
LipsNet: A Smooth and Robust Neural Network with Adaptive
Lipschitz Constant for High Accuracy Optimal Control

Xujie Song 1 Jingliang Duan 2 Wenxuan Wang 1 Shengbo Eben Li 1 Chen Chen 1 Bo Cheng 1 Bo Zhang 3

Junqing Wei 3 Xiaoming Simon Wang 3

Abstract

Deep reinforcement learning (RL) is a power-
ful approach for solving optimal control prob-
lems. However, RL-trained policies often suf-
fer from the action fluctuation problem, where
the consecutive actions significantly differ de-
spite only slight state variations. This problem
results in mechanical components’ wear and tear
and poses safety hazards. The action fluctuation
is caused by the high Lipschitz constant of ac-
tor networks. To address this problem, we pro-
pose a neural network named LipsNet. We pro-
pose the Multi-dimensional Gradient Normaliza-
tion (MGN) method, to constrain the Lipschitz
constant of networks with multi-dimensional in-
put and output. Benefiting from MGN, LipsNet
achieves Lipschitz continuity, allowing smooth
actions while preserving control performance by
adjusting Lipschitz constant. LipsNet addresses
the action fluctuation problem at network level
rather than algorithm level, which can serve as
actor networks in most RL algorithms, making
it more flexible and user-friendly than previous
works. Experiments demonstrate that LipsNet
has good landscape smoothness and noise robust-
ness, resulting in significantly smoother action
compared to the Multilayer Perceptron.

1. Introduction
Recently, deep reinforcement learning (RL) has emerged as
an effective method for solving optimal control problems in
the physical world (Guan et al., 2021). As neural networks

1School of Vehicle and Mobility, Tsinghua University, Bei-
jing, China 2School of Mechanical Engineering, University of
Science and Technology Beijing, Beijing, China 3Didi Chux-
ing, Beijing, China. Correspondence to: Shengbo Eben Li
<lishbo@tsinghua.edu.cn>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

can fit complex nonlinear functions conveniently (Hornik
et al., 1989; Kidger & Lyons, 2020), neural networks have
become RL’s classical control policy container. However,
the policy trained by RL severely suffers from the action
fluctuation problem, which means the consecutive actions
vibrate greatly despite only slight difference in states. This
problem is often overlooked in simulation and training, but
has important consequences in real-world applications. Fluc-
tuating actions do not satisfy control requirements, resulting
in the wear and tear on mechanical components and safety
hazards. This problem is prevalent in a variety of scenarios,
such as the drone control (Mysore et al., 2021; Shi et al.,
2019), robot arm control (Yu et al., 2021) and autonomous
driving (Chen et al., 2021; Wasala et al., 2020).

In order to make RL more applicable to the real-world usage,
researchers are attempting to address the action fluctuation
problem. Siddharth Mysore et al. (2021) found that fil-
ters would not be directly used to smoothen the actions,
because it changes the dynamic response and breaks the
Markov assumption, which results in anomalous behaviors.
Therefore, the problem must be addressed during training.
Current methods can be divided into four categories, which
are action penalty methods (Mysore et al., 2021; Kobayashi,
2022), adversarial disturbance methods (Shen et al., 2020;
Zhao et al., 2022), hierarchical network methods (Chen
et al., 2021; Yu et al., 2021) and network enhancement
methods (Takase et al., 2020; 2022).

In action penalty methods, penalty terms indicating action
smoothness are added to the actor loss of RL. For exam-
ple, the Conditioning for Action Policy Smoothness (CAPS)
method (Mysore et al., 2021) introduces two penalty terms
in actor loss. The first term indicates the similarity be-
tween adjacent actions in successive time steps. The sec-
ond term indicates the similarity between actions under
close states. In the Locally Lipschitz Continuous Constraint
(L2C2) method (Kobayashi, 2022), the penalty terms in-
clude the similarity between actions under close states and
the similarity between critic values under close states. The
distance between the actual state and the sampled close
state in L2C2 is bounded by a multiple of the distance be-
tween the actual state and the subsequent state in the next

1

LipsNet

time step. However, the hyperparameter tuning is tough in
action penalty methods because an excessive penalty will
harm performance, otherwise ineffective for action smooth-
ing. Moreover, the action penalty methods complicate RL
algorithms due to the close state sampling.

In adversarial disturbance methods, the actor network is
trained under adversarial states with disturbance noise. For
example, the Smooth Regularized Reinforcement Learning
(SR2L) method (Shen et al., 2020) uses projected gradient
ascent to find the optimal disturbance noise. The noise
maximizes the distance between actions under actual states
and adversarial states. Then, the actor network is trained
by minimizing both the actor loss and the action distance.
However, adversarial disturbance methods complicate RL
algorithms because of the additional adversarial policy.

In hierarchical network methods, there are two stages in
actor network. For example, the Policy Inertia Controller
(PIC) method (Chen et al., 2021) uses one network to out-
put the action distribution and uses the other network to
output the policy inertia scalar. In Temporally Abstract
Actor-critic (TAAC) method (Yu et al., 2021), one network
outputs the deterministic action at the current time step
and the other network makes binary choices on whether
to use the current action or the last action. However, hier-
archical network methods also complicate RL algorithms.
For example, a nested policy iteration is needed in PIC to
train networks, and a compare-through operator is needed
in TAAC to achieve policy evaluation.

In network enhancement methods, the Lipschitz constant
of actor network is constrained by Spectral Normalization
(SN). SN is proposed from SN-GAN (Miyato et al., 2018),
and applied in RL recently (Gogianu et al., 2021; Bjorck
et al., 2021; Mehta et al., 2022). For instance, Ryoichi
Takase (2020; 2022) applied SN on each layer of MLP, de-
noted as MLP-SN in our paper, to make the actor network
globally Lipschitz continuous. The methods in network
enhancement category achieve action smoothing by only
modifying neural networks without modifying RL algo-
rithms. Modifying at network level is preferred to algorithm
level, because it leaves RL algorithm straightforward and
an effective neural network can be used generally in various
RL algorithms. However, applying SN on all layers usually
leads to severe performance loss, while leaving some layers
normal lack a theoretical guarantee of Lipschitz continuity.

Theoretically, the action penalty methods, adversarial distur-
bance methods and network enhancement methods all aim to
reduce the Lipschitz constant of actor network. It is because
action fluctuation is affected by the landscape smoothness
and noise robustness of actor network, and Lipschitz con-
stant can characterize network’s smoothness and robustness,
as Section 2.1 discussed. The smaller the Lipschitz constant
of actor network, the more robust and smoother the actor

network becomes. Therefore, we tend to reduce the Lips-
chitz constant of actor network under the premise of good
enough control performance.

This paper proposes a novel neural network structure, named
LipsNet, for action smoothing in RL that has three superiori-
ties compared to previous works. Firstly, it smoothens action
by modifying at neural network level rather than algorithm
level, not complicating RL algorithms. LipsNet can be used
in most existing RL algorithms, such as TRPO (Schulman
et al., 2015), DSAC (Duan et al., 2021) and TD3 (Fujimoto
et al., 2018). Secondly, LipsNet constrains Lipschitz con-
stant in network-wise, rather than in layer-wise like SN.
It is because LipsNet benefits from the Multi-dimensional
Gradient Normalization (MGN) we proposed. As illustrated
in (Wu et al., 2021), network-wise constraints do not limit
layer capacities, which is better than layer-wise constraints.
Thirdly, LipsNet does not suffer severe performance loss,
because it can be not only globally Lipschitz continuous but
also locally Lipschitz continuous, and it has a mechanism
for automatically adjustmenting the Lipschitz constant.

Our contributions are four-fold. (1) We propose a network-
wise Lipschitz constraint method, named Multi-dimensional
Gradient Normalization (MGN), which is suitable for neural
networks with multi-dimensional input and output. Proof
of networks’ Lipschitz continuity is provided. (2) A novel
network structure named LipsNet is proposed for smooth-
ing actions in RL. LipsNet can be either globally or locally
Lipschitz continuous, with the ability to adjust its Lipschitz
constant automatically. It can be used in most existing RL
algorithms without any modification. (3) Extensive experi-
ments show that LipsNet has better landscape smoothness
and noise robustness than Multilayer Perceptron (MLP). It
can smoothen the action without noticeable performance
loss. (4) We package LipsNet into a Pytorch module and
release the code1 to facilitate the implementation and future
research.

2. Preliminaries
2.1. Lipschitz Continuity

Definition 2.1 (Global Lipschitz Continuity). Given a func-
tion f : Rn → Rm, if there exists a constantK > 0 satisfies

‖f(x1)− f(x2)‖ ≤ K‖x1 − x2‖, ∀x1, x2 ∈ Rn, (1)

then f is a globally K-Lipschitz continuous function over
Rn. The smallest K is called the global Lipschitz constant.

Definition 2.2 (Local Lipschitz Continuity). Given a func-
tion f : Rn → Rm, if there exists a constantK > 0 satisfies

‖f(x1)− f(x2)‖ ≤ K‖x1 − x2‖, ∀x1, x2 ∈ X ,
1https://github.com/jerry99s/LipsNet

2

https://github.com/jerry99s/LipsNet

LipsNet

then f is a locally K-Lipschitz continuous function over X
where X ⊂ Rn. The smallestK is called the local Lipschitz
constant over X .

Lipschitz constant K could characterize the landscape
smoothness level of a function. Suppose x1 = x and
x2 = x+∆x, if ∆x→ 0, then ‖f(x)−f(x+∆x)‖

‖x−(x+∆x)‖ → ‖f ′(x)‖.
The Lipschitz constraint means the gradient norm ‖f ′(x)‖
tends to be smaller than K. Therefore, K characterizes
functions’ landscape smoothness.

Lipschitz constantK could characterize the noise robustness
level of a function. Suppose x1 = x and x2 = x+ σ, if σ is
the observation noise, then the constraint ‖f(x)−f(x+σ)‖

‖x−(x+σ)‖ ≤
K means that the ratio of the disturbed output difference to
the noised input difference is bounded by K. Therefore, K
characterizes functions’ noise robustness.

2.2. Gradient Normalization

In GN-GAN (Wu et al., 2021) and GraN-GAN(Bhaskara
et al., 2022), they proposed Gradient Normalization (GN)
to constrain the Lipschitz constant of a neural network f :
Rn → R. GN achieves Lipschitz constraint at network level.
GN is superior to its former method, SN, who achieves
Lipschitz constraint at layer level.

As GN described, let f : Rn → R be a continuously dif-
ferential neural network with piecewise linear activations.
Then fGN is a 1-Lipschitz continuous function:

fGN(x) =
f(x)

‖∇xf(x)‖+ ε
, (2)

where ‖∇xf(x)‖ is the 2-norm of gradient vector, ε is a
small positive constant.

3. Method
3.1. Action Fluctuation Ratio

To measure the action fluctuation of RL in quantitation,
the action fluctuation ratio needs to be defined. The action
fluctuation ratio for discrete action space is already defined
in (Chen et al., 2021). To take continuous action space into
account, we define the action fluctuation ratio of policy π as

ξ(π) = Eτ∼ρπ

[
1

T

T∑
t=1

||at − at−1||

]
, (3)

where ρπ is the distribution of state-action trajectory induced
by policy π, and T is the termination time of a trajectory.
||at − at−1|| means the 2-norm of the difference vector
between at and at−1, where at and at−1 represent the action
in the t-th time step and the action in the last time step. We
use the action fluctuation ratio as an indicator to measure

the fluctuation. The smaller ξ(π) is, the smoother action
policy π has.

3.2. Multi-dimensional Gradient Normalization

GN is a method to constrain the Lipschitz constant of a
neural network f : Rn → R, as we describe in Section 2.2.
But the neural network f can only have one-dimensional
output because GN is used on the discriminator of GAN.
However, the actor network in RL has a multi-dimensional
output representing multi-dimensional action. So, we pro-
pose Multi-dimensional Gradient Normalization (MGN)
and prove that MGN can constrain the Lipschitz constant of
neural networks with multi-dimensional intput and output.

Theorem 3.1 (Multi-dimensional Gradient Normalization).
Suppose f : Rn → Rm is a continuously differential neural
network with piecewise linear activations. Then fMGN is a
globally K-Lipschitz continuous neural network:

fMGN(x) = K · f(x)

‖∇xf(x)‖+ ε
, (4)

where K is a positive constant, ‖∇xf(x)‖ is the 2-norm of
Jacobian matrix and ε is a small positive constant.

Proof. See Appendix A in the supplementary material.

Noteworthily, the notation ∇xf(x) in MGN is a Jacobian
matrix, while ∇xf(x) in GN is a gradient vector. The
notation ‖ · ‖ in MGN is the matrix norm, while ‖ · ‖ in
GN is the vector norm. Also, the division in equation (4)
operates between a vector and a scalar, while the division in
equation (2) operates between two scalars.

3.3. Automatic Adjustment for Lipschitz Constant

Based on MGN, the Lipschitz constant of actor network
can be constrained. However, manually tuning the Lips-
chitz constant K is disgusting because a small K will harm
performance but a large K will not smoothen actions. Ad-
ditionally, in general situations, no exact information about
the environment’s Lipschitz property can be acquired be-
fore starting training. Therefore, we let Lipschitz constant
K as a learnable parameter, and use an L2 regularization
term for a lower K. The weight λ is introduced in loss
function to balance the original term and the regularization
term. This Lipschitz adjustment mechanism benefits from
MGN, because MGN represents network’s Lipschitz con-
stant just using one scalar K, unlike SN using the product
of all layers’ Lipschitz constant.

LipsNet-G. Then we propose LipsNet, the neural network
with MGN and Lipschitz adjustment. Because the network
is globally Lipschitz continuous, we name it LipsNet-G.
The parameters updating process of LipsNet-G is shown in

3

LipsNet

Algorithm 1, where network f(x) is an MLP with piecewise
linear activations. The learning rate of f(x) and K are ηf
and ηk, respectively.

Algorithm 1 Update Parameters in LipsNet-G
Input: input vector x, loss function L, parameter θ in
network f(x), Lipschitz parameter K.

fMGN(x) = K f(x)
‖∇xf(x)‖+ε . forward propagation

L′ = L+ λK2

θ ← θ − ηf∇θL′ . backward propagation
K ← K − ηk∇KL′ . Lipschitz adjustment

LipsNet-L. Global Lipschitz continuity around the whole
domain may harm the performance severely. Different in-
put x could have different Lipschitz constants around their
neighborhoods, called locally Lipschitz continuous. We
propose LipsNet-L, which constrains the network in local
Lipschitz continuity by introducing an extra network K(x).

The network K(x) is an MLP followed by Softplus
activation, with parameter φ. The learning rate of f(x) and
K(x) are ηf and ηk, respectively. The networkK(x) should
be updated slower than the network f(x), i.e., ηk < ηf .
Because K(x) means the local Lipschitz value around x, it
should be relatively more stable for correctly updating f(x).
The parameters updating process of LipsNet-L is shown in
Algorithm 2.

Algorithm 2 Update Parameters in LipsNet-L
Input: input vector x, loss function L, parameter θ in
network f(x), parameter φ in network K(x).

fMGN(x) = K(x) f(x)
‖∇xf(x)‖+ε . forward propagation

L′ = L+ λK(x)2

θ ← θ − ηf∇θL′ . backward propagation
φ← φ− ηk∇φL′ . Lipschitz adjustment

When LipsNet-G and LipsNet-L are used as actor network
in RL, the loss function L becomes the actor loss of policy
improvement. It would not modify the RL algorithms be-
cause the backward of regularization term can be completed
automatically after forward propagation and the Lipschitz
adjustment process can be completed automatically before
the next forward propagation. Therefore, these two opera-
tions can be packaged inside the network module.

3.4. Overall Architecture of LipsNet

The overall architecture of LipsNet-L is shown in Figure 1.
LipsNet-L contains two MLP networks. The first MLP rep-
resents f(x). It produces two variables f(x) and ∇xf(x).

The other MLP with Softplus represents K(x). It out-
puts one scalar K(x) where K(x) > 0.

MLP

𝑓(𝑥)

MLP

𝐾(𝑥)

Softplus

𝐾 𝑥
𝑓(𝑥)

||∇𝑓(𝑥)|| + 𝜖

Output

LipsNet-L𝑥

∇𝑓(𝑥)

MLP

𝑓(𝑥)

Input

𝐾

𝐾
𝑓(𝑥)

||∇𝑓(𝑥)|| + 𝜖

Output

LipsNet-G𝑥

𝑠𝑡

∇𝑓(𝑥)

Input

𝑠𝑡

Figure 1. Structure of LipsNet-L. The input is x. The MLP in
yellow represents f(x). The MLP in blue with Softplus rep-
resents K(x). The dashed line means derivative operation. The
equation in pink represents MGN.

When the activations in f(x) are all piecewise linear, we
can prove that LipsNet is Lipschitz continuous by Theo-
rem 3.1. Piecewise linear activations include ReLU, Leaky
ReLU(Maas et al., 2013), PReLU(He et al., 2015), Max-
out (Goodfellow et al., 2013), PWLU(Zhou et al., 2021) et
al. Furthermore, we found that normal activations, such as
tanh, are also suitable in f(x) despite lacking a theoretical
guarantee of Lipschitz continuity and could achieve action
smoothing aim. We provide an experiment to show the find-
ing. More details can be found in Appendix B. For K(x),
there is theoretically no limitation for its activation’s type
and no limitation for K(x) to be an MLP structure. In the
backward propagation, the gradients go through both f(x)
and ∇f(x) for updating the network f(x).

For RL tasks, the environment usually has an action bound.
In this situation, tanh can be added after LipsNet then fol-
lowed by scaling up. The network activated by tanh before
scaling up is still K-Lipschitz, as Theorem 3.2 illustrated.

Theorem 3.2. Suppose g(x) : Rn → Rm is a neural net-
work composed of LipsNet followed by tanh:

g(x) = tanh(fMGN(x)),

where tanh operates in element-wise and fMGN(x) is K-
Lipschitz continuous. Then g(x) is still K-Lipschitz contin-
uous.

Proof. See Appendix C in the supplementary material.

4

LipsNet

3.5. Simple Implementation for Practitioners

We package LipsNet as a module in PyTorch (Paszke et al.,
2019). As shown below, practitioners can use LipsNet just
like an MLP network. The code is available in 2.

net = LipsNet()
out = net(input)
...

loss.backward()

4. Experiments
4.1. Double Integrator

In this environment, a particle lies on an axis without resis-
tance. We can change its acceleration at every time step by
applying a force parallel to the axis. The system dynamic is[

ẋ1

ẋ2

]
=

[
0 1
0 0

] [
x1

x2

]
+

[
0
1

]
a,

where x1 is the position of particle, x2 is the velocity of
particle, a is the acceleration produced by the applied force.

0

𝑥1

𝑥2

Figure 3. Double integrator environment. A particle lies on an
axis. x1 and x2 are the position and velocity, respectively.

The reward in each time step is

r = −2x2
1 − x2

2 − a2.

The reward urges the particle to be stable at the origin with
zero velocity. The observation noise in each dimension is
distributed in U(−0.2, 0.2).

We use the model-based RL method, Infinite-time Approxi-
mate Dynamic Programming (INFADP) (Li, 2023), to train
in this environment. INFADP with MLP is chosen as the
baseline. We compare the action fluctuation between base-
line and INFADP with LipsNet. The results are shown in
Figure 2. In Figure 2(a), we simulate 30 times starting
from the same initial state. The solid line is the mean of
actions. The shadow is the standard deviation of actions,
which implies action fluctuation amplitude. Obviously, the
action fluctuation amplitude of LipsNet is smaller than MLP.
Figure 2(c) shows the output of K(x) in LipsNet-L. K(x)

2https://github.com/jerry99s/LipsNet

is large around state (1, 1) and (−1,−1) , because the par-
ticle has positive position with positive speed in (1, 1) and
negative position with negative speed in (−1,−1). Around
these states, the particle is departing from the steady state
(0, 0). Therefore, the local Lipschitz constant could be large.
More details and hyperparameters are shown in Appendix E.
Comparison between LipsNet and previous works is shown
in Appendix J.

4.2. Vehicle Trajectory Tracking

Vehicle trajectory tracking is an important task in au-
tonomous driving (Guan et al., 2022; Mu et al., 2020). In
this environment, the bicycle model of lateral vehicle dy-
namic (Ge et al., 2021; Rajamani, 2011), a widely used
model, is employed to simulate the vehicle motion. The ve-
hicle aims to track a given reference trajectory, meanwhile,
satisfies certain constraint. The longitudinal speed keeps in
5 m/s and the only available control input is the steering
angle. The vehicle model is depicted in Figure 4. The states
and action are listed in Table 1.

Reference trajectory

Tangent line

𝑣 𝑢

𝛿

𝜔

Δ𝛼

Δ𝜌

𝑋

𝑌

Figure 4. Vehicle dynamic model.

Table 1. Variables in vehicle trajectory tracking environment.

Variable Description Unit

State

∆ρ trajectory offset m
∆α heading angle error rad
u longitudinal speed m/s
v lateral speed m/s
ω yaw rate rad/s2

Action δ front wheel steering angle rad

We provide two kinds of reference trajectories, i.e., sine
curve and double-line curve. Those two scenarios are shown
in Figure 5. The sine curve scenario simulates the road with
consecutive curves. The double-line scenario urges the
vehicle to bypass obstacles.

The reward signal is

r = −0.01
(
4 ·∆ρ2 + 2 ·∆α2 + v2 + ω2 + δ2

)
.

The constraint requires

|∆ρ| < 0.1 .

5

https://github.com/jerry99s/LipsNet

LipsNet

0 50 100 150 200 250 300
Time Step

1.50

1.25

1.00

0.75

0.50

0.25

0.00

0.25

0.50

Ac
tio

n

INFADP with MLP
INFADP with LipsNet-G
INFADP with LipsNet-L

(a) Action fluctuation amplitude

0 50 100 150 200 250 300
Time Step

0.2

0.0

0.2

0.4

0.6

0.8

x1

INFADP with MLP
INFADP with LipsNet-G
INFADP with LipsNet-L

(b) Particle position (c) Landscape of K(x)

Figure 2. Results in double integrator environment. The solid line and shadow are the mean and standard deviation, respectively. (a)
The action fluctuation amplitude of LipsNet is smaller than MLP. (b) Particle positions all converge to around 0. (c) The network K(x) in
LipsNet-L represents the local Lipschitz constant around x.

reference trajectory

road boundary

(a) Sine curve

reference trajectory

road boundary

(b) Double-line curve

Figure 5. Reference trajectory type.

Constrained RL tasks should be solved by safe RL algo-
rithms (Garcıa & Fernández, 2015; Gu et al., 2022; Yu
et al., 2022; Ma et al., 2022). To solve the vehicle trajectory
tracking task, we use the Separated Proportional-integral
Lagrangian (SPIL) algorithm (Peng et al., 2021). Hyper-
parameters are listed in Appendix F. The Model Predictive
Control (MPC) (Camacho & Alba, 2013) method is also
used for comparison.

We compare the results of SPIL with LipsNet-L, SPIL with
MLP and MPC. This section will only involve LipsNet-L
excluding LipsNet-G for simplification, and more details
including both LipsNet-L and LipsNet-G can be found in
Appendix F. The network weights at 25000 training itera-
tions are used for both LipsNet-L and MLP to ensure a fair

comparison. The prediction step in MPC is 10. The obser-
vation noise in each dimension for SPIL is distributed in
U(−0.002, 0.002). There is no observation noise for MPC
to obtain a nearly optimal action trajectory. Figure 6 and
Figure 7 show the results when tracking sine and double-line
curves, respectively. In both scenarios, the action fluctuation
amplitude of LipsNet-L is smaller than MLP’s, as shown in
Figure 6(a) and Figure 7(a). LipsNet-L also exhibits good
tracking performance and constraint satisfaction, as shown
in Figure 6(b,c) and Figure 7(b,c).

To further evaluate LipsNet, we set different observation
noises and compare the action fluctuation ratio. The results
are summarized in Table 2. In all noise levels, LipsNet-L
has smaller action fluctuation ratios than MLP. For example,
when the trajectory is sine and the noise level is 1 · 10−2,
meaning the observation noise in each dimension is dis-
tributed in U(−10−2, 10−2), the action fluctuation ratio of
LipsNet-L is only 9.8% of MLP’s. Moreover, we plot ac-
tion fluctuation ratio as a function of noise to analyze the
increasing trend of fluctuation. As shown in Figure 8, when
the observation noise increases, the action fluctuation ratio
of MLP grows much faster than that of LipsNet-L.

Table 2. Action fluctuation ratio comparison on vehicle trajectory
tracking. The observation noise in each dimension is distributed in
U(−σ, σ).

Env Method
Trajectory Noise σ SPIL (MLP) SPIL (LipsNet-L)

sine curve
1 · 10−4 0.005 ± 0.0002 0.004 ± 0.0001

1 · 10−3 0.027 ± 0.0016 0.005 ± 0.0001

1 · 10−2 0.224 ± 0.0115 0.022 ± 0.0009

double-line
1 · 10−4 0.024 ± 0.0003 0.019 ± 0.0001

1 · 10−3 0.043 ± 0.0018 0.020 ± 0.0001

1 · 10−2 0.227 ± 0.0198 0.034 ± 0.0013

6

LipsNet

0 25 50 75 100 125 150 175 200
Time Step

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Ac
tio

n

SPIL with MLP
SPIL with LipsNet-L
MPC

(a) Action curve

0 25 50 75 100 125 150 175 200
Time Step

1.5

1.0

0.5

0.0

0.5

1.0

1.5

La
te

ra
l p

os
iti

on

SPIL with MLP
SPIL with LipsNet-L
MPC

(b) Lateral position

0 25 50 75 100 125 150 175 200
Time Step

0.100

0.095

0.090

0.085

0.080

0.075

0.070

0.065

0.060

Co
ns

tra
in

t v
al

ue

SPIL with MLP
SPIL with LipsNet-L
MPC

(c) Constraint value

Figure 6. Results on vehicle trajectory tracking environment. The reference trajectory is a sine curve. (a) The action fluctuation
amplitude of LipsNet-L is smaller than MLP. (b) The tracking performances are good for both LipsNet-L and MLP. (c) A positive
constraint value implies the severity of constraint violation. There is no constraint violation during the simulation.

0 25 50 75 100 125 150 175 200
Time Step

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Ac
tio

n

SPIL with MLP
SPIL with LipsNet-L
MPC

(a) Action curve

0 25 50 75 100 125 150 175 200
Time Step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

La
te

ra
l p

os
iti

on

SPIL with MLP
SPIL with LipsNet-L
MPC

(b) Lateral position

0 25 50 75 100 125 150 175 200
Time Step

0.10

0.08

0.06

0.04

0.02

0.00

Co
ns

tra
in

t v
al

ue

SPIL with MLP
SPIL with LipsNet-L
MPC

(c) Constraint value

Figure 7. Results on vehicle trajectory tracking environment. The reference trajectory is a double-line curve. (a) The action fluctuation
amplitude of LipsNet-L is smaller than MLP. (b) The tracking performances are good for both LipsNet-L and MLP. (c) A positive
constraint value implies the severity of constraint violation. There is no constraint violation during the simulation.

10 4 10 3 10 2

Noise

0.00

0.05

0.10

0.15

0.20

Ac
tio

n
flu

ct
ua

tio
n

ra
tio

SPIL with MLP
SPIL with LipsNet-L

Figure 8. Increasing trend of action fluctuation ratio. The refer-
ence trajectory is a sine curve. X-axis is the radius of uniformly
distributed noise applied in each observation dimension. Y-axis is
the mean of action fluctuation ratio and its standard deviation.

4.3. DeepMind Control Suit

The DeepMind Control Suite (DMControl) (Tassa et al.,
2018) contains a set of well-designed continuous control
tasks with standardized structures and interpretable rewards.
Currently, it is one of the most recognized benchmark envi-
ronments for RL and continuous control (Mu et al., 2022).
This paper selects four environments in DMControl, i.e.,
Cartpole, Reacher, Cheetah and Walker. The environments
are shown in Figure 9, and more details can be found in
Appendix G.

We use the model-free RL algorithm, Twin Delayed Deep
Deterministic policy gradient (TD3) (Fujimoto et al., 2018),
to train on DMControl. The hyperparameters of TD3 are
the same in all environments, while only the weight λ varies.
The hyperparameters are listed in Appendix H. Then we
make a comparison between TD3 with LipsNet and TD3
with MLP. When there is no observation noise, the total
average return and action fluctuation ratio are listed in Table
3 and 4, respectively. The data shows the mean and standard
deviation simulating 5 rounds using the best policies.

7

LipsNet

(a) Cartpole (b) Reacher

(c) Cheetah (d) Walker

Figure 9. DeepMind Control Suit Benchmarks.

Table 3. Total average return on DMControl without observation
noise.

Method Cartpole Reacher Cheetah Walker

TD3 (MLP) 805 ± 0.8 981 ± 10 816 ± 30 926 ± 12

TD3 (LipsNet-L) 831 ± 0.9 983 ± 10 822 ± 4 945 ± 13

TD3 (LipsNet-G) 691 ± 1.0 979 ± 11 702 ± 10 956 ± 20

Table 4. Action fluctuation ratio on DMControl without observa-
tion noise. Note: DMControl environments have 1000 time steps.
In Cartpole and Reacher, we only consider the first 500 time steps,
otherwise the action fluctuation ratio will be 0.00 for LipsNet-L.

Method Cartpole Reacher Cheetah Walker

TD3 (MLP) 0.04 ± 0.00 2.07 ± 0.60 1.08 ± 0.02 1.89 ± 0.02

TD3 (LipsNet-L) 0.01 ± 0.00 0.01 ± 0.00 0.94 ± 0.01 0.93 ± 0.01

TD3 (LipsNet-G) 0.08 ± 0.00 0.13 ± 0.24 0.92 ± 0.01 1.25 ± 0.02

As Table 3 shown, LipsNet-G may severely damage the
control performance, but LipsNet-L has almost the same
performance as MLP. It is because LipsNet-L benefits from
the local Lipschitz continuity. As Table 4 shown, LipsNet-L
has the lowest action fluctuation ratio in most environments.
This superiority is because the landscape smoothness of
LipsNet-L is better than that of MLP. We visualize the neural
network landscape in Figure 10.

When there are observation noises, the total average return
and action fluctuation ratio are listed in Table 5 and Table 6,
respectively. The histograms based on Table 5 and Table 6
are shown in Figure 11. The noise level in each environment
is illustrated in Appendix H.

(a) Landscape of MLP

(b) Landscape of LipsNet-L

Figure 10. Neural network landscape. Let x1, x2 be the first
two observations in Reacher environment. Let a1 be the first
component of action. We vary x1, x2 and fix other observa-
tions. a1 is calculated by actor network based on observation
[x1, x2, 0.1, 0.1, 0, 0]>. The figures show that the landscape
smoothness of LipsNet-L is much better than that of MLP.

Table 5. Total average return on DMControl with observation
noise.

Method Cartpole Reacher Cheetah Walker

TD3 (MLP) 763 ± 9 972 ± 25 813 ± 29 911 ± 26

TD3 (LipsNet-L) 823 ± 6 978 ± 17 818 ± 11 929 ± 11

TD3 (LipsNet-G) 517 ± 41 973 ± 18 680 ± 7 942 ± 15

Table 6. Action fluctuation ratio on DMControl with observation
noise.

Method Cartpole Reacher Cheetah Walker

TD3 (MLP) 0.58 ± 0.03 2.41 ± 0.28 1.13 ± 0.02 2.02 ± 0.03

TD3 (LipsNet-L) 0.17 ± 0.01 0.04 ± 0.03 1.08 ± 0.01 1.21 ± 0.01

TD3 (LipsNet-G) 0.75 ± 0.09 0.04 ± 0.00 1.00 ± 0.01 1.68 ± 0.01

8

LipsNet

Cartpole Reacher Cheetah Walker
Environment

0

200

400

600

800

1000

To
ta

l a
ve

ra
ge

 re
tu

rn

MLP
LipsNet-L
LipsNet-G

(a) Total average return

Cartpole Reacher Cheetah Walker
Environment

0.0

0.5

1.0

1.5

2.0

2.5

Ac
tio

n
flu

ct
ua

tio
n

ra
tio

MLP
LipsNet-L
LipsNet-G

(b) Action fluctuation ratio

Figure 11. Effect of LipsNet. The figures visualize the mean val-
ues in Table 5 and Table 6.

As illustrated in Table 6, the action fluctuation ratio of
LipsNet-L in Reacher environment is only 1.6% of MLP’s.
As Figure 11 shown, LipsNet-L gains significant action fluc-
tuation ratio decreases without noticeable performance loss
in most environments. Those results imply that the noise
robustness of LipsNet-L is much better than MLP.

4.4. Gym Humanoid

To illustrate the effectiveness of LipsNet on high-
dimensional tasks, we implement it on the Gym humanoid
environment (Tassa et al., 2012). The environment has
376 observations and 17 actions, powered by OpenAI Gym
(Brockman et al., 2016) and MuJoCo (Todorov et al., 2012).
A 3D bipedal robot is designed in the environment to sim-
ulate a human, as shown in Figure 12. The goal of the
environment is to walk forward as fast as possible without
falling over. We compare the performance when choosing
MLP or LipsNet-L as TD3’s actor network. Observation
noise is not added in this environment. The results are listed
in Table 7.

Table 7. Results on Gym humanoid environment.

Method Total average
return

Action fluctuation
ratio

TD3 (MLP) 4968 ± 46 0.83 ± 0.02

TD3 (LipsNet-L) 5266 ± 15 0.66 ± 0.01

Figure 12. Gym humanoid environment.

The result implies that LipsNet-L achieves 20% reduction
of action fluctuation ratio with the same level of return
compared to MLP. The result successfully demonstrates the
effectiveness of LipsNet on high-dimensional tasks.

5. Discussion
Computational Efficiency. An extra analysis of computa-
tional efficiency is provided in Appendix D, including the
forward and backward time comparisons. Overall, despite
LipsNet having a slightly longer computation time than
MLP, it is still suitable in real-time applications.

Relationship with Robust RL. The relationship between
LipsNet and robust RL is described in detail in Appendix K.
Overall, although Lipschitz continuity is a particular form of
robustness, the aims of LipsNet and robust RL differ greatly.
LipsNet can smooth the action even in the environments
without noise, which is distinct from the robust RL settings,
thanks to the landscape smoothness of LipsNet.

6. Conclusion
In this paper, we propose a novel network structure Lip-
sNet to address action fluctuation problem in RL control
tasks. LipsNet is either globally or locally Lipschitz con-
tinuous, which benefits from MGN method we proposed.
LipsNet can automatically adjust Lipschitz constant to ob-
tain smooth action with satisfactory performance. It can
be used as actor network in most existing RL algorithms.
Various experiments show that LipsNet has excellent land-
scape smoothness and noise robustness, resulting in smooth
action in RL control tasks. We hope that our work could
inspire future research in control network field, and could
contribute to the real-world RL applications.

Acknowledgements
This study is supported by National Key R&D Program of
China with 2022YFB2502901, Tsinghua University Initia-
tive Scientific Research Program, and Tsinghua University-
Didi Joint Research Center for Future Mobility.

9

LipsNet

References
Bhaskara, V. S., Aumentado-Armstrong, T., Jepson, A. D.,

and Levinshtein, A. Gran-gan: Piecewise gradient nor-
malization for generative adversarial networks. In Pro-
ceedings of the IEEE/CVF Winter Conference on Appli-
cations of Computer Vision, pp. 3821–3830, 2022.

Bjorck, N., Gomes, C. P., and Weinberger, K. Q. Towards
deeper deep reinforcement learning with spectral nor-
malization. Advances in Neural Information Processing
Systems, 34:8242–8255, 2021.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

Camacho, E. F. and Alba, C. B. Model predictive control.
Springer science & business media, 2013.

Chen, C., Tang, H., Hao, J., Liu, W., and Meng, Z. Address-
ing action oscillations through learning policy inertia. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 35, pp. 7020–7027, 2021.

Duan, J., Guan, Y., Li, S. E., Ren, Y., Sun, Q., and Cheng, B.
Distributional soft actor-critic: Off-policy reinforcement
learning for addressing value estimation errors. IEEE
Transactions on Neural Networks and Learning Systems,
2021.

Fujimoto, S., Hoof, H., and Meger, D. Addressing function
approximation error in actor-critic methods. In Interna-
tional Conference on Machine Learning, pp. 1587–1596.
PMLR, 2018.

Garcıa, J. and Fernández, F. A comprehensive survey on safe
reinforcement learning. Journal of Machine Learning
Research, 16(1):1437–1480, 2015.

Ge, Q., Sun, Q., Li, S. E., Zheng, S., Wu, W., and Chen, X.
Numerically stable dynamic bicycle model for discrete-
time control. In 2021 IEEE Intelligent Vehicles Sym-
posium Workshops (IV Workshops), pp. 128–134. IEEE,
2021.

Gogianu, F., Berariu, T., Rosca, M. C., Clopath, C., Busoniu,
L., and Pascanu, R. Spectral normalisation for deep
reinforcement learning: an optimisation perspective. In
International Conference on Machine Learning, pp. 3734–
3744. PMLR, 2021.

Goodfellow, I., Warde-Farley, D., Mirza, M., Courville, A.,
and Bengio, Y. Maxout networks. In International Con-
ference on Machine Learning, pp. 1319–1327. PMLR,
2013.

Gu, S., Yang, L., Du, Y., Chen, G., Walter, F., Wang, J.,
Yang, Y., and Knoll, A. A review of safe reinforce-
ment learning: Methods, theory and applications. arXiv
preprint arXiv:2205.10330, 2022.

Guan, Y., Li, S. E., Duan, J., Li, J., Ren, Y., Sun, Q., and
Cheng, B. Direct and indirect reinforcement learning.
International Journal of Intelligent Systems, 36(8):4439–
4467, 2021.

Guan, Y., Ren, Y., Sun, Q., Li, S. E., Ma, H., Duan, J.,
Dai, Y., and Cheng, B. Integrated decision and control:
toward interpretable and computationally efficient driving
intelligence. IEEE Transactions on Cybernetics, 2022.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pp. 1026–1034,
2015.

Hornik, K., Stinchcombe, M., and White, H. Multilayer
feedforward networks are universal approximators. Neu-
ral Networks, 2(5):359–366, 1989.

Kidger, P. and Lyons, T. Universal approximation with deep
narrow networks. In Conference on Learning Theory, pp.
2306–2327. PMLR, 2020.

Kim, H., Park, J., Lee, C., and Kim, J.-J. Improving ac-
curacy of binary neural networks using unbalanced ac-
tivation distribution. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 7862–7871, 2021.

Kobayashi, T. L2c2: Locally lipschitz continuous constraint
towards stable and smooth reinforcement learning. arXiv
preprint arXiv:2202.07152, 2022.

Li, S. E. Reinforcement learning for sequential decision
and optimal control. Springer Verlag, Singapore, 2023.

Ma, H., Liu, C., Li, S. E., Zheng, S., and Chen, J. Joint
synthesis of safety certificate and safe control policy us-
ing constrained reinforcement learning. In Learning for
Dynamics and Control Conference, pp. 97–109. PMLR,
2022.

Maas, A. L., Hannun, A. Y., Ng, A. Y., et al. Rectifier
nonlinearities improve neural network acoustic models.
In Proc. icml, volume 30, pp. 3. Atlanta, Georgia, USA,
2013.

Mehta, K., Mahajan, A., and Kumar, P. Effects of spec-
tral normalization in multi-agent reinforcement learning.
arXiv preprint arXiv:2212.05331, 2022.

10

LipsNet

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. Spec-
tral normalization for generative adversarial networks. In
International Conference on Learning Representations,
2018.

Moos, J., Hansel, K., Abdulsamad, H., Stark, S., Clever, D.,
and Peters, J. Robust reinforcement learning: A review
of foundations and recent advances. Machine Learning
and Knowledge Extraction, 4(1):276–315, 2022.

Mu, Y., Peng, B., Gu, Z., Li, S. E., Liu, C., Nie, B., Zheng, J.,
and Zhang, B. Mixed reinforcement learning for efficient
policy optimization in stochastic environments. In 2020
20th International Conference on Control, Automation
and Systems (ICCAS), pp. 1212–1219. IEEE, 2020.

Mu, Y. M., Chen, S., Ding, M., Chen, J., Chen, R., and Luo,
P. Ctrlformer: Learning transferable state representation
for visual control via transformer. In International Con-
ference on Machine Learning, pp. 16043–16061. PMLR,
2022.

Mysore, S., Mabsout, B., Mancuso, R., and Saenko, K.
Regularizing action policies for smooth control with rein-
forcement learning. In 2021 IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 1810–1816.
IEEE, 2021.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in Neural Information
Processing Systems, 32, 2019.

Peng, B., Mu, Y., Duan, J., Guan, Y., Li, S. E., and Chen,
J. Separated proportional-integral lagrangian for chance
constrained reinforcement learning. In 2021 IEEE In-
telligent Vehicles Symposium (IV), pp. 193–199. IEEE,
2021.

Pinto, L., Davidson, J., Sukthankar, R., and Gupta, A.
Robust adversarial reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 2817–2826.
PMLR, 2017.

Rajamani, R. Vehicle dynamics and control. Springer Sci-
ence & Business Media, 2011.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In International Con-
ference on Machine Learning, pp. 1889–1897. PMLR,
2015.

Shen, Q., Li, Y., Jiang, H., Wang, Z., and Zhao, T. Deep
reinforcement learning with robust and smooth policy.
In International Conference on Machine Learning, pp.
8707–8718. PMLR, 2020.

Shi, G., Shi, X., O’Connell, M., Yu, R., Azizzadenesheli,
K., Anandkumar, A., Yue, Y., and Chung, S.-J. Neural
lander: Stable drone landing control using learned dy-
namics. In 2019 International Conference on Robotics
and Automation (ICRA), pp. 9784–9790. IEEE, 2019.

Takase, R., Yoshikawa, N., Mariyama, T., and Tsuchiya,
T. Stability-certified reinforcement learning via spectral
normalization. arXiv preprint arXiv:2012.13744, 2020.

Takase, R., Yoshikawa, N., Mariyama, T., and Tsuchiya, T.
Stability-certified reinforcement learning control via spec-
tral normalization. Machine Learning with Applications,
10:100409, 2022.

Tassa, Y., Erez, T., and Todorov, E. Synthesis and stabi-
lization of complex behaviors through online trajectory
optimization. In 2012 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, pp. 4906–4913.
IEEE, 2012.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D.
d. L., Budden, D., Abdolmaleki, A., Merel, J., Lefrancq,
A., et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Tessler, C., Efroni, Y., and Mannor, S. Action robust rein-
forcement learning and applications in continuous control.
In International Conference on Machine Learning, pp.
6215–6224. PMLR, 2019.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
pp. 5026–5033. IEEE, 2012. doi: 10.1109/IROS.2012.
6386109.

Wasala, A., Byrne, D., Miesbauer, P., O’Hanlon, J., Heraty,
P., and Barry, P. Trajectory based lateral control: A rein-
forcement learning case study. Engineering Applications
of Artificial Intelligence, 94:103799, 2020.

Wu, Y.-L., Shuai, H.-H., Tam, Z.-R., and Chiu, H.-Y. Gradi-
ent normalization for generative adversarial networks. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 6373–6382, 2021.

Yu, D., Ma, H., Li, S. E., and Chen, J. Reachability con-
strained reinforcement learning. In International Con-
ference on Machine Learning, pp. 25636–25655. PMLR,
2022.

Yu, H., Xu, W., and Zhang, H. Taac: Temporally abstract
actor-critic for continuous control. Advances in Neural
Information Processing Systems, 34:29021–29033, 2021.

Zhang, H., Chen, H., Xiao, C., Li, B., Liu, M., Boning,
D., and Hsieh, C.-J. Robust deep reinforcement learning

11

LipsNet

against adversarial perturbations on state observations.
Advances in Neural Information Processing Systems, 33:
21024–21037, 2020.

Zhao, Z., Zuo, S., Zhao, T., and Zhao, Y. Adversarially regu-
larized policy learning guided by trajectory optimization.
In Learning for Dynamics and Control Conference, pp.
844–857. PMLR, 2022.

Zhou, Y., Zhu, Z., and Zhong, Z. Learning specialized
activation functions with the piecewise linear unit. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 12095–12104, 2021.

12

LipsNet

Appendix

A. Theoretical Results
Lemma 3.1 Suppose f : Rn → Rm is a continuously
differential function. The K-Lipschitz continuity constraint
(1) is equivalent to

‖∇x f(x)‖ ≤ K, ∀x.

Proof. Firstly, we prove the sufficient condition.
(⇒) From the definition of Lipschitz continuity constraint
(1), we know

‖f(x1)− f(x2)‖ ≤ K‖x1 − x2‖, ∀x1, x2 ∈ Rn.

Let g(t) = f(x + t · v) where t ∈ R and v ∈ Rn, then
g′(t) = ∇f(x+ t · v)v. From the Newton-Leibniz formula,
we know

g(η)− g(0) =

∫ η

0

g′(t)dt,

which means

f(x+ η · v)− f(x) =

∫ η

0

∇f(x+ t · v)v · dt.

Take the 2-norm on both sides, get∥∥∥∥∫ η

0

∇f(x+ t · v)dt · v
∥∥∥∥ = ‖f(x+ η · v)− f(x)‖

≤ ηK ‖v‖ .

Divide η on both sides and let η → 0+, get

‖∇f(x) · v‖ ≤ K ‖v‖ .

From the definition of matrix norm, we know

‖∇f(x)‖ = max
v 6=0

‖∇f(x) · v‖
‖v‖

≤ K.

Then, we prove the necessary condition.
(⇐) From the description of Lemma 3.1, suppose we know

‖∇x f(x)‖ ≤ K.

Let g(t) = f(x+ t(y − x)) where t ∈ R and y ∈ Rn, then
g′(t) = ∇f(x + t(y − x)) · (y − x). From the Newton-
Leibniz formula, we know

g(1)− g(0) =

∫ 1

0

g′(t)dt,

which means

f(y)− f(x) =

∫ 1

0

∇f(x+ t(y − x)) · (y − x)dt

=

(∫ 1

0

∇f(x+ t(y − x))dt

)
(y − x).

Take the 2-norm on both sides, get

‖f(y)− f(x)‖ =

∥∥∥∥(∫ 1

0

∇f(x+ t(y − x))dt

)
(y − x)

∥∥∥∥
≤
∥∥∥∥∫ 1

0

∇f(x+ t(y − x))dt

∥∥∥∥ ‖y − x‖
≤
(∫ 1

0

‖∇f(x+ t(y − x))‖ dt
)
‖y − x‖

≤
(∫ 1

0

K · dt
)
‖y − x‖

= K ‖y − x‖ .

Now, the sufficient condition and necessary condition are
both proved.

Noteworthily, Wu et al. (2021) have given a lemma similar
to Lemma 3.1 where f is a function mapping from Rn to
R. In this paper, we expand it to Lemma 3.1 where f is a
function mapping from Rn to Rm.

Theorem 3.1 (Multi-dimensional Gradient Normalization)
Suppose f : Rn → Rm is a continuously differential neural
network with piecewise linear activations. Then fMGN is a
globally K-Lipschitz continuous neural network:

fMGN(x) = K · f(x)

‖∇xf(x)‖+ ε
,

where K is a positive constant, ‖∇xf(x)‖ is the 2-norm of
Jacobian matrix and ε is a small positive constant.

Proof. By definition, the 2-norm of Jacobian matrix of
fMGN(x) according to x is

‖∇x fMGN(x)‖ = K ·
∥∥∥∥∇ f

‖∇f‖+ ε

∥∥∥∥
=K ·

∥∥∥∥∥∇f(‖∇f‖+ ε)− f (∇(‖∇f‖+ ε))
>

(‖∇f‖+ ε)
2

∥∥∥∥∥ .
(5)

Because there are only piecewise linear activation functions
in f , the Jacobian matrix∇f is a constant matrix. Then, the
norm of it, ‖∇f‖, is a constant value. So,∇(‖∇f‖+ ε) is
a zero vector.

Finally, the equation (5) can be simplified to

‖∇x fMGN(x)‖ = K ·
∥∥∥∥ ∇f
‖∇f‖+ ε

∥∥∥∥ ≤ K.
By Lemma 3.1, we complete the proof of Theorem 3.1.

13

LipsNet

B. Limitation of Activation Function
In Theorem 3.1, we assume that the activations in network
f(x) should be piecewise linear. This assumption makes
∇‖∇f‖ become a zero vector, which enables the proof of
Theorem 3.1 in Appendix A. Piecewise linear activations
include ReLU, Leaky ReLU(Maas et al., 2013), PReLU(He
et al., 2015), Maxout (Goodfellow et al., 2013), Hard Tanh
(Kim et al., 2021), PWLU(Zhou et al., 2021) et al. However,
we experimentally found that LipsNet can also reduce action
fluctuation when f(x) has non-piecewise-linear activations,
such as tanh.

To illustrate the behavior when using non-piecewise-linear
activations, we compare MLP with ReLU activation,
LipsNet-L with ReLU activation and LipsNet-L with tanh
activation on the double integrator environment. The envi-
ronment setting and hyperparameters are consistent with
those outlined in Section 4.1. Figure 13 draws the ac-
tion fluctuation amplitudes. The result demonstrates that
LipsNet-L with tanh-activated f(x) performs similarly to
LipsNet-L with ReLU-activated f(x). They both have lower
action fluctuation amplitude than MLP.

0 50 100 150 200 250 300
Time Step

2.0

1.5

1.0

0.5

0.0

0.5

Ac
tio

n

INFADP with MLP
INFADP with LipsNet-L (ReLU)
INFADP with LipsNet-L (Tanh)

Figure 13. Action fluctuation amplitude on double integrator en-
vironment. Parentheses show the activation functions used in
network f(x).

C. LipsNet Followed by tanh
For RL tasks, the environment usually has an action bound.
In this situation, tanh can be added after LipsNet then
followed by scaling up. The network activated by tanh
before scaling up is still K-Lipschitz continuous because
tanh is a 1-Lipschitz continuous function. The proof is
shown in the following Theorem.

Theorem 3.2 Suppose g(x) : Rn → Rm is a neural net-
work composed of LipsNet followed by tanh:

g(x) = tanh(fMGN(x)),

where tanh operates in element-wise and fMGN(x) is K-
Lipschitz continuous. Then g(x) is still K-Lipschitz contin-
uous.

Proof. By definition, the 2-norm of Jacobian matrix of g(x)
according to x is

‖∇x g(x)‖ =
∥∥∇fMGN(x) g(x) · ∇x fMGN(x)

∥∥
≤
∥∥∇fMGN(x) g(x)

∥∥ ‖∇x fMGN(x)‖ .

Because tanh operates in element-wise and 0 < ∇ tanh ≤
1,∇fMGN(x) g(x) is a diagonal matrix whose elements are
all positive and smaller than 1. It implies that the norm∥∥∇fMGN(x) g(x)

∥∥ ≤ 1. Therefore,

‖∇x g(x)‖ ≤ 1 · ‖∇x fMGN(x)‖
≤ K.

By Lemma 3.1, we complete the proof of Theorem 3.2.

For example, the action bound in a single-action environ-
ment is [−5, 5]. The output of LipsNet followed by tanh
lies in [−1, 1]. Then LipsNet followed by tanh is still K-
Lipschitz continuous. The output can be scaled up from
[−1, 1] to [−5, 5], by multiplying 5. The whole network,
composed of LipsNet, tanh and scaling up, will be 5K-
Lipschitz continuous.

D. Computational Efficiency Analysis
We provide an extra analysis of computational efficiency,
including the forward and backward time comparisons. The
running platform is AMD Ryzen Threadripper 3960X 24-
Core Processor. The number of power iterations in MLP-SN
is set as 1, whose time usage is included in the backward
propagation stage. The results are summarized in Table 8.

Table 8. Computation time comparison.

Settings Neural network
Propagation Batch size MLP MLP-SN LipsNet-L

forward 1 0.10 ms 0.11 ms 0.75 ms
100 0.11 ms 0.12 ms 1.41 ms

backward 1 0.17 ms 0.76 ms 0.45 ms
100 0.28 ms 0.89 ms 0.73 ms

It implies that the computation time of LipsNet is slightly
higher than MLP’s. The computation bottleneck in LipsNet
is the calculation of the Jacobian matrix ∇f and its back-
ward propagation. Fortunately, the 1-batch forward time of
LipsNet is a small value within 1 ms, which is still suitable
in real-time applications.

14

LipsNet

E. Implementation Details on Double
Integrator Environment

Double integrator is a classical control task with linear dy-
namic and quadratic cost. The environment used in this
paper is a particle-moving environment, described in Sec-
tion 4.1. We use INFADP, a model-based RL algorithm,
to train in this environment. The network K(x) needs a
relatively large output at the beginning of training for suffi-
cient explorations. Therefore, we add the expected initial
Lipschitz constant Kinit to the bias of the last linear layer
before Softplus in network K(x). The hyperparameters
of INFADP are listed in Table 9.

Table 9. Hyperparameters of INFADP.

Parameter Setting

Replay buffer capacity 100000
Buffer warm-up size 1000
Batch size 64
Discount γ 0.99
Target network soft-update rate τ 0.2
Initial random interaction steps 0
Interaction steps per iteration 8
Network update times per iteration 1
Prediction step 1
Action bound [−5, 5]
Exploration noise std. deviation 0
Hidden layers in f(x) [64, 64]
Activations in f(x) ReLU
Hidden layers in K(x) [32]
Activations in K(x) Tanh
Initial Lipschitz constant Kinit 1
Hidden layers in critic network [64, 64]
Activations in critic network ReLU
Optimizer Adam
Actor learning rate ηf 3 · 10−5

Actor learning rate ηk 1 · 10−5

Critic learning rate 8 · 10−5

Weight λ 1 · 10−1

Small constant ε 1 · 10−4

F. Implementation Details on Vehicle
Trajectory Tracking Environment

To train on the vehicle trajectory tracking environment,
which is a constrained optimal control problem, we use
the Separated Proportional-integral Lagrangian algorithm
(SPIL) (Peng et al., 2021). We use the same hyperparame-
ters for sine and double-line scenarios. The hyperparameters
of SPIL are listed in Table 10.

Table 10. Hyperparameters of SPIL.

Parameter Setting

Replay buffer capacity 100000
Buffer warm-up size 1000
Batch size 64
Discount γ 0.99
Target network soft-update rate τ 0.005
Initial random interaction steps 0
Interaction steps per iteration 8
Network update times per iteration 1
Prediction step 10
Action bound [−0.4, 0.4]
Exploration noise std. deviation 0.2
Hidden layers in f(x) [64, 64]
Activations in f(x) ReLU
Hidden layers in K(x) [32]
Activations in K(x) Tanh
Initial Lipschitz constant Kinit 5
Hidden layers in critic network [64, 64]
Activations in critic network ReLU
Optimizer Adam
Actor learning rate ηf 3 · 10−4

Actor learning rate ηk 1 · 10−4

Critic learning rate 3 · 10−4

Weight λ 1 · 10−3

Small constant ε 1 · 10−4

We set different observation noises and compare the results
of SPIL with LipsNet-L, SPIL with LipsNet-G, SPIL with
MLP, and MPC. Table 11 summarizes the total average
return. Table 12 summarizes the action fluctuation ratio.
Figure 14 shows the variation trends of total average return
and action fluctuation ratio as the noise level increases. As
shown in Figure 14(a), the total average return of MLP
decreases much faster than that of LipsNet-L and LipsNet-
G. As shown in Figure 14(b), the action fluctuation ratio
of MLP increases much faster than that of LipsNet-L and
LipsNet-G. These results indicate that LipsNet has superior
action smoothness and noise robustness compared to MLP.

G. DeepMind Control Suit Benchmark
The DeepMind Control Suite (DMControl) (Tassa et al.,
2018) contains a set of well-designed continuous control
tasks. These tasks have standardized structures, inter-
pretable and normalized rewards. The tasks in DMControl
are written in Python and powered by MuJoCo physic en-
gine (Todorov et al., 2012). Currently, it is one of the most
recognized benchmark environments for RL and continuous
control.

The domain in DMControl refers to a physical model,
while a task refers to an instance of that model with a
particular MDP structure. For example, the difference
between the swingup and balance tasks of the cart-

15

LipsNet

Table 11. Total average return comparison on vehicle trajectory tracking environment. The observation noise in each dimension is
distributed in U(−σ, σ).

Env Method
Trajectory Noise σ SPIL (MLP) SPIL (LipsNet-L) SPIL (LipsNet-G)

sine curve

1 · 10−4 -0.062 ± 0.0001 -0.066 ± 0.0001 -0.068 ± 0.0001

5 · 10−4 -0.063 ± 0.0001 -0.066 ± 0.0001 -0.068 ± 0.0001

1 · 10−3 -0.067 ± 0.0005 -0.066 ± 0.0001 -0.068 ± 0.0001

5 · 10−3 -0.154 ± 0.0101 -0.068 ± 0.0003 -0.069 ± 0.0002

1 · 10−2 -0.366 ± 0.0322 -0.072 ± 0.0009 -0.072 ± 0.0006

double-line

1 · 10−4 -0.088 ± 0.0002 -0.113 ± 0.0001 -0.115 ± 0.0001

5 · 10−4 -0.089 ± 0.0005 -0.113 ± 0.0003 -0.115 ± 0.0001

1 · 10−3 -0.092 ± 0.0020 -0.113 ± 0.0005 -0.115 ± 0.0004

5 · 10−3 -0.180 ± 0.0138 -0.113 ± 0.0026 -0.116 ± 0.0014

1 · 10−2 -0.351 ± 0.0187 -0.117 ± 0.0063 -0.119 ± 0.0027

Table 12. Action fluctuation ratio comparison on vehicle trajectory tracking environment. The observation noise in each dimension is
distributed in U(−σ, σ).

Env Method
Trajectory Noise σ SPIL (MLP) SPIL (LipsNet-L) SPIL (LipsNet-G)

sine curve

1 · 10−4 0.005 ± 0.0002 0.004 ± 0.0001 0.005 ± 0.0001

5 · 10−4 0.015 ± 0.0006 0.005 ± 0.0001 0.006 ± 0.0001

1 · 10−3 0.027 ± 0.0016 0.005 ± 0.0001 0.006 ± 0.0001

5 · 10−3 0.122 ± 0.0070 0.012 ± 0.0007 0.010 ± 0.0003

1 · 10−2 0.224 ± 0.0115 0.022 ± 0.0009 0.016 ± 0.0001

double-line

1 · 10−4 0.024 ± 0.0003 0.019 ± 0.0001 0.016 ± 0.0001

5 · 10−4 0.032 ± 0.0008 0.019 ± 0.0001 0.016 ± 0.0001

1 · 10−3 0.043 ± 0.0018 0.020 ± 0.0001 0.017 ± 0.0001

5 · 10−3 0.137 ± 0.0094 0.026 ± 0.0005 0.021 ± 0.0004

1 · 10−2 0.227 ± 0.0198 0.034 ± 0.0013 0.026 ± 0.0009

10 4 10 3 10 2

Noise

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

To
ta

l a
ve

ra
ge

 re
tu

rn

SPIL with MLP
SPIL with LipsNet-L
SPIL with LipsNet-G

(a) Decreasing trend of total average return

10 4 10 3 10 2

Noise

0.00

0.05

0.10

0.15

0.20

Ac
tio

n
flu

ct
ua

tio
n

ra
tio

SPIL with MLP
SPIL with LipsNet-L
SPIL with LipsNet-G

(b) Increasing trend of action fluctuation ratio

Figure 14. Trend of total average return and action fluctuation ratio when noise level changes in vehicle trajectory tracking environment.
The reference trajectory is a sine curve. The data in subfigures (a) and (b) are from Table 11 and 12, respectively. X-axis is the radius of
uniformly distributed noise applied in each observation dimension. Y-axis is the mean of total average return or action fluctuation ratio.
Shadow means the standard deviation.

16

LipsNet

pole domain is whether the pole is initialized pointing
downwards or upwards, respectively. We list the de-
tailed descriptions of the domains used in this paper be-
low, names are followed by three integers specifying the
dimensions of the state, action and observation spaces, i.e.,(

dim (S) ,dim (A) ,dim (O)
)

.

Figure 15. Cartpole(4, 1, 5): This do-
main includes a cart and a pole, con-
nected by an un-actuated joint. The do-
main contains four tasks. In our exper-
iment, the swingup task is used. In
this task, the pole starts pointing down
and we need to apply force on the cart,
therefore keeping the pole upright up-
ward.

Figure 16. Reacher(4, 2, 7): This do-
main includes two linked poles and a
sphere with a randomly initialized loca-
tion. One endpoint of the linked poles is
fixed while the other is free. The domain
contains two tasks. In our experiment,
the easy task is used. In this task, we
need to apply force and make the free
endpoint keep inside the target sphere.

Figure 17. Cheetah(18, 6, 17): This do-
main includes a planar biped. Only one
task is involved in this domain, which
is the run task. In this task, we need to
control the planar biped to stand up and
run with a forward velocity.

Figure 18. Walker(18, 6, 24): This do-
main includes a planar walker. The do-
main contains three tasks. In our exper-
iment, the walk task in this domain is
used. In this task, we need to control the
walker to keep an upright torso, required
torso height and forward velocity.

H. Implementation Details on DMControl
We use the model-free reinforcement learning algorithm,
Twin Delayed Deep Deterministic policy gradient (TD3),
to train on DMControl. The hyperparameters of TD3 are
the same in all environments, while only the weight λ in
loss varies. The network K(x) needs a relatively large
output at the beginning of training for sufficient exploration.
Therefore, we add the expected initial Lipschitz constant
Kinit to the bias of the last linear layer before Softplus
in K(x) network. The hyperparameters of TD3 are listed in
Table 13. The weights λ are listed in Table 14.

Table 13. Hyperparameters of TD3.

Parameter Setting

Replay buffer capacity 1000000
Buffer warm-up size 1000
Batch size 100
Discount γ 0.99
Target network soft-update rate τ 0.005
Target noise 0.2
Target noise limit 0.5
Exploration noise std. deviation 0.1
Policy delay times 2
Initial random interaction steps 25000
Interaction steps per iteration 50
Network update times per iteration 50
Hidden layers in f(x) [64, 64]
Activations in f(x) ReLU
Hidden layers in K(x) [32]
Activations in K(x) Tanh
Initial Lipschitz constant Kinit 50
Hidden layers in critic network [64, 64]
Activations in critic network ReLU
Optimizer Adam
Actor learning rate ηf 1 · 10−3

Actor learning rate ηk 1 · 10−5

Critic learning rate 1 · 10−3

Small constant ε 1 · 10−4

Table 14. Weight λ on DMControl.

Env Weight λ

Cartpole 10−3

Reacher 10−5

Cheetah 10−7

Walker 10−5

To evaluate the noise robustness of LipsNet, we set observa-
tion noises in DMControl environments. The observation
noises used in Section 4.3 are listed in Table 15.

Table 15. Observation noise in DMControl environments. The
observation noise in each dimension is distributed in U(−σ, σ).

Env Noise σ

Cartpole [0.1, 0.1, 0.1, 0.2, 0.2]

Reacher [0.001 repeats 7 times]

Cheetah [0.01, 0.01, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05,
0.5, 0.05, 0.1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]

Walker [0.25 repeats 24 times]

17

LipsNet

I. Comparison to Reward Penalty
Punishing the difference between consecutive actions in
the reward is an effective way to smooth the actions in
some environments. However, such an approach breaks the
Markov property, which affects the performance, albeit to a
minor extent in certain environments. Moreover, we found
that adding reward penalty in a sparse reward environment
increases action fluctuation rather than smoothing it, which
is consistent with the finding by Chen et al. (2021).

Cartpole in DMControl is a sparse reward environment. The
reward is 1 when the pole is within 30◦ of the vertical and 0
otherwise. We implement TD3 in this environment, punish-
ing the difference between consecutive actions in the reward.
Specifically, the new reward is r = rorigin +α ‖at+1 − at‖,
where rorigin is the original sparse reward, α is the penalty
coefficient and at+1 is the output of actor network under
st+1. The experiment results are summarized in Table 16.
The results imply that simply adding reward penalty in the
sparse reward environment increases the action fluctuation
ratio. Superiorly, LipsNet can smooth actions even in the
sparse reward environment.

J. Comparison to Previous Works
One of the main superiorities of LipsNet compare to pre-
vious works is that LipsNet smoothens actions by modify-
ing at neural network level rather than algorithm level. In
this way, RL algorithms will not be complicated, which
makes LipsNet applicable to most existing RL algorithms.
Among the previous action smoothing methods, only the
network enhancement methods modify at neural network
level and do not complicate RL algorithms, as illustrated
in Section 1. Therefore, we only compare LipsNet with
the network enhancement methods. Actually, LipsNet also
belongs to the category of network enhancement methods.
Ryoichi Takase’s method (2020; 2022), marked as MLP-SN
in our paper because it applies SN on MLP, is the only one
belonging to the network enhancement methods category
previously. MLP-SN needs a series of predefined hyperpa-
rameters whose product is the Lipschitz constant of actor
network. Because only simple tasks’ Lipschitz constant can
be roughly estimated ahead, we only make comparisons
on double integrator environment and DMControl-reacher
environment. On more complex tasks, it is hard to finetune
the Lipschitz constant of MLP-SN, which reflects the supe-
riority of LipsNet since LipsNet can automatically adjust its
Lipschitz constant.

For training on the double integrator environment, the Lips-
chitz constant of MLP-SN is set as 1, an appropriate value
among our tests. The comparison results are listed in Table
17.

Table 17. Comparison on double integrator environment. The en-
vironment setting is the same as Section 4.1.

Method Total average
return

Action fluctuation
ratio

INFADP (MLP) -78.4 ± 1.8 0.34 ± 0.02

INFADP (MLP-SN) -65.9 ± 1.7 0.13 ± 0.01

INFADP (LipsNet-G) -59.8 ± 1.1 0.17 ± 0.01

INFADP (LipsNet-L) -58.7 ± 1.4 0.12 ± 0.01

As shown in Table 17, MLP-SN and LipsNet-G show similar
behavior since they are both globally Lipschitz continuous
neural networks. LipsNet-L has the highest return with the
lowest action fluctuation ratio. This superiority benefits
from the local Lipschitz continuity of LipsNet-L.

We set different observation noises for further evaluation on
the double integrator environment, then compare the total
average return and the action fluctuation ratio. The results
are listed in Table 19 and Table 20. We draw the decreasing
trend of total average return and the increasing trend of
action fluctuation ratio. As shown in Figure 19, when the
observation noise increases, the total average return of MLP
decreases rapidly and the action fluctuation ratio of MLP
grows rapidly. MLP-SN can smoothen the action, but its
total average return is lower than that of LipsNet-L. Overall
speaking, LipsNet-L has the lowest action fluctuation ratio
with relatively good control performance.

For training on the DMControl-reacher environment with
MLP-SN, we use a 3-layer MLP with SN and manually tune
each layer’s spectral norm. The global Lipschitz constant of
MLP-SN is the product of all layers’ spectral norms. The
results are listed in Table 18.

Table 18. Performance of MLP-SN on DMControl-reacher.

Layers spectral norm Total average
return

Action fluctuation
ratio

[5.0, 5.0, 5.0] 760 ± 381 0.01 ± 0.00

[5.5, 5.5, 5.5] 831 ± 102 0.01 ± 0.00

[5.8, 5.8, 5.8] 954 ± 10 0.08 ± 0.05

[6.0, 6.0, 6.0] 967 ± 28 0.13 ± 0.08

As shown in Table 18, the performances of MLP-SN in all
settings are poor than that of LipsNet-L (listed in Table 3 and
4), i.e., LipsNet-L has a higher return with a lower action
fluctuation ratio. It is because LipsNet constrains the whole
network to be Lipschitz continuous, but SN produces layer-
wise constraints reducing the expression ability. We do not
conduct comparisons to MLP-SN across all environments
used in this paper, since it requires manually tuning the
spectral norm hyperparameters for each layer, yielding huge
combinations of hyperparameters.

Moreover, LipsNet is not limited to specific environments
and RL algorithms. Instead, it can be applied to most exist-

18

LipsNet

Table 16. Comparison to reward penalty.
Method Penalty coefficient α Total average return Action fluctuation ratio

TD3 (MLP, reward penalty) 0.01 825 ± 0.5 0.27 ± 0.01

TD3 (MLP, reward penalty) 0.1 819 ± 0.8 0.21 ± 0.01

TD3 (MLP, reward penalty) 1 13 ± 0.5 0.02 ± 0.00

TD3 (MLP) 805 ± 0.8 0.04 ± 0.00

TD3 (LipsNet-G) 691 ± 1.0 0.08 ± 0.00

TD3 (LipsNet-L) 831 ± 0.9 0.01 ± 0.00

Table 19. Total average return comparison on double integrator environment. The observation noise in each dimension is distributed in
U(−σ, σ).

Noise σ Method
INFADP (MLP) INFADP (MLP-SN) INFADP (LipsNet-G) INFADP (LipsNet-L)

1 · 10−2 -51.0 ± 0.1 -62.0 ± 0.1 -53.2 ± 0.1 -55.3 ± 0.1

5 · 10−2 -53.5 ± 0.2 -62.3 ± 0.4 -54.3 ± 0.3 -55.6 ± 0.4

1 · 10−1 -59.5 ± 0.6 -62.8 ± 0.7 -54.2 ± 0.7 -56.0 ± 0.6

2 · 10−1 -78.4 ± 1.8 -65.9 ± 1.7 -59.8 ± 1.1 -58.7 ± 1.4

3 · 10−1 -103.2 ± 3.7 -71.8 ± 2.3 -74.3 ± 2.1 -65.3 ± 1.6

Table 20. Action fluctuation ratio comparison on double integrator environment. The observation noise in each dimension is distributed in
U(−σ, σ).

Noise σ Method
INFADP (MLP) INFADP (MLP-SN) INFADP (LipsNet-G) INFADP (LipsNet-L)

1 · 10−2 0.02 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01

5 · 10−2 0.11 ± 0.01 0.03 ± 0.01 0.04 ± 0.01 0.03 ± 0.01

1 · 10−1 0.19 ± 0.01 0.06 ± 0.01 0.07 ± 0.01 0.06 ± 0.01

2 · 10−1 0.34 ± 0.02 0.13 ± 0.01 0.17 ± 0.01 0.12 ± 0.01

3 · 10−1 0.48 ± 0.02 0.20 ± 0.01 0.28 ± 0.01 0.20 ± 0.01

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Noise

100

90

80

70

60

50

To
ta

l a
ve

ra
ge

 re
tu

rn

INFADP with MLP
INFADP with MLP-SN
INFADP with LipsNet-G
INFADP with LipsNet-L

(a) Decreasing trend of total average return

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Noise

0.0

0.1

0.2

0.3

0.4

0.5

Ac
tio

n
flu

ct
ua

tio
n

ra
tio

INFADP with MLP
INFADP with MLP-SN
INFADP with LipsNet-G
INFADP with LipsNet-L

(b) Increasing trend of action fluctuation ratio

Figure 19. Trend of total average return and action fluctuation ratio when noise level changes in double integrator environment. The
data in subfigures (a) and (b) are from Table 19 and 20, respectively. X-axis is the radius of uniformly distributed noise applied in each
observation dimension. Y-axis is the mean of total average return or action fluctuation ratio. Shadow means the standard deviation.

19

LipsNet

ing actor-critic RL algorithms and various tasks, making it
a more versatile action smoothing method. This is because
LipsNet modifies the neural networks rather than the RL
algorithms, and it does not require a rough estimate of the
network’s Lipschitz constant ahead or manual tuning of the
Lipschitz constant. As a result, LipsNet’s ability to automat-
ically adjust Lipschitz constant and its general applicability
to various tasks and RL algorithms make it a superior choice
for action smoothing compared to previous works.

K. Relationship with Robust RL
The primary connection between LipsNet and robust RL is
that the Lipschitz continuity is a particular form of robust-
ness. As described in Section 2.1, the Lipschitz constant
could characterize the noise robustness level of a function.
However, the primary difference is that robust RL aims
to prevent catastrophic failures under uncertainties, pertur-
bations or structural changes (Moos et al., 2022), while
LipsNet focuses on smoothing the action trajectory during
model deployment. The direct evidence of the primary dif-
ference is that LipsNet can smooth the action even in the
environments without noise, as shown in Table 4 and Table
7. This superior is due to the landscape smoothness, as
shown in Figure 10, rather than the noise robustness. Fur-
thermore, LipsNet is a network-level design, but most robust
RL methods are algorithm-level designs. In other words, ro-
bust RL achieves its aim through specific algorithms, such as
SA-MDP (Zhang et al., 2020) for observation perturbation
scenarios, NR-MDP (Tessler et al., 2019) for action perturba-
tion scenarios, and RARL (Pinto et al., 2017) for parameter
perturbation scenarios. In contrast, LipsNet achieves its aim
by designing a particular network structure, which can be
used as actor networks in many RL algorithms rather than
one specific algorithm.

20

