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Abstract

Deep neural networks (DNNs) exhibit an exceptional capacity for generalization
in practical applications. This work aims to capture the effect and benefits of
depth for learning within the paradigm of information-theoretic generalization
bounds. We derive two novel hierarchical bounds on the generalization error
that capture the effect of the internal representations within each layer. The first
bound demonstrates that the generalization bound shrinks as the layer index of
the internal representation increases. The second bound aims to quantify the
contraction of the relevant information measures when moving deeper into the
network. To achieve this, we leverage the strong data processing inequality (SDPI)
and employ a stochastic approximation of the DNN model we can explicitly control
the SDPI coefficient. These results provide a new perspective for understanding
generalization in deep models.

1 Introduction

Overparameterized deep neural networks (DNNs) have surged in popularity as the preferred model
for numerous high-dimensional and large-scale learning tasks, primarily due to their remarkable
generalization performance. Substantial efforts have been devoted to theoretically explaining this
phenomenon from various perspectives. This includes norm-based complexity measures [17, 28, 25],
PAC-Bayes bounds [3, 13, 26, 27, 29, 41], sharpness and flatness of the loss minima [21, 11, 24], loss
landscape [38], implicit regularization induced by the gradient descent algorithms [34, 33, 7], etc.
The reader is referred to the recent survey [22] for a comprehensive literature review. Despite this
wealth of research, the precise factors contributing to the generalization capacity of DNNs remain
elusive, as indicated in [40, 23]. The goal of this work is to shed new light on the advantages of deep
models for learning under the framework of information-theoretic generalization bounds.

The generalization error is the difference between the population risk and the empirical risk on the
training data. It measures the extent of overfitting of a trained neural network when the empirical
risk is pushed to zero. Information-theoretic generalization bounds have been widely explored in
recent years. This line of work was initiated by [39], where a generalization error bound in terms
of the mutual information between the input and output of the learning algorithm was derived; see
also [32, 6]. These inaugural results inspired various extensions and refinements based on chaining
arguments [4, 8], conditioning and processing techniques [18, 19, 35, 20], as well as other information-
theoretic quantities [14, 1, 2, 37]. However, the aforementioned results were not specialized to the
DNN setting and hence did not capture the effect of depth on the generalization bound. Quantifying
this effect within such information-theoretic bounds is the main objective of this work.

Towards this goal, we present two new hierarchical generalization error bounds for DNNs. The first
bound refines the results from [6, 32, 39], by bounding the generalization in terms of information
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measures associated with the internal representations of each layer. This bound shrinks as the layer
count increases, can adapt to layers of low complexity (e.g., low-dimensional or discrete), and overall
highlights the benefits of depth for learning. Our second generalization bound is tailored to capture
the contraction of the relevant information measures as we delve deeper into the network. To quantify
this, we adopt a noisy DNN model (cf., e.g., [16, 15]) as a proxy for the deterministic network and
employ the strong data processing inequality (SDPI) for the analysis. The SDPI coefficient associated
with the stochastic channel induced by each layer is then controlled in terms of the layer dimension
and the activation functions. The desired generalization bound is obtained by peeling off the DNN
layers and aggregating the corresponding contraction coefficients. We visualize our bounds using a
simple numerical example and discuss future research avenues stemming from our results.

2 Preliminaries and Problem Formulation
Notation. The class of Borel probability measures on X ⊆ Rd is denoted by P(X ). A random
variable X ∼ PX ∈ P(X ) is called σ-sub-Gaussian, if E

[
exp

(
λ(X − E[X])

)]
≤ λ2σ2/2 for any

λ ∈ R. The f -divergence between µ, ν ∈ P(X ) (µ ≪ ν1) is defined by Df (µ∥ν) :=
∫
f(dµ/dν) dν,

where f : (0,+∞) → R is convex and f(1) = 0. The Kullback-Leibler (KL) divergence is defined
by taking f(u) = u log u. The mutual information between (X,Y ) ∼ PX,Y ∈ P(X × Y) is
defined as I(X;Y ) := DKL(PX,Y ∥PX ⊗ PY ). The Shannon entropy of a discrete random variable
X ∼ PX ∈ P(X ) is H(X) = log(|X |) − DKL(PX∥Unif(X )). For a d-dimensional vector X and
integers 1 ≤ i < j ≤ d, we use the shorthands Xj

i := (Xi, . . . , Xj) and [j] := {1, 2, . . . , j}. For a
function f : Rd → Rd′

, where f = (f1, . . . , fd′), we define ∥f∥∞ := supx∈Rd maxi=1,...,d′ |fi(x)|.

Figure 1: L-layer feedforward network.

Supervised learning problem. Consider a data
space X ⊆ Rd0 and label set Y = [K] ⊆ Z+.
Fix a data distribution PX,Y ∈ P(X × Y) and let
(X,Y ) ∼ PX,Y be a nominal data feature–label
pair. The training dataset Dn = {(Xi, Yi)}ni=1
comprises independently and identically distributed
(i.i.d.) copies of (X,Y ); note that PDn

= P⊗n
X,Y .

We consider a feedforward DNN model with L lay-
ers for predicting the label Y from the test sample
X via Ŷ := gwL

◦ gwL−1
◦ · · · ◦ gw1

(X), where gwl
(t) = ϕl(wlt), l ∈ [L], for a weight

matrix wl ∈ Rdl×dl−1 and an activation function ϕl : R → R (acting on vectors element-
wise). Denote all the network parameters by w = (w1, . . . ,wL) and the parameter space by
W ⊆ Rd1×d0 × · · · × RdL×dL−1 . We denote the internal representation of the lth layer by
Tl := gwl

◦ · · · ◦ gw1(X), l ∈ [L], noting that T0 = X . When the input to the network is Xi

(rather than X), we add a subscript i to the internal representation notation, writing Tl,i instead of Tl.
See Figure 1 for an illustration. We know that the setup can be generalized to regression problems
by setting Y ⊆ R. Furthermore, our arguments extend to the case when the training dataset Dn

comprises dependent but identically distributed data samples, e.g., ones generated from a Markov
chain Monte Carlo method.

Let ℓ : W × X × Y → R+
0 be the loss function. Given any w ∈ W , the population risk and the

empirical risk are respectively defined as

LP(w, PX,Y ) := E[ℓ(w, X, Y )], ; LE(w, Dn) :=
1

n

n∑
i=1

ℓ(w, Xi, Yi),

where the loss function ℓ penalizes the discrepancy between the true label Y and the DNN prediction
Ŷ = gwL

◦ · · · ◦ gw1(X), i.e., ℓ(w, x, y) = ℓ̃(gwL
◦ · · · ◦ gw1(x), y). A learning algorithm trained

with Dn can be characterized by a stochastic mapping PW|Dn
. Given any (PW|Dn

, PX,Y ), the
expected generalization error is defined as the expected gap between the population empirical risks:

gen(PW|Dn
, PX,Y ) := E[LP(W, PX,Y )− LE(W, Dn)], (1)

where the expectation is w.r.t. P(X,Y ),Dn,W = P
⊗(n+1)
X,Y PW|Dn

.

3 Generalization Error Bound via DPI
Existing results such as [39, 6] bound the generalization error from (1) in terms of the mutual
information terms I(Dn;W) or

∑n
i=1 I(Xi, Yi;W), which only depend on the raw input dataset

1µ ≪ ν means µ is absolutely continuous w.r.t. ν.
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and the algorithm. We next establish two new improved generalization bounds, whose hierarchical
structure captures the effect of the internal representations Tl. Notably, the bounds shrinks as one
moves deeper into the network, providing new evidence for the benefits of deep models for learning.

3.1 Hierarchical Generalization Bound

Consider the setting described above, for which we present the following generalization error bound.

Theorem 1 (Hierarchical generalization bound). Suppose that the loss function ℓ(w, X, Y ) is σ-sub-
Gaussian under PX,Y , for all w ∈ W . We have

|gen(PW|Dn
, PX,Y )| ≤ UB(L) ≤ UB(L− 1) ≤ . . . ≤ UB(0), (2)

where UB(l)= σ
√
2

n

n∑
i=1

√
I(Tl,i, Yi;WL

l+1|Wl
1)+DKL

(
PTl,i,Yi|Wl

1

∥∥PTl,Y |Wl
1

∣∣PWl
1

)
, l = 0, . . . , L.

Theorem 1 is derived by first establishing the UB(L) upper bound via the Donsker-Varadhan varia-
tional representation of the KL divergence and the sub-Gaussianity of the loss function, as it acts
on the last layer TL. We then invoke the data processing inequality (DPI) to successively peel off
the layers to arrive at the remaining bounds. See Appendix A for a detailed proof. While the UB(L)
forms the tightest bound, the state hierarchy highlights the benefit of depth for learning and lend well
for comparison to existing results. Indeed, observing that UB(0) =

√
2σ2 n−1

∑n
i=1

√
I(Xi, Yi;W),

we see that our bound is indeed tighter than the one from [6].

Remark 1 (Interpretation and special cases). Theorem 1 shows that the model generalizes when,
for some layer l = 0, . . . , L, both I(Tl,i, Yi;W

L
l+1|Wl

1) and DKL(PTl,i,Yi|Wl
1
∥PTl,Y |Wl

1
|PWl

1
) are

small. This happens when the parameters of subsequent layers are not overly dependent on the lth

internal representation, and when the learned posterior of this internal representation highly matches
the prior. To gain further intuition, we present two special cases under which the bounds simplify:

1. One-to-one mapping: If gWl
is one-to-one for all l ∈ [L], the DPI holds with equality:

DKL

(
PTl,i,Yi|Wl

1

∥∥PTl,Y |Wl
1
|PWl

1

)
= DKL

(
PXi,Yi|Wl

1

∥∥PX,Y |PWl
1

)
= I

(
Xi, Yi;W

l
1

)
,

I
(
Tl,i, Yi;W

L
l+1

∣∣Wl
1

)
= I

(
Xi, Yi;W

L
l+1

∣∣Wl
1

)
.

Thus, the upper bounds are equal: UB(L) = UB(L− 1) = · · · = UB(0), which implies that the
representation at each layer has the same impact on the generalization error.

2. Discrete latent space: When Tl only takes a finite number of values, i.e., its support satisfies
|Tl| < ∞ (e.g., the discrete latent layer in the VQ-VAE [36]). Assuming that tl(w

l
1) :=

mint∈Tl,y∈Y PTl,Y |Wl
1
(t, y|wl

1) ∈
(
0, |Tl × Y|−1

)
and tl := supwl

1
tl(w

l
1), we have

UB(l) ≤
√
2σ2 log

(
K2/tl

)
.

The proof is provided in Appendix B. As tl grows, we see that PTl,Y |Wl
1

tends to the uniform
distribution on Tl×Y and its entropy/variance increases. This, in turn, shrinks the generalization
error, which is consistent with the intuition that stochasticity leads to better generalization.

3.2 Tighter Bound via Contraction for Noisy Networks

Inspired by Theorem 1, we next aim to capture the contraction of the information measures in our
bound as the layer count grows. To that end, we use the strong DPI (SDPI) [10, 12, 31], for which
some preliminaries are needed.

Strong data processing inequality. Given PX , QX ∈ P(X ) and a transition kernel (channel)
PY |X , write PY = PY |X ◦ PX and QY = PY |X ◦QX for the marginal distributions at the output of
the channel when we feed it with PX or QX , respectively. Assuming PX ≪ QX and that QX is not
a point mass, the SDPI coefficient for PY |X under the f -divergence Df is

ηf (PY |X) := sup
PX ,QX

Df (PY |X ◦ PX∥PY |X ◦QX)

Df (PX∥QX)
∈ [0, 1].

We write ηKL(PY |X) and ηTV(PY |X) for the coefficients under the KL divergence and the total
variation distance, respectively. Proposition II.4.10 in [9] shows that for any f -divergence, we have

ηf (PY |X) ≤ ηTV(PY |X) = sup
x,x′∈X

∥PY |X=x − PY |X=x′∥TV,

3



where ηTV(PY |X) is also know as Dobrushin’s coefficient [12]. It can be shown that if Y = g(X)
for some deterministic function g : X → Y , then ηf (Pg(X)|X) = ηTV(Pg(X)|X) = 1 (cf., e.g.,
Proposition II.4.12 from [9]).
Generalization bound for noisy DNNs. According to the above, if all the feature maps gwl

, for
l = 1, . . . , L, in the DNN are deterministic, the contraction coefficients we are looking for degenerate
to 1, landing us back at the bound from Theorem 1. To arrive at nontrivial contraction we consider a
noisy DNN model where the feature map at each layer is perturbed by isotropic Gaussian noise, i.e.,

T̃l = Tl + ϵlZl, l = 1, . . . , L, (3)
where Zl ∼ N(0, Idl

) is independent of the input and ϵl ∈ R+ is a constant. As before, we introduce
the subscript i, writing T̃l,i, when the input to the DNN is Xi. Such noisy DNNs were explored in
[16] and were shown to serve as good approximations of classical (deterministic) networks.

To analyze generalization error under the noisy DNN model, we present the following lemma that
bounds the SDPI coefficient for the aforementioned channel.
Lemma 2 (SDPI coefficient bound). Let X ∼ PX ∈ P(Rdx) and consider a bounded function
g : Rdx → Rdy . Set Y = g(X) + ϵN , where ϵ > 0 and N ∼ N (0, Idy

) is independent of X . The
SDPI coefficient of the induced channel PY |X satisfies

ηf (PY |X) ≤ ηTV(PY |X) ≤ 1− 2Q

(√
2dy∥g∥∞
2ϵ

)
,

where Q(x) :=
∫∞
x

1√
2π

e−t2/2dt is the Gaussian complimentary cumulative distribution function.

Lemma 2, which is proven in Appendix C, implies that whenever
√
dy∥g∥∞ϵ−1 > 0, we have

ηKL(PY |X) < 1. Consequently, the layer mappings in a noisy DNN with bounded activations present
non-trivial contraction, which gives rise to the following result.
Theorem 3 (Noisy DNN generalization bound). Consider the noisy DNN model from (3) with
bounded activation functions ϕl, l = 1, . . . , L. If the loss function ℓ(w, X, Y ) is σ-sub-Gaussian
under PX,Y , for all w ∈ W , we have

|gen(PW|Dn
, PX,Y )| ≤

σ
√
2

n

n∑
i=1

√√√√ L∏
l=1

(
1− 2Q

(√
2dl∥ϕl∥∞

2ϵl

))
I(Xi;W|Yi) + I(Yi;W).

The proof of Theorem 3 is provided in Appendix D. The argument initiates at the bound UB(L) from
Theorem 1 and first factors out the terms that depend on the label Y from the KL divergence. This
yields the summand I(Yi;W). This step is necessary since the label is not processed by the noisy
DNN, and the corresponding SDPI coefficient without factoring it out would trivialize to 1. For
the remaining term, we invoke the SDPI L times collecting the coefficients and invoking Lemma
2 to arrive at the desired bound. We also note that ∥ϕl∥∞ is typically small, e.g., ∥ϕl∥∞ = 1 if
ϕl ∈ {sigmoid, softmax, tanh}.
Remark 2 (Interpretation and discussion). We make the following observations regarding the
bound from Theorem 3. For fixed noise parameters ϵ1, . . . , ϵL, the coefficient decreases from 1 to
0 as the layer dimensions dl shrink and the number of layers L grows. Similarly, since the label
follows a categorical distribution of parameter K, we have I(Yi;W) ≤ logK. The smaller the
number of distinct labels K, the better the generalization bound. The behavior of I(Xi;W|Yi),
on the other hand, is harder to pin down as it depends on the data distribution and the learning
algorithm at hand. For instance, if the DNN parameter space is constrained to be finite, e.g.,
W = [B]d1×d0 × · · · × [B]dL×dL−1 for some B ∈ Z+, then we can upper bound the mutual
information by I(Xi;W|Yi) ≤ H(W) ≤

∑L
l=1 dldl−1 logB, which increases as dl and L grow.
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Figure 2: Generalization bounds
w/wo an added layer for finite W .

Consider increasing the depth of an L-layer neural net with dis-
crete parameters as above, by adding an extra hidden layer with
dimension dl∗ . Figure 2 plots the said mutual information bound
and shows that if dl∗ is sufficiently small, then the generalization
bound shrinks as a result of the added layer. It suggests that a deep
but narrower network may generalize better. However, to draw
more compelling conclusions, it is necessary to conduct thorough
analyses and experiments for general algorithms/architectures. It
may also be insightful to explore generalization bounds based on
other divergences and to account for more activation functions.
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A Proof of Theorem 1

Let us rewrite the risks and generalization error under the DNN setup. Let (X,Y ) ∼ PX,Y be a
pair of test data sample. At each layer l, the internal representation Tl of a test data feature X is
conditionally independent of WL

l+1 given W l
1. For any W ∈ W , let the loss function be rewritten as

ℓ(W, X, Y ) = ℓ(gWL
◦ gWL−1

◦ · · · ◦ gW1(X), Y ). The expected population risk over all possible
W is given by

EW [LP(W, PX,Y )] = E[ℓ(gWL
◦ gWL−1

◦ · · · ◦ gW1
(X), Y )]

= E[ℓ(gWL
◦ gWL−1

◦ · · · ◦ gWl+1
(Tl), Y )]

= E[E[ℓ(gWL
◦ gWL−1

◦ · · · ◦ gWl+1
(Tl), Y )|Wl

1]]

where l ∈ [L] and given Wl
1, (Tl, Y ) are independent of WL

l+1.

Denote the overall feature mapping function as fW ≜ gWL
◦ gWL−1

◦ · · · ◦ gW1
. Similarly, for any

l ∈ [L], the expected empirical risk can also be rewritten as

E[LE(W, Dn)] = E
[
1

n

n∑
i=1

ℓ(fW(Xi), Yi)

]
=

1

n

n∑
i=1

E[ℓ(fW(Xi), Yi)]

=
1

n

n∑
i=1

E[ℓ(gWL
◦ gWL−1

◦ · · · ◦ gWl+1
(Tl,i), Yi)]

=
1

n

n∑
i=1

E
[
E[ℓ(gWL

◦ gWL−1
◦ · · · ◦ gWl+1

(Tl,i), Yi)|Wl
1]
]
.

For notational simplicity, let gWj
k
:= gWk

◦ gWk−1
◦ · · · ◦ gWj

for any k < j and k, j ∈ N. Then
the expected generalization error can be rewritten as

gen(PW|Dn
, PX,Y ) =

1

n

n∑
i=1

E
[
E[ℓ(gWL

l+1
(Tl), Y )|Wl

1]− E[ℓ(gWL
l+1

(Tl,i), Yi)|Wl
1]

]
. (4)

If the loss function ℓ(w, X, Y ) is σ-sub-Gaussian under PX,Y for all w ∈ W , we also have for
any l ∈ [0 : L], ℓ(gwL

l+1
(Tl), Y ) is σ-sub-Gaussian under PTl,Y |W=w for all w ∈ W . From

Donsker-Varadhan representation, we have for any λ ∈ R,
DKL(PWL

l+1,Tl,i,Yi|Wl
1
∥PTl,Y |Wl

1
⊗ PWL

l+1|Wl
1
)

≥ EWL
l+1,Tl,i,Yi|Wl

1
[λℓ(gWL

l+1
(Tl,i), Yi)]− logEWL

l+1|Wl
1
ETl,Y |Wl

1
[exp(λℓ(gWL

l+1
(Tl), Y ))]

≥ λ(EWL
l+1,Tl,i,Yi|Wl

1
[λℓ(gWL

l+1
(Tl,i), Yi)]− EWL

l+1|Wl
1
ETl,Y |Wl

1
[ℓ(gWL

l+1
(Tl), Y )])− λ2σ2

2
.
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We can decompose DKL(PWL
l+1,Tl,i,Yi|Wl

1
∥PTl,Y |Wl

1
⊗ PWL

l+1|Wl
1
|PWl

1
) as follows

DKL(PWL
l+1,Tl,i,Yi|Wl

1
∥PTl,Y |Wl

1
⊗ PWL

l+1|Wl
1
|PWl

1
) (5)

= DKL(PWL
l+1,Tl,i,Yi|Wl

1
∥PTl,i,Yi|Wl

1
⊗ PWL

l+1|Wl
1
|PWl

1
) + DKL(PTl,i,Yi|Wl

1
∥PTl,Y |Wl

1
|PWl

1
)

= I(Tl,i, Yi;W
L
l+1|Wl

1) + DKL(PTl,i,Yi|Wl
1
∥PTl,Y |Wl

1
|PWl

1
).

Thus, we have
I(Tl,i, Yi;W

L
l+1|Wl

1) + DKL(PTl,i,Yi|Wl
1
∥PTl,Y |Wl

1
|PWl

1
)

= DKL(PWL
l+1,Tl,i,Yi|Wl

1
∥PTl,Y |Wl

1
⊗ PWL

l+1|Wl
1
|PWl

1
)

≥ λEWl
1

[
EWL

l+1,Tl,i,Yi|Wl
1
[ℓ(gWL

l+1
(Tl,i), Yi)]− EWL

l+1|Wl
1
ETl,Y |Wl

1
[ℓ(gWL

l+1
(Tl), Y )]

]
− λ2σ2

2
.

By optimizing the RHS over λ > 0 and λ ≤ 0, respectively, we finally obtain∣∣∣EWl
1
EWL

l+1,Tl,i,Yi|Wl
1
[ℓ(gWL

l+1
(Tl,i), Yi)]− EWl

1
EWL

l+1|Wl
1
ETl,Y |Wl

1
[ℓ(gWL

l+1
(Tl), Y )]

∣∣∣
≤

√
2σ2

(
I(Tl,i, Yi;WL

l+1|Wl
1) + DKL(PTl,i,Yi|Wl

1
∥PTl,Y |Wl

1
|PWl

1
)
)
,

which holds for all l ∈ [L]. Conditioned on Wl, Tl,i and Tl are generated by the same process from
Tl−1,i and Tl−1, respectively. By the data-processing inequality, the KL-divergence in (5) can be
bounded as follows:

DKL(PWL
l+1,Tl,i,Yi|Wl

1
∥PTl,Y |Wl

1
⊗ PWL

l+1|Wl
1
|PWl

1
)

≤ DKL(PWL
l+1,Tl−1,i,Yi|Wl

1
∥PTl−1,Y |Wl

1
⊗ PWL

l+1|Wl
1
|PWl

1
)

= DKL(PWL
l ,Tl−1,i,Yi|Wl−1

1
∥PTl−1,Y |Wl−1

1
⊗ PWL

l |Wl−1
1

|PWl−1
1

)

...
≤ DKL(PXi,Yi,WL

1
∥PX,Y ⊗ PWL

1
)

= I(Xi, Yi;W).

Therefore, the expected generalization error in (4) can be upper bounded as follows:
|gen(PW|Dn

, PX,Y )|

≤ 1

n

n∑
i=1

√
2σ2DKL(PTL,i,Yi|W∥PTL,Y |W|PW)

≤ 1

n

n∑
i=1

√
2σ2

(
I(TL−1,i, Yi;WL|WL−1

1 ) + DKL(PTL−1,i,Yi|WL−1
1

∥PTL−1,Y |WL−1
1

|PWL−1
1

)
)

...

≤ 1

n

n∑
i=1

√
2σ2

(
I(Tl,i, Yi;WL

l |Wl
1) + DKL(PTl,i,Yi|Wl

1
∥PTl,Y |Wl

1
|PWl

1
)
)

...

≤ 1

n

n∑
i=1

√
2σ2

(
I(T1,i, Yi;WL

2 |W1) + DKL(PT1,i,Yi|W1
∥PT1,Y |W1

|PW1
)
)

≤ 1

n

n∑
i=1

√
2σ2I(Xi, Yi;W).

B Proof for the Special Case of Discrete Latent Space

The information-theoretic quantities in UB(l) can be upper bounded as follows:
I(Tl,i, Yi;W

L
l+1|Wl

1) + DKL(PTl,i,Yi|Wl
1
∥PTl,Y |Wl

1
|PWl

1
)
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= I(Tl,i;W
L
l+1|Wl

1) + I(Yi;W
L
l+1|Tl,i,W

l
1) + DKL(PTl,i,Yi|Wl

1
∥PTl,Y |Wl

1
|PWl

1
)

= H(Tl,i|Wl
1)− H(Tl,i|Wl

1,W
L
l+1) + H(Yi|Tl,i,W

l
1)− H(Yi|Tl,i,W

l
1,W

L
l+1)

− H(Tl,i, Yi|Wl
1)− EP

Tl,i,Yi,W
l
1

[logPTl,Y |Wl
1
]

= H(Tl,i|Wl
1)− H(Tl,i|Wl

1,W
L
l+1) + H(Yi|Tl,i,W

l
1)− H(Yi|Tl,i,W

l
1,W

L
l+1)

− H(Tl,i|Wl
1) + H(Yi|Tl,i,W

l
1)− EP

Tl,i,Yi,W
l
1

[logPTl,Y |Wl
1
]

≤ 2H(Yi|Tl,i,W
l
1)− EP

Tl,i,Yi,W
l
1

[logPTl,Y |Wl
1
]

≤ 2 log |Y| − EP
Tl,i,Yi,W

l
1

[logPTl,Y |Wl
1
]

= 2 logK − EP
Tl,i,Yi,W

l
1

[logPTl,Y |Wl
1
].

Assuming tl(w
l
1) := mint∈Tl,y∈Y PTl,Y |Wl

1
(t, y|wl

1) ∈
(
0, |Tl × Y|−1

)
and tl := supwl

1
tl(w

l
1),

then
EP

Tl,i,Yi,W
l
1

[logPTl,Y |Wl
1
] ≥ log tl, and

I(Tl,i, Yi;W
L
l+1|Wl

1) + DKL(PTl,i,Yi|Wl
1
∥PTl,Y |Wl

1
|PWl

1
) ≤ log

K2

tl
.

C Proof of Lemma 2

When Y = g(X) + ϵN , where N is an independent noise and ϵ > 0 is a constant controlling the
signal-to-noise ratio (SNR), then PY |X = Pg(X)+ϵN . The Dobrushin’s coefficient is given by

ηTV(PY |X) = sup
x,x′∈Rdx

∥Pg(x)+ϵN − Pg(x′)+ϵN∥TV.

Let N be a Gaussian noise generated from N (0, Idy ). Denote the vector function g(·) by g(·) =
(g1(·), . . . , gdy

(·)). Following the proof in [30] and the total variation distance between two Gaussians
with the same covariance matrix in [5, Theorem 1], we have for any x, x′ ∈ X ,

DTV(Pg(x)+ϵN , Pg(x′)+ϵN ) = ∥N (g(x), ϵ2Idy
)−N (g(x′), ϵ2Idy

)∥TV

= 1− 2Q

(
∥g(x)− g(x′)∥

2ϵ

)

≤ 1− 2Q

(√∑dy

i=1(gi(x)− gi(x′))2

2ϵ

)
≤ 1− 2Q

(√
dy(∥g(x)∥2∞ + ∥g(x′)∥2∞)

2ϵ

)
≤ 1− 2Q

(√
2dy∥g∥∞
2ϵ

)
where Q(x) =

∫∞
x

1√
2π

e−t2/2dt is the Gaussian complimentary CDF. Finally, we have

ηf (PY |X) ≤ ηTV(PY |X) ≤ 1− 2Q

(√
2dy∥g∥∞
2ϵ

)
.

D Proof of Theorem 3

Among the commonly used activation functions, the following functions and their gradients are
bounded: for any u ∈ R,

• sigmoid function: sigmoid(u) = 1
1+e−u ∈ [0, 1], sigmoid′(u) = e−u

(1+e−u)2 ∈ [0, 1].

• softmax function: softmax(u)i = eui∑
j euj ∈ [0, 1], softmax′(u)i = softmax(u)i(1 −

softmax(u)i) ∈ [0, 1].

• tanh function: tanhu = eu−e−u

eu+e−u ∈ [−1, 1], tanh′(u) = 1− tanh2 u ∈ [0, 1].
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As shown in (3), that is, T̃l = ϕl(WlT̃l−1) + ϵlZl and from Lemma 2, the Dobrushin’s coefficient at
the lth layer is upper bounded by

ηTV(PT̃l|T̃l−1,W
) ≤ 1− 2Q

(√
2dl∥ϕl∥∞

2ϵl

)
,

where ∥ϕl∥∞ = 1 for ϕl ∈ {sigmoid, softmax, tanh}.

In the following proof, at no risk of confusion, we let Tl = T̃l and Tl,i = T̃l,i, for simplicity.
Conditioned on W, PTl−1,i|Yi,W ̸= PTl−1|Y,W but PTl,i|Tl−1,i,W = PTl|Tl−1,W . Thus, we have

DKL(PTl,i|Yi,W∥PTl|Y,W|PYi,W)

= DKL(PTl,i|Tl−1,i,W ◦ PTl−1,i|Yi,W∥PTl|Tl−1,W ◦ PTl−1|Y,W|PYi,W)

≤
(
1− 2Q

(√
2dl∥ϕl∥∞

2ϵl

))
DKL(PTl−1,i|Yi,W∥PTl−1|Y,W|PYi,W).

By induction, if we have L layers

DKL(PTL,i|Yi,W∥PTL|Y,W|PYi,W) ≤
(
1− 2Q

(√
2dL∥ϕL∥∞

2ϵL

))
DKL(PTL−1,i|Yi,W∥PTL−1|Y,W|PYi,W)

≤
L∏

l=L−1

(
1− 2Q

(√
2dl∥ϕl∥∞

2ϵl

))
DKL(PTL−2,i|Yi,W∥PTL−2|Y,W|PYi,W)

...

≤
L∏

l=1

(
1− 2Q

(√
2dl∥ϕl∥∞

2ϵl

))
DKL(PT0,i|Yi,W∥PT0|Y,W|PYi,W)

=

L∏
l=1

(
1− 2Q

(√
2dl∥ϕl∥∞

2ϵl

))
I(Xi;W|Yi). (6)

Recall the upper bound (2) in Theorem 1:

|gen(PW|Dn
, PX,Y )| ≤

1

n

n∑
i=1

√
2σ2DKL(PTL,i,Yi|W∥PTL,Y |W|PW)

=
1

n

n∑
i=1

√
2σ2(DKL(PTL,i|Yi,W∥PTL|Y,W|PYi,W) + I(Yi;W)), (7)

where (7) follows since for any l ∈ [L],
DKL(PTl,i,Yi|W∥PTl,Y |W|PW) = DKL(PTl,i|Yi,WPYi|W∥PTl|Y,WPY |W |PW)

= DKL(PTl,i|Yi,W ∥PTl|Y,W|PYi,W) + DKL(PYi|W∥PY |PW)

= DKL(PTl,i|Yi,W ∥PTl|Y,W|PYi,W) + I(Yi;W).

It can be observed that the data-processing inequality is only applied to
DKL(PTl,i|Yi,W ∥PTl|Y,W|PYi,W) since Yi is not processed. Furthermore, since Yi ∈ Y = [K] is a
discrete random variable, we have I(Yi;W) ≤ H(Yi) ≤ logK.

By combining (6) with (7), the expected generalization error is upper bounded by

|gen(PW|Dn
, PX,Y )| ≤

√
2σ2

n

n∑
i=1

√√√√ L∏
l=1

(
1− 2Q

(√
2dl∥ϕl∥∞

2ϵl

))
I(Xi;W|Yi) + logK.

The proof is thus completed.
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