and noise tokens for non-clean samples can we reach the maximum margin when
doing SVM on (yi, ri)i∈[n].

Definition A.11 (Optimal Token). We define the “optimal token" for sample (Xi, yi) as

r⋆i = µi, i ∈ C
r⋆i = ξi, i ∈ N (40)

Next we define the respective max-margin solution for p and v. We will show that when jointly
optimizing parameters p and v for (4), they will converge to their respective max-margin solutions as
R, r → ∞, which are pmm and vmm defined as follows.
Definition A.12. (p-SVM)

pmm = argmin
p

∥p∥

subjected to

p⊤(µi − ξi) ≥ 1, i ∈ C
p⊤(ξi − µi) ≥ 1, i ∈ N (41)

for all i ∈ [n]. Ξ = 1/∥pmm∥ is the margin induced by pmm.

Then for a given p, we define v(p) as the standard max-margin classifier on (yi, ri)i∈[n] and vmm

as the standard max-margin classifier on (yi, r
⋆
i )i∈[n] which can be understood as the limit scenario

when p = pmm and R→ +∞ .
Definition A.13. (v-SVM)

v(p) = argmin
v∈Rd

∥v∥ s.t. yi · v⊤ri ≥ 1, for all i ∈ [n]. (42)

Γ(p) = 1/∥v(p)∥ is the label margin induced by v and p. When ri = r⋆i , i ∈ [n],

vmm = argmin
v∈Rd

∥v∥ s.t. yi · v⊤r⋆i ≥ 1, for all i ∈ [n]. (43)

Γ = 1/∥vmm∥ is the label margin induced by vmm.
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After proving the convergence direction of p(r,R) and v(r,R), we can utilize their properties similar to
pmm and vmm to proceed with the training and test error analysis. Therefore proving that the model
exhibits benign-overfitting.

It is worth noting that in the first part, we show the optimality of the token selection in (40) is strict
in the sense that mixing other tokens in ri will shrink the label margin. We formalize this into the
following proposition:

Proposition A.14 (Optimal Token Condition). Under Condition 4.1, for all p, the token selection
under p results in a label margin of at most Γ − C

∥vmm∥3nρ2 · max
i∈[n]

(1 − siαi
) in (A.13) where

αi = I(i ∈ C) + 2I(i ∈ N ) and C > 0 is some constant.

We now highlight some aspects of the technical novelty of our work compared to Ataee Tarzanagh
et al. [6], Jiang et al. [25]. Unlike Ataee Tarzanagh et al. [6], our results are in a non-asymptotic
setting, while their work focuses on the case where both R, r → ∞. Additionally, we do not rely
on any additional, unnatural assumptions about the data distribution. In contrast, Ataee Tarzanagh
et al. [6] specifies the optimal token indices that achieve the maximum margin, and Jiang et al. [25]
assumes that for each sample, the first noise token has a much larger norm than the other noise tokens.

We give detailed proof in the following.

Optimal Token Condition
Since vmm satisfies the KKT conditions of the max-margin problem (42), by the stationarity condition,
we can represent vmm as

vmm = λ1µ1 + λ2µ2 +
∑
i∈[n]

yiθiξi. (44)

Note that the conditions in (42) can be written as:
Condition 1 (Optimal tokens). 

v⊤µ1 ≥ 1

−v⊤µ2 ≥ 1

yiv
⊤ξi ≥ 1, i ∈ N

Plugging (44) in the condition 1, we can rewrite these conditions as:
λ1 · ∥µ1∥2 ≥ 1

−λ2 · ∥µ2∥2 ≥ 1

θi · ∥ξi∥2 + yiyi′
∑
i′ ̸=i

θi′⟨ξi, ξi′⟩ ≥ 1, i ∈ N

Then we introduce a lemma to estimate the coefficients θi of vmm under this condition:

Lemma A.15 (balanced noise factor for KKT points). Suppose that Assumption 4.1 holds, under
Condition 1, we have that for vmm,

θi = 0, i ∈ C; (45)

θi ∈
[ (1− κ)d− 4n2

√
d log(6n2/δ)

(1 + κ)d((1− κ)d− 2n2
√
d log(6n2/δ))

,
1

(1− κ)d− 2n2
√
d log(6n2/δ)

]
, i ∈ N .

(46)

Proof of Lemma A.15. Note that Condition 1 does not have any constraint for samples with i ∈ C.
Thus we have θi = 0 for any i ∈ C in the representation (44). For θi with i ∈ N , we first prove the
upper bound by contradiction. Denote j = argmax

i∈N
θi. Then we have

yjv
⊤ξj =

∑
i∈N

yiyjθi⟨ξi, ξj⟩ = θj∥ξj∥22 +
∑

i ̸=j,i∈N

yiyjθi⟨ξi, ξj⟩

≥ θj · (1− κ)d− n2θj · 2
√
d log(6n2/δ),
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where the inequality is from Lemma A.65 and the definition of j. Consider the contrary case when
θj >

1

(1−κ)d−2n2

√
d log(6n2/δ)

, we have

yjv
⊤ξj >

1

(1− κ)d− 2n2
√
d log(6n2/δ)

·
(
(1− κ)d− n2 · 2

√
d log(6n2/δ)

)
= 1.

By the complementary slackness, if yjv⊤ξj > 1, then we must have θj = 0, and thus we reach a
contradiction.

Then we prove for the lower bound. For ∀j ∈ N we have

1 ≤ θj∥ξj∥22 +
∑

i ̸=j,i∈N

yiyjθi⟨ξi, ξj⟩

≤ θj · (1 + κ)d+ n2 max
i∈N

θi · 2
√
d log(6n2/δ)

≤ θj · (1 + κ)d+
n2

(1− κ)d− 2n2
√
d log(6n2/δ)

· 2
√
d log(6n2/δ).

The second inequality is due to Lemma A.65 and the last inequality is from the upper bound we just
get. Therefore, we have

θj ≥
(1− κ)d− 4n2

√
d log(6n2/δ)

(1 + κ)d((1− κ)d− 2n2
√
d log(6n2/δ))

.

This completes the proof.

Then we introduce a lemma to estimate ∥vmm∥:
Lemma A.16 (Norm of vmm). Suppose that Assumption 4.1 holds, for the solution vmm of (42)
under the token selection (40), we have

2

ρ2
+
ηn

2d
≤ ∥vmm∥2 ≤ 2

ρ2
+

5ηn

d
.

This implies

∥vmm∥ = Θ

(√
1

ρ2
+
ηn

d

)
.

Proof of Lemma A.16. As vmm is the max-margin solution and satisfies KKT condition, it can be
represented as

vmm = λ1µ1 + λ2µ2 +
∑
i∈C

yiθiξi +
∑
i∈N

yiθiξi. (47)

As vmm satisfies Condition 1, we have λ1 ≥ 1/ρ2 and λ2 ≤ −1/ρ2. So we could lower bound
∥vmm∥ as

∥vmm∥2 ≥ λ21∥µ1∥2 + λ22∥µ2∥2 +
∑
i∈N

θ2i ∥ξi∥2 +
∑
i∈N

∑
j∈N

yiyjθiθj⟨ξi, ξj⟩

≥ 2

ρ2
+
n2(1− κ)

d
+O

(
η2n2

d3/2

)
≥ 2

ρ2
+
ηn

2d
.

The second inequality is from Lemma A.15 that θi = Θ(1/d) for i ∈ N and the last inequality is
from Assumption 4.1.

Then to upper bound ∥vmm∥, consider the following possible solution ṽ

ṽ = ρ−2µ1 − ρ−2µ2 +
∑
i∈N

2yiξi/d.

For i ∈ C, we have

yiṽ
⊤ri = yiṽ

⊤µi ≥ 1.

33



And for i ∈ N , we have

yiṽ
⊤ri = yiṽ

⊤ξi = 2∥ξi∥2/d+
∑

j∈N ,j ̸=i

2yiyj⟨ξi, ξj⟩/d

≥ 2(1− κ)− 2n2
√
log(6n2/δ)/d ≥ 1.

The first inequality is from Lemma A.65 and the second inequality is from Assumption 4.1. Therefore,
ṽ is a possible solution of SVM problem A.13 when p converges to pmm. So we have

∥vmm∥2 ≤ ∥ṽ∥2 = 2/ρ2 +
∑
i∈N

4∥ξi∥2/d2 +
∑
i∈N

∑
j∈N

4yiyj⟨ξi, ξj⟩/d2 ≤ 2

ρ2
+

5ηn

d
.

The last inequality is from Lemma A.65, Lemma A.68 and Assumption 4.1. Combine the results
above, we have ∥vmm∥2 = Θ( 1

ρ2 + ηn
d ).

Based on the lemmas above, we introduce our main proposition in this section:
Proposition A.17 (Optimal Token Condition). Under Condition 4.1, for all p, the token selection
under p results in a label margin of at most Γ − C

∥vmm∥3nρ2 · max
i∈[n]

(1 − siαi
) in (A.13) where

αi = I(i ∈ C) + 2I(i ∈ N ) and C > 0 is some constant.

Proof of Proposition A.14. The main idea is to show the optimality of the token selection rule in the
sense that mixing any other tokens will shrink the label margin. For a given p, we say a sample xi is
a “mixed sample” if ri ̸= r⋆i . We say ri is a mixture of optimal token and non-optimal token in this
case. Note that for any p with finite norm, ri ̸= r⋆i . This notation is introduced for the clearness of
the proof.

We use contradiction to prove Proposition A.14 by showing that any token selection different from
(40) can only result in a strictly smaller label margin than that for the max-margin problem (42).
Since v satisfies the KKT conditions of the max-margin problem, we can write v as

v = λ1µ1 + λ2µ2 +
∑
i∈C

yiθiξi +
∑
i∈N

yiθiξi. (48)

For a given p, denote v′ as the max-margin solution in (42), and Γ′ = 1/∥v′∥ as the new label margin.
According to Lemma A.16, we have

∥vmm∥2 = Θ

(
1

ρ2
+
ηn

d

)
= Ω(1/ρ2).

Then we have
Γ− C

∥vmm∥3nρ2
·max
i∈[n]

(1− siαi
) ≥ Γ− C

∥vmm∥3nρ2
≥ Γ

2

for sufficiently large d. Here the last inequality uses ∥vmm∥2 = Ω(1/ρ2). Thus we only need
consider the case when the new label margin Γ′ ≥ Γ/2, or equivalently,

∥v′∥ ≤ 2∥vmm∥. (49)

Assume that there are k samples (0 < k ≤ n) that violdate the token selection rule (40) and among
them, p samples are from clean set C and k − p samples are from label-flipped set N . Denote the
indices of the k samples as Iv . Then we consider the following three scenarios:

1. p ̸= 0, k − p = 0. (All mixed samples come from C)

2. p = 0, k − p ̸= 0. (All mixed samples come from N )

3. p ̸= 0, k − p ̸= 0. (Mixed samples are from both sets)

We will separately discuss each scenario and show that Proposition A.14 holds in all cases.
Case 1: p ̸= 0, k − p = 0

Under this scenario, we have:
Iv ∩ C = Iv; Iv ∩N = ∅.

We proceed to analyze this scenario by dividing it into three distinct subcases.
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• p < n1, Iv ∩ C1 ̸= ∅, Iv ∩ C2 ̸= ∅

• p < n1, Iv ∩ Ci ̸= ∅, Iv ∩ Ci′ = ∅, (i, i′ ∈ [2], i ̸= i′)

• p = n1

Case 1.1 p < n1, Iv ∩ C1 ̸= ∅, Iv ∩ C2 ̸= ∅
In this case, both clusters exist clean samples that are not mixed. Denote the index of mixed samples
Iv as {k1, k2, ..., kp}. For every mixed sample ki, we have rki = βkiµki + (1− βki)ξki . Then the
conditions under Case 1.1 become
Condition 2 (p clean samples violating optimal token selection).

v⊤µ1 ≥ 1

−v⊤µ2 ≥ 1

yiv
⊤ξi ≥ 1, i ∈ N

yiv
⊤ri ≥ 1, i ∈ Iv

From the condition above, we could see that in this case, mixing one more clean sample is equal to
adding one more constraint. Therefore, mixing p samples will not result in a better solution than only
mixing one sample, i.e. larger max-margin in our setting. So we can reduce this case to mixing only
one clean sample with index k⋆ = argmin

i∈Iv

βi. Denote rk⋆ = βµk⋆ +(1−β)ξk⋆ for some β ∈ [0, 1).

Without loss of generality, we assume µk⋆ = µ1, yk⋆ = +1. Then the conditions become:
Condition 3 (one clean sample violating optimal token selection).

v⊤µ1 ≥ 1

−v⊤µ2 ≥ 1

yiv
⊤ξi ≥ 1, i ∈ N

yk⋆v⊤rk⋆ ≥ 1

Denote v′ as the optimal solution under this condition. v′ can also be written in the form of (48) with
coefficients denoted as λ′1, λ

′
2 and θ′i, i ∈ [n]. Plugging this representation into the condition 3, we

have: 

λ′1 · ∥µ1∥2 ≥ 1

−λ′2 · ∥µ2∥2 ≥ 1

θ′i · ∥ξi∥2 +
∑
i′ ̸=i

yiyi′θ
′
i′⟨ξi, ξi′⟩ ≥ 1, i ∈ N

βλ′1 · ∥µ1∥2 + (1− β)(θ′k⋆∥ξk⋆∥2 +
∑

i̸=k⋆

yk⋆yiθ
′
i⟨ξi, ξk⋆⟩) ≥ 1

First, we introduce another lemma similar to Lemma A.15 to characterize the scale of θ′i, i ∈ [n] in
this case.

Lemma A.18. Suppose that Assumption 4.1 holds, under Condition 3, we have

θ′i = 0, i ∈ C\{k⋆};

θi ∈
[ (1− κ)d− 4n2

√
d log(6n2/δ)

(1 + κ)d((1− κ)d− 2n2
√
d log(6n2/δ))

,
1

(1− κ)d− 2n2
√
d log(6n2/δ)

]
, i ∈ N .

Proof of Lemma A.18. Same as Condition 1, Condition 3 does not have any constraint for samples
with i ∈ C\{k⋆}. Thus we have θ′i = 0 for any i ∈ C\{k⋆}.

Meanwhile, Condition 3 introduces an additional constraint compared to Condition 1. Consequently,
the feasible region for {θ′i}i∈N under Condition 3 is a subset of the feasible region for {θi}i∈N under
Condition 1. Therefore, the bounds established in Lemma A.15 remain applicable to {θ′i}i∈N .

From this lemma, We can see that θ′i = Θ(1/d) for i ∈ N . To proceed, we introduce a crucial
lemma:
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Lemma A.19. Suppose that Assumption 4.1 holds, denote v and v′ as the optimal solutions under
condition 1 and condition 3 respectively. We have

∥v′∥22 − ∥vmm∥22 ≥ C1(1− βλ′1ρ
2)2

(1− β)2(1 + κ)d
+ Õ

( ηn

d3/2

)
.

where 0 < C1 ≤ 1 is a constant.

Proof of Lemma A.19. We consider two cases under this scenario:

• θ′k = 0 in v′

In this case, from Lemma A.18 we have βλ′1 ≥ (1 + o(1))/ρ2 and all other conditions are
the same as the optimal selection. In order to get min ∥v∥, we have λ′1 = (1 + o(1))/βρ2.
Consider another solution v0 which has parameters λ01 = 1/ρ2, λ02 = λ′2, θ0i = θ′i(i ∈
[n]). As v0 satisfies all the inequities under Condition 1, we have Γ0 ≤ Γ So we have

Γ2 − Γ′2 ≥ Γ2
0 − Γ′2 =

1

∥v0∥2
− 1

∥v′∥2
=

(λ201 − λ′21 ) · ∥µ1∥2

∥v0∥2 · ∥v′∥2

=
(1 + o(1))/β2 − 1

∥v0∥2 · ∥v′∥2
=

(1 + β)(1− β) + o(1)

β2∥v0∥2 · ∥v′∥2
≥ 1− β

∥v0∥2 · ∥v′∥2
.

Therefore,

Γ− Γ′ ≥ 1− β

(Γ0 + Γ′)∥v0∥2 · ∥v′∥2
≥ 1− β

2Γ0∥v0∥2 · ∥v′∥2
.

Set c = 1
2Γ0∥v0∥2·∥v′∥2 = 1

2∥v0∥∥v′∥2 . we have Γ′ ≤ Γ − c(1 − β). Moreover, we could
upper bound c as

c =
1

2∥v0∥∥v′∥2
≤ 1

2r3mm

.

The last inequality is from ∥v′∥ ≥ ∥v0∥ ≥ rmm.

• θ′k ̸= 0 in v′

From KKT condition, we have

θ′k∗ ·
[
βλ′1 · ∥µ1∥2 + (1− β)(θ′k⋆∥ξk⋆∥2 +

∑
i̸=k⋆

yk⋆yiθ
′
i⟨ξi, ξk⋆⟩)− 1

]
= 0.

As θ′k⋆ > 0, we have

βλ′1 · ∥µ1∥2 + (1− β)(θ′k⋆∥ξk⋆∥2 +
∑
i∈N

yk⋆yiθ
′
iθ

′
i⟨ξi, ξk⋆⟩) = 1.

So we can estimate θ′k∗ as

θ′k∗∥ξk∗∥2 =
1− βλ′1ρ

2

1− β
−
∑
i∈N

yk⋆yiθ
′
iθ

′
i⟨ξi, ξk⋆⟩ ≤ 1− βλ′1ρ

2

1− β
+ 2n2 max

i∈N
θ′i
√
d log(6n2/δ)

=
1− βλ′1ρ

2

1− β
+

2n2
√
d log(6n2/δ)

(1− κ)d− 2n2
√
d log(6n2/δ)

. (50)

The first inequality is from Lemma A.65 and the last equality is from Lemma A.18. We can
also lower bound it as

θ′k∗∥ξk∗∥2 =
1− βλ′1ρ

2

1− β
−
∑
i∈N

yk⋆yiθ
′
iθ

′
i⟨ξi, ξk⋆⟩ ≥ 1− βλ′1ρ

2

1− β
− 2n2 max

i∈N
θ′i
√
d log(6n2/δ)

=
1− βλ′1ρ

2

1− β
−

2n2
√
d log(6n2/δ)

(1− κ)d− 2n2
√
d log(6n2/δ)

. (51)
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The first inequality is from Lemma A.65 and the last equality is from Lemma A.18. There-
fore, we have θ′k∗ = Θ(

1−βλ′
1ρ

2

(1−β)d )±O( ηn
d3/2 ).

Then from the third inequality in Condition 3, we have

θ′i · ∥ξi∥2 +
∑

i′∈N ,i′ ̸=i

yiyi′θ
′
i′⟨ξi, ξi′⟩ ≥ 1− yiyk∗θ′k∗⟨ξi, ξk∗⟩

≥ 1−
[

1− βλ′1ρ
2

(1− β)(1 + κ)d
+O

( ηn

d3/2

)]
· |⟨ξi, ξk∗⟩|

≥ 1−
2(1− βλ′1ρ

2)
√

log(6n2/δ)

(1− β)(1 + κ)
√
d

− Õ
(ηn
d

)
≥ 1−

2
√

log(6n2/δ)√
d

− Õ
(ηn
d

)
= 1−

3
√

log(6n2/δ)√
d

. (52)

The second inequality is from (50); The third inequality is from Lemma A.65 and the last
inequality is from the first inequality in Condition 3 that λ′1ρ

2 ≥ 1.

Consider ṽ = λ̃1µ1 + λ̃2µ2 +
∑

i∈[n]

yiθ̃iξi, which has λ̃1 = λ′1, λ̃2 = λ′2, θ̃i = θ′i/(1 −

3
√

log(6n2/δ)√
d

) for i ∈ N and θ̃′i = 0 for i ∈ C. We can verify that ṽ satisfies all conditions
for vmm. For ∀i ∈ N , we have

θ̃i · ∥ξi∥2 +
∑

i′∈N ,i′ ̸=i

yiyi′ θ̃i′⟨ξi, ξi′⟩

=
[
θ′i · ∥ξi∥2 +

∑
i′∈N ,i′ ̸=i

yiyi′θ
′
i′⟨ξi, ξi′⟩

]
/

(
1−

3
√
log(6n2/δ)√

d

)
≥ 1.

The last inequality is from (52). Meanwhile, we have λ̃1∥µ1∥2 = λ′1∥µ1∥2 ≥ 1,
−λ̃2∥µ2∥2 = −λ′2∥µ2∥2 ≥ 1. So ṽ is a possible solution for Condition 3, which im-
plies ∥vmm∥ ≤ ∥ṽ∥.

Next we estimate the difference between ∥v′∥2 and ∥ṽ∥2. We write the expansion of ∥ṽ∥2
and ∥v′∥2:

∥ṽ∥2 = λ̃21∥µ1∥2 + λ̃22∥µ2∥2 +
∑
i∈N

θ̃2i ∥ξi∥2 +
∑

i,j∈N ;i ̸=j

yiyj θ̃iθ̃j⟨ξi, ξj⟩,

∥v′∥2 = λ′21 ∥µ1∥2 + λ′22 ∥µ2∥2 +
∑

i∈N∪{k⋆}

θ′2i ∥ξi∥2 +
∑

i,j∈N∪{k⋆};i̸=j

yiyjθ
′
iθ

′
j⟨ξi, ξj⟩.

From the construction of ṽ, we have λ′1 = λ1, λ′2 = λ2. So we have

∥v′∥2 − ∥ṽ∥2 ≥θ′2k⋆∥ξk⋆∥2 +
∑
i∈N

(θ′2i − θ̃2i )∥ξi∥2︸ ︷︷ ︸
I1

+
∑

i∈N∪{k⋆}

∑
j∈N∪{k⋆}\{i}

yiyjθ
′
iθ

′
j⟨ξi, ξj⟩︸ ︷︷ ︸

I2

−
∑
i∈N

∑
j∈N\{i}

yiyj θ̃iθ̃j⟨ξi, ξj⟩︸ ︷︷ ︸
I3

.

From (51), we have

θ′k⋆∥ξk⋆∥ ≥ 1− βλ′1ρ
2

(1− β)
√
(1 + κ)d

− Õ

(
ηn

d

)
.
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We then bound the last three terms respectively. First we have

|I1| =
∑
i∈N

(θ̃2i − θ′2i )∥ξi∥2 ≤
(

1

(1− Õ(1/
√
d))2

− 1

)
·
∑
i∈N

θ′2i ∥ξi∥2

≤ Õ(1/
√
d)

(1− Õ(1/
√
d))2

· n2(1 + κ)d

(
(
1− κ)d− 2n2

√
d log(6n2/δ)

)2
= Õ

( ηn

d3/2

)
.

The first inequality is from the definition of θ̃i; The second inequality is from Lemma A.15
and Lemma A.65.

Then we bound |I2 − I3| as:

|I2 − I3| =
∑
i∈N

∑
j∈N\{i}

(θ̃iθ̃j − θ′iθ
′
j) · |⟨ξi, ξj⟩|+ θ′k

∑
i∈N

θ′i|⟨ξk∗ , ξi⟩|

≤
(

1

(1− Õ(1/
√
d))2

− 1

)∑
i∈N

∑
j∈N\{i}

θ′iθ
′
j · |⟨ξi, ξj⟩|+ n2θ

′
k∗ ·max

i∈N
θ′i · |⟨ξk∗ , ξi⟩|

≤ Õ(1/
√
d)

(1− Õ(1/
√
d))2

·
(n2)

22
√
d log(6n2/δ)

(
(
1− κ)d− 2ηn

√
d log(6n2/δ)

)2 + θ′k∗ ·Θ
(
ηn√
d

)
= Õ

(
η2n2

d2

)
+Θ

(
ηn

d3/2

)
= Õ

( ηn

d3/2

)
.

The first inequality is from the definition of θ̃i; The second inequality is from Lemma A.15
and Lemma A.65. Combining the above results, we finally have

∥v′∥22 − ∥vmm∥22 ≥ C1(1− βλ′1ρ
2)2

(1− β)2(1 + κ)d
+ Õ

( ηn

d3/2

)
.

Now we can prove the main proposition in this case.

Proof of Proposition A.14 in Case 1.1. From Lemma A.19 we have

∥v′∥22 − ∥vmm∥22 ≥ C1(1− βλ′1ρ
2)2

(1− β)2(1 + κ)d
+ o

(
1

d

)
≥ C1(1− βλ′1ρ

2)2

(1 + κ)d
(1− β) = T (1− β).

In the last equation we substitute T =
C1(1−βλ′

1ρ
2)2

(1+κ)d ≥ 0. Then we have

Γ2 − Γ′2 =
1

∥vmm∥2
− 1

∥v′∥2
=

∥v′∥2 − ∥vmm∥2

∥vmm∥2 · ∥v′∥2
≥ T (1− β)

∥vmm∥2 · ∥v′∥2
.

Therefore,

Γ− Γ′ ≥ T (1− β)

(Γ + Γ′)∥vmm∥2 · ∥v′∥2
≥ T (1− β)

2Γ∥vmm∥2 · ∥v′∥2
=

T (1− β)

2∥vmm∥∥v′∥2
≥ T (1− β)

2∥v′∥3
.

The last inequality is from ∥v′∥ ≥ ∥vmm∥. This implies

Γ′ ≤ Γ− T (1− β)

2∥v′∥3
≤ Γ− C1

∥vmm∥3nρ2
(1− β).

The last inequality is from our assumption that ∥v′∥ ≤ 2∥vmm∥ and ρ2 = Ω(d/n).
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Next we consider the other case.

Case 1.2 p = n1

Next we consider the case when all clean samples are mixed. In this case, all samples in clean set are
mixed, so the first two inequalities in Condition 3 do not hold, which means that λ′1 may be smaller
than λ1. But we could still prove that Lemma A.19 holds. We first write down the condition in this
case:
Condition 4 (All clean samples violate optimal token selection rule).{

yiv
⊤ξi ≥ 1, i ∈ N

yiv
⊤ri ≥ 1, i ∈ C

Plugging the representation (48) into the condition, we have:
θ′i · ∥ξi′∥2 +

∑
i′ ̸=i

yiyi′θ
′
i′⟨ξi, ξi′⟩ ≥ 1, i ∈ N

βiλ
′
i · ∥µi∥2 + (1− βi)(θ

′
i · ∥ξi∥2 +

∑
j ̸=i

yiyjθ
′
i⟨ξi, ξj⟩) ≥ 1, i ∈ C

Proof of Lemma A.19. First we assume that max{λ′1 · ∥µ1∥2,−λ′2 · ∥µ2∥2} = q in optimal v′. If
q ≥ 1, this is the same as Case 1.3. So we assume that q ≤ 1. Denote k⋆ = argmin

i∈C

1−βiq
1−βi

and

β = βk⋆ , consider the following condition
Condition 5 (Relaxed version of Condition 4).

θ′i · ∥ξi′∥2 +
∑
i′ ̸=i

yiyi′θ
′
i′⟨ξi, ξi′⟩ ≥ 1, i ∈ N

θ′i · ∥ξi′∥2 +
∑
i′ ̸=i

yiyi′θ
′
i′⟨ξi, ξi′⟩ ≥

1−βq
1−β , i ∈ C

Compared with Condition 4, the second inequality is relaxed for i ∈ C. Therefore, denote the max-
margin solution as v̂ under Condition 5, we must have ∥v̂∥ ≤ ∥v′∥. Then we will prove that Lemma
A.19 still holds between ∥vmm∥ and ∥v̂∥, which indicates ∥v′∥22 − ∥vmm∥22 ≥ ∥v̂∥22 − ∥vmm∥22 ≥
C1(1−βλ′

1ρ
2)2

(1−β)2(1+κ)d + o
(
1
d

)
. Denote the parameters in v̂ are λ̂1, λ̂2 and θ̂i, we first introduce the following

lemma to estimate θ̂i. Here we denote α = 1−βq
1−β for convenience.

Lemma A.20. Suppose that Assumption 4.1 holds, under Condition 5, we have

θ̂i ∈
[

α

(1 + κ)d

(
1−

2n
√
d log(6n2/δ)

(1− κ)d− 2n
√
d log(6n2/δ)

)
,

α

((1− κ)d− 2n
√
d log(6n2/δ)

]
, i ∈ C,

θ̂i ∈
[

1

(1 + κ)d

(
1−

2αn
√
d log(6n2/δ)

(1− κ)d− 2n
√
d log(6n2/δ)

)
,

α

((1− κ)d− 2n
√
d log(6n2/δ)

]
, i ∈ N .

Proof of Lemma A.20. Denote j = argmax
i∈[n]

θ̂i, we have

θ̂i · ∥ξi∥2 +
∑
j ̸=i

yiyj θ̂i⟨ξi, ξj⟩ ≥ θ̂j∥ξj∥2 − nθ̂j
√
d log(6n2/δ)

≥ θ̂j((1− κ)d− 2n
√
d log(6n2/δ)).

The two inequalities are from Lemma A.65 and our definition of j. Consider the contrary case when
θ̂j >

α

((1−κ)d−2n
√

d log(6n2/δ)
, we have

yj v̂
⊤ξj > α.

By the complementary slackness condition, if yj v̂⊤ξj > α ≥ 1, then we must have θ̂j = 0, and thus
we reach a contradiction.
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Then we lower bound θ̂i, for i ∈ C we have

α ≤ θ̂i · ∥ξi∥2 +
∑
j ̸=i

yiyj θ̂i⟨ξi, ξj⟩ ≤ θ̂i(1 + κ)d+ 2nmax
i∈[n]

θ̂i
√
d log(6n2/δ)

≤ θ̂i(1 + κ)d+
2αn

√
d log(6n2/δ)

(1− κ)d− 2n
√
d log(6n2/δ)

.

The second inequality is from Lemma A.65 and the last inequality is from the upper bound of θ̂i we
just derived. Therefore, we have

θ̂i ≥
α

(1 + κ)d

(
1−

2n
√
d log(6n2/δ)

(1− κ)d− 2n
√
d log(6n2/δ)

)
.

Similarly, for i ∈ N , we have

θ̂i ≥
1

(1 + κ)d

(
1−

2αn
√
d log(6n2/δ)

(1− κ)d− 2n
√
d log(6n2/δ)

)
.

Note that we only consider the case when ∥v̂∥ ≤ ∥v′∥ ≤ 2∥vmm∥. And from Lemma A.20 we have
θ̂i = Θ(α/d) for i ∈ C. So we must have α = O(log n) is some constant. Otherwise, for i ∈ C we
have

θ̂i∥ξi∥2 ≥ α−
∑
i′ ̸=i

yiyi′ θ̂i⟨ξi, ξi′⟩ = Ω(α).

It further yields that

∥v̂∥2 = Ω(
1

ρ2
) + Ω(

ηn

d
) +

∑
i∈C

θ̂2i ∥ξi∥2 = Ω(
1

ρ2
+
ηn

d
+
nα2

d
) = Ω(

n log2 n

d
), (53)

which contradicts with ∥v′′∥ = Θ(
√

1/ρ2 + ηn/d).

Then the difference between ∥vmm∥22 and ∥v̂∥22 becomes

∥v̂∥2 − ∥vmm∥2 ≥
∑
i∈C

θ̂2i ∥ξi∥2 − 2/ρ2 +
∑
i∈N

(θ̂2i − θ2i )∥ξi∥2︸ ︷︷ ︸
I1

+
∑
i∈[n]

∑
j∈[n]\{i}

yiyj θ̂iθ̂j⟨ξi, ξj⟩︸ ︷︷ ︸
I2

−
∑
i∈N

∑
j∈N\{i}

yiyjθiθj⟨ξi, ξj⟩︸ ︷︷ ︸
I3

.

We will bound every term sequentially. For i ∈ C, we have

θ̂i∥ξi∥2 ≥ α−
∑

i′∈[n],i′ ̸=i

yiθ̂i′⟨ξi, ξi′⟩ ≥ α− nmax
i∈[n]

θ̂i · 2
√
d log(6n2/δ)

= α−
2αn

√
log(6n2/δ)

(1− κ)
√
d− 2n

√
log(6n2/δ)

= α− Õ

(
n√
d

)
.

The second inequality is from Lemma A.65; The first equality is from Lemma A.18 and the last
equality is from Assumption 4.1. This implies∑

i∈C
θ̂2i ∥ξi∥2 − 2/ρ2 ≥ n1α

2

(1 + κ)d
− 2

ρ2
− Õ

(
n

d3/2

)
≥ C2n1α

2

(1 + κ)d
− Õ

(
n

d3/2

)
.

The second inequality is due to the SNR condition ρ/
√
d = Ω(1/

√
n) so there exists a constant C2

that 2
ρ2 ≤ (1−C2)n1α

2

(1+κ)d .
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Then for |I1| we have

|I1| ≤ (max
i∈N

θ2i −min
i∈N

θ̂2i )
∑
i∈N

∥ξi∥2

≤
((

1

(1− κ)d− 2ηn
√
d log(6n2/δ)

)2

−
(

1

(1 + κ)d

(
1−

2n
√
d log(6n2/δ)

(1− κ)d− 2n
√
d log(6n2/δ)

))2)
· n2(1 + κ)d

≤
( √

(1 + κ)d

(1− κ)d− 2ηn
√
d log(6n2/δ)

)2(
1−

(
(1− κ)d− 4ηn

√
d log(6n2/δ)

(1 + κ)d

)2)
· n2

= Θ

(
1

d

)
·Θ
(
ηn
√
log(6n2/δ)√

d

)
· n2

= Õ

(
η2n2

d3/2

)
.

The second inequality is from Lemma A.15 and Lemma A.20; The third inequality is from the fact
that η < 1.

As for the last two terms, we bound them respectively, for I2 we have

|I2| ≤
∑
i∈[n]

∑
j∈[n]\{i}

|yiyj θ̂iθ̂j⟨ξi, ξj⟩| ≤ n2 max
i∈[n]

θ̂2i · 2
√
d log(6n2/δ)

≤ n2
α2

((1− κ)d− 2n
√
d log(6n2/δ))2

· 2
√
d log(6n2/δ)

= Õ

(
n2

d3/2

)
.

The first inequality is from triangle inequality; The second inequality is from Lemma A.65; The third
inequality is from Lemma A.18. Last for I3, we have

|I3| ≤
∑
i∈N

∑
j∈N\{i}

|yiyjθiθj⟨ξi, ξj⟩| ≤ (n2)
2 max

i∈N
θ2i · 2

√
d log(6n2/δ)

≤ (n2)
2 1

((1− κ)d− 2ηn
√
d log(6n2/δ))2

· 2
√
d log(6n2/δ)

= Õ

(
η2n2

d3/2

)
.

The first inequality is from triangle inequality; The second inequality is from Lemma A.65; The third
inequality is from Lemma A.15. Combining the results above, we have

∥v′∥2 − ∥vmm∥2 ≥ C2n1(1− βq)2

(1− β)2(1 + κ)d
+ Õ

(
n2

d3/2

)
≥ C1(1− βq)2

(1− β)2(1 + κ)d
.

Therefore, we could then use the same method as above to prove that Proposition A.14 also holds in
this case.

Case 1.3 p < n1, Iv ∩ Ci ̸= ∅, Iv ∩ Ci′ = ∅
For the case when only one of the clusters in clean sets are all mixed, we can follow similar method
in Case 1.2 to prove that Lemma A.19 still holds. Without losing generality, assume all clean samples
with label yi = +1 violate optimal token selection while only part of clean samples with label
yi = −1 violate. we have
Condition 6 (One cluster and a clean sample in the opposite cluster violating optimal token selection).

−v⊤µ2 ≥ 1

yiv
⊤ξi ≥ 1, i ∈ N

yiv
⊤ri ≥ 1, i ∈ C+1

yiv
⊤ri ≥ 1, i ∈ C−1 ∩ Iv
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Similar to previous analysis, mixing multiple samples with label −1 will not result in a better solution
than only mixing one sample with label −1. Thus we can reduce this case to mixing only one clean
sample and denote this mixed sample as k−1. Therefore, we have

−λ′2 · ∥µ2∥2 ≥ 1

θ′i · ∥ξi′∥2 +
∑
i′ ̸=i

yiyi′θ
′
i′⟨ξi, ξi′⟩ ≥ 1, i ∈ N

yk−1βλ
′
2 · ∥µ2∥2 + (1− β)(θ′k−1

· ∥ξk−1∥2 +
∑

i ̸=k−1

yk−1yiθ
′
i⟨ξi, ξk−1⟩) ≥ 1

βλ′1 · ∥µ1∥2 + (1− β)(θ′ki
· ∥ξki

∥2 +
∑
i̸=ki

yki
yiθ

′
i⟨ξi, ξki

⟩) ≥ 1, i ∈ C+1

Denote q = λ′1 · ∥µ1∥2 and q ≤ 1. Denote k⋆ = argmin
i∈C+1

1−βiq
1−βi

and β = βk⋆ , we can further reduce

the condition to
Condition 7 (Relaxed version of Condition 6).

θ′i · ∥ξi′∥2 +
∑
i′ ̸=i

yiyi′θ
′
i′⟨ξi, ξi′⟩ ≥ 1, i ∈ N

θ′i · ∥ξi′∥2 +
∑
i′ ̸=i

yiyi′θ
′
i′⟨ξi, ξi′⟩ ≥

1−βq
1−β , i ∈ C+1

Condition 7 relax the constraints in Condition 6. Meanwhile, it differs from Condition 4 only in that
the last inequality holds for clean samples with label +1. Therefore, we can follow the proof above
to show that Lemma A.19 still holds in this case.

Then we consider the second scenario.

Case 2: p = 0, k − p ̸= 0

Similar to the previous part, there are two cases we need to consider under this scenario:

1. k − p < n2.

2. k − p = n2.

We will go over every case sequentially.

Case 2.1 k − p < n2

In this case, part of noisy samples are mixed. Denote the mixed samples as k1, k2, ..., kk−p. And
for every mixed sample ki, we have ri = βiξki + (1− βi)µki . Then the conditions under Case 2.1
become:
Condition 8 (k − p noisy samples violating optimal token selection rule).

v⊤µ1 ≥ 1

−v⊤µ2 ≥ 1

yiv
⊤ξi ≥ 1, i ∈ N , i /∈ [k − p]

ykiv
⊤rki ≥ 1, i ∈ [k − p]

We could also write the last inequality as

yki
βiv

⊤ξki
+ yki

(1− βi)v
⊤µki

≥ 1, i ∈ [k − p].

Therefore,
yki

v⊤ξki
≥ (1− yki

(1− βi)v
⊤µki

)/βi, i ∈ [k − p].

For noisy samples, we have yi = −1 when µi = µ1 and yi = 1 when µi = µ2, so ykiv
⊤µki ≤ 0

and thus (1−yki
(1−βi)v⊤µki

)/βi ≥ 1. Compared to the constraint in Condition 1 that yki
v⊤µki

≥
1, i ∈ N , the new condition is strengthened. So mixing 1 more noisy samples is equal to strengthening
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1 constraint in the original setting. Therefore, mixing k− p samples will not result in a better solution
than only mixing 1 noisy sample. Similarly, we can simplify this case to mixing only 1 noisy sample
and denote this sample as k∗. We have rk∗ = βξk∗ + (1− β)µk∗ and assume that ξk∗ = µ1.

Denote v′′ is the optimal solution under this condition, and the parameters in v′′ are λ′′1 , λ
′′
2 and θ′′i .

Then the conditions become:
Condition 9 (1 noisy sample violating optimal token selection rule).

v⊤µ1 ≥ 1

−v⊤µ2 ≥ 1

yiv
⊤ξi ≥ 1, i ∈ N , i ̸= k⋆

yk⋆v⊤rk⋆ ≥ 1

Plugging the representation (48) into the condition, we have:

λ′′1 · ∥µ1∥2 ≥ 1

−λ′′2 · ∥µ2∥2 ≥ 1

θ′′i · ∥ξi∥2 +
∑
i′ ̸=i

yiyi′θ
′′
i′⟨ξi, ξi′⟩ ≥ 1, i ∈ N , i ̸= k⋆

−(1− β)λ′′1 · ∥µ1∥2 + β(θ′′k⋆ · ∥ξk⋆∥2 +
∑

i ̸=k⋆

yk⋆yiθ
′′
i ⟨ξi, ξk⋆⟩) ≥ 1

We first introduce the following lemma which estimates the parameters of the noises. We define

α =
1 + (1− β)λ′′1∥µ1∥2

β

for the convenience of the following proof.

Lemma A.21. Suppose that Assumption 4.1 holds, under Condition 9, we have

θ′′k⋆ ≤ α

(1− κ)d− 2n2
√
d log(6n2/δ)

θ′′k⋆ ≥ α

(1 + κ)d

(
1−

2n2
√
d log(6n2/δ)

(1− κ)d− 2n2
√
d log(6n2/δ)

)
max

i∈N ,i̸=k⋆
θ′′i ≤

(1− κ)d+ 2(α− n2)
√
d log(6n2/δ)

((1− κ)d− 2n2
√
d log(6n2/δ))2

min
i∈N ,i̸=k⋆

θ′′i ≥ 1

(1 + κ)d
·
(
1−

2αn2
√
d log(6n2/δ)

(1− κ)d− 2n2
√
d log(6n2/δ)

)
.

Proof of Lemma A.20. From the last inequality in Condition 9 we have

θ′′k∗
∥ξk∗∥2 +

∑
i∈N ,i̸=k∗

yiyk∗θ
′′
i ⟨ξi, ξk∗⟩ ≥ α > 1.

The last inequality is because λ′′1∥µ1∥2 ≥ 1 and 0 < β < 1. Denote j = argmax
i∈[n]

θ′′i , we have

yjv
′′⊤ξj = θ′′j ∥ξj∥2 +

∑
i∈N ,i̸=j

yiyjθ
′′
i ⟨ξi, ξj⟩

≥ θ′′j (1− κ)d− n2 max
i∈[n]

θ′′i · 2
√
d log(6n2/δ)

= θ′′j ((1− κ)d− n2 · 2
√
d log(6n2/δ))

The first inequality is due to Lemma A.65 and the last equation is from our definition of j. Consider
the contrary case when θ′′j >

α

(1−κ)d−2n2

√
d log(6n2/δ)

, we have

yjv
′′⊤ξj > α.
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By the complementary slackness condition, if yjv′′⊤ξj >
1+λ′′

1 (1−β)∥µ1∥2

β then we must have
θ′′j = 0, and thus we reach a contradiction. Therefore, we have θ′′k⋆ ≤ θ′′j ≤ α

(1−κ)d−2n2

√
d log(6n2/δ)

.

Then denote j′ = argmax
i∈[n],i̸=k⋆

θ′′i , we have

yj′v
′′⊤ξj′ = θ′′j′∥ξj′∥2 +

∑
i∈N ,i̸=j′

yiyj′θ
′′
i ⟨ξi, ξj′⟩

≥ θ′′j′(1− κ)d− n2 max
i∈[n],i̸=j′

θ′′i · 2
√
d log(6n2/δ)− θ′′k⋆

√
d log(6n2/δ)

≥ θ′′j ((1− κ)d− n2 · 2
√
d log(6n2/δ))−

2α
√
d log(6n2/δ)

(1− κ)d− 2n2
√
d log(6n2/δ)

.

The first inequality is from Lemma A.65 and the second inequality is from the upper bound of θ′′k⋆

we just get. Consider the case when θ′′j′ >
(1−κ)d+2(α−n2)

√
d log(6n2/δ)

((1−κ)d−2n2

√
d log(6n2/δ))2

, we have

yj′v
′′⊤ξj′ > 1.

By the complementary slackness condition, if yj′v′′⊤ξj′ > 1 then we must have θ′′j′ = 0, and thus
we reach a contradiction.

Then we estimate the lower bound of θ′′j when j ̸= k∗. We have

1 ≤ yjv
′′⊤ξj = θ′′j ∥ξj∥2 +

∑
i∈[n],i̸=j

yiyjθ
′′
i ⟨ξi, ξj⟩ ≤ θ′′j (1 + κ)d+ n2 max

i∈[n]
θ′′i · 2

√
d log(6n2/δ)

≤ θ′′j (1 + κ)d+
1 + λ′′1(1− β)∥µ1∥2

β((1− κ)d− 2n2
√
d log(6n2/δ)

· 2n2
√
d log(6n2/δ),

where the last inequality is from the upper bound we just get. Therefore, we have

θ′′j ≥ 1

(1 + κ)d
·
(
1−

2n2
√
d log(6n2/δ)

(1− κ)d− 2n2
√
d log(6n2/δ)

· 1 + λ′′1(1− β)∥µ1∥2

β

)
for all j ∈ N and j ̸= k∗.
Lastly we lower bound θ′′k∗

. We have

1 + (1− β)λ′′1∥µ1∥2

β
≤ yk∗v

′′⊤ξk∗ = θ′′k∗
(1 + κ)d+ n2 max

i∈[n]
θ′′i · 2

√
d log(6n2/δ).

Similarly, we have

θ′′k∗
≥ 1

(1 + κ)d
· 1 + (1− β)λ′′1∥µ1∥2

β

(
1−

2n2
√
d log(6n2/δ)

(1− κ)d− 2n2
√
d log(6n2/δ)

)
.

After getting the bound of parameters, we could derive the norm difference as above

Lemma A.22. Suppose that Assumption 4.1 holds, denote v and v′′ as the optimal solutions under
condition 1 and condition 9 respectively. We have

∥v′′∥22 − ∥vmm∥22 ≥ C3(1− β)

d
,

where C3 = Θ(1).

Proof of Lemma A.22. From the third inequality in Condition 9, for i ∈ N , i ̸= k⋆ we have

θ′′i · ∥ξi∥2 +
∑

i′ ̸=i,k⋆

yiyi′θ
′′
i′⟨ξi, ξi′⟩ ≥ 1− yiyk⋆θ′′k⋆⟨ξi, ξk⋆⟩.
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Then we add yiyk⋆w⟨ξi, ξk⋆⟩ on both sides, where we set w = θ′′k⋆ − α−1

(1+κ)d−2
√

d log(6n2/δ)
≤ θ′′k⋆ .

Then we have

θ′′i · ∥ξi′∥2 +
∑

i′ ̸=i,k⋆

yiyi′θ
′′
i′⟨ξi, ξi′⟩+ yiyk⋆w⟨ξi, ξk⋆⟩ ≥ 1− yiyk⋆(θ′′k⋆ − w)⟨ξi, ξk⋆⟩

≥ 1− 2(θ′′k⋆ − w)
√
d log(6n2/δ)

=
(1 + κ)d− 2α

√
d log(6n2/δ)

(1 + κ)d− 2
√
d log(6n2/δ)

. (54)

The second inequality is from Lemma A.65. Now consider a new v = λ1µ1 + λ2µ2 +
∑

i∈[n]

yiθiξi

with
λ1 = λ′′1 ; λ2 = λ′′2 ;

θi = θ′′i /(1− 2(θ′′k⋆ − w)
√
d log(6n2/δ)) for i ∈ [n], i ̸= k⋆

and
θk⋆ =

w

1− 2(θ′′k⋆ − w)
√
d log(6n2/δ)

.

We can prove that v satisfies all constraints for vmm.

From the first two inequalities in Condition 9, we have λ1∥µ1∥2 = λ′′1∥µ1∥2 ≥ 1, −λ2∥µ2∥2 =

−λ′′2∥µ2∥2 ≥ 1. Then by dividing 1 − 2(θ′′k⋆ − w)
√
d log(6n2/δ) on both sides of (54), for

∀i ∈ N , i ̸= k⋆ we have

θi · ∥ξi∥2 +
∑
i′ ̸=i

yiyi′θi⟨ξi, ξi′⟩ ≥ 1.

Lastly we prove that θk⋆∥ξk⋆∥2 +
∑

i ̸=k⋆

yiyk⋆θi⟨ξi, ξk⋆⟩ ≥ 1. From the last inequality in Condition 9

we have

θ′′k⋆ · ∥ξk⋆∥2 +
∑
i ̸=k⋆

yk⋆yiθ
′′
i ⟨ξi, ξk⋆⟩ ≥ α.

Dividing 1− 2(θ′′k⋆ − w)
√
d log(6n2/δ) on both sides, we get

θ′′k⋆∥ξk⋆∥2

1− 2(θ′′k⋆ − w)
√
d log(6n2/δ)

+
∑
i ̸=k⋆

yiyk⋆θi⟨ξi, ξk⋆⟩ ≥ α

1− 2(θ′′k⋆ − w)
√
d log(6n2/δ)

.

Therefore we have

θk⋆∥ξk⋆∥2 +
∑
i ̸=k⋆

yiyk⋆θi⟨ξi, ξk⋆⟩ ≥ α− (θ′′k⋆ − w)∥ξk⋆∥2

1− 2(θ′′k⋆ − w)
√
d log(6n2/δ)

≥ α− (θ′′k⋆ − w)(1 + κ)d

1− 2(θ′′k⋆ − w)
√
d log(6n2/δ)

= 1.

The second inequality is from Lemma A.65 and the last equality is by our definition θ′′k⋆ − w =
α−1

(1+κ)d−2
√

d log(6n2/δ)
. Thus, v is a possible solution under Condition 1 and ∥v∥ ≥ ∥vmm∥.

Next we estimate the difference between ∥v′′∥2 and ∥v∥2. The expansion of ∥v′′∥2 and ∥v∥2 are:

∥v′′∥2 = λ′′21 ∥µ1∥2 + λ′′22 ∥µ2∥2 +
∑
i∈N

θ′′2i ∥ξi∥2 +
∑
i∈N

∑
j∈N

yiyjθ
′′
i θ

′′
j ⟨ξi, ξj⟩,

∥v∥2 = λ
2

1∥µ1∥2 + λ
2

2∥µ2∥2 +
∑
i∈N

θ
2

i ∥ξi∥2 +
∑
i∈N

∑
j∈N

yiyjθiθj⟨ξi, ξj⟩.

According to the condition (49), we have ∥v′′∥ ≤ 2∥vmm∥ = Θ(
√

1/ρ2 + ηn/d), which implies
that α = O(

√
n log n). Otherwise, we have

θ′′k⋆∥ξk⋆∥2 ≥ α−
∑
i̸=k⋆

yk⋆yiθ
′′
i ⟨ξi, ξk⋆⟩ = Ω(α).
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It further yields that

∥v′′∥2 = Ω(
1

ρ2
) + Ω(

ηn

d
) + θ′′2k⋆∥ξk⋆∥2 = Ω(

1

ρ2
+
ηn

d
+
α2

d
) = Ω(

n log2 n

d
),

which contradicts with ∥v′′∥ = Θ(
√
1/ρ2 + ηn/d). We decompose the difference between ∥v′′∥2

and ∥v∥2 into four terms:

∥v′′∥2 − ∥v∥2 =(θ′′2k⋆ − θ
2

k⋆)∥ξk⋆∥2︸ ︷︷ ︸
I1

+
∑

i∈N ,i̸=k⋆

(θ′′2i − θ
2

i )∥ξi∥2︸ ︷︷ ︸
I2

−
∑
i∈N

∑
j∈N

yiyjθiθj⟨ξi, ξj⟩︸ ︷︷ ︸
I3

+
∑
i∈N

∑
j∈N

yiyjθ
′′
i θ

′′
j ⟨ξi, ξj⟩︸ ︷︷ ︸

I4

.

We now estimate I1 to I4 sequentially. For the first term,

I1 ≥ (θ′′2k⋆ − θ
2

k⋆)(1− κ)d = (θ′′k⋆ − θk⋆)(θ′′k⋆ + θk⋆)(1− κ)d

=
(α− 1)(1− 2θ′′k⋆

√
d log(6n2/δ))

(1 + κ)d− 2
√
d log(6n2/δ)

· Ω
(
1

d

)
· (1− κ)d

= Ω

(
α− 1

d

)
,

where the first inequality is from Lemma A.65; the second equality is from Lemma A.20; and the last
equality uses the fact that α = O(

√
n log n). Then we can further upper bound max

i∈N ,i̸=k⋆
θ′′i as

max
i∈N ,i̸=k⋆

θ′′i ≤
(1− κ)d+ 2(α− n2)

√
d log(6n2/δ)

((1− κ)d− 2n2
√
d log(6n2/δ))2

= O(
1

d
). (55)

For the second term I2, we have

|I2| ≤
∑

i∈N ,i̸=k⋆

(θ
2

i − θ′′2i )(1 + κ)d

≤
(

1

(1− (θ′′k⋆ − w)
√
d log(6n2/δ))2

− 1

)
max

i∈N ,i̸=k⋆
θ′′2i · ηn(1 + κ)d

=
(α− 1)

√
d log(6n2/δ)

(1 + κ)d−
√
d log(6n2/δ)

·O(
ηn

d
) = Õ

(
(α− 1)ηn

d3/2

)
.

The second inequality is from Lemma A.20. The first equality is from (55) and the last equality is
from Assumption 4.1.

Then we bound | − I3 + I4| as:

| − I3 + I4| ≤
∑
i∈N

∑
j∈N\{i}

|θiθj − θ′′i θ
′′
j | · |⟨ξi, ξj⟩|

≤
∑

i∈N\{k⋆}

∑
j∈N\{k⋆,i}

|θiθj − θ′′i θ
′′
j | · |⟨ξi, ξj⟩|+ 2

∑
t∈N\{k⋆}

|θk⋆θt − θ′′k⋆θ′′t | · |⟨ξk⋆ , ξt⟩|

≤(ηn)2
(

1

(1− (θ′′k⋆ − w)
√
d log(6n2/δ))2

− 1

)
max

i∈N ,i̸=k⋆
θ′′2i · 2

√
d log(6n2/δ)

+ ηn

(
θ′′k⋆ − θk⋆

1− 2(θ′′k⋆ − w)
√
d log(6n2/δ)

)
max

i∈N ,i̸=k⋆
θ′′i 4
√
d log(6n2/δ)

≤
(α− 1)

√
d log(6n2/δ)

(1 + κ)d−
√
d log(6n2/δ)

·O(
(ηn)2(1 + κ)

d3/2
) +

α− 1

d
·O(ηn

c1
d
) · 2

√
d log(6n2/δ)

=O

(
(α− 1)η2n2

d2
+

(α− 1)ηn

d3/2

)
.
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The third inequality is from Lemma A.15 and Lemma A.20; The fourth inequality is from the fact
that

θ′′k⋆ − θk⋆

1− 2(θ′′k⋆ − w)
√
d log(6n2/δ)

=
θ′′k⋆ − θk⋆ − 2θ′′k⋆(θ′′k⋆ − w)

√
d log(6n2/δ)

1− 2(θ′′k⋆ − w)
√
d log(6n2/δ)

=
Ω(α−1

d )−O(α(α−1)
d3/2 )

1− 2(θ′′k⋆ − w)
√
d log(6n2/δ)

> 0

So we have θ′′k⋆ − θk⋆

1−2(θ′′
k⋆−w)

√
d log(6n2/δ)

≤ θ′′k⋆ − θk⋆ ; The last equality is from Assumption 4.1.

Combining the above results, we have

∥v′′∥22 − ∥vmm∥22 ≥ Θ

(
α− 1

d

)
+O

(
(α− 1)ηn

d3/2

)
≥ C3(1− β)

d
.

Here C3 = Θ(1) is a constant.

Now we can prove the main proposition in this case.

Proof of Proposition A.14 under Case 2.1. From Lemma A.22 we have

∥v′′∥22 − ∥vmm∥22 ≥ C3(1− β)

d
= T ′(1− β).

Here we substitute T ′ = C3

d ≥ 0. Then we have

Γ2 − Γ′′2 =
1

∥vmm∥2
− 1

∥v′′∥2
=

∥v′′∥2 − ∥vmm∥2

∥v′′∥2 · ∥vmm∥2
≥ T ′(1− β)

∥v′′∥2 · ∥vmm∥2
.

Therefore,

Γ− Γ′′ ≥ T ′(1− β)

(Γ + Γ′′)∥vmm∥2 · ∥v′∥2
≥ T ′(1− β)

2Γ∥vmm∥2 · ∥v′′∥2
=

T ′(1− β)

2∥vmm∥∥v′′∥2
≥ T ′(1− β)

2∥v′′∥3
.

The last inequality is from ∥v′′∥ ≥ ∥vmm∥. This implies

Γ′′ ≤ Γ− T ′(1− β)

2∥v′′∥3
≤ Γ− C1

∥vmm∥3nρ2
(1− β).

The last inequality is from our assumption that ∥v′′∥ ≤ 2∥vmm∥ and ρ2 = Ω(d/n).

Then we consider the other case.

Case 2.2 k − p = n2

In this case, all noisy samples are mixed. From previous analysis, this is equivalent to strengthening
all conditions yiv⊤ξi ≥ 1 while other conditions remain the same. As mixing k− p samples will not
result in a better solution than only mixing 1 noisy sample, the proof is the same as Case 2.1 and we
omit it for convenience.

Finally, we consider the last scenario.

Case 3: p ̸= 0, k − p ̸= 0

This scenario is more complex as both clean and noisy sets are mixed. There are four cases to consider

1. p < n1, k − p < n2. (Both clean and noisy sets are partially mixed)

2. p < n1, k − p = n2 (Clean set is partially mixed, noisy set is all mixed)

3. p = n1, k − p < n2 (Clean set is all mixed, noisy set is partially mixed)

4. p = n1, k − p = n2 (Both clean and noisy sets are all mixed)
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We will go over every case to prove Proposition A.14 holds.

Case 3.1 p < n1, k − p < n2

This case is simple because from the analysis above, mixing 1 more clean sample is equivalent to
adding 1 more constraint and mixing 1 more noisy sample is equivalent to strengthening 1 original
constraint. So mixing both sets will not result in a better solution than only mixing 1 clean sample.
Therefore, the proof is the same as Case 1.1 and we omit is for convenience.

Case 3.2 p < n1, k − p = n2

In this case, all noisy samples and part of clean samples are mixed. We can consider this case as an
extension of Case 2.2 by mixing some clean samples. From previous analysis, mixing 1 more clean
sample is equivalent to adding 1 more constraint. So this case will not result in a better solution than
Case 2.2. The following proof is the same as Case 2.2 and we omit it for convenience.

Case 3.3 p = n1, k − p < n2

In this case, all clean samples and part of noisy samples are mixed. We can consider this case as an
extension of Case 1.2 by mixing some noisy samples. From previous analysis, mixing 1 more noisy
sample is equivalent to strengthening 1 original constraint. So this case will not result in a better
solution than Case 1.2. The following proof is the same as Case 1.2 and we omit it for convenience.

Case 3.4 p = n1, k − p = n2

This case is more complex. We cannot simply consider it as an extension of Case 2.2 because the
analysis of Case 2.2 is based on the condition that there exist clean samples that follow optimal token
selection rule. Denote ri = βiµi + (1− βi)ξi for i ∈ C and ri = (1− βi)µi + βiξi for i ∈ N . The
condition in this case becomes
Condition 10 (All samples are mixed).

yiv
′′⊤ri ≥ 1.

This indicates
βiyiλ

′′
i ∥µi∥2 + (1− βi)(θ

′′
i ∥ξi∥2 +

∑
j ̸=i

yiyjθ
′′
j ⟨ξi, ξj⟩) ≥ 1, i ∈ C,

(1− βi)yiλ
′′
i ∥µi∥2 + βi(θ

′′
i ∥ξi∥2 +

∑
j ̸=i

yiyjθ
′′
j ⟨ξi, ξj⟩) ≥ 1, i ∈ N .

Assume that min{λ′′1 · ∥µ1∥2,−λ′′2 · ∥µ2∥2} = q in optimal v′′. If q ≥ 1, we can directly follow the
proof in Case 2.2. Otherwise, denote α = 1−βiq

1−βi
. We have α > 1 due to q < 1 and 0 ≤ βi < 1.

Without losing generality, we assume λ′′1 · ∥µ1∥2 = q < 1. Then consider the following relaxed
condition
Condition 11 (Relaxed version of constraints in Condition 10).

θ′′i ∥ξi∥2 +
∑
j ̸=i

yiyjθ
′′
j ⟨ξi, ξj⟩ ≥ α, i ∈ C1.

Denote the optimal solution under Condition 11 as v̆ and the corresponding coefficients in v̆ as λ̆1, λ̆2
and θ̆i, i.e.

v̆ = λ̆1µ1 + λ̆2µ2 +
∑
i∈[n]

θ̆iξi.

Since the constraints in Condition 11 is a subset of the constraints in Condition 10, we have ∥v̆∥ ≤
∥v′′∥. Meanwhile, we have the following lemma to estimate θ̆i:

Lemma A.23. Suppose that Assumption 4.1 holds, under Condition 11, we have

θ̆i = 0, i ∈ [n]\C1;

θ̆i ∈
[

α

(1 + κ)d

(
1−

n
√
d log(6n2/δ)

(1− κ)d− n
√
d log(6n2/δ)

)
,

α

((1− κ)d− 2n11
√
d log(6n2/δ)

]
, i ∈ C1.
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Proof of Lemma A.23. Note that Condition 11 does not have any constraint for samples with i ∈
[n]\C1. Thus we have θ̆i = 0 for any i ∈ [n]\C1 in the representation (44). Denote j = argmax

i∈C1

θ̆i,

then we have

θ̆j · ∥ξj∥2 +
∑
k ̸=j

ykyj θ̆k⟨ξi, ξj⟩ ≥ θ̆j∥ξj∥2 − 2θ̆jn11
√
d log(6n2/δ) ≥ θ̆j((1− κ)d− 2n11

√
d log(6n2/δ)).

The two inequalities are from Lemma A.65 and our definition of j. Consider the contrary case when
θ̆j >

α

((1−κ)d−2n11

√
d log(6n2/δ)

, we have

yj v̆
⊤ξj > α.

By the complementary slackness condition, if yj v̆⊤ξj > α, then we must have θ̆j = 0, and thus we
reach a contradiction.
Then we lower bound θ̆i. For ∀i ∈ C1 we have

α ≤ θ̆i · ∥ξi∥2 +
∑
j ̸=i

yiyj θ̆i⟨ξi, ξj⟩ ≤ θ̆i(1 + κ)d+ 2n11 max
i∈[n]

θ̆i
√
d log(6n2/δ)

≤ θ̆i(1 + κ)d+
2αn11

√
d log(6n2/δ)

(1− κ)d− 2n11
√
d log(6n2/δ)

.

The second inequality is from Lemma A.65 and the last inequality is from the upper bound of θ̆i we
just derived. Therefore, we have

θ̆i ≥
α

(1 + κ)d

(
1−

2n11
√
d log(6n2/δ)

(1− κ)d− 2n11
√
d log(6n2/δ)

)
.

From this Lemma we have θ̆i = Θ(α/d) for i ∈ C1. Similar as (53), under our assumption
∥v̆∥ ≤ 2∥vmm∥, we have α = O(log(n)). Next we estimate the difference between ∥v̆∥2 and
∥vmm∥2. We can prove that Lemma A.22 still holds in this case.

Proof of Lemma A.22. Under this case, the difference between ∥v̆∥22 and ∥vmm∥22 becomes

∥v̆∥2 − ∥vmm∥2 ≥
∑
i∈[n]

(θ̆2i − θ2i )∥ξi∥2 − (λ21 − λ̆21)∥µ1∥2 − (λ22 − λ̆22)∥µ2∥2︸ ︷︷ ︸
I1

−
∑
i∈N

∑
j∈N\{i}

yiyjθiθj⟨ξi, ξj⟩︸ ︷︷ ︸
I2

+
∑
i∈C1

∑
j∈C1\{i}

yiyj θ̆iθ̆j⟨ξi, ξj⟩︸ ︷︷ ︸
I3

We then bound I1 ∼ I3 respectively. For I1 we have

|I1| ≥
∑
i∈C1

θ̆2i ∥ξi∥2 −
∑
i∈N

θ2i ∥ξi∥2 − 2/ρ2 ≥ n11 min
i∈[n]

θ̆i
2
(1− κ)d− n2 max

i∈N
θ2i (1 + κ)d− 2/ρ2

≥ α2n11(1− κ)

(1 + κ)2d

(
1−

2
√
d log(6n2/δ)

(1− κ)d− 2n11
√
d log(6n2/δ)

)
− n2(1 + κ)d

((1− κ)d− 2n2
√
d log(6n2/δ))2

− 2

ρ2

= Ω

(
n

d

)
.

The second inequality is from Lemma A.65; The third inequality is from Lemma A.15 and A.23; The
last equality is due to the SNR condition ρ/

√
d = Ω(1/

√
n) so that 1

ρ2 ≤ n
4d . For I2, we have

|I2| ≤
∑
i∈N

max
i∈N

θ2i · 2
√
d log(6n2/δ) ≤

2n2
√
d log(6n2/δ)

((1− κ)d− 2n2
√
d log(6n2/δ))2

= Õ

(
n

d3/2

)
.
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The first inequality is from Lemma A.65; The second inequality is from Lemma A.15. Similarly, for
|I3| we have

|I3| ≤
∑
i∈C1

max
i∈C1

θ̆2i · 2
√
d log(6n2/δ) ≤

2n11α
2
√
d log(6n2/δ)

((1− κ)d− 2n11
√
d log(6n2/δ))2

= Õ

(
n

d3/2

)
.

The second inequality is from Lemma A.23. Combining the above results, we have

∥v′′∥22 − ∥v∥22 ≥ Θ

(
n11
d

)
− Õ

(
n

d3/2

)
≥ C3n(1− β)

d
.

The remaining proof is the same as Case 2.1 and we omit it for convenience.

Therefore, we complete the proof for all possible scenarios.

Training and Test Error Analysis
From Proposition A.14 we can analyze the properties of both parameters to estimate the training
and test error. In this section, we first get the convergence direction of parameters p and v. The
main difference between our setting with Ataee Tarzanagh et al. [6] is that they only consider the
infinite case and their results hold only when R, r → ∞. We extend their results to the finite case.
Specifically, given fixed upper bound R and r for ∥p∥ and ∥v∥ respectively, we denote the solution
of the constrained optimization (4) as (v(r,R),p(r,R)) in this section for brevity.

Our main theorem in this section estimates the corresponding deviation of p(r,R)/R and v(r,R)/r
from their convergence direction pmm/∥pmm∥ and vmm/∥vmm∥. For a given p, it is elementary that
the margin induced by p is mini,ti ̸=αi

(xiαi
−xiti)

⊤p/∥p∥, thus when ∥p∥ = 1, the margin becomes
mini,ti ̸=αi

(xiαi
− xiti)

⊤p. And for a given v, the label margin induced by v is mini yiv
⊤ri/∥v∥.

Recall that the label margin induced by vmm is Γ and the margin of p-SVM induced by pmm is Ξ.

First we introduce a lemma to estimate the norm of ∥pmm∥. This will benefit our proof of the main
theorem.
Lemma A.24 (Norm of pmm). Suppose that Assumption 4.1 holds, recall that the solution of (p-SVM)
is pmm. With probability at least 1− δ on the training dataset we have

1

ρ2
+
ηn

d
≤ ∥pmm∥2 ≤ 8

ρ2
+

17ηn

d
.

This implies

∥pmm∥ = Θ

(√
1

ρ2
+
ηn

d

)
.

Proof of Lemma A.24. First we prove the upper bound. Consider the following possible solution p̃:

p̃ =
2(µ1 + µ2)

ρ2
+
∑
i∈N

4
ξi
d
. (56)

We then proved that p̃ satisfies (41). For k ∈ C we have

p̃⊤(µk − ξk) = 2−
∑
i∈N

4
⟨ξi, ξk⟩
d

≥ 2−
4n2
√
d log(6n2/δ)

d
≥ 1.

The first inequality is from the definition of d in Lemma A.65 and the second inequality is from
Assumption 4.1. And for k ∈ N , we have

p̃⊤(ξk − µk) = −2 +
∑
i∈N

4
⟨ξi, ξk⟩
d

≥ −2 + 4(1− κ) +
∑

i∈N ,i̸=k

4
⟨ξi, ξk⟩
d

≥ −2 + 4(1− κ) +
4n2
√
d log(6n2/δ)

d
≥ 1.

The first and second inequalities are from Lemma A.65; The last inequality is from Assumption 4.1.

50



Therefore, the max-margin solution pmm must have no greater norm than p̃. So we can upper bound
pmm as

∥pmm∥2 ≤ ∥p̃∥2 =
8

ρ2
+

16

d2

(∑
i∈N

∥ξi∥2 +
∑

i,j∈N ,i̸=j

⟨ξi, ξj⟩
)

≤ 8

ρ2
+

16

d2
(
(1 + κ)n2d+ 2n22

√
d log(6n2/δ)

)
≤ 8

ρ2
+

17ηn

d
.

The second inequality is from Lemma A.65; The last inequality is from the definition of d in
Assumption 4.1.

Then we prove for the lower bound. As pmm is the max-margin solution and satisfies KKT condition,
it can be expressed as the sum of signal and noise tokens. Then we decompose pmm = pmm

µ + pmm
ξ

where pmm
µ = fmm

1 µ1 + fmm
2 µ2 and pmm

ξ =
∑

i∈[n] g
mm
i ξi. Note that µj ⊥ ξi for all j ∈

{±1}, i ∈ [n]. From Lemma A.29, we have fmm
j ≥ 0.9/ρ2, so we can lower bound ∥pmm

µ ∥22 as

∥pmm
µ ∥22 = fmm2

1 ∥µ1∥2 + fmm2
2 ∥µ2∥2 ≥ 2 · 0.92

ρ2
≥ 1

ρ2
.

As for ∥pmm
ξ ∥2, from p-SVM condition, for every noisy sample we have

p⊤
mm(ξi − µi) ≥ 1,

which indicates

pmm⊤
ξ ξi = p⊤

mmξi ≥ 1 + p⊤
mmµi ≥ 1.9.

The last inequality is from Lemma A.29. Sum up the inequality for all noisy sample, we have∑
i∈N

pmm⊤
ξ ξi ≥ 1.9n2.

Thus,

∥pmm
ξ ∥ ≥ 1.9n2

∥
∑
i∈N

ξi∥
=

1.9n2√∑
i∈N

∥ξi∥2 +
∑

i,j∈N
⟨ξi, ξj⟩

≥ 1.9n2√
2 · n2 · (1 + κ)d

≥
√
ηn

d
.

The second inequality is from Lemma A.65 and the last inequality is from Assumption 4.1. Therefore,

∥pmm∥2 = |pmm
µ ∥22 + ∥pmm

ξ ∥22 ≥ 1

ρ2
+
ηn

d
.

Combining the results above, we have

∥pmm∥2 = Θ

(
1

ρ2
+
ηn

d

)
.

Definition A.25. Let f : R2 → Rd. We say that

lim
x,y→∞

f(x, y) = L

iff ∀ϵ > 0 ∃M such that ∀x, y > M we have that ∥f(x, y)− L∥ < ϵ.
Remark A.26. Let g : R → R be a function with limx→∞ g(x) = ∞. Assume that
limx,y→∞ f(x, y) = L, then limx→∞ f(x, g(x)) = L and limx→∞ f(g(x), x) = L

Now we introduce our key theorem:
Theorem A.27. Suppose that Assumption 4.1 holds, with probability at least 1− δ on the training
dataset, we have

• The margin induced by p(r,R)/R in p-SVM is at least (1− ζ)Ξ, where

ζ =
log(4

√
ρ2 + (1 + κ)d∥vmm∥3dρ2)

RΞ
.
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• The label margin induced by v(r,R)/r in v-SVM is at least (1 − γ)Γ, where γ =
2
√

ρ2+(1+κ)d

Γ exp((1−ζ)RΞ) .

Proof of Theorem A.27. From Proposition A.14, we have that for any ∥p∥, the label margin 1/∥v(p)∥
is at most

Γ−
Cmaxi∈[n](1− siαi)

∥vmm∥3nρ2
,

where αi = 1 for i ∈ C and αi = 2 for i ∈ N . Recall that si = S(Xip) is the softmax probability
vector. We define qpi = 1− siαi to measure the amount of non-optimality (attention on non-optimal
token).

We first consider the convergence of p(r,R) and use contradiction to prove the first statement. Denote
pmm
R = Rpmm/∥pmm∥ which has the same norm as p(r,R) and the direction of pmm. Suppose

the margin induced by p(r,R)/R is at most (1 − ζ)Ξ, i.e. mini,ti ̸=αi(xiαi − xiti)
⊤p(r,R) ≤

(1 − ζ)RΞ,∀i ∈ [n]. Note that here each sequence only has two tokens, thus ti, αi ∈ [2], and
ti = 3− αi.

According to Lemma A.24, we have

Ξ = ∥pmm∥−1
2 = Θ((ηn/d+ 1/ρ2)−1/2).

Following the definition of qpi above, we set q̂max = supi∈[n] q
p(r,R)

i and q∗max = supi∈[n] q
pmm
R

i to
be the worst non-optimality in p(r,R) and pmm

R . Then we have

q
pmm
R

i =
exp(x⊤

iti
pmm
R )∑

t∈[2] exp(x
⊤
itp

mm
R )

≤
exp(x⊤

iti
pmm
R )

exp(x⊤
iαi

pmm
R )

≤ exp(−RΞ).

The last inequality is from the definition of pmm that p⊤
mm(xiαi

−xit) ≥ 1, so pmm⊤
R (xiαi

−xit) ≥
R/∥pmm∥ = RΞ. Thus, q∗max = supi∈[n] q

pmm

i ≤ exp(−RΞ). Then denote the output of attention
layer ri = X⊤

i S(Xip
mm
R ). Define ϵi = ∥ri − xiαi

∥, we have yi · r⊤i vmm ≥ yi · x⊤
iαi

vmm −
∥ri − xiαi

∥ · ∥vmm∥ ≥ 1− ϵi/Γ. So if we set ϵmax = supi∈[n] ϵi, vmm achieves a label margin of
at least Γ − ϵmax on (yi, ri)i∈[n]. To better estimate ϵmax, we define M = supi∈[n] ∥µi − ξi∥ ≤√
ρ2 + (1 + κ)d, then we have

ϵmax =M · q∗max ≤M exp(−RΞ). (57)

This implies the max-margin achieved by (pmm
(r,R),v

mm
(r,R)) is at least

yif(v
mm
(r,R),p

mm
(r,R);xi) = yiv

mm⊤
r ri ≥ rΓ− rϵmax ≥ rΓ− rM exp(−RΞ). (58)

The first inequality is from yi · r⊤i vmm
r ≥ r(Γ− ϵi) and the last inequality is from (57).

Then we consider the case when mini,ti ̸=αi(xiαi − xiti)
⊤p(r,R) ≤ (1− ζ)RΞ the minimal margin

constraint is ζ-violated by p(r,R). Without losing generality we assume that 1 = argmin
i∈[n]

[(xiαi
−

xit)
⊤p(r,R)]t ̸=αi

. Then we have

q̂max ≥
exp(x⊤

1t1p(r,R))∑
t∈[2] exp(x

⊤
1tp(r,R))

≥ 1

2

exp(x⊤
1t1p(r,R))

exp(x⊤
1α1

p(r,R))
≥ 1

2 exp((1− ζ)RΞ)
.

From Proposition A.14, optimizing v-SVM on (yi, r̂i)i∈[n] can achieve the max-margin at most

min
i∈[n]

yif(v(r,R),p(r,R);xi) ≤ Γ− C

2∥vmm∥3nρ2
· e−(1−ζ)RΞ. (59)

And from the definition ζ = 1
RΞ log(2M∥vmm∥3nρ2/C), we have

C

2∥vmm∥3nρ2
exp(−(1− ζ)RΞ) > M exp(−RΞ)
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for sufficiently large R, which implies

min
i∈[n]

yi · f(v(r,R),p(r,R);xi) < min
i∈[n]

yi · f(pmm
R ,vmm

r ;xi).

This contradicts with the problem definition (4) to maximize the margin.

Then we prove for the second statement. When the margin induced by p(r,R)/R in p-SVM is less than
(1− ζ)Ξ, we can use the proof above to derive a contradiction, so (xiα1

−xit)
⊤p(r,R) ≥ (1− ζ)RΞ

must hold. Then set r̂i = X⊤
i S(Xip(r,R)), we have that

min
i∈[n]

yiv
⊤
(r,R)r̂i ≤ min

i∈[n]
yiv

⊤
(r,R)xiαi

+ sup
i∈[n]

|v⊤
(r,R)(r̂i − xiαi

)|

≤ (1− γ)Γr +M exp(−(1− ζ)RΞ)r

≤ (1− γ/2)Γr.

The second inequality is from previous analysis that (xiαi
−xit)

⊤p(r,R) ≥ (1−ζ)RΞ, so |r̂i−xi1| ≤
M exp(−(1− ζ)RΞ); The last inequality is from our definition γ = 2M

Γ exp((1−ζ)RΞ) .

Therefore, combining with (58), we have

γΓr/2 > rM exp(−RΞ),

which implies

min
i∈[n]

yi · f(v(r,R),p(r,R);xi) < min
i∈[n]

yi · f(vmm
R ,pmm

r ;xi).

Again this contradicts with the problem definition (4).

Then we have the following lemma to bound the derivation ζ and γ:

Lemma A.28. Suppose that Assumption 4.1 holds, consider the same setting in Theorem A.27, we
have ζ < 0.2 and γ < 0.1.

Proof of Lemma A.28. From the definition of ζ in Theorem A.27, we have

ζ =
log(2M∥vmm∥3nρ2/C)

RΞ
= C1

√
ηn/d+ 1/ρ2

R
log(M∥vmm∥3nρ2)

≤ C2

√
ηn/d+ 1/ρ2

R
log

(
n2(ρ2 + d)(ρ2ηn+ d)3

ρ2d3

)
=
C3

√
ηn/d+ 1/ρ2

R
log(ρn) < 0.2.

Here C1, C2, C3 = Θ(1). The first inequality is from the upper bound of ∥vmm∥ in Lemma A.16
and the last inequality is from the definition of R in Assumption 4.1. And for γ, we have

γ =
2M

Γ exp((1− ζ)RΞ)
= C ′

1

M∥vmm∥
exp(R/∥vmm∥)

≤ C ′
2

√
(ρ2 + d)(ηn/d+ 1/ρ2)

exp(R/
√
ηn/d+ 1/ρ2)

< 1.

Here C ′
1, C

′
2 = Θ(1). The first inequality is from the lower and upper bound of ∥vmm∥ in Lemma

A.16 and the last inequality is from the definition of R in Assumption 4.1.

Then we can estimate ⟨p(r,R),µ⟩ with the following lemma:

Lemma A.29. Suppose that Assumption 4.1 holds, with probability at least 1− δ on the training
dataset, p(r,R) should satisfy

0.5(1− ζ)RΞ ≤ ⟨p(r,R),µj⟩ ≤ Rρ

for j ∈ {1, 2}.

Proof of Lemma A.29. The upper bound is given by

⟨p(r,R),µj⟩ ≤ ∥p(r,R)∥∥µj∥ = Rρ.
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Then we use contradiction to prove for the lower bound. From Theorem A.27, p(r,R) satisfies

p⊤
(r,R)(µi − ξi) ≥ (1− ζ)RΞ, i ∈ C

p⊤
(r,R)(ξi − µi) ≥ (1− ζ)RΞ, i ∈ N (60)

If ⟨p(r,R),µj⟩ ≤ 0.5(1 − ζ)RΞ, then for every clean sample from cluster j we must have
⟨p(r,R), ξi⟩ ≤ −0.5(1− ζ)RΞ and thus

⟨p(r,R),
∑
i∈Cj

ξi⟩ =
∑
i∈Cj

⟨p(r,R), ξi⟩ ≤ −0.5(1− ζ)RΞn1j .

So we could estimate ∥p(r,R)∥ as follows

∥p(r,R)∥ ≥ 0.5(1− ζ)RΞ · n1j
1

∥
∑
i∈Cj

ξi∥
= 0.5(1− ζ)RΞ · n1j

1√∑
i∈Cj

∥ξi∥2 +
∑

i,j∈Cj

⟨ξi, ξj⟩

≥ 0.5(1− ζ)RΞ · n1j
1√

2 · n1j · (1 + κ)d
≥ 0.4RΞ ·

√
n1j√

2(1 + κ)d
.

The first inequality is from the property of innerproduct; The second inequality is from Lemma A.65
and the definition of d in Assumption 4.1; The last inequality is from Lemma A.28. Meanwhile,
from Lemma A.24 we have ∥pmm∥ ≤

√
8/ρ2 + 17ηn/d. Recall that Ξ = ∥pmm∥−1. Therefore,

we further have

∥p(r,R)∥ ≥ 0.4RΞ ·
√
n1j√

2(1 + κ)d
≥

√
0.42n1j

(8/ρ2 + 17ηn/d) · 2(1 + κ)d
·R

≥

√
0.04(n− ηn−O(

√
n))

(8/ρ2 + 17ηn/d) · (1 + κ)d
·R > R.

The second inequality is from Lemma A.24; The third inequality is from Lemma A.68 and the last
inequality is from Assumption 4.1 about SNR and η. This leads to a contradiction.

Now we can estimate the output of attention layer for some test sample (X, y).
Lemma A.30. Suppose that Assumption 4.1 holds, with probability at least 1− δ on the training
dataset, for a given a test sample X, y, where X = (µ⋆, ξ⋆), µ⋆ can be µ1 or µ2, we have with
probability at least 1− exp

(
− 1

2 (
1
2 (1− ζ)Ξ−K/R)2

)
that

⟨p(r,R),µ
⋆⟩ − ⟨p(r,R), ξ

⋆⟩ ≥ K,

where K ≤ 1
2 (1− ζ)RΞ and ζ,Ξ are defined in Theorem A.27.

Proof of Lemma A.30. Note that p⊤ξ⋆ follows Gaussian distribution N (0, R2), we have

P(⟨p(r,R),µ
⋆⟩ − ⟨p(r,R), ξ

⋆⟩ < K) = P(⟨p(r,R), ξ
⋆⟩ > ⟨p(r,R),µ

⋆⟩ −K) ≤ P(p⊤
(r,R)ξ

⋆ >
1

2
(1− ζ)RΞ−K)

≤ exp
(
− 1

2
(
1

2
(1− ζ)Ξ−K/R)2

)
.

The first inequality is from Lemma A.29 and the second inequality comes from the property of
Gaussian tail probability.

We also have the following lemma to estimate v(r,R). We first prove that v(r,R) can be expressed as
the sum of signal and noise tokens.
Lemma A.31. The solution of constrained optimization problem (4) v(r,R) can be expressed in the
form that

v(r,R) = λ1µ1 + λ2µ2 +

n∑
i=1

θiξi.
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Proof of Lemma A.31. Similar to Theorem A.27, define r̂i = X⊤
i S(Xip(r,R)) as the output of

attention layer, we have

v(r,R) = argmax
∥v∥≤r

min
i∈[n]

yiv
⊤ri. (61)

Then denote s = min
i∈[n]

yiv
⊤ri and sr = min

i∈[n]
yiv

⊤
(r,R)ri. Then (61) can be written as

(v(r,R), sr) = argmax
v,s

s, s.t. yiv⊤ri ≥ s, 1 ≤ i ≤ n

∥v∥ ≤ r.

The corresponding Lagrangian function is

L(s, ψ) = −s+
n∑

i=1

ψiyi(s− yiv
⊤ri) + ψ0(∥v∥2 − r2).

Take derivative of this function on (s,v), we have

−
n∑

i=1

ψiyiri + 2ψ0v = 0.

Therefore from the last equation we can get

v =
1

2ψ0

n∑
i=1

ψiyiri.

As ri = βiµi + (1− βi)ξi for every i ∈ [n], v can be expressed as the combination of signal and
noise token of every sample:

v(r,R) = λ1µ1 + λ2µ2 +

n∑
i=1

θiξi.

Based on this representation, we can then bound the parameters in v(r,R):

Lemma A.32. Suppose that Assumption 4.1 holds, denote v(r,R) = λ1µ1 + λ2µ2 +
∑

i∈[n]

θiξi. Then

with probability at least 1− δ on the training dataset, we have

λ1 ≥ (1− γ)Γr/ρ2,

λ2 ≤ −(1− γ)Γr/ρ2,

|θi| ≤ 2
√
1/ρ2 + 5ηn/d · Γr/

√
d.

Proof of Lemma A.32. The first two statements are obvious because from Theorem A.27 we have

yiv
⊤
(r,R)µi ≥ (1− γ)Γr,

for ∀i ∈ C. This implies |λj | ≥ (1 − γ)Γr/ρ2 for j ∈ {1, 2}. Meanwhile, we decompose
v(r,R) = vµ + vξ where vµ = λ1µ1 + λ2µ2 and vξ =

∑
i∈[n]

θiξi. And we can upper bound ∥vξ∥ as

∥vξ∥2 = ∥v(r,R)∥2 − ∥vµ∥2 ≤ r2 − λ21ρ
2 − λ22ρ

2 ≤ r2(1− 2(1− γ)2Γ2/ρ2).

The first inequality is from ∥v∥ ≤ r and the second inequality is from the first two statements we just
proved. Therefore, denote j = argmax

i∈[n]

θi, we have

θ2j∥ξj∥2 ≤ ∥vξ∥2 ≤ r2(1− 2(1− γ)2Γ2/ρ2).
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Then we can upper bound |θj | as

θ2j ≤ r2(1− 2(1− γ)2Γ2/ρ2)/∥ξj∥2 ≤ r2(1− 2(1− γ)2Γ2/ρ2)/(1− κ)d

= r2
(
1− 2(1− γ)2

∥vmm∥2ρ2

)
/(1− κ)d ≤ r2

(
1− 1

(2/ρ2 + 5ηn/d)ρ2

)
/(1− κ)d

=
1 + 5ηnρ2/d

2 + 5ηnρ2/d
· r2

(1− κ)d
≤
(

1

ρ2
+

5ηn

d

)
· Γ

2r2

2d
.

The second inequality is from Lemma A.65; The third inequality is from Lemma A.16 that

∥vmm∥ ≤
√

2/ρ2 + 5ηn/d and our definition of γ =
2
√

ρ2+(1+κ)d

Γ exp((1−ζ)RΞ) ; The last inequality is from
Γ = ∥vmm∥−1 ≥ (2/ρ2 + 5ηn/d)−1. Thus, we can bound |θj | as

|θj | ≤ 2
√

1/ρ2 + 5ηn/d · Γr/
√
d.

Therefore, we can prove the main theorem.

Proof of Theorem A.10. First we show that the model can perfectly classify all training samples.
From Theorem A.27, we have

yiv
⊤
(r,R)ri ≥ (1− γ)Γr > 0

for ∀i ∈ [n]. The last inequality is from Lemma A.28. Thus yi = sign(f(Xi;v(r,R),p(r,R))) for all
i ∈ [n]. Then we bound the test error. Given a test sample X, y, where X = (µ⋆, ξ⋆), µ⋆ can be µ1

or µ2. From RemarkA.66, with probability at least 1− 6n exp(−d/4C1n
2),

|⟨ξ⋆, ξi⟩| ≤
d

C1n
. (62)

According to Lemma A.30, with probability at least 1− exp
(
− 1

2 (
1
2 (1− ζ)Ξ−K/R)2

)
, we have

y · f(v(r,R),p(r,R);X) ≥
⟨yv(r,R), e

Kµ⋆ + ξ⋆⟩
eK + 1

≥ eK(1− γ)Γr∥µ⋆∥2

ρ2(eK + 1)
− 1

eK + 1

∑
i∈[n]

|θi| · |⟨ξi, ξ⋆⟩|.

(63)

Let K = log(
√
d
√

1/ρ2 + ηn/d) + C < 1
2 (1 − ζ)RΞ. By uniform bound, we have that with

probability at least 1− 6n exp(−d/4C1n
2)− exp

(
− 1

2 (
1
2 (1− ζ)Ξ−K/R)2

)
,

y · f(v(r,R),p(r,R);X) ≥
eK(1− γ)Γr − n · d/(C1n) · 2

√
1/ρ2 + ηn/d · Γr/

√
d

1 + eK

≥
0.9eKΓr −

√
d/C1 · 2

√
1/ρ2 + ηn/d · Γr

1 + eK

> 0,

where the first inequality uses (62), (63) and Lemma A.32; The second inequality is from Lemma
A.28 and the last inequality is from Assumption 4.1 and our selection of K. Therefore,

P(y ̸= f(v(r,R),p(r,R);X)) ≤ exp
(
− 1

2
(
1

2
(1− ζ)Ξ− K

R
)2
)
+ exp(−Ω(d/n2)),

where ζ = log(2M∥vmm∥3nρ2)
RΞ = Θ

(√
ηn/d+1/ρ2

R log(ρn)
)

, K = log(
√
d
√
1/ρ2 + ηn/d) + C =

Θ(log(
√
d/ρ2 + ηn) and Ξ = ∥pmm∥−1

2 = Θ((ηn/d+1/ρ2)−1/2). Plugging in the order of Ξ and
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K, we have

P(X,y)∼D(y ̸= sign(f(X;v(r,R),p(r,R))))

= P(X,y)∼D(y ̸= sign(f(X;v(r,R),p(r,R))), y = −ỹ)
+ P(X,y)∼D(y ̸= sign(f(X;v(r,R),p(r,R))), y = ỹ)

= η + P(X,y)∼D(y ̸= sign(f(X;v(r,R),p(r,R))), y = ỹ)

≤ η + exp(−d/C1n
2) + exp

(
−Θ

( (1− ζ)√
ηn/d+ 1/ρ2

−
log(

√
d/ρ2 + ηn)

R

)2)
= η + exp(−Ω(

d

n2
)) + exp

(
− Ω

( (1− ζ)√
ηn/d+ 1/ρ2

− log(n)

R

)2)
,

where ζ = Θ
(√

ηn/d+1/ρ2

R log(ρn)
)

. This completes the proof.

A.2.4 Proof of Thm. 4.2

In the case of multiple tokens setting, we denote the τ -th token in input x(τ)
i as ξi,τ . And we introduce

the definition of Combined Noise Token.
Definition A.33 (Combined Noise Token). ξi is called combined noise token if ξi =

∑T
τ=2 ti,τξi,τ

and tτ ∈ [0, 1],
∑T

τ=2 tτ = 1.

Then we have the following lemma to estimate the norm and innerproduct of these combined noises:
Lemma A.34 (Properties of Combined Noise Tokens). Suppose that δ > 0 and κ′ =

O(
√

log(6n/δ)/d) = Õ(1/
√
d) .If Lemma A.65 holds, we have

(1− κ′)d/T ≤ ∥ξi∥22 ≤ (1 + κ′)d

|⟨ξi, ξj⟩| ≤ 2T 2
√
d log(6n2/δ)

for any i, j ∈ [n].

Definition A.35. If the event in Lemma A.65 and A.34 occur, let us say we have a good run.

Lemmas A.65 and A.34 show that a good run occurs with probability at least 1− δ. In what follows,
we will assume that a good run occurs.

Because the optimal tokens are data specific and not fixed, we consider the following token selection
rule:

rseci = x
(1)
i = µk, i ∈ Ck, k ∈ {1, 2}

rseci = x
(2)
i = ξi,2, i ∈ N . (64)

This selects signal token for all clean samples and the first noise token for all noisy sample. Following
this new token selection rule, we redefine the p-SVM and v-SVM:
Definition A.36 (p-SVM for Second-token Selection).

psec = argmin
p∈Rd

∥p∥ subject to:

p⊤(x
(αi)
i − x

(t)
i ) ≥ 1, αi = 1 for i ∈ C and αi = 2 for i ∈ N , t ∈ [2, T ]\{αi}. (65)

Let Ξ := 1/∥psec∥ be the margin induced by psec.

Then for a given p, we define v(p) as the standard max-margin classifier on (ri, yi)i∈[n] and vsec

as the standard max-margin classifier on (rseci , yi)i∈[n] which represents the limiting case when
p = psec and R→ +∞.
Definition A.37 (v-SVM for Second-token Selection).

v(p) := argmin
v∈Rd

∥v∥ s.t. yi · v⊤ri ≥ 1, for all i ∈ [n]. (66)

57



Γ(p) := 1/∥v(p)∥ is the label margin induced by v(p). When ri = rseci , i ∈ [n], we define

vsec := argmin
v∈Rd

∥v∥ s.t. yi · v⊤rseci ≥ 1, for all i ∈ [n]. (67)

Γ := 1/∥vsec∥ is the label margin induced by vsec.

Since vsec satisfies the KKT conditions of the max-margin problem (66), by the stationarity condition,
we can represent vsec as

vsec = λ1µ1 + λ2µ2 +
∑
i∈[n]

T∑
τ=2

θi,τξi,τ . (68)

Note that the conditions in (66) can be written as:
Condition 12 (Second-token Selection).

v⊤µ1 ≥ 1

−v⊤µ2 ≥ 1

yiv
⊤ξi,2 ≥ 1, i ∈ N

Plugging (44) in the condition 1, we can rewrite these conditions as:
λ1 · ∥µ1∥2 ≥ 1

−λ2 · ∥µ2∥2 ≥ 1

yi(θi,2 · ∥ξi,2∥2 +
∑

i′∈[n],
τ ′∈[3,T ]

θi′,τ ′⟨ξi,τi , ξi′,τ ′⟩) ≥ 1, i ∈ N

Then we introduce a lemma to estimate the coefficients θi,τ of vsec under this condition:
Lemma A.38 (balanced noise factor for KKT points). Under Condition 4.1 and 12, on a good run,
we have that for vsec,

θi,τ = 0, i ∈ C, τ ∈ [3, T ]; i ∈ N (69)

θi,2 ∈
[ (1− κ)d− 4n2

√
d log(6n2/δ)

(1 + κ)d((1− κ)d− 2n2T
√
d log(6n2/δ))

,
1

(1− κ)d− 2n2T
√
d log(6n2/δ)

]
, i ∈ N .

(70)

Proof of Lemma A.38. Note that Condition 12 does not have any constraint for noise tokens with
index i ∈ C, i ∈ N , τ ̸= 2. Thus we have θi,τ = 0 for any i ∈ C, i ∈ N , τ ̸= 2 in the representation
(68). For θi,2 with i ∈ N , we first prove the upper bound by contradiction. Denote j = argmax

i∈N
θi,2.

Then we have
yjv

⊤ξj,2 =
∑
i∈N

yiyjθi,2⟨ξi,2, ξj,2⟩ = θj,2∥ξj,2∥22 +
∑

i ̸=j,i∈N

yiyjθi,2⟨ξi,2, ξj,2⟩

≥ θj,2 · (1− κ)d− n2Tθj,2 · 2
√
d log(6n2/δ),

where the inequality is from Lemma A.65 and the definition of j. Consider the contrary case when
θj,2 >

1

(1−κ)d−2n2T
√

d log(6n2/δ)
, we have

yjv
⊤ξj,2 >

1

(1− κ)d− 2n2T
√
d log(6n2/δ)

·
(
(1− κ)d− n2T · 2

√
d log(6n2/δ)

)
= 1.

By the complementary slackness, if yjv⊤ξj,2 > 1, then we must have θj,2 = 0, and thus we reach a
contradiction.

Then we prove for the lower bound. For ∀j ∈ N we have

1 ≤ θj,2∥ξj,2∥22 +
∑

i ̸=j,i∈N

yiyjθi,2⟨ξi,2, ξj,2⟩

≤ θj,2 · (1 + κ)d+ n2 max
i∈N

θi,2 · 2
√
d log(6n2/δ)

≤ θj,2 · (1 + κ)d+
n2

(1− κ)d− 2n2T
√
d log(6n2/δ)

· 2
√
d log(6n2/δ).
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The second inequality is due to Lemma A.65 and the last inequality is from the upper bound we just
get. Therefore, we have

θj,2 ≥
(1− κ)d− 4n2

√
d log(6n2/δ)

(1 + κ)d((1− κ)d− 2n2T
√
d log(6n2/δ))

.

This completes the proof.

Then we introduce a lemma to estimate ∥vsec∥:
Lemma A.39 (Norm of vsec). Under Condition 4.1, on a good run, for the solution vsec of (66)
under the token selection (64), we have

2

ρ2
+
ηn

2d
≤ ∥vsec∥2 ≤ 2

ρ2
+

5ηn

d
.

This implies

∥vsec∥ = Θ

(√
1

ρ2
+
ηn

d

)
.

This lemma is the same as Lemma A.16 except that we substitute ξi with ξi,2. So we omit the proof
for clarity. The remaining proof idea is similar to that of two-token setting: 1) Prove the (relative)
optimality of this second token selection. 2) Prove the convergence of parameters and training/test
error.

We first prove the optimal token for clean samples from the max-margin they induced.
Proposition A.40 (optimal token condition). Suppose that Assumption 4.1 holds, on a good run, for
all p that ∃i ∈ C, τ ∈ [2, T ], ⟨p,µi − ξi,τ ⟩ < ∥p∥2/∥psec∥2, the token selection under p results in
a label margin (Def. A.37) of at most Γsec − C

∥vsec∥3
2nρ

2 ·max
i∈C

(1− si1).

Proof of Proposition A.40. As we consider the non-asymptotic case here, si1 cannot be exactly 1 for

∀i ∈ [n], so we only consider the case that all clean samples are mixed. Denote ri =
T∑

τ=1
βi,τx

(τ)
i =

βiµi + (1− βi)ξi for i ∈ C, where ξi is the combined noise token in Definition A.33. The condition
in this case becomes
Condition 13 (Mixed clean samples, multiple case).

yiv
′′⊤ri ≥ 1.

This indicates

βiyiλ
′′
i ∥µi∥2 + (1− βi)(θ

′′
i ∥ξi∥2 +

∑
j ̸=i

yiyjθ
′′
j ⟨ξi, ξj⟩) ≥ 1, i ∈ C

Assume that min{λ′′1 · ∥µ1∥2,−λ′′2 · ∥µ2∥2} = q in optimal v′′. Similar to the two-token scenario,
we consider the case when q < 1. Denote α = 1−βiq

1−βi
. We have α > 1 due to q < 1 and

0 ≤ βi < 1. Without losing generality, we assume λ′′1 · ∥µ1∥2 = q < 1. The special condition
⟨p,µi − ξi,τ ⟩ < ∥p∥2/∥psec∥2 here is to guarantee that there always exists an upper bound for βi.
Then consider the following relaxed condition:
Condition 14 (Relaxed version of constraints in Condition 13).

θ′′i ∥ξi∥2 +
∑
j ̸=i

yiyjθ
′′
j ⟨ξi, ξj⟩ ≥ α, i ∈ C1.

Denote the optimal solution under Condition 14 as v̆ and the corresponding coefficients in v̆ as λ̆1, λ̆2
and θ̆i, i.e.

v̆ = λ̆1µ1 + λ̆2µ2 +
∑
i∈[n]

θ̆iξi. (71)

Since the constraints in Condition 14 is a subset of the constraints in Condition 13, we have ∥v̆∥ ≤
∥v′′∥. Meanwhile, we have the following lemma to estimate θ̆i:
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Lemma A.41. Under Condition 4.1 and 14, on a good run, we have

θ̆i = 0, i ∈ [n]\C1;

θ̆i ∈
[

α

(1 + κ′)d

(
1−

2T 2n11
√
d log(6n2/δ)

(1− κ′)d/T − 2T 2n11
√
d log(6n2/δ)

)
,

α

((1− κ′)d/T − 2T 2n11
√
d log(6n2/δ)

]
, i ∈ C1.

Proof of Lemma A.41. Note that Condition 14 does not have any constraint for samples with i ∈
[n]\C1. Thus we have θ̆i = 0 for any i ∈ [n]\C1 in the representation (71). Denote j = argmax

i∈C1

θ̆i,

then we have

θ̆j · ∥ξj∥2 +
∑
k ̸=j

ykyj θ̆k⟨ξi, ξj⟩ ≥ θ̆j∥ξj∥2 − 2T 2θ̆jn11
√
d log(6n2/δ) ≥ θ̆j((1− κ′)d/T − 2T 2n11

√
d log(6n2/δ)).

The two inequalities are from Lemma A.65 and our definition of j. Consider the contrary case when
θ̆j >

α

((1−κ′)d/T−2T 2n11

√
d log(6n2/δ)

, we have

yj v̆
⊤ξj > α.

By the complementary slackness condition, if yj v̆⊤ξj > α, then we must have θ̆j = 0, and thus we
reach a contradiction.
Then we lower bound θ̆i. For ∀i ∈ C1 we have

α ≤ θ̆i · ∥ξi∥2 +
∑
j ̸=i

yiyj θ̆i⟨ξi, ξj⟩ ≤ θ̆i(1 + κ′)d+ 2T 2n11 max
i∈[n]

θ̆i
√
d log(6n2/δ)

≤ θ̆i(1 + κ′)d+
2T 2αn11

√
d log(6n2/δ)

(1− κ′)d/T − 2T 2n11
√
d log(6n2/δ)

.

The second inequality is from Lemma A.65 and the last inequality is from the upper bound of θ̆i we
just derived. Therefore, we have

θ̆i ≥
α

(1 + κ′)d

(
1−

2T 2n11
√
d log(6n2/δ)

(1− κ′)d/T − 2T 2n11
√
d log(6n2/δ)

)
.

From this Lemma we have θ̆i = Θ(α/d) for i ∈ C1. Similar as (53), under our assumption
∥v̆∥ ≤ 2∥vsec∥, we have α = O(log(n)). Next we estimate the difference between ∥v̆∥2 and
∥vsec∥2. We can prove the following Lemma similar to Lemma A.22:

Lemma A.42. Suppose that Assumption 4.1 holds, denote vsec and v̆ as the optimal solutions under
condition 12 and condition 14 respectively. We have

∥v̆∥22 − ∥vsec∥22 ≥ C3(1− β)

d
,

where C3 = Θ(1).

Proof of Lemma A.42. Under this case, the difference between ∥v̆∥22 and ∥vsec∥22 becomes

∥v̆∥2 − ∥vsec∥2 ≥
∑
i∈[n]

θ̆2i ∥ξi∥2 − θ2i ∥ξi∥2 − (λ21 − λ̆21)∥µ1∥2 − (λ22 − λ̆22)∥µ2∥2︸ ︷︷ ︸
I1

−
∑
i∈N

∑
j∈N\{i}

yiyjθiθj⟨ξi, ξj⟩︸ ︷︷ ︸
I2

+
∑
i∈C1

∑
j∈C1\{i}

yiyj θ̆iθ̆j⟨ξi, ξj⟩︸ ︷︷ ︸
I3
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We then bound I1 ∼ I3 respectively. For I1 we have

|I1| ≥
∑
i∈C1

θ̆2i ∥ξi∥2 −
∑
i∈N

θ2i ∥ξi∥2 − 2/ρ2 ≥ n11α(1−O(n/
√
d))min

i∈C1

θ̆i − n2 max
i∈N

θ2i (1 + κ)d− 2/ρ2

≥ n11α
2

(1 + κ′)d

(
1−

2T 2n11
√
d log(6n2/δ)

(1− κ′)d/T − 2T 2n11
√
d log(6n2/δ)

)
− n2(1 + κ)d

((1− κ)d− 2n2
√
d log(6n2/δ))2

− 2

ρ2

= Ω

(
n

d

)
.

The second inequality is from Lemma A.65; The third inequality is from Lemma A.38 and A.41; The
last equality is due to the SNR condition ρ/

√
d = Ω(1/

√
n) so that 1

ρ2 ≤ n
4d . For I2, we have

|I2| ≤
∑
i∈N

max
i∈N

θ2i · 2
√
d log(6n2/δ) ≤

2n2
√
d log(6n2/δ)

((1− κ)d− 2n2
√
d log(6n2/δ))2

= Õ

(
n

d3/2

)
.

The first inequality is from Lemma A.65; The second inequality is from Lemma A.38. Similarly, for
|I3| we have

|I3| ≤
∑
i∈C1

max
i∈C1

θ̆2i · 2T 2
√
d log(6n2/δ) ≤

2T 2n11α
2
√
d log(6n2/δ)

((1− κ′)d/T − 2T 2n11
√
d log(6n2/δ))2

= Õ

(
n

d3/2

)
.

The second inequality is from Lemma A.41. Combining the above results, we have

∥v′′∥22 − ∥v∥22 ≥ Θ

(
n

d

)
− Õ

(
n

d3/2

)
≥ C3n(1− β)

d
.

The remaining proof is the same as Case 2.1 for two-token scenario and we omit it for convenience.

In this way, we prove the relateve optimality of this second token selection rule. Then we introduce a
lemma to estimate the norm of ∥psec∥. This will benefit our proof of the main theorem.

Lemma A.43 (Norm of psec). Suppose that Assumption 4.1 holds, recall that the solution of (p-SVM)
is psec. On a good run, we have

1

2ρ2
+
ηn

d
≤ ∥psec∥2 ≤ 8

ρ2
+

17ηn

d
.

This implies

∥psec∥ = Θ

(√
1

ρ2
+
ηn

d

)
.

Proof of Lemma A.43. First we prove the upper bound. Consider the following possible solution p̃:

p̃ =
2(µ1 + µ2)

ρ2
+
∑
i∈N

4
ξi,2
d
. (72)

We then proved that p̃ satisfies (65). For k ∈ C, τ ∈ [2, T ] we have

p̃⊤(µk − ξk,τ ) = 2−
∑
i∈N

4
⟨ξi,2, ξk,τ ⟩

d
≥ 2−

4n2
√
d log(6n2/δ)

d
≥ 1.
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The first inequality is from the definition of d in Lemma A.65 and the second inequality is from
Assumption 4.1. And for k ∈ N , τ ∈ [3, T ], we have

p̃⊤(ξk,2 − µk) = −2 +
∑
i∈N

4
⟨ξi,2, ξk,2⟩

d
≥ −2 + 4(1− κ) +

∑
i∈N ,i̸=k

4
⟨ξi,2, ξk,2⟩

d

≥ −2 + 4(1− κ)−
4n2
√
d log(6n2/δ)

d
≥ 1.

p̃⊤(ξk,2 − ξk,τ ) =
∑
i∈N

4
⟨ξi,2, ξk,2⟩

d
−
∑
i∈N

4
⟨ξi,2, ξk,τ ⟩

d
≥ 4(1− κ) +

∑
i∈N ,i̸=k

4
⟨ξi,2, ξk,2⟩

d
−
∑
i∈N

4
⟨ξi,2, ξk,τ ⟩

d

≥ 4(1− κ)−
8n2
√
d log(6n2/δ)

d
≥ 1.

The first and second inequalities are from Lemma A.65; The last inequality is from Assumption 4.1.

Therefore, the max-margin solution psec must have no greater norm than p̃. So we can upper bound
psec as

∥psec∥2 ≤ ∥p̃∥2 =
8

ρ2
+

16

d2

(∑
i∈N

∥ξi,2∥2 +
∑

i,j∈N ,i̸=j

⟨ξi,2, ξj,2⟩
)

≤ 8

ρ2
+

16

d2
(
(1 + κ)n2d+ 2n22

√
d log(6n2/δ)

)
≤ 8

ρ2
+

17ηn

d
.

The second inequality is from Lemma A.65; The last inequality is from the definition of d in
Assumption 4.1.

Then we prove for the lower bound. As psec is the max-margin solution and satisfies KKT condition,
it can be expressed as the sum of signal and noise tokens. Then we decompose psec = psec

µ + psec
ξ

where psec
µ = fsec1 µ1+f

sec
2 µ2 and psec

ξ =
∑

i∈[n] g
sec
i ξi. Note that µj ⊥ ξi,τ for all j ∈ {±1}, i ∈

[n], τ ∈ [T ]. We first prove that ⟨psec,µj⟩ ≥ 0.5 by contradiction.

If ⟨psec,µj⟩ < 0.5, then for every clean sample from cluster j we must have ⟨psec, ξi,2⟩ ≤ −0.5 and
thus

⟨p(r,R),
∑
i∈Cj

ξi,2⟩ =
∑
i∈Cj

⟨p(r,R), ξi,2⟩ ≤ −0.5n1j .

So we could estimate ∥psec∥ as follows

∥psec∥ ≥ 0.5n1j
1

∥
∑
i∈Cj

ξi,2∥
= 0.5n1j

1√∑
i∈Cj

∥ξi,2∥2 +
∑

i,j∈Cj ,i̸=j

⟨ξi,2, ξj,2⟩

≥ 0.5n1j
1√

2 · n1j · (1 + κ)d
=

√
n1j√

8(1 + κ)d
.

The first inequality is from the property of innerproduct; The second inequality is from Lemma A.65
and the definition of d in Assumption 4.1. Meanwhile, we have ∥p̃∥ ≤

√
8/ρ2 + 17ηn/d which also

satisfies (65). Therefore, we further have

∥psec∥ ≥
√
n1j√

8(1 + κ)d
≥
√

8/ρ2 + 17ηn/d ≥ ∥p̃∥.

The second inequality is from Assumption 4.1. This leads to a contradiction. So we have ⟨psec,µj⟩ ≥
0.5. This directly indicates fsecj ≥ 0.5/ρ2, so we can lower bound ∥psec

µ ∥22 as

∥psec
µ ∥22 = fsec21 ∥µ1∥2 + fsec22 ∥µ2∥2 ≥ 2 · 0.52

ρ2
=

1

2ρ2
.

As for ∥psec
ξ ∥2, from p-SVM condition, for every noisy sample we have

p⊤
sec(ξi,2 − µi) ≥ 1,
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which indicates

psec⊤
ξ ξi,2 = p⊤

secξi,2 ≥ 1 + p⊤
secµi ≥ 1.5.

The last inequality is from Lemma A.29. Sum up the inequality for all noisy sample, we have∑
i∈N

psec⊤
ξ ξi,2 ≥ 1.5n2.

Thus,

∥psec
ξ ∥ ≥ 1.5n2

∥
∑
i∈N

ξi,2∥
=

1.5n2√∑
i∈N

∥ξi,2∥2 +
∑

i,j∈N ,i̸=j

⟨ξi,2, ξj,2⟩
≥ 1.5n2√

2 · n2 · (1 + κ)d
≥
√
ηn

d
.

The second inequality is from Lemma A.65 and the last inequality is from Assumption 4.1. Therefore,

∥psec∥2 = |psec
µ ∥22 + ∥psec

ξ ∥22 ≥ 1

2ρ2
+
ηn

d
.

Combining the results above, we have

∥psec∥2 = Θ

(
1

ρ2
+
ηn

d

)
.

With the above lemmas in place, we can conduct the analysis of the convergence direction of p(r,R)

and v(r,R), which is similar to Theorem A.27.
Theorem A.44. Suppose that Assumption 4.1 holds, on a good run, we have

• min
τ∈[2,T ]

p⊤
(r,R)(µk − ξi,τ ) ≥ (1− ζ)ΞR for ∀i ∈ Ck, k ∈ [2], where Ξ is the margin induced

by psec and ζ = 1
RΞ log(2T

√
ρ2 + (1 + κ)Td∥vsec∥3nρ2/C).

• the label margin for clean sample induced by v(r,R)/r in SVM is at least (1−γ)Γsec, where

γ =
2
√

ρ2+(1+κ)Td

Γsec exp((1−ζ)RΞ) .

Proof of Theorem A.44. From Proposition A.40, we have that for all p that ∃i ∈ C, τ ∈
[2, T ], ⟨p,µi − ξi,τ ⟩ < ∥p∥2/∥psec∥2, the label margin 1/∥v(p)∥ is at most

Γsec −
C

∥vsec∥32nρ2
·max

i∈C
(1− si1).

Recall that si = S(Xip) is the softmax probability vector. We define qpi = 1 − si1 for i ∈ C to
measure the amount of non-optimality (attention on non-optimal token).

We use contradiction to prove the convergence of p(r,R). Denote psec
R = Rpsec/∥psec∥ which has

the same norm as p(r,R) and the direction of psec. Suppose the margin induced by p(r,R)/R is at
most (1− ζ)Ξ, i.e. min

τ∈[2,T ]
p⊤
(r,R)(µk − ξi,τ ) ≤ (1− ζ)ΞR,∀i ∈ [n].

According to Lemma A.43, we have

Ξ = ∥psec∥−1
2 = Θ((ηn/d+ 1/ρ2)−1/2).

Following the definition of qpi above, we set q̂max = supi∈[n] q
p(r,R)

i and q∗max = supi∈[n] q
psec
R

i to
be the worst non-optimality in p(r,R) and psec

R . Then we have

q
psec
R

i =

∑
t ̸=1

exp(x
(t)⊤
i psec

R )∑
t∈[T ] exp(x

(t)⊤
i psec

R )
≤

∑
t̸=1

exp(x
(t)⊤
i psec

R )

exp(x
(1)⊤
i psec

R )
≤ T exp(−RΞ).
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The last inequality is from the definition of psec that p⊤
sec(x

(1)
i −x

(t)
i ) ≥ 1 for t ̸= 1, so psec⊤

R (x
(1)
i −

x
(t)
i ) ≥ R/∥psec∥ = RΞ. Thus, q∗max = supi∈[n] q

psec

i ≤ exp(−RΞ). Then denote the output
of attention layer ri = X⊤

i S(Xip
sec
R ). Define ϵi = ∥ri − xi1∥, we have yi · r⊤i vsec ≥ yi ·

x⊤
i1vsec − ∥ri − xi1∥ · ∥vsec∥ ≥ 1 − ϵi/Γsec. So if we set ϵmax = supi∈[n] ϵi, vsec achieves a

label margin of at least Γsec − ϵmax on (yi, ri)i∈[n]. To better estimate ϵmax, we define M =

supi∈[n],t∈[T ] ∥µi −
∑

t in[2,T ] ξi,t∥ ≤
√
ρ2 + (1 + κ)Td, then we have

ϵmax =M · q∗max ≤MT exp(−RΞ). (73)
This implies the max-margin achieved by (psec

(r,R),v
sec
(r,R)) is at least

yif(p
sec
(r,R),v

sec
(r,R);xi) = yiv

sec⊤
r ri ≥ rΓsec − rϵmax ≥ rΓsec − rMT exp(−RΞ). (74)

The first inequality is from yi · r⊤i vsec
r ≥ r(Γsec − ϵi) and the last inequality is from (57).

Then we consider the case when min
i∈Ck,τ∈[2,T ]

p⊤
(r,R)(µk − ξi,τ ) ≤ (1 − ζ)ΞR the minimal

margin constraint is ζ-violated by p(r,R). Without losing generality we assume that 1 =

argmin
i∈Ck

[ min
τ∈[T ]

p⊤
(r,R)(µi − ξi,τ )]. Then we have

1− q̂max =
exp(µ⊤

1 p(r,R))∑
t∈[T ] exp(x

(t)⊤
1 p(r,R))

=
1

1 +
∑

τ∈[2,T ]

exp(⟨ξ1,τ − µ1,p(r,R)⟩

≤ 1

1 + exp( max
τ∈[2,T ]

exp(⟨ξ1,τ − µ1,p(r,R)⟩)
≤ 1

1 + exp(−(1− ζ)RΞ)
.

This indicates q̂max ≥ 1
1+exp((1−ζ)RΞ) ≥

1
2 exp(−(1− ζ)RΞ). From Proposition A.40, optimizing

v-SVM on (yi, r̂i)i∈[n] can achieve the max-margin at most

min
i∈[n]

yif(v(r,R),p(r,R);xi) ≤ Γsecr −
Cr

2∥vsec∥32nρ2
· e−(1−ζ)RΞ. (75)

And from the definition ζ = 1
RΞ log(2MT∥vsec∥3nρ2/C), we have
C

2∥vsec∥32nρ2
exp(−(1− ζ)RΞ) > MT exp(−RΞ),

for sufficiently large R, which implies
min
i∈[n]

yi · f(v(r,R),p(r,R);xi) < min
i∈[n]

yi · f(vsec
r ,psec

R ;xi).

This contradicts with the problem definition (4) to maximize the margin.

Then we prove for the second statement. When min
τ∈[2,T ]

p⊤
(r,R)(µi − ξi,τ ) ≤ (1− ζ)ΞR,∀i ∈ [n], we

can use the proof above to derive a contradiction, so (µi − ξi,τ )
⊤p(r,R) ≥ (1 − ζ)RΞ must hold

for ∀i ∈ C, τ ∈ [2, T ]. Then set r̂i = X⊤
i S(Xip(r,R)) for i ∈ C, assume v(r,R) achieves the label

margin at most (1− γ)Γsecr on clean samples, we have that

min
i∈C

yiv
⊤
(r,R)r̂i ≤ min

i∈C
yiv

⊤
(r,R)µi + sup

i∈C
|v⊤

(r,R)(r̂i − µi)|

≤ (1− γ)Γsecr +M exp(−(1− ζ)RΞ)r

≤ (1− γ/2)Γsecr.

The second inequality is from previous analysis that (µi−ξi,τ )
⊤p(r,R) ≥ (1− ζ)RΞ, so |r̂i−µi| ≤

M exp(−(1− ζ)RΞ); The last inequality is from our definition γ = 2M
Γsec exp((1−ζ)RΞ) .

Therefore, combining with (74), we have
γΓsecr/2 > rM exp(−RΞ),

which implies
min
i∈[n]

yi · f(v(r,R),p(r,R);xi) < min
i∈[n]

yi · f(psec
R ,vsec

r ;xi).

Again this contradicts with the problem definition (4).
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Then we have the following lemma to bound the derivation ζ and γ:
Lemma A.45. Under Condition 4.1, consider the same setting in Theorem A.44, we have ζ <
0.2, γ ≤ 0.1.

Proof of Lemma A.45. From the definition of ζ in Theorem A.44, we have

ζ =
log(2MT∥vsec∥3nρ2/C)

RΞ
= C1

√
ηn/d+ 1/ρ2

R
log(MT∥vsec∥3nρ2)

≤ C2

√
ηn/d+ 1/ρ2

R
log

(
n2T (ρ2 + d)(ρ2ηn+ d)3

ρ2d3

)
< 0.2.

Here C1, C2 = Θ(1). The first inequality is from the upper bound of ∥vsec∥ in Lemma A.39 and the
last inequality is from the definition of R in condition 4.1.

And for γ, we have

γ =
2M

Γsec exp((1− ζ)RΞ)
= C ′

1

M∥vsec∥
exp(R/∥vsec∥)

≤ C ′
2

√
(ρ2 + d)(ηn/d+ 1/ρ2)

exp(R/
√
ηn/d+ 1/ρ2)

< 0.1.

Here C ′
1, C

′
2 = Θ(1). The first inequality is from the lower and upper bound of ∥vsec∥ in Lemma

A.39 and the last inequality is from the definition of R in condition 4.1.

Then we can estimate ⟨p(r,R),µ⟩ with the following lemma:
Lemma A.46. Suppose that Assumption 4.1 holds, on a good run, p(r,R) should satisfy

0.5(1− ζ)RΞ ≤ ⟨p(r,R),µj⟩ ≤ Rρ

for j ∈ {1, 2}.

Proof of Lemma A.46. The upper bound is given by
⟨p(r,R),µj⟩ ≤ ∥p(r,R)∥∥µj∥ = Rρ.

Then we use contradiction to prove for the lower bound. From Theorem A.44, p(r,R) satisfies

min
τ∈[2,T ]

p⊤
(r,R)(µi − ξi,τ ) ≥ (1− ζ)RΞ, i ∈ C, t ∈ [2, T ] (76)

If ⟨p(r,R),µj⟩ ≤ 0.5(1− ζ)RΞ, denote τi = argmin
τ∈[2,T ]

p⊤
(r,R)(µi − ξi,τ ), then for every clean sample

from cluster j we must have ⟨p(r,R), ξi,τi⟩ ≤ −0.5(1− ζ)RΞ and thus

⟨p(r,R),
∑
i∈Cj

ξi⟩ =
∑
i∈Cj

⟨p(r,R), ξi,τi⟩ ≤ −0.5(1− ζ)RΞn1j .

So we could estimate ∥p(r,R)∥ as follows

∥p(r,R)∥ ≥ 0.5(1− ζ)RΞ · n1j
1

∥
∑
i∈Cj

ξi,τi∥
= 0.5(1− ζ)RΞ · n1j

1√∑
i∈Cj

∥ξi,τi∥2 +
∑

i,j∈Cj

⟨ξi,τi , ξj,τj ⟩

≥ 0.5(1− ζ)RΞ · n1j
1√

2 · n1j · (1 + κ′)d
≥ 0.4RΞ ·

√
n1j√

2(1 + κ′)d
.

The first inequality is from the property of innerproduct; The second inequality is from Lemma A.34
and the definition of d in Assumption 4.1; The last inequality is from Lemma A.45. Meanwhile,
from Lemma A.24 we have ∥psec∥ ≤

√
8/ρ2 + 17ηn/d. Recall that Ξ = ∥psec∥−1. Therefore, we

further have

∥p(r,R)∥ ≥ 0.4RΞ ·
√
n1j√

2(1 + κ′)d
≥

√
0.42n1j

(8/ρ2 + 17ηn/d) · 2(1 + κ′)d
·R

≥

√
0.04(n− ηn−O(

√
n))

(8/ρ2 + 17ηn/d) · (1 + κ′)d
·R > R.

The second inequality is from Lemma A.43; The third inequality is from Lemma A.68 and the last
inequality is from Assumption 4.1 about SNR and η. This leads to a contradiction.
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Now we can estimate the output of attention layer for some test sample (X, y).
Lemma A.47. Under Condition 4.1, for the test sample (X, y) ∼ Dclean, X = (µ′, ξ′), with
probability at least 1− exp

(
− 1

2 (
1
2 (1− ζ)Ξ−K/R)2

)
we have

⟨p(r,R),µ
′⟩ − ⟨p(r,R), ξ

′⟩ ≥ K,

where K ≤ 1
2 (1− ζ)RΞ and ζ,Ξ are defined in Theorem A.44.

Proof of Lemma A.47. Note that p⊤ξ′ follows Gaussian distribution N (0, R2), we have

P(⟨p(r,R),µ
′⟩ − ⟨p(r,R), ξ

′⟩ < K) = P(⟨p(r,R), ξ
′⟩ > ⟨p(r,R),µ

′⟩ −K) ≤ P(p⊤
(r,R)ξ

′ >
1

2
(1− ζ)RΞ−K)

≤ exp
(
− 1

2
(
1

2
(1− ζ)Ξ−K/R)2

)
.

The first inequality is from Lemma A.46 and the second inequality comes from the property of
Gaussian tail probability.

Then we can follow the proof of Lemma A.31 to prove that v(r,R) can be expressed as the sum of
signal and noise tokens.
Lemma A.48. The solution of constrained optimization problem (4) v(r,R) can be expressed in the
form that

v(r,R) = λ1µ1 + λ2µ2 +

n∑
i=1

∑
τ∈[2,T ]

θi,τξi,τ .

Based on this representation, we can then bound the parameters in v(r,R):

Lemma A.49. Under Condition 4.1, denote v(r,R) = λ1µ1 + λ2µ2 +
∑n

i=1

∑
τ∈[2,T ]

θi,τξi,τ . Then

we have

λ1 ≥ (1− γ)Γr/ρ2,

λ2 ≤ −(1− γ)Γr/ρ2,

|θi,τ | ≤ 2
√
1/ρ2 + 5ηn/d · Γsecr/

√
d.

Proof of Lemma A.49. The first two statements are obvious because from Theorem A.44 we have

yiv
⊤
(r,R)µi ≥ (1− γ)Γsecr,

for ∀i ∈ C. This implies |λj | ≥ (1 − γ)Γsecr/ρ
2 for j ∈ {1, 2}. Meanwhile, we decompose

v(r,R) = vµ + vξ where vµ = λ1µ1 + λ2µ2 and vξ =
∑

i∈[n]

θiξi. And we can upper bound ∥vξ∥ as

∥vξ∥2 = ∥v(r,R)∥2 − ∥vµ∥2 ≤ r2 − λ21ρ
2 − λ22ρ

2 ≤ r2(1− 2(1− γ)2Γ2
sec/ρ

2).

The first inequality is from ∥v∥ ≤ r and the second inequality is from the first two statements we just
proved. Therefore, denote j, τj = argmax

i∈[n],τ∈[2,T ]

θi,τ , we have

θ2j,τj∥ξj,τj∥
2 ≤ ∥vξ∥2 ≤ r2(1− 2(1− γ)2Γ2

sec/ρ
2).

Then we can upper bound |θj,τj | as

θ2j,τj ≤ r2(1− 2(1− γ)2Γ2
sec/ρ

2)/∥ξj,τj∥2 ≤ r2(1− 2(1− γ)2Γ2
sec/ρ

2)/(1− κ)d

= r2
(
1− 2(1− γ)2

∥vsec∥2ρ2

)
/(1− κ)d ≤ r2

(
1− 1

(2/ρ2 + 5ηn/d)ρ2

)
/(1− κ)d

=
1 + 5ηnρ2/d

2 + 5ηnρ2/d
· r2

(1− κ)d
≤
(

1

ρ2
+

5ηn

d

)
· Γ

2
secr

2

2d
.
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The second inequality is from Lemma A.65; The third inequality is from Lemma A.39 that ∥vsec∥ ≤√
2/ρ2 + 5ηn/d and our definition of γ =

2
√

ρ2+(1+κ)Td

Γsec exp((1−ζ)RΞ) ; The last inequality is from Γsec =

∥vsec∥−1 ≥ (2/ρ2 + 5ηn/d)−1. Thus, we can bound |θj,τj | as

|θj,τj | ≤ 2
√
1/ρ2 + 5ηn/d · Γsecr/

√
d.

Therefore, we can prove the main theorem.

Proof of Theorem 4.2. First we show that the model can perfectly classify all training samples. From
the construction of psec,vsec, we have

yiv
⊤
(r,R)ri ≥ yi⟨vsec

r , rseci ⟩ > 0

for ∀i ∈ [n]. Here rsec is the token selected by psec
R . Thus yi = sign(f(Xi;v(r,R),p(r,R))) for all

i ∈ [n]. Then we bound the test error. Given a test sample X, y, where X = (µ⋆, ξ⋆), µ⋆ can be µ1

or µ2. With probability at least 1− δ a good run will occur. Similar to the proof of Lemma A.65,
with probability at least 1− exp(−Ω(d/n2)),

|⟨ξ⋆, ξi,τ ⟩| ≤ 2
√
d log(6n2/δ). (77)

According to Lemma A.47, with probability at least 1− exp
(
− 1

2 (
1
2 (1− ζ)Ξ−K/R)2

)
, we have

y · f(v(r,R),p(r,R);X) ≥
⟨yv(r,R), e

Kµ⋆ + ξ⋆⟩
eK + 1

≥ eK(1− γ)Γsecr∥µ⋆∥2

ρ2(eK + 1)
− 1

eK + 1

∑
i∈[n]

∑
τ∈[2,T ]

|θi,τ | · |⟨ξi,τ , ξ⋆⟩|.

(78)

Let K = log(nT
√
1/ρ2 + ηn/d) + log(log(6n2/δ)) + C < 1

2 (1− ζ)RΞ. By uniform bound, we
have that with probability at least 1− exp(−Ω(d/n2))− exp

(
− 1

2 (
1
2 (1− ζ)Ξ−K/R)2

)
,

y · f(v(r,R),p(r,R);X) ≥
eK(1− γ)Γsecr − nT

√
d log(6n2/δ) · 2

√
1/ρ2 + ηn/d · Γsecr/

√
d

1 + eK

≥
0.9eKΓsecr − nT

√
d log(n2/δ) · 2

√
1/ρ2 + ηn/d · Γsecr/

√
d

1 + eK

> 0,

where the first inequality uses (77), (78) and Lemma A.49; The second inequality is from Lemma
A.45 and the last inequality is from Assumption 4.1 and our selection of K. Therefore,

P(y ̸= f(v(r,R),p(r,R);X)) ≤ exp
(
− 1

2
(
1

2
(1− ζ)Ξ− K

R
)2
)
+ exp(−Ω(d/n2)),

where ζ = log(2MT∥vsec∥3nρ2/C)
RΞ = Θ

(√
ηn/d+1/ρ2

R log
(

n2T (ηn+d/ρ2)3(ρ2+d)
ρ2d3

))
, K =

log(nT
√

1/ρ2 + ηn/d) + log(log(6n2/δ)) + C = Θ(log(nT
√
1/ρ2 + ηn/d log(6n2/δ)) and

Ξ = ∥psec∥−1
2 = Θ((ηn/d+ 1/ρ2)−1/2). Plugging in the order of Ξ and K, we have

P(X,y)∼Dclean
(y ̸= sign(f(X;v(r,R),p(r,R)))) ≤ exp(−Ω(d/n2))+exp

(
−Ω
( (1− ζ)√

ηn/d+ 1/ρ2
− log(n)

R

)2)
,

where ζ = Θ
(√

ηn/d+1/ρ2

R log
(

n2T (ηn+d/ρ2)3(ρ2+d)
ρ2d3

))
. This completes the proof.

A.2.5 Proof of Thm. 4.4

Lemma A.50. Consider the next joint-constrained max margin solution:

(vt,pt) = argmax
∥v∥2+∥p∥2≤t

min
i
yif(Xi;v,p). (79)

Let rt := ∥vt∥ and Rt := ∥vt∥, then (vt,pt) =
(
v(rt,Rt),p(rt,Rt)

)
, where

(
v(rt,Rt),p(rt,Rt)

)
is a

solution to Problem 4. Moreover, under Assumption 4.1 (items 1-3), with probability at least 1− δ
over the random data generation, we have that rt → ∞, Rt → ∞ as t→ ∞.
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Proof. By Proposition A.40, with probability at least 1− δ, for all p ∈ Rd, the token selection under
p results in a label margin of at most Γ− c ·max

i∈C
(1− spi1) in A.13 (with ri = X⊤

i S(Xip)), where

spi = S(Xip) is the softmax probabilities, and c := C/|vsec∥3nρ2 is some constant (which may
depends on n and d, but not in t).

Observe that as the norm of v increases, the margin increases; thus, it’s easy to verify that ∥vt∥ → ∞
as t → ∞. We argue that also ∥pt∥ → ∞ as t → ∞. To see that, assume by contradiction that
∥pt∥ ≤ R0 for some arbitrary large t that will be determined later. Set Γ = 1/ ∥vsec∥ , ∥vt∥ = rt,
ṽsec = (rt − 1)Γvsec. Hence t = r2t +R2

0 and ∥ṽsec∥2 = (r − 1)2. The idea is that by decreasing
∥vt∥ by 1, we can choose p with ∥p∥2+(rt− 1)2 = t = r2t +R

2
0, i.e., ∥p∥2 = 2rt− 1+R2

0, which
can be arbitrary large for large enough t. Set Π := 1/ ∥psec∥ and p̃sec :=

√
2rt − 1 +R2

0Πpsec.
The proof strategy is obtaining a contradiction by proving that (ṽsec, p̃sec) is a strictly better solution
compared to (vt,pt). Define qpi = 1 − si1 for i ∈ C to be the amount of non-optimality softmax
probability. Then we have that

max
i
qpt

i ≥ κ

where κ > 0 is a constant that depends just on R0 and data parameters (e.g. n, d, ρ, δ). On the other
hand, for every ϵ > 0, we have that

q∗ = max
i
qp̃sec

i ≤ ϵ,

for large enough rt i.e. large enough t. Therefore, By Proposition A.14 (see the first paragraph in the
proof), we can upper bound the margin induced by vt on (Yi, ri) for ri = X⊤

i S(Xipt) by

min
i∈[n]

yiv
⊤
t ri ≤ rt(Γ− cκ),

for some constant c > 0. On the other hand, the margin induced by ṽsec on (Yi, ri) for ri = xiαi is
(rt − 1)Γ. This means that we margin induced by ṽsec on (yi, ri) for ri = X⊤

i S(Xip̃sec) is at least

min
i
yir

⊤
i ṽsec ≥ min

i
yix

⊤
iαi

ṽsec − q∗
∥∥∥x(1)

i − x
(2)
i

∥∥∥ ∥ṽsec∥

≥ (rt − 1)(Γ−Mϵ),

where M = supi∈n

∥∥∥x(1)
i − x

(2)
i

∥∥∥. Observe that this lower bound is bigger than the previous upper
bound when

(rt − 1)(Γ−Mϵ) > rt(Γ− cκ)

Mϵ < −(Γ−Mϵ)/rt + cκ.

Choose large enough t such that (Γ − Mϵ)/rt < cκ/2 and Mϵ < cκ/2, gives us the desired
contradiction. Recall that Rt := ∥pt∥ and rt := ∥vt∥. Since r2t +R2

t ≤ t, we have that (vt,pt is a
solution to Problem 4 with r = rt, R = Rt, and (v(rt,Rt),p(rt,Rt)) is a solution to Problem 79.

Proof of Thm. 4.4. By Thm. 4.2, with probability at least 1− δ, the training set is feasible, i.e. exists
(v,p) such that mini∈[n] yif(Xi;v,p) > 0. Therefore, for any γ > 0, with probability at least 1− δ,
we have that mini∈[n] yif(Xi;vγ ,pγ) ≥ γ > 0, which proves the first part of the Thm. Next, we
show that the classifier sign(f(X;vγ ,pγ)) generalizes well, for large enough γ. Recall the next
joint-constrained max margin solution:

(vt, pt) = argmax
∥v∥2+∥p∥2≤t

min
i
yif(Xi;v,p), (80)

which was introduced in Lemma A.50. Fix γ > 0, and let (vγ ,pγ) be the solution of Problem 5.
Define t(γ) := ∥vγ∥2 + ∥pγ∥2. We argue that (vγ ,pγ) is a solution to Problem 80 for t = t(γ).
Indeed, let

m := max
∥v∥2+∥p∥2≤t(γ)

min
i∈[n]

yif(Xi;v,p)
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be the maximum margin for Problem 80 with t = t(γ). Assume by contradiction that

min
i∈[n]

yif(Xi;pγ ,vγ) < m,

which implies that

γ ≤ min
i∈[n]

yif(Xi;pγ ,vγ) < m.

Let (v∗,p∗) be a solution to Problem 80 with t = t(γ) i.e. ∥v∗∥2 + ∥p∗∥2 = t(γ) and
mini∈[n] yif(Xi;p

∗,v∗) = m > γ. Write v′ := (γ/m) · v∗. We remind that f(X;v,p) =

v⊤X⊤S(Xp) and overall we get that

• ∥v′∥2 + ∥p∗∥2 = (γ/m)2 ∥v∗∥2 + ∥p∗∥2 < ∥v∗∥2 + ∥p∗∥2 = t(γ)

• mini∈[n] yif(Xi;p
∗,v′) = γ

m mini∈[n] yif(Xi;p
∗,v∗) = γ

m ·m = γ,

which contradicts the optimality of (vγ ,pγ) to Problem 5. We conclude that (vγ ,pγ) is a solution
to Problem 80 for t = t(γ), i.e. (vγ ,pγ) =

(
vt(γ),pt(γ)

)
, where

(
vt(γ),pt(γ)

)
is a solution for

Problem 80 with t = t(γ). Let rt(γ) :=
∥∥vt(γ)

∥∥ and Rt(γ) :=
∥∥pt(γ)

∥∥. By Lemma A.50 we have

(vγ ,pγ) =
(
vt(γ),pt(γ)

)
=
(
v(rt(γ),Rt(γ)),p(rt(γ),Rt(γ))

)
, (81)

and that rt(γ) → ∞, Rt(γ) → ∞ as t(γ) → ∞. Clearly t(γ) → ∞ as γ → ∞. By Thm. 4.2, The
classifier sign(f(X;v(r,R),p(r,R))) generalizes well on test data:

P(X,y)∼D(y ̸= sign(f(X;v(r,R),p(r,R))))

= η + exp(−Ω(d/n2)) + exp
(
−Θ

( (1− ζ)√
ηn
d + 1

ρ2

− log(d)

R

)2)

In particular, there exists r0, R0 such that for any r ≥ r0, R ≥ R0, the above probability can be
upper bound by η+exp(−Ω(d/n2))+exp(−Θ((1/ρ2+ηn/d)−1)) (see Remark 4.3). Choose large
enough γ0 such that for any γ ≥ γ0 we have that rt(γ) ≥ r0 and Rt(γ) ≥ R0. Then we conclude

P(X,y)∼D (y ̸= sign(f(X;vγ ,pγ)))

= P(X,y)∼D

(
y ̸= sign

(
f(X;v(rt(γ),Rt(γ)),p(rt(γ),Rt(γ)))

))
≤ η + exp(−Ω(d/n2)) + exp(−Θ((1/ρ2 + ηn/d)−1)),

where the first equality is from Eq. 81, as required.

A.2.6 Proof of Thm. 4.6

Proof Sketch
First we prove that in this case, only by selecting the noise token for every sample can we achieve the
largest margin in the downstream task,

r∗i = ξi,∀i ∈ [n] (82)

Similarly, we define the respective max-margin solution for p and v in this case.
Definition A.51 (p-SVM, negative case). p should satisfy

pmm(α) = argmin
p

∥p∥

subjected to

p⊤(ξi − µi) ≥ 1, (83)

for all 1 ≤ i ≤ n. Ξ = 1/∥pmm∥ is the margin induced by pmm.

69



Definition A.52 (v-SVM, negative case).
v(p) = argmin

v∈Rd

∥v∥ s.t. yi · v⊤ri ≥ 1, for all i ∈ [n]. (84)

Γ(p) = 1/∥v(p)∥ is the label margin induced by v and p. When ri = ξi, i ∈ [n],

vmm = argmin
v∈Rd

∥v∥ s.t. yi · v⊤ξi ≥ 1, for all i ∈ [n]. (85)

Γ = 1/∥vmm∥ is the label margin induced by vmm.

To prove this token selection is optimal, we need to explain that the optimality of the token choice is
strict in the sense that mixing other tokens will shrink the label margin. We formalize this into the
following proposition:
Proposition A.53 (Optimal Token Condition). Suppose that Assumption 4.5 holds, with probability
at least 1− δ on the training dataset, for all p, the token selection under p results in a label margin
of at most Γ− c ·max

i∈[n]
(1− si2).

Then we derive the convergence direction of p and v by Theorem A.27. Note that as ∥p∥ → ∞, the
attention is more focused on the noise token for every training sample. Therefore, the output of signal
token is upper bounded by a small value.

Consider a test sample (X, y),X = (µ′, ξ′). As ∥p∥ increasing, the noise token ξ′ will will
dominate the overall output if p⊤

(r,R)ξ
′ ≥ 0, which indicates the output of attention layer will close to

the noise token, r′ → ξ′. Meanwhile, we can prove that p(r,R) and v(r,R) are near orthogonal, so
p⊤
(r,R)ξ

′ and v⊤
(r,R)ξ

′ are nearly independent variables subjected to Gaussian distribution. Therefore,
the probability that yiv⊤

(r,R)ξ
′ < 0 is at least constant order.

Optimal Token Condition
First we find the optimal token selection in this case.
Proposition A.54 (Optimal Token Condition). Suppose that Assumption 4.5 holds, with probability
at least 1− δ on the training dataset, for all p, the token selection under p results in a label margin
of at most Γ− c ·max

i∈[n]
(1− si2).

Proof of Proposition A.53. Similar as above, we consider the following three situations:

1. p ̸= 0, k − p = 0. (All wrong token selections come from clean set)

2. p = 0, k − p ̸= 0. (All wrong token selections come from noisy set)

3. p ̸= 0, k − p ̸= 0. (Wrong token selections are from both sets)

We will discuss each situation specifically and prove that Proposition A.14 holds in every possible
case.

Situation 1: p ̸= 0, k − p = 0

First, let’s see the condition under the optimal choice of tokens:
Condition 15 (Original Condition).

yiv
⊤ξi ≥ 1, i ∈ [n]

Similarly, vmm also satisfies the KKT conditions of the max-margin problem (42) in this case, so we
could write v as

v = λ1µ1 + λ2µ2 +
∑
i∈[n]

yiθiξi. (86)

Plugging (86) in the condition 15, we can rewrite these conditions as:

θi · ∥ξi∥2 +
∑
i′ ̸=i

yiyi′θi′⟨ξi, ξi′⟩ ≥ 1, i ∈ [n].

Then we introduce a lemma to estimate the parameters of optimal solution under this condition:
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Lemma A.55 (Balanceing noise factor for KKT point). Suppose that Assumption 4.5 holds, under
Condition 15, we have

max
i∈[n]

θi ≤
1

(1− κ)d− 2n
√
d log(6n2/δ)

,

min
i∈[n]

θi ≥
(1− κ)d− 4n

√
d log(6n2/δ)

(1 + κ)d((1− κ)d− 2n
√
d log(6n2/δ))

.

Proof of Lemma A.55. First we prove the upper bound. Denote j = argmax
i∈[n]

θi, we have

yjv
⊤ξj =

∑
i∈[n]

yiyjθi⟨ξi, ξj⟩ = θj∥ξj∥22 +
∑

i ̸=j,i∈[n]

yiyjθi⟨ξi, ξj⟩

≥ θj · (1− κ)d− nθj · 2
√
d log(6n2/δ)

The last inequality is because Lemma A.65 and the definition of j. Consider the contrary case when
θj >

1

(1−κ)d−2n
√

d log(6n2/δ)
, we have

yjv
⊤ξj >

1

(1− κ)d− 2n
√
d log(6n2/δ)

· ((1− κ)d− n · 2
√
d log(6n2/δ)) = 1.

By the KKT conditions, if yjv⊤ξj > 1 then we must have θj = 0, and thus we reach a contradiction.

Then we prove the lower bound. For ∀j ∈ [n] we have

1 ≤ θj∥ξj∥22 +
∑

i ̸=j,i∈[n]

yiyjθi⟨ξi, ξj⟩ ≤ θj · (1 + κ)d+ nmax
i∈[n]

θi · 2
√
d log(6n2/δ)

≤ θj · (1 + κ)d+
n

(1− κ)d− 2n
√
d log(6n2/δ)

· 2
√
d log(6n2/δ).

The second inequality is due to Lemma A.65 and the last inequality is from the upper bound we just
get. Therefore, we have

θj ≥
(1− κ)d− 4n

√
d log(6n2/δ)

(1 + κ)d((1− κ)d− 2n
√
d log(6n2/δ))

This completes the proof.

As for the signal parameters λ1 and λ2, to achieve the minimal norm for v, it is obvious that
λ1 = λ2 = 0. Then we can estimate ∥vmm∥ in this case:

Lemma A.56 (Norm of vmm). Suppose that Assumption 4.5 holds, with probability at least 1− δ on
the training dataset, for the solution vmm of (42) under the token selection (82), we have

n

2d
≤ ∥vmm∥2 ≤ 5n

d
.

This implies

∥vmm∥ = Θ

(√
n

d

)
.

Proof of Lemma A.56. As vmm is the max-margin solution and satisfies KKT condition, it can be
represented as

vmm = λ1µ1 + λ2µ2 +
∑
i∈C

yiθiξi +
∑
i∈[n]

yiθiξi. (87)
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As there is no constraint on λ1, λ2, both of them can take 0 to achieve max-margin. So we could
lower bound ∥vmm∥ as

∥vmm∥2 ≥
∑
i∈[n]

θ2i ∥ξi∥2 +
∑
i∈[n]

∑
j∈[n]

yiyjθiθj⟨ξi, ξj⟩ ≥ O

(
n2

d3/2

)
≥ n

2d
.

The second inequality is from Lemma A.55 that θi = Θ(1/d) for i ∈ [n] and the last inequality is
from Assumption 4.5.

Then to upper bound ∥vmm∥, consider the following possible solution ṽ

ṽ =
∑
i∈[n]

2yiξi/d.

For i ∈ [n], we have

yiṽ
⊤ri = yiṽ

⊤ξi = 2∥ξi∥2/d+
∑

j∈[n],j ̸=i

2yiyj⟨ξi, ξj⟩/d

≥ 2(1− κ)− 2n
√

log(6n2/δ)/d ≥ 1.

The first inequality is from Lemma A.65 and the second inequality is from Assumption 4.5. Therefore,
ṽ is a possible solution of SVM problem A.13 when p converges to pmm. So we have

∥vmm∥2 ≤ ∥ṽ∥2 =
∑
i∈[n]

4∥ξi∥2/d2 +
∑
i∈[n]

∑
j∈[n]

4yiyj⟨ξi, ξj⟩/d2 ≤ 5n

d
.

The last inequality is from Lemma A.65, Lemma A.68 and Assumption 4.5. Combine the results
above, we have ∥vmm∥2 = Θ(nd ).

Denote the mixed samples as k1, k2, ..., kp. And for every mixed sample ki, we have rki = (1 −
βi)µki + βiξki . Without losing generality, we assume that yki = +1 for all i ∈ [p]. Then the
conditions under Situation 1 become
Condition 16 (p clean samples violating optimal token selection).{

yiv
⊤ξi ≥ 1, i ∈ [n]\[p]

v⊤rki ≥ 1, i ∈ [p]

Denote the max-margin solution under this condition as v′ with parameters λ′1, λ
′
2, θ

′
i. Plugging this

representation into the condition 16, we have:
θ′i · ∥ξi′∥2 +

∑
i′ ̸=i

yiyi′θ
′
i′⟨ξi, ξi′⟩ ≥ 1, i ∈ [n]\[p]

(1− βi)λ
′
1 · ∥µ1∥2 + βi(θ

′
ki

· ∥ξki
∥2 +

∑
i′ ̸=ki

yi′θ
′
i′⟨ξki

, ξi′⟩) ≥ 1, i ∈ [p]

We consider two cases: λ′1∥µ1∥2 < 1 and λ′1∥µ1∥2 ≥ 1. First when λ′1∥µ1∥2 < 1, the condition for
mixed clean sample becomes:

θ′ki
· ∥ξki

∥2 +
∑
i′ ̸=ki

yi′θ
′
i′⟨ξki

, ξi′⟩ ≥
1− (1− βi)λ

′
1∥µ1∥2

βi
> 1,

which indicates that the condition for θ′ki
is strengthened. So mixing 1 more clean sample is equal to

strengthening 1 constraint in the original setting. Therefore, mixing p samples will not result in a
better solution than only mixing 1 clean sample. Then we can simplify this case to mixing only 1
clean sample and denote this sample as k∗, rk∗ = (1− β)µ1 + βξk∗ . Now the condition becomes:
Condition 17 (1 clean sample violating optimal token selection).

θ′i · ∥ξi′∥2 +
∑
i′ ̸=i

yiyi′θ
′
i′⟨ξi, ξi′⟩ ≥ 1, i ∈ [n]\{k∗}

(1− β)λ′1 · ∥µ1∥2 + β(θ′k∗
· ∥ξki

∥2 +
∑

i′ ̸=k∗

yi′θ
′
i′⟨ξk∗ , ξi′⟩) ≥ 1
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Similarly, we introduce the following lemma which estimates the parameters in v′. We define

α =
1− (1− β)λ′1∥µ1∥2

β

for the convenience of the following proof.

Lemma A.57. Suppose that Assumption 4.5 holds, under condition 17, with probability at least 1− δ
on the training dataset, we have

θ′k∗
≤ α

(1− κ)d− 2n
√
d log(6n2/δ)

,

θ′k∗
≥ α

(1 + κ)d

(
1−

2n
√
d log(6n2/δ)

(1− κ)d− 2n
√
d log(6n2/δ)

)
,

max
i∈[n]\{k∗}

θ′i ≤
(1− κ)d+ 2(α− n)

√
d log(6n2/δ)

((1− κ)d− 2n
√
d log(6n2/δ))2

,

min
i∈[n]\{k∗}

θ′i ≥
1

(1 + κ)d
·
(
1−

2nα
√
d log(6n2/δ)

(1− κ)d− 2n
√
d log(6n2/δ)

)
.

Proof of Lemma A.57. Denote j = argmax
i∈[n]

θ′i, we have

yjv
′⊤ξj = θ′j∥ξj∥2 +

∑
i∈[n],i̸=j

yiyjθ
′
i⟨ξi, ξj⟩

≥ θ′j(1− κ)d− nmax
i∈[n]

θ′i · 2
√
d log(6n2/δ)

= θ′j((1− κ)d− n · 2
√
d log(6n2/δ)).

The first inequality is due to Lemma A.65 and the last equation is from our definition of j. Consider
the contrary case when θ′j >

α

(1−κ)d−2n
√

d log(6n2/δ)
, we have

yjv
′⊤ξj > α.

By the KKT conditions, if yjv′⊤ξj >
1+λ′

1(1−β)∥µ1∥2

β then we must have θ′j = 0, and thus we reach
a contradiction. Therefore, θ′k⋆

≤ θ′j ≤ α

(1−κ)d−2n
√

d log(6n2/δ)
. Then denote j′ = argmax

i∈[n],i̸=k⋆

θ′′i , we

have

yj′v
′⊤ξj′ = θ′j′∥ξj′∥2 +

∑
i∈[n],i̸=j′

yiyj′θ
′
i⟨ξi, ξj′⟩

≥ θ′j′(1− κ)d− n max
i∈[n],i̸=j′

θ′i · 2
√
d log(6n2/δ)− θ′k⋆

√
d log(6n2/δ)

≥ θ′j((1− κ)d− n · 2
√
d log(6n2/δ))−

2α
√
d log(6n2/δ)

(1− κ)d− 2n
√
d log(6n2/δ)

.

The first inequality is from Lemma A.65 and the second inequality is from the upper bound of θ′k⋆

we just get. Consider the case when θ′j′ >
(1−κ)d+2(α−n)

√
d log(6n2/δ)

((1−κ)d−2n
√

d log(6n2/δ))2
, we have

yj′v
′⊤ξj′ > 1.

By the complementary slackness condition, if yj′v′′⊤ξj′ > 1 then we must have θ′j′ = 0, and thus
we reach a contradiction.
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Next we estimate the lower bound of θ′j when j ̸= k∗. We have

1 ≤ yjv
′⊤ξj

= θ′j∥ξj∥2 +
∑

i∈[n],i̸=j

yiyjθ
′
i⟨ξi, ξj⟩

≤ θ′j(1 + κ)d+ nmax
i∈[n]

θ′i · 2
√
d log(6n2/δ)

≤ θ′j(1 + κ)d+
α

(1− κ)d− 2n
√
d log(6n2/δ)

· 2n
√
d log(6n2/δ)

The last inequality is from the upper bound of θ′k∗
we just get. Therefore, we have

θ′j ≥
1

(1 + κ)d
·
(
1−

2nα
√
d log(6n2/δ)

(1− κ)d− 2n
√
d log(6n2/δ)

)
for all j ∈ [n] and j ̸= k∗.

Last we lower bound θ′k∗
. We have

α ≤ ykv
′′⊤ξk∗

= θ′k∗
(1 + κ)d+ nmax

i∈[n]
θ′i · 2

√
d log(6n2/δ)

Similarly, we have

θ′k∗
≥ α

(1 + κ)d

(
1−

2n
√
d log(6n2/δ)

(1− κ)d− 2n
√
d log(6n2/δ)

)
.

Therefore, we could estimate the difference between ∥v′∥2 and ∥vmm∥2.

Lemma A.58. Suppose that Assumption 4.5 holds, with probability at least 1− δ on the training
dataset, denote v and v′ as the optimal solutions under condition 15 and condition 17 respectively.
We have

∥v′∥22 − ∥vmm∥22 ≥ C1(1− β)

d
.

where C1 = Θ(1) is a constant.

Proof of Lemma A.58. From the first inequality in Condition 17, for i[n], i ̸= k⋆ we have

θ′i · ∥ξi∥2 +
∑

i′ ̸=i,k⋆

yiyi′θ
′
i′⟨ξi, ξi′⟩ ≥ 1− yiyk⋆

θ′k⋆
⟨ξi, ξk⋆

⟩.

Then we add yiyk⋆w⟨ξi, ξk⋆⟩ on both sides, where we set w = θ′k⋆
− α−1

(1+κ)d−2
√

d log(6n2/δ)
≤ θ′k⋆ .

Then we have

θ′i · ∥ξi′∥2 +
∑

i′ ̸=i,k⋆

yiyi′θ
′
i′⟨ξi, ξi′⟩+ yiyk⋆

w⟨ξi, ξk⋆
⟩ ≥ 1− yiyk⋆

(θ′k⋆ − w)⟨ξi, ξk⋆
⟩

≥ 1− 2(θ′k⋆
− w)

√
d log(6n2/δ)

=
(1 + κ)d− 2α

√
d log(6n2/δ)

(1 + κ)d− 2
√
d log(6n2/δ)

. (88)

The second inequality is from Lemma A.65. Now consider a new v = λ1µ1 + λ2µ2 +
∑

i∈[n]

yiθiξi

with
λ1 = λ′1; λ2 = λ′2;

θi = θ′i/(1− 2(θ′k⋆
− w)

√
d log(6n2/δ)) for i ∈ [n], i ̸= k⋆
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and
θk⋆

=
w

1− 2(θ′k⋆
− w)

√
d log(6n2/δ)

.

We can prove that v satisfies all constraints for vmm.

By dividing 1− 2(θ′k⋆
− w)

√
d log(6n2/δ) on both sides of (88), for ∀i ∈ [n], i ̸= k⋆ we have

θi · ∥ξi∥2 +
∑
i′ ̸=i

yiyi′θi⟨ξi, ξi′⟩ ≥ 1.

Then we prove that θk⋆∥ξk⋆∥2 +
∑

i ̸=k⋆

yiyk⋆θi⟨ξi, ξk⋆⟩ ≥ 1. From the last inequality in Condition 17

we have

θ′k⋆
· ∥ξk⋆

∥2 +
∑
i̸=k⋆

yk⋆
yiθ

′
i⟨ξi, ξk⋆

⟩ ≥ α.

Dividing 1− 2(θ′k⋆
− w)

√
d log(6n2/δ) on both sides, we get

θ′k⋆
∥ξk⋆

∥2

1− 2(θ′k⋆
− w)

√
d log(6n2/δ)

+
∑
i̸=k⋆

yiyk⋆
θi⟨ξi, ξk⋆

⟩ ≥ α

1− 2(θ′k⋆
− w)

√
d log(6n2/δ)

.

Therefore we have

θk⋆
∥ξk⋆

∥2 +
∑
i ̸=k⋆

yiyk⋆
θi⟨ξi, ξk⋆

⟩ ≥
α− (θ′k⋆

− w)∥ξk⋆
∥2

1− 2(θ′k⋆
− w)

√
d log(6n2/δ)

≥
α− (θ′k⋆

− w)(1 + κ)d

1− 2(θ′k⋆
− w)

√
d log(6n2/δ)

= 1.

The second inequality is from Lemma A.65 and the last equality is by our definition θ′k⋆
− w =

α−1

(1+κ)d−2
√

d log(6n2/δ)
. Thus, v is a possible solution under Condition 1 and ∥v∥ ≥ ∥vmm∥.

Next we estimate the difference between ∥v′∥2 and ∥v∥2. The expansion of ∥v′∥2 and ∥v∥2 are:

∥v′∥2 = λ′21 ∥µ1∥2 + λ′22 ∥µ2∥2 +
∑
i∈[n]

θ′2i ∥ξi∥2 +
∑
i∈[n]

∑
j∈[n]

yiyjθ
′
iθ

′
j⟨ξi, ξj⟩,

∥v∥2 = λ21∥µ1∥2 + λ22∥µ2∥2 +
∑
i∈[n]

θ2i ∥ξi∥2 +
∑
i∈[n]

∑
j∈[n]

yiyjθiθj⟨ξi, ξj⟩.

Similar to the condition (49), we have ∥v′∥ ≤ 2∥vmm∥ = Θ(
√
n/d), which implies that α =

O(
√
n log n). Otherwise, we have

θ′k⋆
∥ξk⋆∥2 ≥ α−

∑
i̸=k⋆

yk⋆yiθ
′
i⟨ξi, ξk⋆⟩ = Ω(α).

It further yields that

∥v′∥2 = Ω(
n

d
) + θ′2k⋆

∥ξk⋆
∥2 = Ω(

n

d
+
α2

d
) = Ω(

n log2 n

d
),

which contradicts with ∥v′∥ = Θ(
√
n/d).

We decompose the difference between ∥v′∥2 and ∥v∥2 into four terms:

∥v′∥2 − ∥v∥2 =(θ′2k⋆
− θ2k⋆

)∥ξk⋆∥2︸ ︷︷ ︸
I1

+
∑

i∈[n],i̸=k⋆

(θ′2i − θ2i )∥ξi∥2︸ ︷︷ ︸
I2

−
∑
i∈[n]

∑
j∈[n]

yiyjθiθj⟨ξi, ξj⟩︸ ︷︷ ︸
I3

+
∑
i∈[n]

∑
j∈[n]

yiyjθ
′
iθ

′
j⟨ξi, ξj⟩︸ ︷︷ ︸

I4

.
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We now estimate I1 to I4 sequentially. For the first term,

I1 ≥ (θ′2k⋆
− θ2k⋆

)(1− κ)d = (θ′k⋆
− θk⋆

)(θ′k⋆
+ θk⋆

)(1− κ)d

=
(α− 1)(1− 2θ′k⋆

√
d log(6n2/δ))

(1 + κ)d− 2
√
d log(6n2/δ)

· Ω
(
1

d

)
· (1− κ)d

= Ω

(
α− 1

d

)
,

where the first inequality is from Lemma A.65; the second equality is from Lemma A.57; and the last
equality uses the fact that α = O(

√
n log n). Then we can further upper bound max

i∈[n],i̸=k⋆

θ′i as

max
i∈[n],i̸=k⋆

θ′i ≤
(1− κ)d+ 2(α− n)

√
d log(6n2/δ)

((1− κ)d− 2n
√
d log(6n2/δ))2

= O(
1

d
). (89)

For the second term I2, we have

|I2| ≤
∑

i∈[n],i̸=k⋆

(θ2i − θ′2i )(1 + κ)d

≤
(

1

(1− (θ′k⋆
− w)

√
d log(6n2/δ))2

− 1

)
max

i∈[n],i̸=k⋆

θ′2i · n(1 + κ)d

=
(α− 1)

√
d log(6n2/δ)

(1 + κ)d−
√
d log(6n2/δ)

·O(
n

d
) = Õ

(
(α− 1)n

d3/2

)
.

The second inequality is from Lemma A.57. The first equality is from (89) and the last equality is
from Assumption 4.5.

Then we bound | − I3 + I4| as:

| − I3 + I4| ≤
∑
i∈[n]

∑
j∈[n]\{i}

|θiθj − θ′iθ
′
j | · |⟨ξi, ξj⟩|

≤
∑

i∈[n]\{k⋆}

∑
j∈[n]\{k⋆,i}

|θiθj − θ′iθ
′
j | · |⟨ξi, ξj⟩|+ 2

∑
t∈[n]\{k⋆}

|θk⋆
θt − θ′k⋆

θ′t| · |⟨ξk⋆
, ξt⟩|

≤n2
(

1

(1− (θ′k⋆
− w)

√
d log(6n2/δ))2

− 1

)
max

i∈[n],i̸=k⋆

θ′2i · 2
√
d log(6n2/δ)

+ n

(
θ′k⋆

−
θk⋆

1− 2(θ′k⋆
− w)

√
d log(6n2/δ)

)
max

i∈[n],i̸=k⋆

θ′i4
√
d log(6n2/δ)

≤
(α− 1)

√
d log(6n2/δ)

(1 + κ)d−
√
d log(6n2/δ)

·O(
n2(1 + κ)

d3/2
) +

α− 1

d
·O(

n

d
) · 2

√
d log(6n2/δ)

=O

(
(α− 1)n2

d2
+

(α− 1)n

d3/2

)
.

The third inequality is from Lemma A.55 and Lemma A.57; The fourth inequality is from the fact
that

θ′k⋆
−

θk⋆

1− 2(θ′k⋆
− w)

√
d log(6n2/δ)

=
θ′k⋆

− θk⋆
− 2θ′k⋆

(θ′k⋆
− w)

√
d log(6n2/δ)

1− 2(θ′k⋆
− w)

√
d log(6n2/δ)

=
Ω(α−1

d )−O(α(α−1)
d3/2 )

1− 2(θ′k⋆
− w)

√
d log(6n2/δ)

> 0

So we have θ′k⋆
− θk⋆

1−2(θ′
k⋆

−w)
√

d log(6n2/δ)
≤ θ′k⋆

− θk⋆
; The last equality is from Assumption 4.1.

Combining the above results, we have

∥v′∥22 − ∥vmm∥22 ≥ Θ

(
α− 1

d

)
+O

(
(α− 1)ηn

d3/2

)
≥ C1(1− β)

d
.

Here C1 = Θ(1) is a constant.
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Then we consider the case when λ′1∥µ1∥2 ≥ 1. In this case, the condition for mixed clean sample
becomes:

θ′ki
· ∥ξki∥2 +

∑
i′ ̸=ki

ykiyi′θ
′
i′⟨ξki , ξi′⟩ ≥

1− (1− βi)λ
′
1∥µ1∥2

βi
,

and 1−(1−βi)λ
′
1∥µ1∥2

βi
≤ 1, which indicates that the condition for θ′ki

is relaxed. So mixing 1 more
clean sample is equal to relaxing 1 constraint in the original setting. Therefore, mixing all clean
samples will achieve the best result. From the data generalization model, there are (1− η)n/2+ o(n)
clean samples with label +1 and denote S+1 as their set. Now the condition becomes:
Condition 18 (All clean samples violating optimal token selection).

θ′i · ∥ξi′∥2 +
∑
i′ ̸=i

yiyi′θ
′
i′⟨ξi, ξi′⟩) ≥ 1, i ∈ [n]\ S+1

(1− β)λ′1 · ∥µ1∥2 + β(θ′i · ∥ξi∥2 +
∑
i′ ̸=i

yiyi′θ
′
i′⟨ξi, ξi′⟩) ≥ 1, i ∈ S+1

We have another lemma to estimate the scale of parameters in the max-margin solution in this case.

Here α =
1−(1−β̃)λ′

1∥µ1∥2

β̃
and β̃ = min

i∈[n]
{βi}.

Lemma A.59. Suppose that Assumption 4.5 holds, under Condition 18, we have

max
i∈[n]

θ′i ≤
1

(1− κ)d− 2n
√
d log(6n2/δ)

,

min
i∈[n]

θ′i ≥
(1− κ)dα− 2n

√
d log(6n2/δ)(α+ 1)

(1 + κ)d((1− κ)d− 2n
√
d log(6n2/δ))

.

Proof of Lemma A.59. First we prove the upper bound. Denote j = argmax
i∈[n]

θi, we have

yjv
⊤ξj =

∑
i∈[n]

yiyjθi⟨ξi, ξj⟩

= θj∥ξj∥22 +
∑

i ̸=j,i∈[n]

yiyjθi⟨ξi, ξj⟩

≥ θj · (1− κ)d− nθj · 2
√
d log(6n2/δ)

The last inequality is because Lemma A.65 and the definition of j. Consider the contrary case when
θj >

1

(1−κ)d−2n
√

d log(6n2/δ)
, we have

yjv
⊤ξj >

1

(1− κ)d− 2n
√
d log(6n2/δ)

· ((1− κ)d− n · 2
√
d log(6n2/δ)) = 1.

By the KKT conditions, if yjv⊤ξj > 1 then we must have θj = 0, and thus we reach a contradiction.

Then we prove the lower bound. For ∀j ∈ S+1 we have

α ≤ θj∥ξj∥22 +
∑

i ̸=j,i∈[n]

yiyjθi⟨ξi, ξj⟩

≤ θj · (1 + κ)d+ nmax
i∈[n]

θi · 2
√
d log(6n2/δ)

≤ θj · (1 + κ)d+
n

(1− κ)d− 2n
√
d log(6n2/δ)

· 2
√
d log(6n2/δ).

The second inequality is due to Lemma A.65 and the last inequality is from the upper bound we just
get. Therefore, we have

θj ≥
(1− κ)dα− 2n

√
d log(6n2/δ)(α+ 1)

(1 + κ)d((1− κ)d− 2n
√
d log(6n2/δ))

.

This completes the proof
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Then we can estimate the difference between ∥v′∥2 and ∥vmm∥2 with the following lemma:

Lemma A.60. Suppose that Assumption 4.5 holds, denote v and v′ as the optimal solutions under
condition 15 and condition 18 respectively. We have

∥v′∥22 − ∥vmm∥22 ≥ C2(1− β)

ρ2
.

where C2 = Θ(1) is a constant.

Proof of Lemma A.60. Recall the expansion of ∥vmm∥2 and ∥v′∥2:

∥vmm∥2 =
∑
i∈[n]

θ2i ∥ξi∥2 +
∑
i∈[n]

∑
j∈[n]

yiyjθiθj⟨ξi, ξj⟩,

∥v′∥2 = λ′21 ∥µ1∥2 +
∑
i∈[n]

θ′2i ∥ξi∥2 +
∑
i∈[n]

∑
j∈[n]

yiyjθ
′
iθ

′
j⟨ξi, ξj⟩.

Then we have

∥v′∥2 − ∥vmm∥2 =λ′21 ∥µ1∥2︸ ︷︷ ︸
I1

+
∑
i∈[n]

(θ′2i − θ2i )∥ξi∥2︸ ︷︷ ︸
I2

−
∑
i∈[n]

∑
j∈[n]

yiyjθiθj⟨ξi, ξj⟩︸ ︷︷ ︸
I3

+
∑
i∈[n]

∑
j∈[n]

yiyjθ
′′
i θ

′′
j ⟨ξi, ξj⟩︸ ︷︷ ︸

I4

.

We now estimate I1 to I4 sequentially. Here we use the same notation α =
1−(1−β̃)λ′

1∥µ1∥2

β̃
and

β̃ = min
i∈[n]

{βi} as in Lemma A.59. First from our assumption λ′1∥µ1∥2 ≥ 1 we have

I1 = λ′21 ∥µ1∥2 ≥ 1/ρ2.

Then for I2, we have

|I2| ≤ n(max
i∈[n]

θ2i − min
i∈[n]

θ′2i ) · (1 + κ)d

≤

(
1

((1− κ)d− 2n
√
d log(6n2/δ))2

− 1

(1 + κ)2d2
·
(
α−

2n
√
d log(6n2/δ)

(1− κ)d− 2n
√
d log(6n2/δ)

)2
)

· (1 + κ)dn

= d(1 + κ)n ·
1− 1

(1+κ)2d2 ((1− κ)dα− 2(α+ 1)n
√
d log(6n2/δ))2

((1− κ)d− 2n
√
d log(6n2/δ))2

= O

(
n

d

)
.

The second inequality is from Lemma A.55 and Lemma A.59.

Then we bound | − I3 + I4| as:

| − I3 + I4| ≤
∑
i∈[n]

∑
j∈[n]\{i}

(θ′iθ
′
j − θiθj) · |⟨ξi, ξj⟩|

≤ (n)2(max
i∈[n]

θ′2i − min
i∈[n]

θ2i ) · 2
√
d log(6n2/δ)

≤ (n)2
[(

1

(1− κ)d− 2n
√
d log(6n2/δ)

)2

−
(

(1− κ)d− 4n
√
d log(6n2/δ)

(1 + κ)d((1− κ)d− 2n
√
d log(6n2/δ))

)2]
· 2
√
d log(6n2/δ)

= Õ

(
κn2

d3/2

)
= O

(
n2

d2

)
.
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The third inequality is from Lemma A.55 and A.59; The last two equalities are from Assumption 4.5.
Combining the above results, we have

∥v′∥22 − ∥vmm∥22 ≥ C

ρ2
+O

(
n

d

)
≥ C2(1− β)

ρ2
.

Here C2 = Θ(1) is a constant.

Therefore, combining Lemma A.58 and A.60, we have the following statement for the difference
between ∥v′∥ and ∥vmm∥:

∥v′∥22 − ∥vmm∥22 ≥ C3(1− β)

d
. (90)

Here C3 = Θ(1) is a constant. The inequality is from the SNR condition that ρ = o(
√
d/n).

Now we can prove the main proposition in this scenario.

Proof of Proposition A.53 in case 1. From (90) we have

∥v′′∥22 − ∥v∥22 ≥ C3(1− β)

d
= S(1− β)

Here we substitute S = C3

d ≥ 0 Then we have

Γ2 − Γ′2 =
1

∥v∥2
− 1

∥v′∥2
=

∥v′∥2 − ∥v∥2

∥v′∥2 · ∥v∥2
≥ S(1− β)

∥v′∥2 · ∥v∥2
.

Therefore,

Γ− Γ′ ≥ S(1− β)

(Γ + Γ′)∥v∥2 · ∥v′∥2
≥ S(1− β)

2Γ∥v∥2 · ∥v′∥2
.

Set c = S
2Γ∥v∥2·∥v′∥2 = S

2∥v∥∥v′∥2 , we have Γ′ ≤ Γ− c(1− β). And we can upper bound c as

c =
S

2∥v∥∥v′∥2
≤ S

r3mm

≤ C3

r3mmd
.

The first inequality is from ∥v′∥ ≥ ∥v∥ and the second equality is from S = C2

d .

Situation 2: p = 0, k − p ̸= 0

Then we consider the case when all wrong token selections come from noisy set. Same as above,
denote the mixed samples as k1, k2, ..., kk−p. And for every mixed sample ki, we have rki =
(1− βi)µki + βiξki . Without losing generality, we assume that yki = +1 for all i ∈ [k − p], so the
corresponding signal token is µ2. Then the conditions under Situation 2 become
Condition 19 (Change k-p noisy samples).{

yiv
⊤ξi ≥ 1, i ∈ [n]\[k − p]

v⊤rki ≥ 1, i ∈ [k − p]

Denote the max-margin solution under this condition as v′ with parameters λ′1, λ
′
2, θ

′
i, we can interpret

the condition for parameters:
θ′i · ∥ξi′∥2 +

∑
i′ ̸=i

yiyi′θ
′
i′⟨ξi, ξi′⟩ ≥ 1, i ∈ [n]\[k − p]

(1− βi)λ
′
2 · ∥µ2∥2 + βi(θ

′
ki

· ∥ξki
∥2 +

∑
i′ ̸=ki

yki
yi′θ

′
i′⟨ξki

, ξi′⟩) ≥ 1, i ∈ [k − p]

Compare with Codition 16, the only difference is that we substitute λ′1∥µ1∥2 with λ′2∥µ2∥2. From
the symmetry, we can see that the two conditions are actually the same. Thereofre, we can follow the
proof of Situation 1 to prove for Proposition A.53 under this situation.
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Situation 3: p ̸= 0, k − p ̸= 0

Last we consider the case when wrong tokens come from both clean and noisy sets. Denote the
mixed clean samples as k1, k2, ..., kp and the mixed noisy samples as q1, q2, ..., qk−p.Without losing
generality, we assume that yki

= +1 for i ∈ [p] and yqi = −1 for i ∈ [k − p], which indicates that
their signal tokens are all µ1. Then the conditions under Situation 2 become
Condition 20 (p clean samples and k-p noisy samples violating optimal token selection).

yiv
⊤ξi ≥ 1, i ∈ [n]\[k]

v⊤rki ≥ 1, i ∈ [p]

−v⊤rqi ≥ 1, i ∈ [k − p]

Denote the max-margin solution under this condition as v′′ with parameters λ′′1 , λ
′′
2 , θ

′′
i , we can

interpret the condition for parameters:
θ′′i · ∥ξi′∥2 +

∑
i′ ̸=i

yiyi′θ
′′
i′⟨ξi, ξi′⟩) ≥ 1, i ∈ [n]\[k]

(1− βi)λ
′′
1 · ∥µ1∥2 + βi(θ

′′
ki

· ∥ξki
∥2 +

∑
i′ ̸=ki

yki
yi′θ

′′
i′⟨ξki

, ξi′⟩) ≥ 1, i ∈ [p]

−(1− βi)λ
′′
1 · ∥µ1∥2 − βi(θ

′′
qi · ∥ξqi∥

2 +
∑

i′ ̸=qi

yqiyi′θ
′′
i′⟨ξqi , ξi′⟩) ≥ 1, i ∈ [k − p]

We consider three cases: λ′′1∥µ1∥2 ≥ 1, 1 > λ′′1∥µ1∥2 ≥ −1 and λ′′1∥µ1∥2 < −1.

• λ′′1∥µ1∥2 ≥ 1

First when λ′′1∥µ1∥|2 ≥ 1, we have 1−(1−βi)λ
′
1∥µ1∥2

βi
≤ 1, which indicates that the condition

for mixed clean samples’ parameter θ′ki
is relaxed. Meanwhile, for the mixed noisy samples

we have

−θ′′qi · ∥ξqi∥
2 +

∑
i′ ̸=qi

yqiyi′θ
′′
i′⟨ξqi , ξi′⟩ ≥

1 + (1− βi)λ
′′
1∥µ1∥2

βi
≥ 1,

which indicates that the condition is strengthened. Therefore, this case is an extension of the
second case of Situation 1 with strengthening some constraints. These constraints will not
result in a better solution than Situation 1. The following proof is the same as Situation 1
and we omit it for convenience.

• 1 > λ′′1∥µ1∥2 ≥ −1

In this case, the constraints for both mixed clean and noisy samples are strengthened. So
this can be taken as an extension of the first case in Situation 1 with strengthening some
constraints. The following proof is the same as Situation 1 and we omit it for convenience.

• λ′′1∥µ1∥2 < −1

In this case, the constraints are strengthened for mixed clean samples while relaxed for the
mixed noisy samples. So we consider it as the extension of Situation 2 when λ′1∥µ1∥2 < −1
with strengthening some constraints. The following proof is the same as Situation 2 and we
omit it for convenience.

Therefore, we complete the proof for all possible situations.

Training and Test error analysis
From Proposition A.53 we can derive the convergence direction of p and v, i.e. pmm and vmm. Note
that Theorem A.27 does not depend on the selection of optimal tokens, so it still holds in this case
when optimal tokens are noise tokens for all samples. We restate it here for convenience:
Theorem A.61. Suppose that Assumption 4.5 holds, with probability at least 1− δ on the training
dataset, we have

• the margin induced by p(r,R)/R in p-SVM is at least (1− ζ)Ξ, where

ζ =
log(4

√
(1 + κ)d∥vmm∥3dρ2)

RΞ
.
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• the label margin induced by v(r,R)/r in v-SVM is at least (1 − γ)Γ, where γ =
2
√

(1+κ)d

Γ exp((1−ζ)RΞ) .

Then we could estimate the test error in this case. From Theorem A.61 we have

p⊤
(r,R)(ξi − µi) ≥ (1− ζ)RΞ,∀i ∈ [n] (91)

yiv
⊤
(r,R)ξi ≥ (1− γ)Γr, ∀i ∈ [n]. (92)

Here ζ, γ,Ξ,Γ are the same as the definition in Theorem A.61. Similarly, we have the following
lemma for ζ, γ.

Lemma A.62. Suppose that Assumption 4.5 holds, with probability at least 1− δ on the training
dataset, consider the same setting in Theorem A.27, we have ζ < 0.2 and γ < 0.1.

Proof of Lemma A.62. First we upper bound ∥pmm∥. Consider the following possible solution p̃:

p̃ =
∑
i∈[n]

2
ξi
d
. (93)

We then proved that p̃ satisfies (83). For ∀k ∈ [n], we have

p̃⊤(ξk − µk) =
∑
i∈[n]

2
⟨ξi, ξk⟩
d

≥ 2(1− κ) +
∑

i∈[n],i̸=k

2
⟨ξi, ξk⟩
d

≥ 2(1− κ) +
2n
√
d log(6n2/δ)

d
≥ 1.

The first and second inequalities are from Lemma A.65; The last inequality is from Assumption 4.5.

Therefore, the max-margin solution pmm must have no greater norm than p̃. So we can upper bound
pmm as

∥pmm∥2 ≤ ∥p̃∥2 =
4

d2

( ∑
i∈[n]

∥ξi∥2 +
∑

i,j∈[n],i̸=j

⟨ξi, ξj⟩
)

≤ 4

d2
(
(1 + κ)nd+ 2n2

√
d log(6n2/δ)

)
≤ 5n

d
.

The second inequality is from Lemma A.65; The last inequality is from the definition of d in
Assumption 4.5.

Then from the definition of ζ in Theorem A.27, we have

ζ =
log(4

√
(1 + κ)d∥vmm∥3dρ2)

RΞ
≤ C1

√
n/d

R
log(4

√
(1 + κ)d∥vmm∥3dρ2)

≤ C2

√
n/d

R
log

(
n3

d

)
< 0.2.

Here C1, C2 = Θ(1). The first inequality is from Ξ−1 = ∥pmm∥ ≤
√
5n/d; The second inequality

is from the upper bound of ∥vmm∥ in Lemma A.56 and the last inequality is from the definition of R
in Assumption 4.5. And for γ, we have

γ =
2M

Γ exp((1− ζ)RΞ)
= C ′

1

M∥vmm∥
exp(R/∥vmm∥)

≤ C ′
2

√
d · (n/d)

exp(R/
√
n/d)

< 0.1.

Here C ′
1, C

′
2 = Θ(1). The first inequality is from the lower and upper bound of ∥vmm∥ in Lemma

A.16 and the last inequality is from the definition of R in Assumption 4.1.

Then we have the following lemma to estimate the innerproduct of p(r,R) and signal token:
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Lemma A.63. Suppose that Assumption 4.5 holds, with probability at least 1− δ on the training
dataset, we have

|⟨p(r,R),µj⟩| ≤ 0.9(1− ζ)Rξ

for j ∈ {1, 2}.

Proof of Lemma A.63. First we use contradiction to prove for the lower bound. Assume that
|⟨p(r,R),µj⟩| > 0.9(1− ζ)RΞ. We can estimate ∥p(r,R)∥ as

∥p(r,R)∥2 > (0.9(1− ζ)RΞ)2/ρ2 > (0.5Ξ2/ρ2) ·R2 ≥ (0.1d/nρ2) ·R2 > R2.

The second inequality is from Lemma A.62 ; The third inequality is from Ξ2 = ∥pmm∥−2 ≥ d/(5n);
The last inequality is from our SNR condition ρ = o(

√
d/n). This leads to a contradiction.

From Lemma A.31, we can denote v(r,R) as

v(r,R) = λ1µ1 + λ2µ2 +
∑
i∈[n]

yiθiξi.

Denote vξ =
∑

i∈[n] yiθiξi as the noise part of v(r,R). Then we prove that p(r,R), vξ are near
orthogonal
Lemma A.64. Suppose that Assumption 4.5 holds, with probability at least 1− δ on the training
dataset, we have

|⟨p(r,R),vξ⟩| ≤ c

for some constant c ∈ (0, 1).

Proof of Lemma A.64. First plugging in the parameters in vξ we have

⟨p(r,R),vξ⟩ =
∑
i∈[n]

yiθip
⊤
(r,R)ξi

=
∑

yi=+1

θip
⊤
(r,R)ξi −

∑
yi=−1

θip
⊤
(r,R)ξi

≤ (n11 + n21)(max
i
θi)(RΞ +O(Rρ))− (n12 + n22)(min

i
θi)((1− ζ)RΞ−O(Rρ))

≤ (n/2)(max
i
θi −min

i
θi)RΞ︸ ︷︷ ︸

I1

+O(
√
n)(max

i
θi)RΞ︸ ︷︷ ︸

I2

+n(max
i
θi)(ζRΞ +O(Rρ))︸ ︷︷ ︸

I3

.

The first inequality is from Theorem A.61 that (1− ζ)RΞ ≤ p⊤
(r,R)(ξi − µi) ≤ RΞ and p⊤

(r,R)µi =

O(Rρ) and the second inequality is from Lemma A.68. Then we bound I1 ∼ I3 respectively. For I1,
we need to first bound θi. From Theorem A.61 we have

(1− γ)Γr ≤ yiv
⊤
(r,R)ξi ≤ Γr, ∀i ∈ [n].

Denote j = argmaxi θi, we have

yjv
⊤
(r,R)ξj ≥ θj∥ξj∥2 + nθj

√
d log(6n2/δ) ≥ θj((1− κ)d+ n

√
d log(6n2/δ)).

Therefore, we can upper bound θj as

θj ≤
yjv

⊤
(r,R)ξi

(1− κ)d+ n
√
d log(6n2/δ)

≤ Γr

(1− κ)d+ n
√
d log(6n2/δ)

. (94)

Then we can lower bound θi as

yiv
⊤
(r,R)ξi ≤ θi∥ξi∥2 + nθj

√
d log(6n2/δ) ≤ (1 + κ)dθi +

Γrn
√
d log(6n2/δ)

(1− κ)d+ n
√
d log(6n2/δ)

.
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Therefore,

θi ≥
(1− γ)(1− κ)Γrd− γΓrn

√
d log(6n2/δ)

(1 + κ)d(1− κ)d+ n
√
d log(6n2/δ)

.

So we can estimate I1 as

I1 ≤ (nRΞ/2) ·
(

Γr

(1− κ)d+ n
√
d log(6n2/δ)

−
(1− γ)(1− κ)Γrd− γΓrn

√
d log(6n2/δ)

(1 + κ)d(1− κ)d+ n
√
d log(6n2/δ)

)

≤ R
√
nd/2 · Γr ·

(
1− (1−γ)(1−κ)

1+κ + γn log(6n2/δ)
(1+κ)d

(1− κ)d+ n
√
d log(6n2/δ)

)
≤ Rr(κ+ γ).

The second inequality is from Ξ = ∥pmm∥ = Θ(
√
d/n) and the last inequality is from Γ =

∥vmm∥−1 = Θ(
√
d/n).

Then we bound I2. From (94) we have maxi θi = Θ(Γr/d). Therefore,

I2 ≤ O(
√
n)Θ(Γr/d)RΞ ≤ Rr ·O(1/

√
n).

The last inequality is from Γ,Ξ = Θ(
√
d/n).

Last we bound I3 as

I3 = nΘ(Γr/d)(ζRΞ +O(Rρ))

≤ Θ(r
√
n/d)(log(4

√
(1 + κ)d∥vmm∥3dρ2) +O(Rρ))

≤ Rr ·O(ρ
√
n/d).

The first inequality is from Γ,Ξ = Θ(
√
d/n) and the last inequality is from Assumption 4.5.

Combining the results above, we have

⟨p(r,R),vξ⟩ ≤ I1 + I2 + I3 ≤ Rr ·O(
√
1/n+ ρ

√
n/d) ≤ c

for sufficiently large d and n. Here the last inequality comes from Assumption 4.5.

With the lemmas above, we could prove for the main theorem

Proof of Theorem 4.6. First we show that the model can perfectly classify all training samples. From
Theorem A.27, we have

yiv
⊤
(r,R)ri = yiβiv

⊤
(r,R)ξi + yi(1− βi)v

⊤
(r,R)µi ≥ βi(1− γ)Γr − 0.9(1− βi)(1− γ)Γr > 0,

for ∀i ∈ [n]. The last inequality is from Lemma A.62. Thus yi = sign(f(Xi;v(r,R),p(r,R))) for all
i ∈ [n].

Then we bound the test error. This is equivalent to estimate y · f(v(r,R),p(r,R);X) and we could
write it as

y · f(v(r,R),p(r,R);X) = y ·
exp(⟨p(r,R),µ

′⟩)v⊤
(r,R)µ

′ + exp(⟨p(r,R), ξ
′⟩)v⊤

(r,R)ξ
′

exp(⟨p(r,R),µ′⟩) + exp(⟨p(r,R), ξ′⟩)
.

We first upper bound the term y · exp(⟨p(r,R),µ
′⟩)v⊤

(r,R)µ
′. From Theorem A.61, the non-optimality

of i-th sample is

1− βi =
exp(⟨p(r,R),µi⟩)

exp(⟨p(r,R),µi⟩) + exp(⟨p(r,R), ξi⟩)
≤ 1

1 + exp((1− ζ)ΞR)
for all i ∈ [n].

The last inequality is from the first statement in Theorem A.61. Consider the sample that contains the
same signal token as µ′, we have

(1− βi)v
⊤
(r,R)µi =

exp(⟨p(r,R),µi⟩)v⊤
(r,R)µi

exp(⟨p(r,R),µi⟩) + exp(⟨p(r,R), ξi⟩)
.
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Therefore,

y · exp(⟨p(r,R),µ
′⟩)v⊤

(r,R)µ
′ ≤ exp(⟨p(r,R),µi⟩)|v⊤

(r,R)µi| ≤
exp(⟨p(r,R),µi⟩) + exp(⟨p(r,R), ξi⟩)

1 + exp((1− ζ)ΞR)
· |v⊤

(r,R)µi|

≤
2 exp(⟨p(r,R), ξi⟩)
exp((1− ζ)ΞR)

· |v⊤
(r,R)µi| ≤

2 exp(ΞR)

exp((1− ζ)ΞR)
· |v⊤

(r,R)µi|

≤ 2 exp(ζΞR) · ρr = (4
√

(1 + κ)d∥vmm∥3dρ2) · ρr ≤ Cn3/2ρ3r
(95)

for some constant C > 0. Here the third inequality is from p⊤
(r,R)(ξi−µi) ≥ 0; The fourth inequality

is from the fact that ⟨p(r,R), ξi⟩ ≤ ΞR and the last inequality is from ∥v(r,R)∥ ≤ r, ∥µi∥ ≤ ρ. Then
we can bound the test error as

P(y · f(v(r,R),p(r,R);X) ≤ 0) = P(y · exp(⟨p(r,R),µ
′⟩)v⊤

(r,R)µ
′ + y · exp(⟨p(r,R), ξ

′⟩)v⊤
(r,R)ξ

′ ≤ 0)

≥ P(y · exp(⟨p(r,R), ξ
′⟩)v⊤

(r,R)ξ
′ ≤ −Cn3/2ρ3r)

≥ 1

4
P
(
yv⊤

ξ ξ
′ ≤ −e−R/C · Cn3/2ρ3r | ⟨p(r,R)/R, ξ

′⟩ ∈ [1/C,C]

)
≥ 1

4
(
1

2
− cC + C exp(−R/C)n3/2ρ3√

2π(1− c2)
) ≥ 1

16
.

The first inequality is from (95); the second inequality use the fact that there exists a constant C > 0
such that P(N(0, 1) ∈ [1/C,C]) ≥ 1/4; the third inequality comes from Lemma A.69 and the last
inequality uses Assumption 4.5.

.

A.3 Supplement Lemmas

Here we list some technical lemmas for the main proof.

Lemma A.65. (Properties of Training Data) Suppose that δ > 0. Then exists some constant cD > 0

(that depends just on the number of tokens T ) and κ ≤ cD
√
log(n/δ)/d = Õ(1/

√
d) such that with

probability at least 1− δ, we have

(1− κ)d ≤ ∥ξi,τ∥22 ≤ (1 + κ)d,∀i ∈ [n], τ ∈ {2, . . . , T}

|⟨ξi,τ , ξj,τ ′⟩| ≤ cD
√
d log(n/δ) ∀i, j ∈ [n], τ, τ ′ ∈ {2, . . . , T} s.t.(i, τ) ̸= (j, τ ′).

Proof of Lemma A.65. Note that E[∥ξi,τ∥2] = d, then by Bernstein’s inequality (see Theorem 2.8.1
in Vershynin [35]), with probability at least 1− δ/(3n) we have

|∥ξi,τ∥22 − d| ≤ c1 ·
√
d log(n/δ)),

where c1 is some universal constant. Therefore, for κ ≤ c1
√
log(n/δ)/d we have that

(1− κ)d ≤ ∥ξi,τ∥22 ≤ (1 + κ)d.

Moreover, ⟨ξi,τ , ξj,τ ′⟩ has mean zero for any i, j ∈ [n], τ, τ ′ ∈ {2, . . . , T} such that (i, τ) ̸= (j, τ ′).
By Bernstein’s inequality, with probability at least 1− δ/(3T 2n2) we have

|⟨ξi,τ , ξj,τ ′⟩| ≤ c2
√
d log(n/δ),

where c2 is some universal constant. Applying a union bound and setting cD = max(c1, c2)
completes the proof.

Following Lemma A.65 we conclude the next remark:
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Remark A.66. (Properties of New Test Sample) Let (X = (µk, ξ2, . . . , ξτ ), y) ∼ D. Then exists
universal constant cD such that for any C1 > 0, with probability at least 1− n exp(−d/C2

1c
2
Dn), we

have

|⟨ξτ , ξi,τ ′⟩| ≤ d

C1

for any i ∈ [n] and τ, τ ′ ∈ {2, . . . , T}.

Proof. Similarly to the proof of Lemma A.65, exists some constant cD such that with probability at
least 1− δ we have that

|⟨ξi,τ , ξj,τ ′⟩| ≤ cD
√
d log(n/δ)

Setting δ = n exp(−d/c2DC2
1 ) completes the proof.

Lemma A.67 (Properties of Combined Noise Tokens). Suppose that δ > 0 and κ′ =

O(
√

log(6n/δ)/d) = Õ(1/
√
d) .If Lemma A.65 holds, we have

(1− κ′)d/T ≤ ∥ξi∥22 ≤ (1 + κ′)d

|⟨ξi, ξj⟩| ≤ 2T 2
√
d log(6n2/δ)

for any i, j ∈ [n].

Proof of Lemma A.34. Note that ξi =
∑T

τ=2 ti,τξi,τ and
∑T

τ=2 ti,τ = 1. Lemma A.65 holds for
each noise token ξi,τ , so for the composed noise token we have,

∥ξi∥22 = ∥
T∑

τ=2

ti,τξi,τ∥22

≥
T∑

τ=2

t2i,τ∥ξi,τ∥22 −
T∑

τ1=2

∑
τ2 ̸=τ1

|tτ1tτ2⟨ξi,τ1 , ξi,τ2⟩|

≥ (1− κ)d

T∑
τ=2

t2i,τ − 2
√
d log(6n2/δ)

T∑
τ1=2

∑
τ2 ̸=τ1

|tτ1tτ2 |

≥ (1− κ)d/T − 2
√
d log(6n2/δ) · T 2O(1)

≥ (1− κ′)d/T.

The first inequality is from triangle inequality; The second inequality is from Lemma A.65; The third

inequality is from Cauchy–Schwarz inequality that
T∑

τ=2
t2i,τ ·T ≥ (

T∑
τ=2

ti,τ )
2 = 1 and tτ1 , tτ2 = O(1);

The last inequality is from the definition κ′.

To upper bound ∥ξi∥22, we have

∥ξi∥22 = ∥
T∑

τ=2

ti,τξi,τ∥22

≤
T∑

τ=2

t2i,τ∥ξi,τ∥22 +
T∑

τ1=2

∑
τ2 ̸=τ1

|tτ1tτ2⟨ξi,τ1 , ξi,τ2⟩|

≤ (1 + κ)d

T∑
τ=2

t2i,τ + 2
√
d log(6n2/δ)

T∑
τ1=2

∑
τ2 ̸=τ1

|tτ1tτ2 |

≤ (1 + κ)d+ 2
√
d log(6n2/δ) · T 2O(1)

≤ (1 + κ′)d.

The first two inequalities are similar as above; The third inequality is from t2i,τ ≤ ti,τ for ti,τ ∈ [0, 1],
so
∑T

τ=2 t
2
i,τ ≤

∑T
τ=2 ti,τ = 1; The last inequality is from the definition of κ′.
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Last we consider the innerproduct of composed noise tokens. For ∀i, j ∈ [n], i ̸= j we have

|⟨ξi, ξj⟩| = |
T∑

τ1=2

T∑
τ2=2

ti,τ1tj,τ2⟨ξi,τ1 , ξj,τ2⟩|

≤ 2
√
d log(6n2/δ) · |

T∑
τ1=2

T∑
τ2=2

ti,τ1tj,τ2 |

≤ 2T 2
√
d log(6n2/δ).

The first inequality is from triangle inequality and the second inequality is due to ti,τ1 , tj,τ2 ∈ [0, 1].
This completes the proof.

Lemma A.68. With probability at least 1− 6δ,∣∣|C| − n(1− η)
∣∣ ≤√n log(1

δ
);

∣∣|N | − nη
∣∣ ≤√n log(1

δ
);

∣∣|Ci| − n(1− η)

2

∣∣ ≤√n log(1
δ
);

∣∣|Ni| −
nη

2

∣∣ ≤√n log(1
δ
), i = 1, 2.

Proof. Note that |C| ∼ Binom(n, 1− η). Applying Hoeffding’s inequality, we have

P
(∣∣|C| − (1− η)n

∣∣ > t
)
≤ 2 exp(−2t2

n
).

Let t =
√
n log(1/δ). We have that with probability at least 1− δ,∣∣|C| − (1− η)n

∣∣ ≤√n log(1
δ
).

Similarly, note that |N | ∼ Binom(n, η), |C1| ∼ Binom(n, (1 − η)/2), |C2| ∼ Binom(n, (1 −
η)/2), |N1| ∼ Binom(n, η/2) and |N2| ∼ Binom(n, η/2), we have that each of the following
events holds with probability at least 1− δ:∣∣|C| − n(1− η)

∣∣ ≤√n log(1
δ
);

∣∣|N | − nη
∣∣ ≤√n log(1

δ
);

∣∣|Ci| − n(1− η)/2
∣∣ ≤√n log(1

δ
), i = 1, 2;

∣∣|Ni| − nη/2
∣∣ ≤√n log(1

δ
), i = 1, 2.

Lemma A.69. Suppose X ∼ N(0, Id), and v,p ∈ Rd are two vectors with ∥v∥ = ∥p∥ = 1,v⊤p ≤
c for some constant c ∈ (0, 1). Given some constant C > 1, for z < 0,

P(v⊤X < z|p⊤X ∈ [1/C,C]) ≥ 1

2
− 1√

2π

cC − z√
1− c2

.

Proof of Lemma A.69. Denote xv = v⊤X ∼ N(0, 1), xp = p⊤X ∼ N(0, 1). Then we have
xv, xp ∼ N (0, 1). Denote the covariance between xv, xp by c0, then we have

c0 = Cov(xv, xp) = v⊤Cov(X)p = v⊤p ≤ c.

Note that
xv

d
= c0xp +

√
1− c20r,

where r ∼ N(0, 1) is independent of xp. It follows that

P(xv < z|xp ∈ [
1

C
,C]) = P(r <

z − c0xp√
1− c20

|xp ∈ [
1

C
,C]) ≥ P(r <

z − cC√
1− c2

) ≥ 1

2
− 1√

2π

cC − z√
1− c2

.
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A.4 Additional Experiments

In this section, we present additional experiments, including various architectures (different from
Eq. (3)), alternative relationships between parameters (e.g., deviating from Assumption 3.1), and
gradient descent with weight decay, and more. Additionally, all experiments were conducted on a
single NVIDIA T4 GPU with 16GB memory. Each individual run was completed in under a minute.
The total compute cost for all experiments presented in the paper and appendix is negligible. No
parallelization or distributed training was used.

In Figure 3 we use the same settings and parameters as in the main paper (i.e. as in Figure 2), but
with a smaller step size. In contrast to Theorem 3.3 and Figure 2, benign overfitting occurs after
about 150 iterations. This provides empirical validation for Remark 5.1.

In Figure 4, we explore the relationship between the number of samples n and the input dimension d.
We observe that even when d ≈ n, the model exhibits benign overfitting. For intermediate values of
d, the model demonstrates harmful overfitting, where the test error increases. For smaller values of d,
the model fails to fit the data.

In Figure 5, we examine self-attention with respect to the first token, as in [7]. Here, the model
exhibits benign overfitting with behavior similar to that observed under self-attention with respect to
tunable token (Remark 5.1). Additionally, the attention probabilities are consistent with those in the
tunable token attention model (see the resemblance to Figure 2).

In Figure 6 and 7, we set the number of tokens to T = 5. The results show benign overfitting after
two iterations. Furthermore, for clean samples, the softmax probability of the signal token, stj,1,
dominates the overall attention. In contrast, for noisy samples, the softmax probabilities of the noise
tokens,

∑T
τ=2 s

t
j,τ , dominate. This align with Thm. 3.3.

In Figure 8, we use the same settings and parameters as in Figure 2, but with Gaussian initialization
instead of zero initialization. The results remain consistent, providing empirical validation for Remark
3.2 that states that zero initialization is without loss of generality.

In figure 9, we consider a four-layer attention model defined as f(X) = f1(f2(f3(f4(X)))),
where fi : R(T+1)×d → R(T+1)×d for i ∈ {2, 3, 4} is defined in Eq. (1) and f1 : R(T+1)×d → R is
defined in Eq. (3). The results show benign overfitting after roughly 20 iterations. Moreover, the
softmax probabilities in the first layer align with the behavior observed in the single-layer model.

In Figure 10, we consider a four-head attention model which concatenates the results from all heads
as the attention output. The results show benign overfitting after roughly 2 iterations. Moreover, the
softmax probabilities in the first layer align with the behavior observed in the single-layer model.

In Figure 11, we examine GD with weight decay, which encourages norm minimization (or margin
maximization). Here, benign overfitting occurs after approximately 150 iterations. Also here the
attention mechanism continues to separate signal tokens from noise tokens.

To further validate our theoretical findings, we conducted additional experiments on real-world
datasets, including MNIST and CIFAR-10. In both cases, we trained a one-layer Transformer model
(d = 1024) to perform binary classification. Since the signal-to-noise ratio (SNR) is fixed for each
dataset, we varied the training sample size n to examine how train and test accuracy evolve with
n. The results in table 2 and 3 indicate that while training accuracy remains near 100%, the test
accuracy improves as n increases. This corresponds to our SNR threshold Θ(1/

√
n) that determines

the transition between benign and harmful overfitting.
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Figure 3: The left panel shows train and test accuracies during training with a small step size.
The clean training samples are correctly classified already after one iteration, but in contrast to
Theorem 3.3 and Figure 2, benign overfitting occurs after about 150 iterations. In the right panel, we
see that the attention starts separating signal and noise tokens shortly before benign overfitting occurs.
Parameters: n = 200, d = 40000, T = 2, β = 0.0001, ρ = 30, η = 0.05, test sample size = 2000.
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Figure 4: Comparing train (solid lines) and test (dashed lines) accuracies with different dimensions.
Here, we see that for small d (purple line), the model is unable to fit the data (at least in the
first 105 first iterations), and both the train and test accuracies are at the noise-rate level. For
intermediate values of d (green and blue lines), the model exhibits harmful overfitting, and for larger
d (yellow line) the model exhibits benign overfitting. We note that benign overfitting occurs here
for d = 2n≪ n2, which suggests that the assumptions on d in our theorems are loose. Parameters:
n = 500, β = 0.02, T = 5, ρ = 30, η = 0.1, test sample size = 10000.
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Figure 5: Self-attention experiments. The model: X → v⊤XTS(XWx(1)), same as Vasudeva
et al. [7]. The left panel shows the train and test accuracies during training. It shows that benign
overfitting also occurs after 2 iterations. In the right panel, we show the softmax probability of the
signal token for clean and noisy samples (average of the softmax probabilities stj,1 over C and N
respectively). We see that after 2 iterations, the attention focuses on signal tokens for clean examples,
and on noise tokens for noisy examples. This indicates that our results also capture the behavior
in a self-attention mechanism. Parameters: n = 200, d = 40000,T=2, β = 0.025, ρ = 20, η =
0.05, test sample size = 2000.
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Figure 6: The left panel shows train and test accuracies during training. It shows that benign
overfitting occurs after 2 iterations. In the right panel, we see that after 2 iterations, the attention
focuses on signal tokens for clean examples, and on noise tokens for noisy examples. Parameters:
n = 200, d = 40000, T = 5, β = 0.1, ρ = 40, η = 0.05, test sample size = 2000.
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Figure 7: The left panel shows train and test accuracies during training with a small step size. The
clean training samples are correctly classified already after one iteration, but benign overfitting occurs
after about 22 iterations. In the right panel, we see that the attention starts separating signal and
noisy tokens shortly before benign overfitting occurs. Parameters: n = 200, d = 40000, T = 5, β =
0.003, ρ = 50, η = 0.05, test sample size = 2000.
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Figure 8: The left panel shows the train and test accuracies during training (with Gaussian ini-
tialization, where each entry has variance 0.01). As in Figure 2, It shows that benign overfitting
occurs after 2 iterations. After the first iteration, the model correctly classifies the clean train-
ing examples, but not the noisy ones. In the right panel, we show the softmax probability of the
signal token for clean and noisy samples (average of the softmax probabilities stj,1 over C and
N respectively). We see that after 2 iterations, the attention focuses on signal tokens for clean
examples, and on noise tokens for noisy examples. This aligns with Theorem 3.3. Parameters:
n = 200, d = 40000, β = 0.025, ρ = 30, η = 0.05, test sample size = 2000.
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Figure 9: Multi-layer experiments. The left panel shows the train and test accuracies during training
in a 4-layer single-head attention model. It shows that benign overfitting occurs after roughly 20
iterations. After the first iteration, the model correctly classifies the clean training examples, but not
the noisy ones. In the right panel, we show the softmax probability of the signal token for clean and
noisy samples (average of the softmax probabilities stj,1 over C and N respectively) in the first layer.
We see that the attention focuses on signal tokens for clean examples, and on noise tokens for noisy
examples. This indicates that our results essentially capture the behavior also in multi-layer models.
Parameters: n = 200, d = 10000, T = 2, β = 0.025, ρ = 20, η = 0.05, test sample size = 2000.
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Figure 10: Multi-head experiments. The left panel shows train and test accuracies during training in
a 4-head attention model. The clean training samples are correctly classified already after one iteration,
and benign overfitting occurs after 2 iterations. In the right panel, we see that after 2 iterations,
the attention focuses on signal tokens for clean examples, and on noise tokens for noisy examples.
Parameters: n = 200, d = 10000, T = 2, β = 0.3, ρ = 15, η = 0.05, test sample size = 2000.
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(b) Softmax probability for signal (first) token

Figure 11: The left panel shows train and test accuracies during training with GD with weight decay.
The clean training samples are correctly classified already after one iteration, and benign overfitting
occurs after about 150 iterations. In the right panel, we see that the attention starts separating
signal and noise tokens shortly before benign overfitting occurs. Parameters: weight decay = 0.01,
n = 200, d = 40000, T = 2, β = 0.0001, ρ = 30, η = 0.05, test sample size = 2000.
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Eval Training Size n
80 400 800 2000

Train acc 100% 100% 99.9% 99.9%
Test acc (on clean data) 87.6% 91.9% 94.1% 95.8%

Table 2: Training and test accuracy on label-noisy (η = 0.1) MNIST dataset for 500 iterations in
one-layer, two-head Transformers.

Eval Training Size n
40 400 4000 40000

Train acc 100% 100% 100% 100%
Test acc (on clean data) 77.6% 80.9% 86.6% 88.9%

Table 3: Training and test accuracy on label-noisy (η = 0.05) CIFAR-10 dataset for 500 iterations in
one-layer, four-head Transformers.
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