
Published as a conference paper at ICLR 2024

MATHEMATICAL JUSTIFICATION OF HARD NEGATIVE
MINING VIA ISOMETRIC APPROXIMATION THEOREM

Albert Xu, Jhih-Yi Hsieh, Bhaskar Vundurthy, Nithya Kemp, Eliana Cohen, Lu Li, & Howie Choset
Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15232, USA
{albertx,jhihyih,pvundurt}@andrew.cmu.edu

ABSTRACT

In deep metric learning, the triplet loss has emerged as a popular method to learn
many computer vision and natural language processing tasks such as facial recog-
nition, object detection, and visual-semantic embeddings. One issue that plagues
the triplet loss is network collapse, an undesirable phenomenon where the network
projects the embeddings of all data onto a single point. Researchers predomi-
nately solve this problem by using triplet mining strategies. While hard negative
mining is the most effective of these strategies, existing formulations lack strong
theoretical justification for their empirical success. In this paper, we utilize the
mathematical theory of isometric approximation to show an equivalence between
the triplet loss sampled by hard negative mining and an optimization problem
that minimizes a Hausdorff-like distance between the neural network and its ideal
counterpart function. This provides the theoretical justifications for hard nega-
tive mining’s empirical efficacy. Experiments performed on the Market-1501 and
Stanford Online Products datasets with various network architectures corroborate
our theoretical findings, indicating that network collapse tends to happen when the
batch size is too large or embedding dimension is too small. In addition, our novel
application of the isometric approximation theorem provides the groundwork for
future forms of hard negative mining that avoid network collapse.

1 INTRODUCTION

Research in deep metric learning investigates techniques for training deep neural networks to learn
similarities and dissimilarities between data samples. This is typically achieved by learning a dis-
tance metric via feature embeddings in Rn. Deep metric learning is commonly applied to face
recognition Schroff et al. (2015); Liu et al. (2017); Hermans et al. (2017) and other computer vision
tasks Tack et al. (2020); Chen et al. (2020a) where there is an abundance of label values.

Contrastive loss Hadsell et al. (2006) and triplet loss Schroff et al. (2015) are two prominent ex-
amples of deep metric learning, each with variants to address specific applications. For instance,
SimCLR Chen et al. (2020a;b) is a recent contrastive loss variant designed to perform unsupervised
deep metric learning with state-of-the-art performance on ImageNet Russakovsky et al. (2015).
Ladder Loss Zhou et al. (2019), a generalized variant of the triplet loss, handles coherent visual-
semantic embedding and has important applications in multiple visual and language understanding
tasks Karpathy et al. (2014); Ma et al. (2015); Vinyals et al. (2014). Cross-level concept distillation
Zheng et al. (2022) achieves state of the art performance on hierarchical image classification and dy-
namic metric learning. Given the success of metric learning in a wide range of applications, we see
value in investigating its underlying theories. In particular, we focus on the triplet loss and present a
theoretical framework which explains observed but previously unexplained behaviors of the triplet
loss.

A triplet selection strategy is fundamental to any triplet loss-based deep metric learning Wu et al.
(2017). This paper deals with hard negative mining, a triplet selection strategy that outperforms
other mining strategies in a number of applications, for instance, person re-identification Hermans
et al. (2017). In some scenarios, hard negative mining is known to suffer from network collapse,
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a phenomenon where the network projects all data points onto a single point. Schroff et al. (2015)
observe this effect in their experiments with a person re-identification dataset. On the other hand,
Hermans et al. (2017) show that hard negative mining does not suffer from collapsed solutions for a
similar dataset. These seemingly contradictory results showcase the need for a theoretical framework
to explain the nature of hard negative mining and the root cause for any collapsed solutions.

There has been some prior literature investigating the phenomenon of network collapse. Xuan et al.
(2020) show that hard negative mining leads to collapsed solutions by analyzing the gradients of a
simplified neural network model. Levi et al. (2021) prove that, under a label randomization assump-
tion, the globally optimal solution to the triplet loss necessarily exhibits network collapse. However,
neither analysis offers sufficient explanation for why hard negative mining can work in practice
Hermans et al. (2017); Faghri et al. (2017) and how one may reproduce such desirable behavior.

In this work, we explain why network collapse happens by using the theory of isometric approxima-
tion Vaisala (2002a) to draw an equivalence between the triplet loss with hard negative mining and a
Hausdorff-like distance metric (Sec 3.2.1). On the Hausdorff-like metric, we observe that collapsed
solutions are more likely when the batch size is large or when the embedding dimension is small.
Our experiments with the person re-identification dataset (Market-1501 Zheng et al. (2015)) recon-
cile the findings of Schroff et al. (2015), where a batch size in the order of thousands led to network
collapse, and Hermans et al. (2017), where a batch size of N = 72 showed no network collapse. We
further support our predictions via experiments spanning three additional datasets (SOP Oh Song
et al. (2016), CARS Krause et al. (2013), and CUB200 Wah et al. (2011)) and three different net-
work architectures (ResNet-18, ResNet-50 He et al. (2016), GoogLeNet Szegedy et al. (2015), and
a 2-layer convnet).

The paper is organized as follows. We begin with the definition of triplet loss with hard negative
mining and then present the isometric approximation theorems in Section 2. In Section 3, we define
the Hausdorff-like distance and outline a proof of its equivalence to the triplet loss with hard negative
mining. This leads to a measure for network collapse followed by an illustration on how the network
collapse is related to the batch size and embedding dimension. Section 4 demonstrates the validity
of our theory with experiments on four datasets spanning three network architectures. Section 5
concludes the paper with possible future applications for our theory.

2 BACKGROUND AND DEFINITIONS

Let X be the data manifold and let Y be the classes with |Y| = c being the number of classes. Let
h : X → Y be the true hypothesis function, or true labels of the data. Then the dataset consists of
pairs {(xk, yk)}Nk=1 with xk ∈ X , yk ∈ Y and yk = h(xk). We define the learned neural network
as a function fθ : X → Rn which maps similar points in the data manifold X to similar points in
Rn.

As our paper focuses on metric learning, we define the similarity between embeddings to be the
Euclidean distance

dθ(x1, x2) = ||fθ(x1)− fθ(x2)|| (1)

where x1, x2 ∈ X .

2.1 TRIPLET LOSS AND HARD NEGATIVE MINING

In this section, we discuss the triplet loss that considers triplets of data composed of the anchor
(x ∈ X ), positive (x+), and negative (x−) samples, described in (2a) and (2b). The similarity
relation (2a) requires that the anchor and positive samples must be of the same class, while the
dissimilarity relation (2b) requires the anchor and negative must be of different classes.

x+ ∈ {x′ ∈ X |h(x) = h(x′)} (2a)

x− ∈ {x′ ∈ X |h(x) ̸= h(x′)} (2b)

Restating the objective of supervised metric learning, the embedding of the anchor sample must be
closer to the positive than the negative for every triplet. An example of a satisfactory triplet is shown
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Figure 1: An example anchor, positive, and negative triplet. The blue dotted contour is the Triplet-
Separated boundary for Class A. It is computed by considering inequality (5) for all points in Class
A. Because Class B is outside the Triplet-Separated boundary for Class A, the triplet loss for this
example is zero.

in Figure 1. Formally, we express this relation via (3), where α is the margin term.

dθ(x, x
+) + α ≤ dθ(x, x

−) ∀ x, x+, x− ∈ X (3)

This leads to the definition of the triplet loss in (4).

LTriplet =
[
dθ(x, x

+)− dθ(x, x
−) + α

]
+

(4)

The function [ · ]+ = max(·, 0) zeroes negative values in order to ignore all the triplets that already
satisfy the desired relation.
Definition 2.1. α-Triplet-Separated. We refer to m non-empty subsets X1, · · · , Xm ⊂ Rn as
α-Triplet-Separated if for every Xi and Xj with i ̸= j we have

||x− y||+ α ≤ ||x− z|| ∀x, y ∈ Xi,∀z ∈ Xj (5)

This property can be extended to a function fθ : X → Rn by checking whether the embedding
subsets Xi

fθ
are α-Triplet-Separated.

Xi
fθ

= {fθ(x)|x ∈ X , h(x) = i} (6)

It is worth noting that LTriplet(fθ) = 0 if and only if fθ is α-Triplet-Separated. An example of two
Triplet-Separated sets is shown in Figure 1.

As mentioned in Section 1, the triplet loss relies heavily on its triplet mining strategy to achieve
its performance for two popularly accepted reasons: First, enumerating all O(N3) triplets of data
every iteration would be too computationally intensive to be tractable. Second, improper sampling
of triplets risks network collapse Xuan et al. (2020). Our work substantiates the use of hard nega-
tive mining, a successful triplet mining strategy, by characterizing conditions that lead to network
collapse.

2.2 ISOMETRIC APPROXIMATION

We will present a novel application of the isometric approximation theorem Vaisala (2002a) in Eu-
clidean subsets in order to mathematically justify hard negative mining. The isometric approx-
imation theorem primarily defines the behavior of near-isometries, or functions that are close to
isometries, as given by Definition 2.2.

3



Published as a conference paper at ICLR 2024

Definition 2.2. ε-nearisometry. Let X and Y be real normed spaces. A function f : A → Y where
A ⊂ X is called an ε-nearisometry (ε > 0) if∣∣∣∣||f(x)− f(y)|| − ||x− y||

∣∣∣∣ ≤ ε, ∀ x, y ∈ A (7)

In other words, an ε-nearisometry is a function that preserves the distance metric within ε. The
isometric approximation theorem seeks to determine how close f is to an isometry, say U : X → Y ,
as given by (8). Note qA(ε) is a function of ε that is fixed for a given A and is thus independent of
f . Consequently, inequality (8) holds for all ε > 0 and all ε-nearisometries f .

||f(x)− U(x)|| ≤ qA(ε) ∀ x ∈ A (8)

Now consider the case where X and Y are n-dimensional Euclidean metric spaces, making A ⊂ Rn.
Then the following theorems and definitions Vaisala (2002a;b); Alestalo et al. (2001) prove that
qA(ε) is linear in ε given a thickness condition on the set A.
Definition 2.3. Thickness. For each unit vector e ∈ Sn−1, define the projection πe : Rn → R by
the dot product πe(x) = x · e. The thickness of a bounded set A is the number

θ(A) = inf
e∈Sn−1

diam(πeA) (9a)

where diam(X) = sup
r1,r2∈X

||r1 − r2|| (9b)

Theorem 2.4 (From Theorem 3.3 Alestalo et al. (2001)). Suppose that 0 < q ≤ 1 and A ⊂ Rn is
a compact set with θ(A) ≥ q diam(A). Let f : A → Rn be an ε-nearisometry. Then there is an
isometry U : Rn → Rn such that

||f(x)− U(x)|| ≤ cnε/q ∀x ∈ A (10)

with cn depending only on dimension.

As this property depends entirely on the set A, we call Theorem 2.4 the c-Isometric Approximation
Property (c-IAP) on set A with c = cn diam(A)/θ(A).

3 THEORETICAL CONTRIBUTIONS

3.1 OVERVIEW AND PROBLEM SETUP

From the background and definitions, the goal of the triplet loss is to learn a function fθ such that
the induced distance metric dθ satisfies the property in (3). In this paper, we aim to justify the use
of hard negative mining with the triplet loss for this task and offer theoretical explanations for why
it sometimes leads to collapsed solutions. Furthermore, we wish to be able to predict when network
collapse happens.

In this section, we first prove an equivalence between a Hausdorff-like distance (13) and the triplet
loss with hard negative mining. Then, with the diameter of the network’s embedding set as an
indicator for network collapse (diam(Xfθ ) = 0), we use the previous equivalence to show that
network collapse happens when the batch size is large or when the embedding dimension is small.

3.2 EQUIVALENCE BETWEEN dHAUS AND TRIPLET LOSS

We begin with the definition of the Hausdorff-like distance dhaus, draw an equivalence to the isomet-
ric error diso, which is equivalent to the triplet loss within a constant factor. Then, we illustrate all
three distance functions and their equivalence with a toy example.

3.2.1 HAUSDORFF-LIKE DISTANCE dHAUS

Reiterating the training objective from the problem setup, we aim to learn a function fθ that is α-
Triplet-Separated (Definition 2.1). We restate this problem as a distance minimization problem, and
prove that it is equivalent to hard negative mining with the triplet loss.
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First we construct set of all functions f : X → Rn that are α-Triplet-Separated and denote it
with Fα

TS . We next construct the Hausdorff-like distance metric (denoted by dhaus) between these
functions that compares the embedding subsets via the Hausdorff distance metric dH .

Xi
f = {f(x)|x ∈ X , h(x) = i} (11)

dhaus(f1, f2) = max
i∈Y

dH(Xi
f1 , X

i
f2) (12)

One way to solve metric learning is to find the closest fθ to any function in Fα
TS as indicated by

(13).

dhaus(fθ,Fα
TS) = inf

f∗
haus∈Fα

TS

dhaus(fθ, f
∗
haus) (13)

In this paper, we claim that the triplet loss with hard negative mining is equivalent to minimizing
dhaus(fθ,FTS) within a constant factor (see Corollary 3.4).

3.2.2 ISOMETRIC APPROXIMATION APPLIED TO dHAUS

In this section, we present Theorem 3.2 to show that minimizing the Hausdorff-like distance is equiv-
alent to minimizing a difference in distance metrics, referred to as the isometric error (Definition
3.1).

Definition 3.1. isometric error. For two functions f, g : X → Rn, we define the isometric error
diso to be the maximum difference between their distance metrics.

diso(f, g) = sup
x1,x2∈X

∣∣∣∣||f(x1)− f(x2)|| − ||g(x1)− g(x2)||
∣∣∣∣ (14)

Similar to (13), we extend the definition of isometric error to diso(fθ,Fα
TS) as follows:

diso(fθ,Fα
TS) = inf

f∗
iso∈Fα

TS

diso(fθ, f
∗
iso) (15)

Theorem 3.2. dhaus(fθ,Fα
TS) and diso(fθ,Fα

TS) upper bound each other within a linear factor for
all fθ with some minimum thickness θ∗.

We present the proof for Theorem 3.2 in Appendix A. Theorem 3.2 shows that dhaus and diso are
exchangeable as minimization objectives because they upper bound each other within linear factors.
And as diso is a difference of two distance functions, we can derive the triplet loss.

3.2.3 RECOVERING THE TRIPLET LOSS

In this section, we present Theorem 3.3 to show that the isometric error (Definition 3.1) is equivalent
to the triplet loss sampled by hard negative mining.

Theorem 3.3. The triplet loss sampled by hard negative mining and the isometric error diso upper
bound each other within a linear factor.

We present the proof for Theorem 3.3 in Appendix B, proving that diso is exchangable with the triplet
loss sampled by hard negative mining. Thus from Theorems 3.2 and 3.3, we have Corollary 3.4.

Corollary 3.4. The optimal solution to the triplet loss sampled by hard negative mining is equivalent
to the optimal solution to dhaus(fθ,Fα

TS) within a constant factor.

Proof. The proof follows from Theorems 3.2 and 3.3, where we show that dhaus, diso, and triplet
loss sampled by hard negative mining upper and lower bound each other by constant factors. Conse-
quently, the optimal solution to triplet loss sampled by hard negative mining, and to dhaus(fθ,Fα

TS),
are equivalent within a constant factor.
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Figure 2: (Left) The setup for our toy example is a dataset of five arbitrary points, projected
through fθ onto the embedding space R2, divided into two classes, red and blue. (Right) Illustration
of dhaus(fθ,FTS). The stars represent the embedding points of the function f∗

haus that minimizes
dhaus(fθ,FTS), and the arrows connect the points projected through fθ and f∗

haus respectively. The
value of dhaus(fθ,FTS) is the maximum distance between two projections, whose arrows are out-
lined in black. The red and blue star sets are Triplet-Separated because they lie outside the other’s
Triplet-Separated boundary, indicated by the dashed colored border.

Figure 3: (Left) Illustration of diso(fθ,FTS). Using the toy example shown in Figure 2, we com-
pute a f∗

iso (marked in stars) that minimizes diso(fθ,FTS). To compute diso(fθ,FTS), we take the
difference of the distance between two points under fθ (circles) and the distance under f∗

iso (stars)
as shown by the curly brace in the middle. (Right) Illustration of the triplet loss sampled by hard
negative mining. Using the toy example shown in Figure 2, we take the triplet (anchor, positive,
negative) that maximizes the triplet loss.

3.2.4 ILLUSTRATIVE EXAMPLES FOR TRIPLET LOSS EQUIVALENCE

In this section, we illustrate the key ideas of the previous section’s theorems by using a toy example
with margin α = 0, N = 5 points, and embedding dimension d = 2. As we will illustrate the
equivalence between the triplet loss with the Hausdorff-like distance and isometric error, we can
visualize the embedding points without any underlying data or neural network. See Figure 2 for the
toy example setup.

Also shown in Figure 2 is a visualization of dhaus(fθ,FTS). The numerical value of dhaus(fθ,FTS) is
determined by the maximum length of the arrows, which is marked in the figure with black outlines.
Here, we compute the ideal f∗

haus, see (13), by optimizing the embedding points.
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Figure 4: Illustration of how hard negative mining leads to collapsed solutions given N = 20
samples and embedding dimension d = 2. We approximate the f∗ that minimizes dhaus(fθ,FTS)
by applying 50 gradient descent steps and observe that the embedding points collapse into a much
smaller subset. Also marked are the values of dhaus(fi,FTS) as measured by their Hausdorff-like
distance from the approximated f∗.

Figure 3 illustrates diso(fθ,FTS), which measures the difference in distance metric. Note that the
f∗

iso that minimizes diso(fθ, f
∗
iso) is not necessarily the same as f∗

haus. Revisiting the second part of the
proof for Theorem 3.2 (Also see Appendix A), dhaus(fθ,FTS) is lower bounded by 0.5diso(fθ,FTS)
and upper bounded by cdiso(fθ,FTS). For this specific toy example, we calculate the constant factor
error to be c = 0.53. This essentially illustrates Theorem 3.2.

Lastly, we show the triplet loss sampled by hard negative mining on the right of Figure 3. The
equivalence proved by Theorem 3.3 is shown by comparing the two figues in Figure 3, as the triplet
selected by hard negative mining corresponds with the same three points with the largest discrepan-
cies in distance metric. Through Figures 2 and 3, we have a visualization of the statement and proof
of Corollary 3.4.

3.3 THEORETICAL INSIGHTS ON NETWORK COLLAPSE

We can use the embedding set diameter diam(Xfθ ) to indicate for network collapse, as the diam-
eter becomes near zero when the network is collapsed. Furthermore, if we assume that training
always ends with a Triplet-Separated network fTS (collapsed or not), we have the following triangle
inequality (16). The change in diameter cannot exceed twice the maximum displacement of each
embedding point as measured by the Hausdorff-like distance (13).

|diam(XfTS
)− diam(Xfinit)| ≤ 2dhaus(finit,FTS) (16)

Re-arranging (16) and substituting in the constant-factor equivalence proven by Corollary 3.4, we
find an inequality lower-bounding the diameter of the triplet-separated network.

diam(XfTS
) ≥ diam(Xfinit)− cLtriplet(finit) (17)

From (17), we hypothesize two factors that influence network collapse are batch size and embedding
dimension. As the batch size grows large, the triplet loss necessarily grows while the embedding
diameter remains constant. Therefore we expect that large batch size leads to network collapse.
On the other hand, increasing embedding dimension should increase the initial embedding diameter
more than the triplet loss. As a result, low embedding dimension should lead to network collapse.

To illustrate our hypothesis that large batch size leads to network collapse, we show another toy
example with N = 20 points with dimension d = 2 in Figure 4. The arrows illustrate the f∗ that
minimizes dhaus(fθ,FTS) for this example, which is a collapsed function. We hypothesize that when
f∗ is collapsed, the function fθ learned by using the triplet loss would also be collapsed.

4 EXPERIMENTS

As mentioned in Section 1, current literature observes that hard negative mining results in network
collapse inconsistently. Our theory proposes the testable hypothesis that network collapse happens
when the batch size is too large, or when the embedding dimension is not large enough. We test
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Figure 5: Experiments performed on the Market-1501 dataset with a randomly initialized ResNet-
18 architecture and margin α = 0. Each trial was repeated 3 times, and training is stopped on
step 40,000. The theoretical diameter lower bound curve (17) for each experiment is drawn with
dashed blue lines. (Left) Experiment A: Network embedding distances vary based on batch size
with embedding dimension d = 128. As predicted by our theory, the embedding distances remain
large for small batch sizes, with signs of collapse (shown in red) appearing when the batch size is
large. The region marked in green indicates a lower probability of network collapse as corroborated
by our experiment. (Right) Experiment B: Network embedding distances vary based on embedding
dimension with batch size 32 (P = 8,K = 4). As predicted by our theory, the network embeddings
are more likely to collapse when the embedding dimension is small and less when the embedding
dimension is large.

our claims by first conducting an experiment on the Market1501 dataset Zheng et al. (2015) with
a Resnet-18 He et al. (2016) architecture. This closely follows the work of Hermans et al. (2017),
where the specific emphasis was on proving the efficacy of hard negative mining. To this end, we
use a PK-style sampling method where P people are sampled per batch and K images are selected
per person for a total batch size of N = P ×K, on the Market1501 dataset.

Our first experiment (see Figure 5 (a)), illustrates the effect of batch size on network collapse. Here,
we use a fixed embedding dimension of d = 128, train until step 40,000, and repeat each trial 3
times. The batch size P and K are varied on a grid P ∈ {2, 4, 8, 18} and K ∈ {2, 4, 8, 16, 32}
for a total of 20 combinations. Using (17) with constant value c = 2, we observe that the lower
bound, shown in dashed blue, appears to hold across the tested batch size values. Further, as the
batch size increases, we see that the embedding diameter decreases until there is a network collapse.
This confirms our hypothesis that large batch size leads to network collapse.

We then conduct an additional experiment (see Figure 5 (b)) to study the relation between the em-
bedding dimension and network collapse. Here, we first fix P = 8 and K = 4 for each batch and
vary the embedding dimension d from 4 to 1024. The network architecture and number of training
steps are the same as the previous experiment (Figure 5 (a)). Once again, using (17) with c = 2,
we observe that the theoretical diameter lower bound (dashed blue line) appears to hold across the
tested embedding dimension values. Furthermore, as the embedding dimension decreases, we see
that the embedding diameter also decreases to a point where the network collapses, thus confirming
our second hypothesis.

It is worth noting that the experiments described above utilize a margin parameter α with a value of
0. While it is conjectured that the parameter α can be tuned to prevent network collapse, we show
with an additional set of experiments that α does not play as significant a role in network collapse
as the batch size or embedding dimension. Specifically, the experiments are conducted on the same
Market-1501 dataset and Resnet-18 architecture but with α = 0.01 and α = 0.05. Larger α were
also tested, but discarded due to significant overfit. These results are presented in Appendix C.

We further solidify our claims by conducting three more experiments on the Market1501 dataset
Zheng et al. (2015) with a ResNet-50, a 2-layer convolutional network and GoogLeNet Szegedy
et al. (2015) (see Appendix E for results). Branching out to other datasets, we also conducted
three additional experiments on Stanford Online Products (SOP) Oh Song et al. (2016), Stanford
Cars (CARS) Krause et al. (2013), and Caltech-UCSD Birds (CUB200) Wah et al. (2011) using a
Resnet-18 architecture (see Appendix D for results). The same network collapse behavior has been
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observed in each of these experiments, demonstrating the adverse effects of large batch size and low
embedding dimension irrespective of dataset or network architecture.

In summary, we observe that the hard negative mining performs well with lower batch size, as
reported by Hermans et al. (2017), and exhibits network collapse when the batch size is increased
to a large value, which agrees with the triplet loss collapse reported by Schroff et al. (2015). This
resolves the apparent contradiction from prior work and offers a unified explanation for network
collapse in the context of hard negative mining.

5 DISCUSSION AND CONCLUSION

In this paper, we apply the isometric approximation theorem to prove that the triplet loss sampled
by hard negative mining is equivalent to minimizing a Hausdorff-like distance. This mathematical
foundation helps us present novel insights into hard negative mining by establishing a relationship
between network collapse and the batch size or the embedding dimension. Our work presents math-
ematical proofs to support this relation and discusses extensive experiments to corroborate the same.

While we note that network collapse negatively affects the network’s performance on downstream
tasks, a lack of network collapse does not necessarily guarantee good performance. While simply
choosing batch size to be small and embedding dimension to be large would be effective for avoiding
network collapse, it is not necessarily good for optimizing network performance. Future work could
involve looking at the effects of small batch size or large embedding dimension and recommending
hyperparameter choices for batch size and embedding dimension.

Furthermore, it is worth noting that the isometric approximation theorem is independent of the
triplet loss. Consequently, the theorem can be applied to any system utilizing the Euclidean metric,
for instance, the pairwise contrastive loss Hadsell et al. (2006) (L = d(x, x+)− [α−d(x, x−)]+) or
the margin loss Wu et al. (2017) (L = [d(x, x+)+α− β]+ + [−d(x, x−)+α+ β]+). On the other
hand, the unified metric learning formulation defined by Zheng et al. (2023) opens new avenues to
explore alternative sampling methods and their respective functions in place of our Hausdorff-like
metric dhaus. Through this and future work, we intend to leverage mathematical tools from functional
analysis to explain fundamental principles in modern machine learning and artificial intelligence
research.
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A PROOF OF THEOREM 3.2

We now present Lemma A.1 that extends the results of Theorem 2.4 to apply to diso and use this
result to prove Theorem 3.2.
Lemma A.1. If diso(f, g) = ε and θ(f(X )) ≥ q, then there is a function U isometric to f such that:

||g(x)− U(x)|| ≤ cnε/q ∀x ∈ X (18)

Proof. If f is invertible, then gf−1 is a function Rn → Rn. gf−1 is an ε-nearisometry because
diso(f, g) = ε. Then if θ(f(X )) ≥ q, the conditions for Theorem 2.4 are satisfied, so there exists an
isometry U1 : Rn → Rn

||gf−1(x)− U1(x)|| ≤ cnε/q ∀x ∈ f(X ) (19)

Then
||g(x)− U1(f(x))|| ≤ cnε/q ∀x ∈ X (20)

Therefore if f is invertible, (18) holds with U = U1f .

If f is not invertible, then there exists x1 ̸= x2 ∈ X such that f(x1) = f(x2). We divide the
elements of X into subsets X † and X ′ such that f is invertible on X †, f(X †) = f(X ), and diso is
unchanged on X †. Consequently, (20) holds on X †.

Moving our attention to X ′, for all x′ ∈ X ′ there exists x† ∈ X † such that f(x′) = f(x†). Then
because diso is unchanged on X †, ||f(x′) − g(x′)|| ≤ ||f(x†) − g(x†)|| ≤ cnε/q. Therefore (18)
holds for f and g on X .

Proof. [Theorem 3.2] We first prove that diso upper bounds dhaus. To this end, fix the minimizing
function f∗

iso in the following expression:
diso(fθ,FαTS) = inf

f∗
iso∈FαTS

diso(fθ, f
∗
iso) (21)

From Lemma A.1 we have that:
sup
x∈X

||fθ(x)− f∗
iso(x)|| ≤ c diso(fθ, f

∗
iso) (22)

with c = cn/θ∗. From the definition of Hausdorff-like distance (12) we have (23), and from (13) we
have (24):

dhaus(fθ, f
∗
iso) ≤ sup

x∈X
||fθ(x)− f∗

iso(x)|| (23)

dhaus(fθ,FαTS) ≤ dhaus(fθ, f
∗
iso) (24)

(25) follows from (22-24), proving that diso upper bounds dhaus within a constant factor of c.
dhaus(fθ,FαTS) ≤ c diso(fθ,FαTS) (25)

For the converse claim that dhaus upper bounds diso, we once again fix the f∗
haus that minimizes the

following expression:
dhaus(fθ,FαTS) = sup

x∈X
||fθ(x)− f∗

haus(x)|| (26)

Next, for the four points fθ(x1), fθ(x2), f∗
haus(x1), and f∗

haus(x2), apply the triangle inequality via
(27) to get (28).

||fθ(x1)− fθ(x2)|| ≤

||fθ(x1)− f∗
haus(x1)||+

||f∗
haus(x1)− f∗

haus(x2)||+
||f∗

haus(x2)− fθ(x2)||

 (27)

≤

(||f∗
haus(x1)− f∗

haus(x2)||+
2 sup
x∈X

||fθ(x)− f∗
haus(x)||

)
(28)
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It is worth noting that (28) holds for all x1, x2 ∈ X . Furthermore, we can swap fθ and f∗
haus in (28)

and use (26) to get (29) and thus (30).

diso(fθ, f
∗
haus) =

sup
x1,x2∈X

∣∣∣∣||fθ(x1)− fθ(x2)|| − ||f∗
haus(x1)− f∗

haus(x2)||
∣∣∣∣ ≤

2dhaus(fθ,FαTS)

(29)

diso(fθ,FαTS) ≤ diso(fθ, f
∗
haus) ≤ 2dhaus(fθ,FαTS) (30)

(30) proves that dhaus upper bounds diso within a constant factor of 2.

Thus we prove that dhaus and diso upper bound each other within constant factors.

B PROOF OF THEOREM 3.3

Proof. [Theorem 3.3] Here, we present a detailed proof for the theorem using equations (31-42)

From the definition of diso in (31), we introduce the anchor, positive, and negative triplet (x, x+, x−)
in (32) by re-labelling x1 → x. Recognizing that x2 must either have the same or different label
from x1, we re-label x2 → x+ or x2 → x−, and pick the max of these distances for any given
triplet.

diso(fθ,FαTS) = inf
f∗∈FαTS

sup
x1,x2∈X

∣∣∣∣||fθ(x1)− fθ(x2)|| − ||f∗(x1)− f∗(x2)||
∣∣∣∣ (31)

= inf
f∗∈FαTS

sup
x,x+,x−

max

{∣∣∣∣||fθ(x)− fθ(x
+)|| − ||f∗(x)− f∗(x+)||

∣∣∣∣, ∣∣∣∣||fθ(x)− fθ(x
−)|| − ||f∗(x)− f∗(x−)||

∣∣∣∣}
(32)

Inequality (33) follows from max(a, b) ≤ a+ b for positive a, b.

≤ inf
f∗∈FαTS

sup
x,x+,x−

∣∣∣∣||fθ(x)− fθ(x
+)|| − ||f∗(x)− f∗(x+)||

∣∣∣∣+ ∣∣∣∣||fθ(x)− fθ(x
−)|| − ||f∗(x)− f∗(x−)||

∣∣∣∣
(33)

Now fix the f∗ that minimizes (33). We next prove via contradiction that the first term (34a) is
positive and the second term (34b) is negative.

||fθ(x)− fθ(x
+)|| − ||f∗(x)− f∗(x+)|| (34a)

||fθ(x)− fθ(x
−)|| − ||f∗(x)− f∗(x−)|| (34b)

There are four cases we must consider here, as we treat the zero case as either positive or negative.
Case 1: (34a) is positive, (34b) is positive. Denoting this as ++, our four cases are (1 : ++),
(2 : −−), (3 : −+), (4 : +−). Now we prove by contradiction that case 4 is the only valid one.

Case 1(++): Consider the function f†(x) = (1 + δ)f∗(x) where δ > 0 is a small constant. Then
diso(fθ, f

†) < diso(fθ, f
∗), contradicting the statement that f∗ minimizes diso.

Case 2(−−): Consider the function f†(x) = (1 − δ)f∗(x) where δ > 0 is a small constant. Then
diso(fθ, f

†) < diso(fθ, f
∗), contradicting the statement that f∗ minimizes diso.

Case 3(−+): We can algebraically rearrange (33) to get:

||f∗(x)− f∗(x+)|| − ||f∗(x)− f∗(x−)|| − ||fθ(x)− fθ(x
+)||+ ||fθ(x)− fθ(x

−)|| ≥ 0 (35)

||f∗(x)− f∗(x+)|| − ||f∗(x)− f∗(x−)|| ≤ 0 (36)

−
(
||fθ(x)− fθ(x

+)|| − ||fθ(x)− fθ(x
−)||

)
≥ 0 (37)
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(36) comes from the definition of f∗ as a Triplet-Separated function; then (37) comes from combin-
ing (35) and (36). However, this means that the triplet that maximizes the expression has negative
triplet loss, therefore there must be some other f∗

2 with a smaller value. This contradicts the state-
ment that f∗ minimizes diso.

With Cases 1, 2, and 3 eliminated, we only have Case 4 and all the zero cases (00, +0, −0, 0+, 0−).
We note that the cases −0 and 0+ can be dis-proven using the same logic as Case 3. This leaves the
four following valid cases (00, 0−, +0, +−), where we can connect back to (33) and write:

sup
x,x+,x−

∣∣∣∣||fθ(x)− fθ(x
+)|| − ||f∗(x)− f∗(x+)||

∣∣∣∣+ ∣∣∣∣||fθ(x)− fθ(x
−)|| − ||f∗(x)− f∗(x−)||

∣∣∣∣
(38)

= sup
x,x+,x−

||fθ(x)− fθ(x
+)|| − ||fθ(x)− fθ(x

−)|| −
(
||f∗(x)− f∗(x+)|| − ||f∗(x)− f∗(x−)||

)
(39)

Note that (39) resembles the triplet loss. The triplet loss for f∗ cannot dominate the maximum triplet
loss for fθ, otherwise it would contradict the statement that f∗ minimizes the isometric error, giving
us:

−
(
||f∗(x)− f∗(x+)|| − ||f∗(x)− f∗(x−)||

)
≤ sup

x,x+,x−
||fθ(x)− fθ(x

+)|| − ||fθ(x)− fθ(x
−)||

(40)
(41)

Using (40), we have the following relation with respect to (39).

≤ 2 sup
x,x+,x−

||fθ(x)− fθ(x
+)|| − ||fθ(x)− fθ(x

−)||+ α (42)

Note that (42) is identical to twice the expression for the triplet loss sampled by hard negative
mining. Therefore the triplet loss sampled by hard negative mining upper bounds the isometric error
by a constant factor of 2.

Additionally, we can prove that the triplet loss sampled by hard negative mining upper bounds the
isometric error. Starting from the definition of isometric error in (43), inequality (44) follows from
max(a, b) ≥ (a+ b)/2.

diso(fθ,FαTS) = inf
f∗∈FαTS

sup
x1,x2∈X

∣∣∣∣||fθ(x1)− fθ(x2)|| − ||f∗(x1)− f∗(x2)||
∣∣∣∣ (43)

≥ 1

2
inf

f∗∈FαTS

sup
x,x+,x−

∣∣∣∣||fθ(x)− fθ(x
+)|| − ||f∗(x)− f∗(x+)||

∣∣∣∣+ ∣∣∣∣||fθ(x)− fθ(x
−)|| − ||f∗(x)− f∗(x−)||

∣∣∣∣
(44)

Once again fixing f∗, we have equality (45) by the same logic as the previous part. Inequality (46)
follows from the fact that ||f∗(x) − f∗(x+)|| − ||f∗(x) − f∗(x−)|| ≤ −α by the definition of f∗

as α Triplet-Separated.

=
1

2
sup

x,x+,x−
||fθ(x)− fθ(x

+)|| − ||fθ(x)− fθ(x
−)|| −

(
||f∗(x)− f∗(x+)|| − ||f∗(x)− f∗(x−)||

)
(45)

≥ 1

2
sup

x,x+,x−
||fθ(x)− fθ(x

+)|| − ||fθ(x)− fθ(x
−)||+ α (46)

Therefore isometric error upper bounds the triplet loss sampled by hard negative mining by a con-
stant factor of 2.
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C ADDITIONAL EXPERIMENTS FOR NON-ZERO α

In the experiments shown in the main paper, we fixed α to be zero. To prove that using a nonzero
α does not affect the results, we repeated the Market1501 experiments with α = 0.01 and 0.05,
observing that our results remain consistent. See Figure 6 for the embedding diameter vs batch size
plots, which follow the same trends as the α = 0 experiment shown in Figure 5. Similarly, the
embedding diameter vs dimension plots in Figure 7 also follow similar trends to those shown by the
α = 0 experiments in Figure 5.

In addition, we also conducted experiments with a larger α = 0.1, but decided to stop there as the
trained networks began to exhibit significant overfit. In particular, the validation loss values began
to increase while the training loss flatlined at the L = 0.1 line. As a result, the final embedding
diameters on the validation data did not show any meaningful pattern, so we choose not to show
those plots in the appendix.

Figure 6: Embedding diameter vs batch size experiments with non-zero α on Market1501 dataset
for dimension d = 128. The left figure (α = 0.01) and right figure (α = 0.05) both show network
collapse when the batch size is large (red region), and do not collapse when the batch size is smaller
(green region). We note that the embedding diameters are larger when α is larger, which is somewhat
to be expected. However there appears to be a collapse threshold around N = 128 independent of
α which may warrant further study in a future work.

Figure 7: Embedding diameter vs dimension experiments with non-zero α on Market1501 dataset
for batch size 32 (P = 8,K = 4). The left (α = 0.01) and right (α = 0.05) both show signs of
network collapse (red region) for lower dimension and larger embedding diameter (green region) for
higher dimension, mirroring the α = 0 experiment observations.

D ADDITIONAL EXPERIMENTS FOR CUB200, SOP, AND CARS DATASETS

In the main paper, our experiments were conducted only on the Market1501 dataset. To show
that our results generalize beyond just one dataset, we have replicated the same experiments on 3
additional datasets: Stanford Online Products (SOP) Oh Song et al. (2016), Caltech Birds (CUB200)
Wah et al. (2011), and Stanford Cars (CARS) Krause et al. (2013). We train a Resnet18 network
from scratch for each experiment with 3 repetitions for each hyperparameter combination, and leave
the margin parameter α = 0. One difference from the main experiments is that these three datasets
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do not lend themselves to the PK-style sampling that Market1501 uses, so we use a fixed batch size
without the same-class guarantees that exist for PK-style sampling. Results are shown in Figures 8
and 9.

On the SOP dataset (Figure 8), we observe that networks collapse for large batch size and small
embedding dimension, exactly the same as the Market-1501 dataset shown in the main paper. For
the CUB and CARS datasets (Figure 9), we also observe that networks collapse for large batch
size. However, when experimenting with the embedding dimension, we observed that the CUB and
CARS datasets are extremely sensitive to the batch size; a lower batch size would never collapse
the network, and a higher batch size would always collapse the network. To mitigate this sensitivity,
we attempted to explore larger models with higher embedding dimensions than 1024, but were
constrained by our hardware and GPU specifications.

Figure 8: Batch size and embedding dimension experiments on SOP dataset using Resnet18 and
α = 0. We observe that the patterns of collapse (red region) for high batch size and low embedding
dimension hold for the SOP dataset.

Figure 9: Batch size experiments on CUB200 and CARS dataset using Resnet18 and α = 0. We
observe that the patterns of collapse (red region) for high batch size hold for both datasets.

E ADDITIONAL EXPERIMENTS WITH DIFFERENT BASE NETWORK

As our theory only assumes that an ideal α-Triplet Separated network exists in the function space
parameterized by the neural net’s architecture, it stands to reason that our theory should be somewhat
architecture-agnostic. In the main paper, we used a Resnet-18 base, and in this appendix we train a
randomly initialized ResNet-50 architecture, GoogLeNet architecture Szegedy et al. (2015) as well
as a simple 2-layer convolutional network. The results for ResNet-50 are shown in Figure 10. We
do observe that the networks collapse for large batch size and small embedding dimension, just as
they do using the ResNet-18 backbone.

The results for GoogLeNet are shown in Figure 11. We do observe that the networks collapse for
large batch size and small embedding dimension, just as they do using the ResNet-18 backbone. We
also observe a few instances of network collapse for a high embedding dimension. However, we
noted memory warnings during training due to the large size of the network, and we attribute these
anomalies to our hardware constraints.
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Figure 10: Batch size and embedding dimension experiments on Market1501 dataset using a
ResNet-50 network and α = 0. We observe that patterns of collapse (red region) for high batch
size and low embedding dimension hold for a ResNet-50 network, just as they do for Resnet-18 in
Figure 5 of Section 4.

However, we also observed a couple instances of collapse for high embedding dimension, where our
theory hypothesized that collapse would not occur. We note that while training the high embedding
dimension networks, our code was raising memory warnings because the network was too large, so
we suspect that these results may not be entirely accurate.

Figure 11: Batch size and embedding dimension experiments on Market1501 dataset using
GoogLeNet and α = 0. We observe that the patterns of collapse (red region) for high batch size and
low embedding dimension hold for a GoogLeNet architecture, just as they do for Resnet-18 in the
main paper. We note that the embedding dimension experiments have a few outliers for d > 256.
We suspect our code ran into memory issues.

On the other hand, the results for a 2-layer convolutional network are shown in Figure 12. Like with
GoogLeNet and ResNet, we observe that large batch size and small embedding dimension both lead
to network collapse.
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Figure 12: Batch size and embedding dimension experiments on Market1501 dataset using a 2-layer
Convolutional network and α = 0. We observe that patterns of collapse (red region) for high batch
size and low embedding dimension hold for a 2-layer convolutional network, just as they do for
Resnet-18 in the main paper.
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