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Abstract

Existing event-based motion deblurring methods
mostly focus on restoring images with the same
spatial and temporal scales as events. However,
the unknown scales of images and events in the
real world pose great challenges and have rarely
been explored. To address this gap, we pro-
pose a novel Scale-Aware Spatio-temporal Net-
work (SASNet) to flexibly restore blurred im-
ages with event streams at arbitrary scales. The
core idea is to implicitly aggregate both spatial
and temporal correspondence features of images
and events to generalize at continuous scales.
To restore highly blurred local areas, we de-
velop a Spatial Implicit Representation Module
(SIRM) to aggregate spatial correlation at any
resolution through event encoding sampling. To
tackle global motion blur, a Temporal Implicit
Representation Module (TIRM) is presented to
learn temporal correlation via temporal shift op-
erations with long-term aggregation. Addition-
ally, we build a High-resolution Hybrid Deblur
(H2D) dataset using a new-generation hybrid
event-based sensor, which comprises images with
naturally spatially aligned and temporally syn-
chronized events at various scales. Experiments
demonstrate that our SASNet outperforms state-
of-the-art methods on both synthetic GoPro and
real H2D datasets, especially in high-speed mo-
tion scenarios. Code and dataset are available at
https://github.com/aipixel/SASNet.
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Figure 1. (a) Illustration of our arbitrary-scale event-based deblur-
ring task, where Rs and Rt denote spatial and temporal scales,
respectively. (b) Visual comparison results between EFNet (Sun
et al., 2022), REFID (Sun et al., 2023), and our SASNet under the
scale differences scenario.

1. Introduction
With the wide use of CMOS Image Sensors (CIS) and bio-
inspired Event Vision Sensors (EVS) in robots (Rebecq
et al., 2018) and autonomous vehicles (Gallego et al., 2020),
event-based vision tasks have attracted increasing atten-
tion (Hidalgo-Carrió et al., 2022; Gao et al., 2022; Zhang
et al., 2022; Yu et al., 2023b). Due to the microsecond-level
low latency of EVS, necessary motion information can be
inherently captured from events to help alleviate motion
blurring in CIS frames (Chen et al., 2024b). Consequently,
Event-based Motion Deblurring (EMD) has become a promi-
nent topic in computational photography.

Despite the advancements in existing EMD solutions (Sun
et al., 2023; Zhang et al., 2023b), practical applications are
still hindered by two limitations. Dataset Limitation: Ex-
isting event-based deblurring datasets (Zhang et al., 2023a;
Cho et al., 2023) are usually collected from cameras with
low spatial resolution (e.g., DAVIS346 with 346×260) or
binocular camera systems using beam splitters, which are
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cumbersome and inaccurate due to the artificial spatial align-
ment and time synchronization of CIS and EVS. Algorithm
Limitation: Current algorithms (Sun et al., 2022; 2023) al-
ways assume that the inputs of CIS images and EVS events
have the same spatial (i.e., resolution) and temporal (i.e.,
exposure duration) scales, which are confined by the scale
differences of different shooting equipment and environ-
ments in practice, as shown in Fig. 1 (b). Notably, capturing
both high spatial and temporal resolution events is difficult
in practice due to the bandwidth limitations and high costs
of EVS cameras (Kim et al., 2022; Yang & Yamac, 2022).

To address these limitations, we first investigate arbitrary-
scale EMD to restore High-Resolution (HR) sharp images
from HR blurry images and Low-Resolution (LR) events
with different spatial and temporal scales, as illustrated in
Fig. 1 (a). We observe that the large-scale differences be-
tween events and images lead to limited motion deblurring
effects due to insufficient utilization of the spatio-temporal
corresponding feature, and there is an urgent need for a
generalized model to enable deblurring at arbitrary scale
differences. Based on this motivation, we propose a novel
Scale-Aware Spatio-temporal Network (SASNet) to flexi-
bly restore blurred images with event streams at arbitrary
scales. The core idea is to implicitly aggregate both spatial
and temporal correspondence features of images and events
to generalize at continuous scales, rather than the previ-
ous explicit discrete methods (Sun et al., 2022; Chen et al.,
2020; Dosovitskiy et al., 2015) at a single fixed scale. In
particular, we exploit two physical characteristics of blurry
scenes: the spatial correlation between event occurrences
and the regions of local blur, and the temporal correlation
between exposure time and the magnitude of global motion
blur. To restore highly blurred local areas, we develop a
Spatial Implicit Representation Module (SIRM) that models
spatial correlation through event encoding sampling to focus
on unknown highly blurred areas. To tackle global motion
blur, a Temporal Implicit Representation Module (TIRM) is
presented to learn temporal correlation via temporal shift op-
erations with long-term aggregation to tackle global motion
blur of varying magnitudes. To bridge the real-to-synthetic
gap, we finally establish a real-world High-resolution Hy-
brid Deblur (H2D) dataset with 1920 × 1080 resolution
using a new-generation hybrid EVS/CIS sensor, which com-
prises 1836 group images with naturally spatially aligned
and temporally synchronized events at various scales. Qual-
itative and quantitative experiments demonstrate that the
proposed SASNet outperforms eight state-of-the-art meth-
ods on both the synthetic GoPro (Nah et al., 2019) and real
H2D deblurring datasets, especially in high-speed motion
scenarios. The contributions are summarized as follows:

• We propose a Scale-Aware Spatio-temporal deblurring
Network (SASNet) to restore unknown highly blurred
areas and eliminate global motion blur with varying

magnitudes, which is the first time to investigate the
arbitrary-scale event-based motion deburring problem
to our best knowledge.

• We present spatial and temporal implicit representation
modules to model the cross-domain correlation via
event encoding sampling and temporal shift operations,
which can aggregate correspondence between images
and events at arbitrary scales.

• We build a real event-based motion deblurring dataset,
High-resolution Hybrid Deblur (H2D), which naturally
spatially aligned and temporally synchronized events
at various scales using a novel hybrid EVS/CIS sen-
sor. Extensive experiments on both synthetic and real
datasets validate the effectiveness of our SASNet.

2. Related Work
2.1. Frame-based Motion Deblurring

Frame-based motion deblurring methods aim to reconstruct
clear and sharp images from blurred images. Some early
methods (Schmidt et al., 2013; Xu et al., 2014; Chen et al.,
2019) adopt classical deconvolution algorithms and intro-
duce additional priors such as total variation to reduce the
illness of the reconstruction images. Recently, deep learning-
based methods (Kupyn et al., 2018; Cho et al., 2021; Zamir
et al., 2021) achieve better performance by directly learning
the mapping of blurred images to sharp images. (Chen
et al., 2022) presents a nonlinear activation-free network
by removing the non-linear activation function to improve
the performance. (Zamir et al., 2022) proposes an effi-
cient transformer-based model to capture long-range pixel
interactions by designing a multi-head attention network.
Despite these advances, these methods are only driven by
single-frame data and lack inter-frame motion information,
resulting in limited performance.

2.2. Event-based Motion Deblurring

Event-based motion deblurring approaches (Huang et al.,
2024; Chen et al., 2024a; Cannici & Scaramuzza, 2024)
have attracted widespread attention due to the high temporal
resolution of EVS. (Pan et al., 2022) first proposes an Event-
based Double Integral (EDI) model to learn the mapping
between blurry images, events, and sharp frames, achieving
better performance than frame-based methods. (Sun et al.,
2022) designs a multi-scale network with a cross-modal
attention module, which allows focusing on relevant fea-
tures of event branches to improve deblurring effects. (Sun
et al., 2023) presents a bidirectional recurrent network to
fuse information from images and events based on their tem-
poral proximity. (Zhang & Yu, 2022; Zhang et al., 2023b)
consider different spatial scales with explicit deformable
convolution and handle motion blur via the relativity of
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Figure 2. Overview of our SASNet, which is composed of three stages: (a) Feature extraction consisting of Residual Convolution Blocks
(RCB) and Channel Attention Blocks (CAB). (b) Spatio-Temporal Implicit Representation consists of a Spatial Implicit Representation
Module (SIRM) and a Temporal Implicit Representation Module (TIRM). (c) Reconstruction with convolutional layers.

blurriness, which promotes the development of the field.
However, these methods (Han et al., 2021; Yu et al., 2023a;
Chen et al., 2024a) assume images with the same fixed spa-
tial and temporal scales as events, which cannot deal with
real blur with a single model when images and events have
different scales. To our knowledge, this paper is the first
attempt to study EMD on arbitrary scales.

3. Methodology
3.1. Problem Formulation

We formulate the arbitrary-scale EMD task as a generalized
inverse problem, which aims to recover HR sharp images
from HR blurry images and LR events at arbitrary spatial
and temporal scales. The input HR blurry image IB(t) is
usually formulated as the average of the continuous latent
images I(t) at time t within the shutter period T

IB(t) =
1

T

∫
t∈(0,T )

I(t)dt (1)

The input LR event streams E(t, τ) are usually defined by
the common EDI model (Pan et al., 2019)

E(t, τ) =
1

τ

∫ t+ τ
2

t− τ
2

exp(c

∫ t

t−∆t

p(s)ds)dt ∀t, τ ∈ (0, T )

(2)
where τ indicates the real exposure duration that falls within
a subinterval of shutter period T . ∆t denotes the minimum
event interval. p(s) = p · δ(s − t) represents the polarity
component of the events. δ(·) indicates the Dirac function.
p denotes the polarity showing the direction of brightness

change. Each asynchronous event is emitted when the log-
arithmic scale brightness change of image I(t) at time t
reaches the event threshold c

p =

+1, if log
(

I(t)
I(t−∆t)

)
> c

−1, if log
(

I(t)
I(t−∆t)

)
< −c

(3)

To restore the sharp image IR(t) from IB(t) and E(t, τ),
EMD task is typically defined as follows

IR(t) = Deblur(IB(t), E(t, τ)) (4)

where Deblur(·) denotes a deblur network. Due to the
uncertainty of spatial resolution and exposure duration in
practice, we define the spatial scale as Rs(·, ·) and the tem-
poral scale as Rt(·, ·). Rs(IB(t), E(t, T )) = 2 means the
spatial resolution of the image frame IB(t) is double times
that of events E(t, T ). Rt(τ, T ) = 0.5 means the exposure
duration of events E(t, τ) is half times that of the image
frame IB(t). Most previous methods (Sun et al., 2022;
2023) assume that the values of these two scales are fixed
at 1. Unlike these methods that focus on fitting Eq. 4, our
arbitrary-scale EMD task aims to approximate a more gen-
eral function

IR(t) = Deblur(IB(t), E(t, τ);Rs,Rt)

∀t, τ ∈ T, Rs ∈ [1, 4], Rt ∈ (0, 1]
(5)

where IR(t) is the restored sharp image at time t with expo-
sure time τ and allows flexible input spatial and temporal
scales. We set Rs and Rt to finite ranges for broadly test-
ing the generalizability of model motion deblurring on the
hybrid camera at variable and unknown scales.
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Figure 3. The structure of the proposed Spatial Implicit Represen-
tation Module (SIRM).

3.2. Proposed Framework

The overall framework of our SASNet is illustrated in
Fig. 2, which efficiently aggregates cross-domain corre-
spondence features of images and events inspired by the
spatial-temporal correlation of blurry image formation and
event generation. The inputs are an HR blurry image
IB ∈ RN×T×H×W and LR events E ∈ RN×τ×h×w, where
N denotes the batch size. T = 3 and τ = 16 indicate the
number of channels that collected images and events within
those temporal periods. H ×W and h× w denote spatial
sizes of HR and LR, respectively. Note that the input size
of spatial and temporal domains can be adjusted accord-
ing to actual specific requirements. These inputs are first
fed to the Residual Convolution Block (RCB) (He et al.,
2016) and Residual Attention Block (RAB) (Zhang et al.,
2018) to output the image features FI ∈ RN×C×H×W

and event features FE ∈ RN×τc×h×w. Next, the Spatial
Implicit Representation Module (SIRM) inputs image and
event features to output the spatial implicit representation
features FSIR ∈ RN×τc×H×W according to the arbitrary
scale spatial sampling. Then, the image features FI and
FSIR are fed to a Temporal Implicit Representation Module
(TIRM) to obtain the temporal implicit representation fea-
tures FTIR ∈ RN×C×H×W by establishing arbitrary-scale
temporal correspondences with motion information. Finally,
the Spatio-Temporal Reconstruction Module (STRM) with
three convolutional layers concatenates FSIR and FTIR

with rich spatial-temporal information to reconstruct the
HR sharp image IR ∈ RN×3×H×W . In the following, we
describe the details of our SIRM and TIRM, respectively.

3.3. Spatial Implicit Representation Module

Due to the influence of object motion speed and depth, the
intensity of blurring is unevenly distributed in space. Con-
sidering the spatial correlation characteristics of the blurry
scene, i.e., the location of the event emitted is highly cor-
related with the local blurred regions, we propose SIRM
to learn arbitrary-scale spatial correspondences to focus on
highly blurred areas. As shown in Fig. 3, we adopt an effi-
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Figure 4. The structure of the proposed Temporal Implicit Repre-
sentation Module (TIRM).

cient spatial-aware encoding sampling scheme to upsample
FE to desired high-resolution features FSESR and add it to
the image features FI , and then use an implicit decoder pa-
rameterized as a Multi-Layer Perceptron (MLP) to convert
the added features into continuous feature representation
FSIR. Next, we depict the key composition of SIRM.

Spatial-Aware Encoding Sampling. We first encode event
features FE to event spatial features FESR using an encoder
E (·;ϕ) with parameters ϕ. Then, a querying coordinate grid
Ecoord ∈ R2×H×W is generated by coordinate projection
according to the input spatial scale Rs. For each coordinate,
we select the local features closest to the eight points of
this coordinate among the event spatial features FEIR for
2D feature sampling to obtain the sampled spatial features
FSESR

FSESR = fsample(E (FE ;ϕ), Ecoord) (6)

fsample(·, ·) denotes the sampling function to dynamically
represent features, which can explore the differences be-
tween the feature representation abilities of different spatial
scales.

Implicit Decoding. The sampled features FSESR and the
image features FI are added together and fed into the im-
plicit decoder D(·; η) with parameters η

FSIR = D(FSESR, FI ; η) (7)

which decodes the sampled spatial features FSESR to focus
on the local texture details by two-layer convolutions for
simplicity and efficiency.

3.4. Temporal Implicit Representation Module

The key of the temporal information representation is de-
pendent on the aggregation of inter-frame features, most
current works (Xu et al., 2021; Cho et al., 2023) rely on
complicated network architectures, e.g., optical flow net-
work (Sun et al., 2018) and transformer self-attention (Zhao
et al., 2022; Sabater et al., 2022), resulting in high computa-
tional costs. Moreover, their performance is limited when
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the unknown exposure duration leads to uncertain event tem-
poral frame selection. Therefore, we first select beneficial
temporal features from events corresponding to uncertain
temporal scales (exposure duration) and then aggregate the
selected temporal features and exploit their correlation with
motion blur to achieve more efficient global deblurring.

To this end, inspired by the temporal correlation between
the exposure time and the degree of motion blur, we propose
a simple yet efficient TIRM to implicitly establish temporal
correspondences at arbitrary temporal scales, as shown in
Fig. 4. TIRM adopts a time-aware grouped shift operation to
efficiently aggregate the correspondence feature from bidi-
rectional temporal information. Specifically, we first split
the input feature into the pre-shutter neighboring features
F a
SIR and the post-shutter neighboring features F b

SIR. The
bidirectional event-selected features F a

ES and F b
ES obtained

from F a
SIR and F b

SIR through the time-aware event selec-
tion with long-term aggregation based on the temporal scale
Rt. Then, the F a

ES and F b
ES are fed to temporal grouped

shift operations with larger receptive fields to obtain tempo-
ral shift features F a

TS and F b
TS . Finally, these shift features

and the concatenated fusion features Ffuse are fed to a CAB
to output the temporal implicit features FTIR.

Time-Aware Event Selection. To effectively maintain the
temporal feature within the actual exposure time τ , we
leverage time-aware event selection to selectively modu-
late events based on the input temporal scale Rt(τ, T ). To
achieve long-term bidirectional aggregation, we compress
each temporal unit of the shutter neighboring features by
applying point-wise convolution, which is formulated as

F a
ES = E(Conv1×1(F

a
SIR),Rt(τ, T )) (8)

where E denotes the replication operation along the tempo-
ral dimension to select temporal propagating features from
neighboring features. It allows adaptively extracting tem-
poral information in arbitrary exposure intervals τ , which
alleviates the difficulty of long-term motion estimation.

Temporal Grouped Shift. To tackle global motion blur of
varying magnitudes by leveraging event motion information,
we present a simple temporal grouped shift operation to
implicitly learn correlations between event temporal and
motion via large-range spatial shifts. Specifically, the se-
lected features FES are equally divided into m groups along
the temporal dimension, and each unit feature has different
shift lengths and directions

F a
TS,m = Shift(F a

ES,m,∆xm,∆ym) (9)

where ∆xm,∆ym represents the shifted pixel in the x and
y directions at the m group. In our implementation, we
set m = 4 and ∆xm,∆ym ∈ {−7,−3, 3, 7} to enlarge the
receptive field of temporal information aggregation for han-
dling a large range of motion blur. The grouping shift offers

multiple potential displacements to match correspondence
features at different scales. To seamlessly integrate various
shift groups, a CAB is employed with kernel sizes equal to
the shift lengths, which achieves a large receptive field and
long-term aggregation for global motion deblur.

4. Experiments
4.1. Datasets

For our arbitrary-scale EMD task, two datasets are employed
for network training and testing: the synthetic simulated
GoPro (Nah et al., 2017) dataset and the real-world H2D
dataset built in this paper, which both contain paired LR
events, HR blurry images, and HR sharp images.

GoPro Dataset. It consists of 3214 sharp images with
resolutions of 1280 × 720, in which 2103 are used for
training and 1111 for testing. We synthesize LR images of
various spatial scales from the HR sharp images by bicubic
downsampling and then simulate the LR events by using
the event camera simulator ICNS (Joubert et al., 2021) at
different temporal scales. At the same time, we synthesize
the HR blurry images by averaging the adjacent HR sharp
images with different frames and different intervals.

H2D Dataset. We collect a High-resolution Hybrid Deblur
(H2D) dataset using the novel hybrid EVS/CIS sensor with
OV60B (Guo et al., 2023). As shown in Table 2, our H2D
dataset consists of 1836 sharp images with resolutions of
1920 ×1080, along with naturally aligned and synchronized
LR events from the hybrid CIS with an embedded EVS,
where 1233 frames for training and 603 frames for testing.
Overall, such a novel bio-inspired hybrid camera enables
our H2D to be a competitive dataset with multiple charac-
teristics: (i) high spatial resolution; (ii) natural calibrations
in both spatial and temporal domains of images and events;
(iii) real-world scenes with abundant diversities in scene
category, light change, and movement speed.

4.2. Experimental Settings

The proposed SASNet is implemented by PyTorch and
trained on an NVIDIA GeForce RTX 3090 for 100 epochs
with 8 batch sizes. The training patch size is set to 256 ×
256 and augmented by horizontal and vertical flipping to en-
hance its robustness. We use the Adam optimizer (Kingma
& Ba, 2014) with an initial learning rate of 10−4 that linear
decays by 0.5 for every 30 epoch and only employ L1 loss as
the training loss. We compare SASNet with eight state-of-
the-art (SOTA) deblurring methods, including frame-based
methods (HINet (Chen et al., 2021a), NAFNet (Chen et al.,
2022), and Restormer (Zamir et al., 2022)) and event-based
methods (EVDI (Zhang & Yu, 2022), UEVD (Kim et al.,
2022), EFNet (Sun et al., 2022), and REFID (Sun et al.,
2023)). For a fair comparison, all methods are re-trained
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Method Input GOPRO (Rs = 4, Rt = 1) H2D (Rs = 2, Rt = 1) Complexity
PSNR↑ SSIM↑ PSNR↑ SSIM↑ #Params #FLOPs

HINet (Chen et al., 2021a) Image 25.41 0.7958 32.57 0.9394 88.67M 170.55G
NAFNet (Chen et al., 2022) Image 27.31 0.8426 32.81 0.9414 16.01M 16.06G

Restormer (Zamir et al., 2022) Image 28.37 0.8731 33.39 0.9426 26.13M 140.99G
RED-Net (Xu et al., 2021) Image + Events 27.19 0.8382 33.98 0.9458 9.70M 159.01G
EVDI (Zhang & Yu, 2022) Image + Events 25.84 0.8069 32.94 0.9432 0.39M 35.54G
UEVD (Kim et al., 2022) Image + Events 25.69 0.8231 31.98 0.9377 14.23M 101.60G
EFNet (Sun et al., 2022) Image + Events 28.08 0.8661 34.59 0.9501 8.47M 111.06G
REFID (Sun et al., 2023) Image + Events 27.51 0.8473 32.61 0.9347 88.96M 208.98G

Ours Image + Events 28.82 0.8811 35.72 0.9541 1.46M 43.35G

Table 1. Quantitative comparison results of our method and other SOTA methods on the GoPro and H2D datasets. The optimal and
suboptimal results are highlighted in red and blue.

Scenes Motion #Seq #Events (M) #Images (N)

Indoor Optical Platform OM 15 426.5 449
Pedestrians OM 5 141.8 152

Stationary object CM 15 456.9 451

Outdoor Traffic OM 17 459.2 528
Park Landscape CM 8 210.8 256

Total 60 1695.2 1836

Table 2. Overview of our real H2D dataset. OM and CM denote the
Object Motion and Camera Motion, respectively. #Seqs denotes
the number of sequences. #Events indicates the total number of
events in the shutter period. #Images represents the number of
image frames in the sequence.

Method 3 6 9
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

EFNet (Sun et al., 2022) 34.59 0.9501 34.26 0.9498 33.86 0.9496
REFID (Sun et al., 2023) 32.61 0.9347 32.19 0.9345 31.81 0.9336

SASNet 35.72 0.9541 35.62 0.9536 35.43 0.9531

Table 3. Quantitative comparison results with other SOTA event-
based deblurring methods of different blur frames.

with the same training strategy on our datasets using their
official codes. For all experiments, we adopt the Peak Signal-
to-Noise Ratio (PSNR) and Structural Similarity Index Mea-
sure (SSIM) (Wang et al., 2004) as the evaluation metrics.

4.3. Quantitative Results

As indicated in Table 1, our method with lower model size
and computational cost outperforms both frame-based and
event-based methods by a large margin on the two datasets.
Compared to the event-guided method, our approach consis-
tently outperforms with an average improvement of 1.96 dB
on the GoPro dataset and 2.5 dB on the H2D dataset. Com-
pared with UEVD (Zhang & Yu, 2022), SASNet obtains
further PSNR gains of 3.13 dB and 3.74 dB for spatial scale
factors Rs of 4 and 2, respectively. When compared to the
frame-based method, our method with less than one-tenth
the number of parameters achieves an average PSNR score
improvement of 1.79 dB and 2.79 dB on the GoPro and

ℛ𝑡𝑡 τ ,𝑇𝑇ℛ𝑠𝑠 𝐼𝐼𝐵𝐵 ,𝐸𝐸(a) Spatial Scale (b) Temporal Scale 

Figure 5. Quantitative results of our SASNet on H2D dataset at
different spatial and temporal scales.

H2D datasets, respectively. Our SASNet achieves the best
performance for all scales and datasets, which indicates our
method achieves better results on challenging motion blur
frames, especially outstanding significance in the real H2D
dataset that has rich textures.

Furthermore, we compare the performance of the models
under different spatial blur frames in Table 3 to verify their
performance for global motion blur. It can be seen that, com-
pared with other algorithms, the performance of our method
decreases the least with the increase in blur, especially under
the severe blur of frame 9, SASNet only decreases by 0.29
dB (from 35.72 to 35.43), while EFNet decreases by 0.73 dB
(from 34.59 to 33.86). It validates the effectiveness of tem-
poral implicit representation with long-term aggregation for
different motion magnitudes by establishing arbitrary-scale
temporal correspondences with a wide receptive field.

To test the generalization performance of our SASNet on
different scales, we also evaluate it on out-of-distribution
spatial and temporal scales. Our model is trained on scale
ranges of Rs ∈ [1, 2], Rt ∈ (0.5, 1], which can generalize
to other scale ranges without being re-trained and fine-tuned,
making it advantageous for practical applications. It’s worth
noting that other methods compared in our study often ne-
cessitate training multiple models tailored to specific scales,
rendering them unsuitable for testing on out-of-distribution
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HINet NAFNet Restormer REDNet EVDI

EFNet Ours GT

GOPR0854_11_00, Blurry 10

Event ×4 UEVD REFID

HINet NAFNet Restormer REDNet EVDI

EFNet Ours GT

GOPR0385_11_01, Blurry 90

Event ×4 UEVD REFID

Figure 6. Qualitative comparison results of our method and other SOTA methods on the GoPro dataset. Please zoom in for details.

HINet NAFNet Restormer REDNet EVDI

EFNet Ours GT

H2D, Blurry 00029

Event ×2 UEVD REFID

HINet NAFNet Restormer REDNet EVDI

EFNet Ours GT

H2D, Blurry 00064

Event ×2 UEVD REFID

Figure 7. Qualitative comparison results of our method and other SOTA methods on the H2D dataset. Please zoom in for details.

scales. Hence, we selectively employ manual interpolation
and varying numbers of convolutional kernels to replace our
spatial and temporal implicit operations for fair comparison.
As illustrated in Fig. 5, our SASNet remains excellent per-
formance across all scales with a single model. Notably, its

performance degradation with increasing scale is minimal,
showcasing the exceptional generalization capabilities of
our scale-aware spatio-temporal implicit representation for
practical applications.
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EFNet OursMotion speeds (rpm) REFIDMotion blur
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Figure 8. Qualitative comparison results at different rotational
speeds. Our method consistently maintains the complete struc-
ture of the letter ‘R’ at high speeds.

Model ID SIRM TIRM PSNR↑ SSIM↑

#1 ✗ ✗ 26.16 0.8418
#2 ✓ ✗ 26.98 0.8569
#3 ✗ ✓ 28.28 0.8701
#4 ✓ ✓ 28.82 0.8811

Table 4. The ablation study of the individual components.

4.4. Qualitative Results

To demonstrate the effectiveness of our method, we present
the qualitative comparisons with other methods on the syn-
thesized GoPro dataset in Fig. 6 and the real H2D dataset
in Fig. 7. It is evident that HINet and Restormer lose signif-
icant detailed textures and exhibit structural distortions in
local areas, while EFNet introduces blurred distortions and
noise in global areas. In contrast, SASNet achieves more
complete structures, fewer blurs, and better detail fidelity,
which benefits from the aggregation of spatiotemporal cor-
respondence features by our spatial encoding sampling and
temporal correlation learning. Furthermore, we assess the
performance of various methods under high-speed motion
conditions (i.e., speeds exceeding 50 rpm) in Fig. 8. Our
SASNet maintains structural integrity at all speeds, espe-
cially excelling in preserving details within highly blurred
regions induced by high-speed motion (e.g., 150 rpm).

4.5. Ablation Studies

Individual Components. We perform ablation studies to
test the effectiveness of each individual component. All
models are trained and evaluated with the same training
settings on the GoPro dataset. As shown in Table 4, the
result of ID #4 indicates that our spatio-temporal implicit
representation achieves an improvement in PSNR by 2.66
dB. SIRM and TIRM achieve average improvements of 0.82
dB and 2.12 dB in PSNR. Due to the different spatial and
temporal scales that recover different amounts of informa-

Method Type PSNR↑/SSIM↑ #Params #FLOPs

Interpolation Explicit 28.36/0.8699 1.461M 43.26G

Transposed Conv Explicit 28.12/0.8639 1.470M(+0.009) 43.85G(+0.59)

Pixel Shuffle Explicit 28.43/0.8701 1.610M((+0.149)) 43.87G(+0.61)

Learnable Upsample Implicit 28.61/0.8741 1.688M(+0.227) 43.86G(+0.60)

SIRM (Ours) Implicit 28.82/0.8811 1.462M(+0.001) 43.35G(+0.09)

Table 5. Comparison of different spatial representation methods
on the GoPro dataset. The optimal and suboptimal results are
highlighted in red and blue.

Method Type PSNR↑/SSIM↑ #Params #FLOPs

Convolution Implicit 27.72/0.8631 1.372M 40.39G

Optical Flow Explicit 27.99/0.8678 1.5387M(0.1667) 51.30G(+10.91)

Deformable Conv Explicit 28.26/0.8759 1.423M(+0.051) 40.44G(+0.05)

VIT Attention Implicit 28.84/0.8803 2.514M(+1.142) 77.83G(+37.44)

TIRM (Ours) Implicit 28.82/0.8811 1.462M(+0.090) 43.35G(+2.96)

Table 6. Comparison of different temporal representation methods
on the GoPro dataset. The optimal and suboptimal results are
highlighted in red and blue.

tion, SIRM and TIRM dynamically adapt to different scales
by using scale-aware mechanisms, which achieve contin-
uous feature representation. Next, we conduct additional
experiments to verify the abilities of our SIRM and TIRM.

In Table 5, using bicubic (Keys, 1981) interpolation as a
baseline, we compare our SIRM with three common spatial
representation methods: transposed convolution (Dumoulin
& Visin, 2016), pixel shuffle (Shi et al., 2016), and learnable
upsample (Hu et al., 2019). Explicit methods can only
discretely express a single fixed scale and are difficult to
generalize to continuous scale intervals. The results indicate
that our SIRM achieves the best performance gain (0.46 dB)
with the lowest computational complexity (0.09 GFLOPs).

In Table 6, we compare our TIRM with four temporal rep-
resentation methods, including explicit methods (convo-
lutional networks (Maggioni et al., 2021) and VIT self-
attention (Zhao et al., 2022)) and implicit methods (optical
flow (Sun et al., 2018) and deformable convolution (Dai
et al., 2017)). TIRM requires only 2.96 GFLOPs to achieve
performance equivalent to 37.44 GFLOPs of VIT, which
is attributed to our straightforward group shift operation.
Compared with lightweight deformable convolution, TIRM
achieves a performance gain of 0.56 dB (from 28.26 to
28.82), benefiting from the large receptive field provided
by the grouped shift operation. The results show that our
TIRM achieves an effective balance between computing cost
and performance, which validates the excellence of feature
shifting for motion deblurring.

Voxel Bins vs. Restoration Performance. Table 7 shows
the correlation between the size of the event voxel grid and
performance. It can be observed that performance and bin
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sizes are directly proportional. For a fair comparison, the bin
size of 16 in our setting is the same as in EFNet (Sun et al.,
2022), yet our SASNet maintains optimal performance.

#Bins 8 12 16 24 32

PSNR↑ 25.43 25.51 28.82 28.85 28.97
SSIM↑ 0.8750 0.8755 0.8811 0.8820 0.8851

Table 7. Performance with different event voxel grid bin sizes.

5. Conclusions
In this paper, we investigate the challenge of event-based
motion deblurring on arbitrary spatial and temporal scales,
which is practical yet has never been investigated so far. To
conquer this challenge, we collect an H2D dataset by using
a hybrid EVS/CIS camera, comprising images with natu-
rally spatially aligned and temporally synchronized events
at various scales, which is essential to our arbitrary-scale
EMD task. Then, we implement a novel Scale-Aware Spatio-
temporal Network (SASNet) to flexibly restore blurred im-
ages with event streams at arbitrary scales, which implicitly
aggregate both spatial and temporal correspondence features
of images and events to focus on unknown severe local blur
and remove global motion blur of varying magnitudes. To
restore highly blurred local areas, we propose a Spatial Im-
plicit Representation Module (SIRM) to aggregate spatial
correlation at any resolution through event encoding sam-
pling. To tackle global motion blur, a Temporal Implicit
Representation Module (TIRM) is presented to learn tempo-
ral correlation via temporal shift operations with long-term
aggregation. As validated by comprehensive experiments
on synthetic and real datasets, we demonstrate the superior
performance of our SASNet in dealing with arbitrary-scale
EMD problems.

Despite the fact that our SASNet achieves optimal quantita-
tive and qualitative results across various datasets, its appli-
cation to real-world situations encounters challenges beyond
solely motion blur problems. Consequently, future research
must delve into enhancing the algorithm’s robustness by
incorporating a broader range of degraded real-world data
into both the training and evaluation processes.
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A. Appendix Outline
In this supplementary material, we provide detailed descriptions of our arbitrary-scale event-based motion deblurring
solution as follows:

1) Sec. B provides the network parameters and experimental settings of our SASNet.

2) Sec. C describes more details about the newly built hybrid event-based motion deblurring dataset (H2D).

3) Sec. D presents additional ablation studies to further verify the effectiveness of our key SIRM and TIRM.

4) Sec. E reports more visualization comparison results at different scales to verify model generalization.

The source code and collected dataset will also be released upon publication.

B. Architecture and Experimental Settings
Architecture. As shown in Fig. 2, our Scale-Aware Spatio-temporal Network (SASNet) is composed of several simple
convolutional blocks and modules. Specifically, the Residual Convolution Blocks (RCB) (He et al., 2016) and Channel
Attention Blocks (CAB) (Zhang et al., 2018) are commonly used convolutional blocks for feature extraction. RCB is a
four-layer convolutional with ReLU activation (Nair & Hinton, 2010) and hidden dimensions of 32. CAB is a two-layer
convolutional and an additional channel attention layer with the hidden dimensions set to 64. The architecture of our Spatial
Implicit Representation Module (SIRM) is shown in Fig. 3, where the encoder E (·;ϕ) and the decoder D(·; η) are both
composed of a two-layer MLP with ReLU activation and hidden dimensions of 32. The architecture of our Temporal
Implicit Representation Module (TIRM) is shown in Fig. 4, where time-aware event selection only adopts a one-layer 1
× 1 convolution and CAB has eight-layer convolutional with channel attention layers. The application of the SIRM and
TIRM with low computational cost can extend the spatial and temporal scales beyond the distribution and achieve better
performance due to their implicit continuous feature expression.

Experimental Settings. In this section, we present the details of the training process for our arbitrary-scale Event-based
Motion Deblurring (EMD) method. First, we denote N = 8 as the batch size and sample random spatial scales Rs in
uniform distribution U(1, 4) and random temporal scales Rt in uniform distribution U(0, 1). Then, we crop N patches
with the size {256× 256} from training HR sharp and blurred images and the size of {256/Rs × 256/Rs} from events
within Rt time duration as the training pairs. We input images and events into the networks in pairs to calculate the L1 loss
function. Finally, to accelerate convergence, we adopt the SWA (Izmailov et al., 2018) strategy to update model parameters
with an update interval of 10, making the training more robust and achieving wider generalization at different spatial and
temporal scales.

C. H2D Dataset
To the best of our knowledge, there are no publicly released datasets available for our arbitrary-scale EMD task with data
at different temporal and spatial scales, which motivates us to build a new hybrid dataset containing paired clear-blurred
images and aligned events in both spatial and temporal domains for practical requirements.

Hybrid EVS/CIS Sensor. Existing commonly used dual-sensor acquisition systems (Sun et al., 2022; Zhang et al., 2023b;
Cho et al., 2023) have several shortcomings, including parallax errors in camera collocation, the complexities of spatial
and temporal synchronization of CMOS image sensor (CIS) and event-based vision sensor (EVS), and increased cost. To
reduce complexity and narrow the gap between real and synthetic, we adopt a novel hybrid EVS/CIS sensor OV60B (Guo
et al., 2023), consisting of a hybrid 1920 × 1080 CIS with an embedded 960 × 540 EVS operating at 120 frames per
second. Within a 4 × 4 cluster of CIS pixels, one color channel is replaced to provide photocurrent to the EVS pixels, which
overcomes the above shortcomings and can deliver the high spatial resolution event requirements without significantly
sacrificing CIS performance. Since both CIS and EVS are integrated on the same wafer, both the LR events and HR images
in the spatial and temporal domains are naturally aligned, i.e., share the same spatial field of view and timestamps, which
avoids manual alignment and synchronization of data at different spatial and temporal scales. Note that calibration is crucial
for our arbitrary-scale EMD task.
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Dataset Color Camera Image Resolution Event Resolution Type of Scenes SA TS HR

BS-ERGB RGB FLIR + Prophesee Gen4 970 × 625 970× 625 Low Speed ✗ ✗ ✓
THU-HSEVI Gray EoSens + DAVIS346 340× 260 340× 260 High Speed ✗ ✗ ✗

DAVIS 240C Dataset Gray DAVIS246 240× 180 240× 180 Low Speed ✓ ✓ ✗
HQF Gray DAVIS240C 346× 260 346× 260 Low Speed ✓ ✓ ✗

Ours (H2D) RGB OV60B 1920× 1080 960× 540 High Speed ✓ ✓ ✓

Table 8. The Comparison of our H2D Dataset with other event-based deblurring datasets. “SA” denotes Spatial Alignment, “TS” denotes
Temporal Synchronization, “HR” indicates High-Resolution.

Blurry image ℛ𝑠= 2 ℛ𝑠= 3 ℛ𝑠= 4

Figure 9. Visualization of dynamic receptive fields for our SIRM at different spatial scales.

Data Collecting. Our H2D dataset contains a total of 60 sequences, including spatio-temporal aligned low-resolution
(LR) event streams and high-resolution (HR) image sequences, with abundant diversity in terms of scenes (i.e., indoor
and outdoor) and motion types (i.e., camera and object motion) at different light changes and motion speeds. The HR
sharp images are captured with a steady tripod-mounted camera at stable illuminations and smooth movements. The HR
motion-blurred images are synthesized by averaging adjacent three sharp frames, resulting in 1836 pairs of blurred and sharp
images. Simultaneously, LR event streams with different exposure times and spatial resolutions are read out from the hybrid
sensor through parameter settings. To further improve model generalization, we utilize bicubic resizing in PyTorch (Paszke
et al., 2019) by taking the center point as the basement to perform arbitrary scale down-sampling for training and testing at
arbitrary scales. We randomly select 40 sequences with 1233 pairs as the training set and the remaining 20 with 603 pairs as
the testing set.

In Table 8, we show the comparison of our H2D with other event-based deblurring datasets. The high resolution of the
H2D dataset is crucial for the evaluation and benchmarking of our arbitrary-scale event-based deblurring task under more
challenging high-speed and complex conditions, leading to more robust solutions in real-world applications.

D. Quantitative Ablation Study
To further verify the effectiveness of our SIRM, we decouple SIRM to obtain a Spatial-Aware Encoding Sampling (SAES)
and an Implicit Decoding for detailed analysis in Table 9. With ‘SAES’, our method adaptively adjusts the receptive field
range of the fusion network from events to images according to the input spatial scale Rs, which achieves a 0.27 dB
improvement in terms of PSNR on the GoPro (Nah et al., 2019) dataset. Different from the traditional explicit upsampling
method (Shi et al., 2016; Dumoulin & Visin, 2016), our implicit decoding maps the coordinate values of discrete pixels in
two-dimensional space to pixel values, and adopts the MLP function (Chen et al., 2021b) to represent the image to arbitrary
spatial scales continuously. Furthermore, we adopt LAM (Gu & Dong, 2021) to visualize the receptive field of our SIRM
at different spatial scales, as shown in Fig. 9. The results demonstrate that the dynamic receptive field of local regions
with complex texture structures has coincided with the spatial scale, i.e., a higher resolution scale corresponds to a larger
receptive field range. Thus, our SIRM models the spatial correlation through implicit representation on different spatial
scales.

Moreover, to verify the ability of our TIRM, we decouple TIRM to obtain a Time-Aware Event Selection (TAES) and
a Temporal Grouped Shift (TGS) for detailed analysis in Table 10. Specifically, we conduct a series of comparative
experiments in terms of performance and efficiency to further elaborate on the advantages and functions of the TAES and
TGS. According to the experiment results in Table 10, we can find that TAES and TGS improve performance by 0.44 dB
and 0.81 dB respectively. To select beneficial events and reduce subsequent computational costs, TAES uses a layer of
point-wise convolution to avoid the loss of spatial information with a negligible computational complexity of 0.004 GFLOPs.
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SIRM PSNR↑ SSIM↑

w/o SAES 28.45 0.8712
w SAES 28.82 0.8811

Table 9. Ablation experiment results of SIRM.

TIRM PSNR↑ SSIM↑ #Params #FlopsTAES TGS

✗ ✗ 27.72 0.8631 1.372M 40.39G
✓ ✗ 28.16 0.8693 1.381M 40.39G
✗ ✓ 28.53 0.8736 1.453M 43.35G
✓ ✓ 28.82 0.8811 1.462M 43.35G

Table 10. Ablation experiment results of our TIRM.

Reconstruction Model PSNR SSIM #Params (M) #Flops (G) #Times (ms)

MPRNet (Zamir et al., 2021) 28.78 0.8726 2.15 84.27 70.99
SwinT (Liang et al., 2021) 28.86 0.8715 1.77 94.76 113.35
DAT (Chen et al., 2023) 28.89 0.8813 2.38 149.27 116.44

Ours 28.82 0.8811 1.46 43.35 58.03

Table 11. Comparison Experiments of Reconstruction Modules.

To learn the correlation between event temporal sequences and motion blur, TGS performs multiple groups of large-range
feature shifts to implicitly implement temporal feature representation and fusion. It can be attributed to the proposed event
selection and temporal shift, which can implicitly learn the bidirectional temporal correlation before and after, and achieve
long-range feature aggregation through a large receptive field.

To validate the effectiveness of the spatial-temporal reconstruction module, we conduct additional experiments to compare it
with three other reconstruction modules. As shown in Table 11, although DAT achieves the best performance in terms of
PSNR and SSIM, its computational cost is about three times that of ours (149.27 GFLOPs vs. 43.35 GFLOPs). Overall, the
proposed spatial-temporal reconstruction module achieves comparable performance while significantly reducing the number
of parameters and computations.

E. Additional Qualitatuve Experiments
In Figs. 11 - 14, we present more visual comparison results of our SASNet and other SOTA methods on GoPro and H2D
datasets at different scales. From Figure. 11 to Figure. 13, we show the results of examples from our H2D dataset. To clearly
reflect the difference in the visual results of these algorithms, we chose different decimal scales of ×1.5, ×2.5, and ×3.5 for
visualization. As shown in Figs. 11 and 12, our algorithm can effectively remove global blur and accurately reconstruct
more realistic spatial structures and more texture details. Other existing algorithms suffer from loss of detail and distortion
of the structure. In Figure. 13, we see that SASNet outperforms in both fidelity and quality and perceives the surrounding
repetitive structure to predict the accurate target area. It is noteworthy that the performance of REFID (Sun et al., 2023)
is less promising in the category of architecture texture. In comparison with REDNet (Xu et al., 2021) and EFNet (Sun
et al., 2022) on spatial structure texture, SASNet produces realistic outputs that are highly similar to the ground truths. This
proves that the scale-aware receptive field is very important for arbitrary-scale reconstruction tasks. In general, guided by the
scale-aware implicit representation mechanism, our SASNet better utilizes motion blur at different scales for performance
generalization to eliminate both local and global motion blur and achieve high fidelity.

As shown in Table 12, our method with event data achieves PSNR improvements by 0.66 dB and 1.29 dB on GoPro and
our H2D datasets, respectively, which indicates events are very useful in assisting RGB image deblurring. Since our H2D
dataset includes complex scenes with different motion speeds and different lighting conditions, we further conduct a visual
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GOPRO H2D

Event PSNR↑ SSIM↑ PSNR↑ SSIM↑
w/ 28.82 0.8811 35.72 0.9541

w/o 28.16 0.8128 34.41 0.9461

Table 12. The effectiveness of events on image deblurring.
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Figure 10. The performance comparison between our method with and without event data.

comparative analysis.

As shown in Figure 10, our method without event data can also achieve good restoration results in slow-speed motion
scenes. However, our method with event data causes significant performance improvement in high-speed motion and
low-light scenarios. The reason is that the event stream captures brightness changes in dynamic scenes at a very high
temporal resolution. When image blur is caused by high-speed motion, the temporal characteristics of events can accurately
track the trajectory of the moving objects, which helps resolve global and large-scale motion blur. Meanwhile, due to the
high dynamic range of event cameras, even under low lighting conditions, the spatial features of events can still capture
high-contrast edges of objects, which helps compensate for fine textures affected by local motion blur. Therefore, event data
enhances the deblurring performance of algorithms in many complex scenes.

F. Future works
While SASNet shows better capability compared to existing works, the current degradation only considers motion blur,
which mismatches the more complex degradation requirements in real-world reconstruction (such as noise, atmospheric
scattering, etc). Further restoration generalization ability of our SASNet in real-world applications will be explored in future
works. And, our H2D dataset and framework can be flexibly extended to other low-level event-based vision tasks, such as
super-resolution, low-light enhancement, and video frame interpolation, to achieve more practical applications.
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HINet NAFNet Restormer REDNet EVDI

EFNet Ours GT

OHD, Blurry 00164

Event ×1.5 UEVD REFID

HINet NAFNet Restormer REDNet EVDI

EFNet Ours GT

OHD, Blurry 00364

Event ×1.5 UEVD REFID

Figure 11. Qualitative comparison results of our method and other SOTA methods on the H2D images synthesized through interval frames.
Please zoom in for details.

HINet NAFNet Restormer REDNet EVDI

EFNet Ours GT

OHD, Blurry 00510

Event ×2.5 UEVD REFID

HINet NAFNet Restormer REDNet EVDI

EFNet Ours GT

OHD, Blurry 00427

Event ×3.5 UEVD REFID

Figure 12. Qualitative comparison results of our method and other SOTA methods on the H2D images synthesized through interval frames.
Please zoom in for details.
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HINet NAFNet Restormer REDNet EVDI

EFNet Ours GT

OHD, Blurry 00228

Event ×3.5 UEVD REFID

HINet NAFNet Restormer REDNet EVDI

EFNet Ours GT

OHD, Blurry 00587

Event ×2.5 UEVD REFID

Figure 13. Qualitative comparison results of our method and other SOTA methods on the H2D images synthesized through continuous
frames. Please zoom in for details.

HINet NAFNet Restormer REDNet EVDI

EFNet Ours GT

GOPR0384_11_00, Blurry 02

Event ×3.5 UEVD REFID

HINet NAFNet Restormer REDNet EVDI
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GOPR0854_11_00, Blurry 65 
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Figure 14. Qualitative comparison results of our method and other SOTA methods on the GOPRO images synthesized through continuous
frames. Please zoom in for details.
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