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ABSTRACT

Spiking Neural Networks (SNNs) have emerged as an efficient neuromorphic com-
puting paradigm, offering low energy consumption and strong representational
capacity through binary spike-based information processing. However, their per-
formance is heavily shaped by the input encoding method. While direct encoding
has gained traction for its efficiency and accuracy, it proves less robust than tra-
ditional rate encoding. To illuminate this issue, we introduce Gradient Temporal
Collinearity (GTC), a principled measure that quantifies the directional alignment
of gradient components across time steps, and we show—both empirically and theo-
retically—that elevated GTC in direct encoding undermines robustness. Guided by
this insight, we propose Structured Temporal Orthogonal Decorrelation (STOD),
which integrates parametric orthogonal kernels with structured constraints into the
input layer of direct encoding to diversify temporal features and effectively reduce
GTC. Extensive experiments on visual classification benchmarks, show that STOD
consistently outperforms state-of-the-art methods in robustness, highlighting its
potential to drive SNNs toward safer and more reliable deployment. Code available
at https://github.com/Apple26419/SNN_STOD.

1 INTRODUCTION

Spiking Neural Networks (SNNs), as an emerging neuromorphic computing paradigm, process
information over time through binary spikes (Maass, 1997), exhibiting outstanding efficiency and
low power consumption in domains such as autonomous driving (Viale et al., 2021; Zhu et al., 2024),
medical image processing (Pan et al., 2025; Liu et al., 2025), edge computing (Zhang et al., 2024;
Liu et al., 2024a), and robot control (Kumar et al., 2025; Jiang et al., 2025). However, under binary
spike-based paradigm, the performance of SNNs is largely determined by the input encoding method,
as it directly shapes the network’s temporal statistics and representational capacity (Auge et al., 2021).

In early studies, rate encoding was the most commonly adopted method (Heeger et al., 2000; Lee et al.,
2016). Its core idea is to represent inputs by the firing frequency of randomly generated spikes within
a temporal window, thereby transforming static data into spike trains with temporal attributes (Lee
et al., 2020). However, rate encoding requires substantially long spike sequences to capture features
with sufficient fidelity, and under the mainstream training paradigm of Backpropagation Through
Time (BPTT), the increased sequence length dramatically amplifies computational cost, which
severely limits efficiency in large-scale applications. To overcome this efficiency bottleneck, direct
encoding has been proposed (Rueckauer et al., 2017). Unlike rate encoding, direct encoding injects
identical original data into the network over only a few time steps, thereby maximally preserving
the original features while significantly reducing the required sequence length. This property grants
direct encoding distinct advantages in both training and inference performance, establishing it as the
mainstream choice for efficient and high-performance SNN training (Fang et al., 2021).

In addition to efficiency and high performance, robustness during real-world deployment is equally
critical for SNNs (Ding et al., 2024a;b; 2022; Kundu et al., 2021). Due to their cumulative membrane-
potential dynamics, small input perturbations can be repeatedly propagated and amplified over time,
making SNNs inherently more vulnerable to temporal perturbation accumulation than traditional
artificial neural networks (Stanojevic et al., 2024). In many of the safety-critical domains where
SNNs are most attractive, such as autonomous driving, robotics, and edge intelligence, this temporal
sensitivity makes robustness not an optional enhancement but a fundamental requirement.

∗Corresponding author.

1

https://github.com/Apple26419/SNN_STOD


Published as a conference paper at ICLR 2026

Despite being the mainstream choice for efficient and high-performance SNN training, direct encoding
exhibits surprisingly worse robustness compared to the more traditional rate encoding (Kundu
et al., 2021; Kim et al., 2022). Because identical inputs are repeatedly injected across time steps,
membrane potentials accumulate highly correlated signals, causing the network to degenerate into an
enlarged static feature extractor rather than exploiting temporal dynamics to capture complementary
information. As a result, the lack of temporal diversity makes the network highly vulnerable to small
input perturbations, which are repeatedly accumulated and amplified across time steps, rendering
its representations fragile. In contrast, the randomized spike generation of rate encoding serves as a
natural feature decorrelation mechanism: spike patterns across different time steps are independent,
preventing perturbations from remaining consistent across all steps and thereby mitigating error
accumulation while strengthening resistance to adversarial perturbations.

To formalize and gain deeper insight into the robustness differences between the two encoding
methods, this paper approaches the problem from the perspective of training dynamics and introduces
the concept of Gradient Temporal Collinearity (GTC). By quantifying the directional consistency of
gradient components across time steps, GTC establishes a unified lens through which the robustness
disparities of different encoding methods can be revealed and their underlying mechanisms rigorously
explained. Building on GTC, we propose a novel robustness enhancement strategy, Structured
Temporal Orthogonal Decorrelation (STOD), which incorporates a feature decorrelation mechanism
inspired by rate encoding into direct encoding. By diversifying input features, STOD effectively
reduces the level of GTC, thereby improving network robustness. Specifically, the contributions of
this paper can be summarized as follows:

• We introduce and quantify gradient temporal collinearity (GTC) in SNNs. GTC pro-
vides a principled metric that reveals robustness disparities between direct and rate encoding
and elucidates the mechanisms by which these disparities affect network robustness.

• We propose Structured Temporal Orthogonal Decorrelation (STOD). STOD intro-
duces parametric orthogonal kernels with structured constraints into the input layer, which
structurally breaks GTC and enhances the network’s ability to resist external perturbations.

• Through extensive experiments on datasets of varying scales, we show that STOD consis-
tently improves the robustness of SNNs without incurring extra inference overhead, and
achieves superior robustness performance compared with existing state-of-the-art methods.

2 RELATED WORK

Robustness differences across encoding methods. Rate encoding is widely observed to provide
higher robustness compared with direct encoding. Kundu et al. (2021) explained this advantage
through proposed spike-based sparse activation maps, Mukhoty et al. (2025) associated it with the
injection of noise through rate encoding, while Kim et al. (2022) experimentally demonstrated that
rate encoding suffers less performance degradation under attacks. Thus, enhancing the robustness of
SNNs under direct encoding remains a pressing challenge of both theoretical and practical importance.

Robustness enhancement under direct encoding. Within the more efficient direct encoding
paradigm, several methods have been proposed to strengthen robustness: Ding et al. (2022) introduced
a regularized adversarial training scheme to constrain the spiking Lipschitz constant of SNNs and
thereby mitigate the impact of perturbations on network outputs; Ding et al. (2024a) proposed
modifying LIF neurons and minimizing the mean squared perturbation of membrane potentials to
stabilize SNNs; Geng & Li (2023) developed LIF neurons with adaptive thresholds that anchor
membrane potentials to a neural dynamic signature, thereby minimizing perturbation errors; Liu et al.
(2024b) enhanced adversarial robustness by incorporating gradient sparsity regularization during
training; and Ding et al. (2024b) introduced stochastic gating mechanisms across layers to reduce
the Lipschitz constant and suppress error amplification, ultimately strengthening SNN robustness.
Summarily, existing methods primarily focus on constraining neuronal dynamics or regularization.

3 PRELIMINARIES

Dynamics of leaky integrate-and-fire neuron. In the field of SNNs, the most widely used neuron
model is the Leaky Integrate-and-Fire (LIF), which simulates the charging and discharging process
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of biological neurons to achieve activation (Fang et al., 2021). From an implementation perspective,
the dynamics of a single LIF neuron can be expressed as follows:{

u[t+ 1] = (1− 1

τ
)
(
u[t]− uths[t]

)
+ c[t],

s[t+ 1] = H
(
u[t+ 1]− uth

)
,

(1)

where u[t], s[t], and c[t] denote the membrane potential, the binary spike output, and the input current
at time step t, respectively. Here, τ > 1 is the membrane time constant controlling the leak rate, Vth
is the firing threshold, and H represents the Heaviside function. Training in SNNs is performed using
BPTT combined with surrogate gradients, with detailed formulations of the BPTT gradients and the
specific surrogate gradient methods provided in Appendix A.

Adversarial attacks. Given an input x with label y, adversarial examples are generated by finding a
perturbation δ within an ℓp-norm ball of radius ε that maximizes the loss L

(
f(x+ δ), y

)
, that is,

argmax
∥δ∥p≤ε

L
(
f(x+ δ), y

)
. (2)

4 METHOD

In this section, we use empirical observations as the motivation and further introduce our method.
Specifically, we first define gradient temporal collinearity as a measure of the alignment between
gradient components across time steps. We then compare gradient temporal collinearity under direct
encoding and rate encoding and analyze its impact on network robustness (Sec. 4.1). Based on the
observed gap in gradient temporal collinearity between different encoding methods, we are inspired
to develop our method: Structured Temporal Orthogonal Decorrelation (Sec. 4.2).

4.1 RATE VS. DIRECT: GRADIENT TEMPORAL COLLINEARITY ANALYSIS

While direct encoding substantially outperforms rate encoding in terms of efficiency and accuracy,
its weakness in robustness is equally evident (Kundu et al., 2021; Kim et al., 2022; Mukhoty et al.,
2025). This naturally raises a central question:

�
Can the feature decorrelation mechanism inherent to rate encoding be borrowed to
enhance the robustness of direct encoding without sacrificing its efficiency?

Addressing this question requires more than empirical comparison; it calls for a principled metric
that can systematically characterize the robustness gap. From an optimization perspective, robustness
is closely tied to the spectral radius of the Hessian, which is in turn governed by the temporal
structure of gradients. Motivated by this connection, we introduce Gradient Temporal Collinearity—a
new measure that quantifies the directional consistency of gradient components across time steps,
providing a rigorous lens through which the robustness of direct encoding can be analyzed and
improved. We begin by defining:
Definition 1. (Gradient Temporal Collinearity (GTC)). Let the network parameters be denoted as
θ = {W 1,W 2, . . . ,WL}. The gradient ∇θL can be expressed, according to Eq. (10), as the sum
of its T components, that is, ∇θL =

∑T
t=1 G[t], where G[t] is referred to as the component of the

gradient at time step t. For any two gradient components G[i], G[j] with i ̸= j, we define their
collinearity, i.e. gradient temporal collinearity C, as in Eq. (3), where ⟨A,B⟩F = Tr(A⊤B) and
∥A∥F =

√
⟨A,A⟩F denote the Frobenius inner product and Frobenius norm, respectively. The

value C ∈ [−1, 1] quantifies the degree of collinearity between the two matrices: as C → 1, the two
matrices become increasingly collinear, while smaller values indicate weaker collinearity.

C(G[i], G[j]) =
⟨G[i], G[j]⟩F

∥G[i]∥F · ∥G[j]∥F
, (3)

Definition 2. (Batch-Averaged and Epoch-Averaged GTC.) For the b-th batch, we define the batch-
averaged GTC, denoted as Cb, as the mean collinearity among all pairs of gradient components within
that batch. Based on this, the epoch-averaged GTC C is defined as the mean of the batch-averaged
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GTC values across all B batches within an epoch. Both of these can be referred to Eq. (4), where
Gb[i] denotes the gradient component at time step i in the b-th batch.

Cb =
2

T (T − 1)

∑
1≤i<j≤T

C
(
Gb[i], Gb[j]

)
, C =

1

B

B∑
b=1

Cb. (4)

Experimental evaluation of GTC. Next, we evaluate the evolution of GTC during training under
the two encoding methods by varying the number of time steps across different datasets. The detailed
setup for this experiment is provided in Appendix D.1.
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Figure 1: GTC evaluation curves.

As shown in Fig. 1, under different time step
settings T = 4, 8, 32, the epoch-averaged GTC
of direct encoding remains consistently higher
than that of rate encoding. For direct encod-
ing, the GTC starts around 0.8–0.9 in the early
stage of training and gradually decreases while
remaining relatively stable overall. In contrast,
the GTC of rate encoding stays in a lower range
of 0.2–0.3, with much larger fluctuations across
epochs and without a clear decreasing trend dur-
ing training. Moreover, within each encoding
method, the trend of GTC variation does not
depend on the number of time steps, and the overall magnitude of GTC shows no clear positive or
negative correlation with the time step setting.

Impact of GTC on SNN robustness. While the above experiment highlights a clear difference in
GTC between encoding methods, it remains to be explained why such a difference is crucial for
SNN robustness. We address this by analyzing the spectral radius of the parameter Hessian, since
robustness is closely tied to its magnitude (Stutz et al., 2021). The key result of our analysis (see
Appendix B for the full derivation) is the following structured upper bound:

λmax(Ĥθ) ≲ T ·
(
max

t
∥G[t]∥2F

)
·
[
1 + (T − 1) ·max

i̸=j
C(G[i], G[j])

]
, (5)

where Ĥθ is the parameter Hessian for a single sample and λmax(Ĥθ) indicates the spectral radius of
it. This inequality shows that a higher of GTC directly amplifies the Hessian spectral radius, thereby
reducing robustness.

Origins of GTC disparities between encoding methods. Having established that GTC affects
robustness through its impact on the Hessian spectral radius, we next turn to the question of why
direct encoding consistently exhibits higher GTC than rate encoding. The key lies in the temporal
structure of the inputs. In direct encoding, every time step receives exactly the same input, leaving
little temporal diversity. This produces highly consistent neuronal activations and gradient directions
across time, leading to a near low-rank structure and consequently higher and more stable GTC.
In contrast, rate encoding introduces stochastic spike sampling at the input, which serves as an
inherent decorrelation mechanism across time steps. This reduces temporal collinearity of gradient
components and thus yields much lower GTC, albeit with larger fluctuations across epochs due to
the randomness involved. Moreover, from Fig. 1, we observe that the GTC curve of direct encoding
gradually decreases as training progresses. This indicates that the strengthening robustness of direct
encoding during training is accompanied by a process of gradient component dispersion, further
highlighting the role of GTC in explaining the robustness gap between the two encoding methods.

4.2 STOD: STRUCTURALLY BREAKING GRADIENT TEMPORAL COLLINEARITY

Inspired by the inherent input feature decorrelation mechanism in rate encoding that enhances robust-
ness, we propose Structured Temporal Orthogonal Decorrelation (STOD), a strategy that embeds
feature decorrelation into the temporal dimension of direct encoding. The objective of STOD is to
reduce GTC while preserving as much of direct encoding’s feature-retention capability as possible,
thereby achieving a balance between decorrelation and retention and ultimately enhancing the robust-
ness of SNNs. STOD is composed of two key components: Patchwise Feature Diversification and
Global Orthogonal Regularization, which we describe in detail in the following subsections.
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Figure 2: Flowchart of STOD, including PFD and GOR.

4.2.1 PATCHWISE FEATURE DIVERSIFICATION

The core idea of our method is to break the GTC, encouraging directional diversity across time steps
so that external perturbations are misaligned in gradient space and their cumulative effect is mitigated.
Since Sec. 4.1 shows that the high GTC of direct encoding originates from repeatedly injecting
identical inputs across time while the low GTC of rate encoding arises from its inherent temporal
diversity, a natural way to reduce GTC is to introduce controlled diversity into the temporal inputs of
direct encoding. A seemingly intuitive approach would be to inject random noise into the inputs or
gradients to disrupt this repetition, but such noise lacks mechanism awareness and offers no guarantee
of producing meaningful temporal diversity; moreover, these artificial perturbations do not correspond
to the actual variations encountered by the network and may instead cause gradient obfuscation
(Athalye et al., 2018) and reduce explainability. To achieve this reduction in an explainable and stable
manner, we first require the temporal inputs to exhibit well-controlled and systematically varied
feature directions, rather than random or unstructured perturbations, so that the resulting gradient
components naturally become less aligned across time. Building on this requirement, we introduce a
structured input transformation module, Patchwise Feature Diversification (PFD), which applies, at
each time step, an individual parametric orthogonal kernel to transform the input features.

However, as Fig. 2, directly applying transformations to the entire input is computationally expensive
and renders optimization unstable. PFD first partitions the input into smaller, non-overlapping patches,
enabling localized transformations while reducing complexity. Specifically, take static image data
as an example, the input dimension is X[t] ∈ RC×H×W , and we define a partition operator P that
divides the input into N patches, that is P(X[t]) = {Xn[t]}Nn=1, with any Xn[t] ∈ RC×p2

and
N = H

p · W
p , where p is a hyperparameter representing the patch size. A detailed discussion on the

choice of p is provided by ablation study (Sec. 5.2).

In an SNN with T time steps, we denote the parametric orthogonal kernels as {O[1],O[2], . . . ,O[T ]},
where each O[t] ∈ Rd×d with d = C × p2. For any time step t, the original input X[t] is mapped to
the transformed input Xn[t] ∈ RCHW as Eq. (6), where ’⊗’ indicates the Kronecker product.

X ′[t] = vec
[
P−1

(
P(X[t])⊗O[t]

)]
. (6)

In addition, the orthogonal kernels are subject to the following structured constraints, ensuring both
feature diversity and effective learning:

Structured Constraint 1: Identity initialization at t = 1. The first kernel is initialized as the
identity matrix, i.e. O[1] = Id. This serves as a stable reference point, preventing all temporal
inputs from being simultaneously distorted at initialization and ensuring that a portion of the original
information is consistently preserved throughout training.

Structured Constraint 2: Mutual orthogonality at initialization. To maximize inter-step feature
diversity from the outset and to avoid instability caused by overlapping gradient components during
early training, all orthogonal kernels are initialized to be mutually orthogonal. Concretely, we adopt
Householder reflections (Mhammedi et al., 2017) to enforce this constraint. Let e1, ..., ed denote
the canonical basis of Rd. For steps t > 1, we construct vectors kj = e1 − ej , for j = 2, 3, ..., T
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(we use the first T canonical basis vectors since T ≤ d in all settings) and define the corresponding
Householder matrices as Eq. 7, then, the initialization set is given by {O[1],O[2], . . . ,O[T ]} =
{Id, Q[2], . . . , Q[T ]}.

Q[j] = Id − 2
kjk

⊤
j

k⊤j kj
. (7)

Structured Constraint 3: Self-orthogonality during training. During training, each orthogonal
kernel is constrained to remain orthogonal, i.e., O[t]O[t]⊤ = Id. This ensures that the feature
transformation at each time step preserves the energy structure of the input, namely L2-norm
conservation: ∥X ′[t]∥2 = ∥X∥2. As a result, only the directional structure of the features is altered,
avoiding meaningless scaling distortions or information loss. At the same time, this constraint
preserves discriminative information and prevents pixel-intensity drift, since even slight intensity
shifts at the pixel level may lead to entirely opposite network predictions (Williams & Li, 2023). In
code practice, we register each orthogonal kernel as a ManifoldParameter constrained to the
Stiefel manifold, and update them using a RiemannianSGD optimizer (Kochurov et al., 2020).

4.2.2 GLOBAL ORTHOGONAL REGULARIZATION

Ideally, the orthogonal kernels should also satisfy a fourth structured constraint: maintaining mutual
orthogonality throughout training, rather than only at initialization. This would ensure persistent
feature diversity across time steps and prevent temporal inputs from converging during optimization,
which would otherwise reintroduce gradient collinearity. However, enforcing both mutual orthogo-
nality and self-orthogonality as hard constraints simultaneously would make the system overly rigid,
reducing the flexibility of parameter updates and ultimately hindering training effectiveness. More-
over, maintaining inter-kernel orthogonality during training requires concatenating all kernels and
constraining them on a Stiefel manifold of dimension d2T , which incurs prohibitive computational
and memory costs, rendering this constraint impractical as a hard constraint.

Therefore, we propose Global Orthogonal Regularization (GOR), as Fig. 2 shows, as a soft constraint
to achieve this effect. The objective of GOR is to guide the transformed inputs produced by the
orthogonal kernels toward more diverse directions. We define GOR as:

LO =
∑

1≤i<j≤T

cos2 ( ˆX ′[i], ˆX ′[j]), (8)

where X̂ ′
i denotes the normalized transformed input. Thus, our final training objective is

L = LCE + λOLO, (9)

where LCE is cross-entropy loss and λO is a hyperparameter controlling the strength of the regular-
ization. A detailed discussion of λO setting is provided in the ablation study (Sec. 5.2).

5 EXPERIMENT

In this section, we first compare the robustness of our method with state-of-the-art methods (Sec.5.1).
We then conduct ablation studies to analyze the contributions of different components of our method
(Sec. 5.2). Finally, we inspect our method for any instances of gradient obfuscation (Sec. 5.3).

5.1 COMPARISON WITH STATE-OF-THE-ART (SOTA) METHODS

We conduct experiments on static visual classification datasets, including the small-scale CIFAR-10
and CIFAR-100 (Krizhevsky et al., 2009) , as well as the large-scale ImageNet (Deng et al., 2009),
and Dynamic Vision Sensor (DVS) datasets DVS-CIFAR10 (Li et al., 2017) and DVS-Gesture (Amir
et al., 2017). Detailed descriptions of these datasets and all preprocessing procedures are provided in
Appendix C. For attack settings, we adopt Fast Gradient Sign Method (FGSM) (Goodfellow et al.,
2014) and Projected Gradient Descent method (PGD) (Madry et al., 2017), both with ε = 8/255.
Unless otherwise specified, the number of iterations K in PGD is set to 7. The hyperparameter
settings of our method are detailed in Appendix D.2.

White box attacks. White box attacks serve as the most direct means of evaluating the robustness
of a method. Under this setting, we select several SOTA methods, including adversarial training
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(AT) (Kundu et al., 2021), DLIF (Ding et al., 2024a), HoSNN (Geng & Li, 2023), FEEL (Xu et al.,
2024), and StoG (Ding et al., 2024b), as baselines for comparison. Since the role of structured
orthogonal kernels is primarily to regularize training by diversifying temporal feature representations,
their effect is largely embedded into the learned network parameters after optimization. Therefore,
during inference we remove the orthogonal kernels to highlight the intrinsic robustness gained from
training, while also ensuring efficiency and fairness in comparison with baseline methods. This
inference-time variant is denoted as STOD without Orthogonal Kernel (STOD w.o. OK). As shown
in Table 1, even without using orthogonal kernels at inference, STOD w.o. OK achieves the most
robust and balanced performance across all three datasets. For example, on CIFAR-10, HoSNN
performs well under FGSM with an accuracy of 54.76%, but its performance drops dramatically
to 15.32% under PGD. Conversely, FEEL achieves a strong 28.35% under PGD, but only 44.96%
under FGSM. In contrast, our STOD w.o. OK consistently outperforms all baselines under both
attacks. While the robustness gains on ImageNet are smaller than those on CIFAR datasets, this is
expected. ImageNet’s higher-resolution inputs and the deeper backbone naturally produce richer and
more diverse representations, yielding lower temporal redundancy. As a result, STOD has a narrower
margin for improvement, though it still provides consistent robustness gains under this challenging
setting. Moreover, STOD can be further combined with AT (Kundu et al., 2021) to achieve additional
performance gains. The corresponding experimental results are provided in Appendix E. Our method
likewise demonstrates significant superiority under AT over existing SOTA approaches.

Table 1: White box performance comparison. The highest accuracy in each column is highlighted in
bold. ’*’ indicates self-implementation results.

Method CIFAR-10 CIFAR-100 ImageNet
Clean FGSM PGD Clean FGSM PGD Clean FGSM PGD

SNN 93.75 8.19 0.03 72.39 4.55 0.19 57.84 4.99 0.01
AT∗(Kundu et al., 2021) 91.16 38.20 14.07 69.69 16.31 8.49 51.00 15.74 6.39

DLIF (Ding et al., 2024a) 92.22 13.24 0.09 70.79 6.95 0.08 - - -
HoSNN (Geng & Li, 2023) 92.43 54.76 15.32 71.98 13.48 0.19 - - -

FEEL (Xu et al., 2024) 93.29 44.96 28.35 73.79 9.60 2.04 - - -
StoG (Ding et al., 2024b) 91.64 16.22 0.28 70.44 8.27 0.49 - - -

STOD w.o. OK (Ours) 91.43 55.80 32.97 71.00 26.26 13.13 54.02 19.08 6.44

Admittedly, according to Table 1, the clean accuracy of STOD is slightly lower than that of baseline
methods. This is because all baselines rely on direct encoding, which repeatedly injects identical
clean inputs and therefore maximally preserves clean feature fidelity. In contrast, STOD introduces
structured temporal decorrelation at the input stage, replacing repeated clean inputs with diversified
representations, which unavoidably results in a moderate clean-accuracy drop. But, this reduction is
small, and the substantial robustness gains provided by STOD outweigh this minor degradation.

Table 2: White box performance comparison with-
/without orthogonal kernels.

Dataset OK Clean FGSM PGD

CIFAR-10
✗ 91.43 55.80 32.97
✓ 90.87▼ 0.56 59.16▲ 3.36 36.72▲ 3.75

CIFAR-100
✗ 71.00 26.26 13.13
✓ 70.69▼ 0.31 32.15▲ 5.89 15.02▲ 1.89

ImageNet
✗ 54.02 19.08 6.44
✓ 53.57▼ 0.45 20.93▲ 1.85 8.01▲ 1.57

Table 3: Accuracy comparison under RGA attacks.

Dataset Method White Box RGA Black Box RGA
FGSM PGD FGSM PGD

CIFAR-10
SNN 8.01 1.01 29.80 13.09

STOD 62.17 49.40 80.77 57.21

CIFAR-100
SNN 6.89 0.64 18.94 9.20

STOD 34.15 29.80 45.81 36.29
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Orthogonal kernels further improve SNN robustness. While removing the orthogonal kernels at
inference demonstrates that the robustness gains are intrinsically preserved in the trained parameters,
retaining them provides an additional option to actively maintain structural decorrelation during
deployment. When orthogonal kernels are enabled at inference (denoted STOD), temporal features
remain explicitly decorrelated, leading to further robustness improvements under various white box
attacks. As shown in Table 2, STOD consistently outperforms STOD w.o. OK under both FGSM and
PGD. Importantly, the additional cost remains marginal; for example, under the main hyperparameter
setting T = 4, p = 8, STOD introduces only 0.15M extra parameters (Detailed in Appendix F).

Table 4: Performance comparion in DVS datasets
(%). he highest accuracy in each column is high-
lighted in bold. SR: (Liu et al., 2024b)

Methods DVS-CIFAR10 DVS-Gesture
Clean FGSM PGD Clean FGSM PGD

SNN 76.30 17.20 5.00 95.49 39.24 9.72
SR 75.50 64.60 61.20 - - -

STOD w.o. OK 74.70 66.10 60.40 93.75 87.15 54.67
STOD 72.90 68.80 62.50 93.05 88.88 56.60

White box attack in DVS datasets. In DVS
datasets, we trained the model and performed
inference under FGSM and PGD attacks by di-
rectly perturbing the preprocessed event frames,
as implemented in (Liu et al., 2024b). It can be
seen from Table 4 that our method also demon-
strates excellent robustness when dealing with
the DVS dataset, surpassing SOTA method SR.
Our method shows the same trend on the DVS
dataset as on the static image dataset, that is, the inference without OK can surpass SOTA, and if OK
is added, the robustness can be further enhanced.

Black box attacks. For black box attacks, adversarial examples are generated using the substitute
model. We compare the performance gap of STOD between black box and white box settings and its
performance trend under varying attack strengths as Fig. 3, with detailed experimental data provided
in Appendix E, Table 9. It can be observed that robustness under black box attacks consistently
exceeds that under white box attacks, and STOD exhibits a clear advantage over the vanilla SNN.

Rate gradient approximation (RGA) attack. RGA (Bu et al., 2023) leverages inter-layer spike rates
in SNNs to perform more targeted adversarial attacks. Moreover, RGA is an incremental approach
that must be combined with FGSM and PGD to construct the attacks. We evaluate the robustness
of STOD under RGA attacks. As shown in Table 3, the vanilla method collapses severely under
different forms of RGA, whereas our method demonstrates strong resistance against all such attacks.

Figure 4: Visualization of original/transformed input and gradient components. For any given image,
the top-left entry in the first row is the original input X[t], while the next four images represent the
transformed inputs X ′[t] obtained through PFD at t = 1, 2, 3, 4, respectively. In the second row, the
top-left image within the red box shows the gradient component under direct encoding. Since the four
gradient components of direct encoding are visually indistinguishable, we display only one of them.
The remaining four images correspond to the gradient components (G[t]) of STOD at each time step.

Visualization of transformed inputs and gradient components. To further illustrate why STOD
enhances network robustness, we visualize the input features at each time step and the corresponding
gradient components (heatmap) in Fig. 4. Although the transformed inputs obtained by STOD are less
visually discernible than the original images, its gradient components clearly reveal distinct structural
patterns of the image from diverse perspectives. In contrast, the gradient components produced by
direct encoding appear highly disordered and noisy, with almost no identifiable information to the
human eye. This demonstrates that our method enhances the robustness of SNNs against adversarial
attacks by leveraging orthogonal kernels to suppress gradient noise while diversifying gradients
across time steps in an interpretable manner.

8
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5.2 ABLATION STUDY
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Figure 5: Accuracy comparison under different p.
Detailed data provided in Appendix E, Table 10.

In this subsection, we conduct ablation studies
on the two most critical hyperparameters: the
patch size p and the regularization strength λO.

Patch size p. On the CIFAR-10 dataset, we
evaluate robustness with T = 2, 4, 6, 8 under
different patch sizes p = 2, 4, 8, 16, 32. The
detailed results are presented in Fig. 5. We ob-
serve that, across all time steps and regardless
of whether orthogonal kernels are used at infer-
ence, STOD consistently achieves peak perfor-
mance at p = 8. This indicates that overly small
patches fail to capture spatial structure effec-
tively, limiting temporal feature diversification,
while overly large patches make the orthogonal transformation too coarse, discarding fine-grained
local information. In contrast, medium-sized patches (e.g., 8) strike the best balance by preserving
sufficient representational capacity while introducing an appropriate scale of perturbation, thereby
achieving the optimal trade-off between temporal feature decorrelation and information fidelity.
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Figure 6: Performance and GTC curve comparison under different λO.

Regularization strength λO. We evaluate our method on CIFAR-10 and CIFAR-100 with λO =
0, 0.01, 0.05, 0.1. As shown in Fig. 6, panels (a) and (b) compare robustness under these settings,
while panels (c) and (d) illustrate the corresponding epoch-averaged GTC curves during training.
The results show that STOD substantially reduces GTC throughout training, with stronger reductions
observed as λO increases. However, greater regularization strength does not always lead to stronger
robustness. The best performance is achieved when λO = 0.05. It is important to note that STOD
does not reduce GTC to the same extent as rate encoding. This discrepancy stems from the intrinsic
nature of direct encoding: unlike rate encoding, which inherently randomizes temporal features,
direct encoding must repeatedly preserve the original input to ensure feature fidelity. For this reason,
aggressively reducing GTC to the level of rate encoding would inevitably erode essential information
content. Instead, STOD deliberately seeks a principled balance—introducing sufficient temporal
decorrelation to suppress error accumulation, while retaining the integrity of clean representations.

Beyond identifying the optimal values of each hyperparameter, the ablation results collectively
indicate that STOD exhibits stable behavior rather than brittle sensitivity across a broad range of
settings. For patch size p, performance varies smoothly as p changes; suboptimal values (e.g., p = 4
or p = 16) still yield substantial robustness gains over the vanilla SNN, showing that STOD does
not collapse when deviating from its optimum. A similar pattern emerges for the regularization
strength λO: although λO = 0.05 performs best, all non-zero values consistently reduce GTC and
improve robustness compared with the baseline, and no abrupt degradation is observed even when
the regularization is moderately mis-tuned. This robustness plateau demonstrates that STOD benefits
from a wide viable hyperparameter window, enabling strong generalization across datasets and
architectures without precise tuning.

5.3 INSPECTION OF GRADIENT OBFUSCATION

The seminal work Athalye et al. (2018) critically identified several characteristic behaviors, as
summarized in Table 5, that arise when a defense attains spurious robustness through gradient
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obfuscation. Accordingly, we evaluate DSD against each of these behaviors. Our experiments
demonstrate that DSD passes all checks, as detailed follows: Table 5 summarizes the evaluation
criteria. For items (1) and (2), it is clear from Fig. 3 and Table 3 that STOD performs significantly
better under single-step attacks (FGSM) and black box attacks than under multi-step attacks (PGD)
and white box attacks, respectively. For items (3) and (4), Fig. 3 shows that the performance of
STOD drops to zero as the attack strength increases. Fig. 7 (with detailed data in Appendix E, Table
11) further confirms this trend, indicating that although the performance of STOD gradually degrades
with more PGD iterations, it eventually converges to a stable minimum. Finally, item (5) states
that gradient-based attacks fail to find adversarial examples; however, our results in Fig. 3 show
the opposite—both FGSM and PGD consistently succeed in fooling STOD despite the training. In
conclusion, our method does not utilize gradient obfuscation to achieve false robustness.

Table 5: Checklist for identifying gradient obfuscation.

Characteristics to identify gradient obfuscation Pass?
(1) Single-step attack performs better compared to iterative attacks ✓
(2) Black box attacks perform better compared to white box attacks ✓
(3) Increasing perturbation bound can’t increase attack strength ✓
(4) Unbounded attacks can’t reach 100% success ✓
(5) Adversarial example can be found through random sampling ✓
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6 CONCLUSION AND DISCUSSION

Conclusion. In this paper, we introduce the concept of Gradient Temporal Collinearity (GTC) and,
from both experimental and theoretical perspectives, explain why rate encoding—with its lower
GTC—exhibits stronger robustness than direct encoding, which suffers from higher GTC. Inspired by
this phenomenon and its theoretical underpinnings, we borrow the feature decorrelation mechanism
of rate encoding and structurally incorporate it into direct encoding, leading to our proposed method:
Structured Temporal Orthogonal Decorrelation (STOD). STOD introduces parametric orthogonal
kernels with structured constraints into the input layer to diversify input features, thereby breaking
the high GTC of direct encoding and enhancing robustness. Extensive experiments demonstrate that
our method consistently surpasses SOTA approaches in robustness, while comprehensive ablations
confirm the effectiveness and necessity of each module. Together, these results position our method
as a strong step toward more reliable and secure application of SNNs.

Limitation. Since our method reshapes network gradients to favor updates that enhance resistance
to perturbations, it inevitably leads to a performance drop when the network is evaluated on clean
data. This limitation is common across existing robustness-oriented studies in SNNs (Kundu et al.,
2021; Ding et al., 2024a; Geng & Li, 2023; Xu et al., 2024; Ding et al., 2024b) and calls for deeper
investigation to be effectively addressed.

Broader impact. When both inference modes: STOD with/without orthogonal kernels (OK) surpass
existing SOTA methods, our approach offers practitioners greater flexibility. Users prioritizing
maximum performance can opt for inference with OK, whereas those emphasizing efficiency and
lightweight deployment may choose inference without OK. This dual advantage underscores the
practical value of our method across diverse application scenarios.
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coding environment, and hyperparameter settings used in our experiments are also included in the
Appendix. We dedicate to enable future researchers to reproduce the results presented in this paper
using similar computational setups.
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A GRADIENT OF BPTT AND SURROGATE GRADIENT

In this section, we present the gradient formulation in the BPTT process, along with the surrogate
gradient method employed.

In BPTT, let W l denote the weight matrix between layer l and layer l + 1, and let L represent the
loss function. The gradient can then be expressed as:

∂L
∂W l

=

T∑
t=1

∂L
∂sl+1[t]

∂sl+1[t]

∂ul+1[t]

(
∂ul+1[t]

∂W l
+
∑
k<t

k∏
i=t−1

(∂ul+1[i+ 1]

∂ul+1[i]
+
∂ul+1[i+ 1]

∂sl+1[i]

∂sl+1[i]

∂ul+1[i]

)∂ul+1[k]

∂W l

)
,

(10)
where the non-differentiable term ∂s[t]

∂u[t] , we use the piecewise quadratic function (triangle function)
as the surrogate gradient (Fang et al., 2023; Neftci et al., 2019), which is defined as:

g′(x) =

{
0, |x| > 1

α

−α2|x|+ α, |x| ≤ 1
α

. (11)

The primitive function is defined as:

g(x) =


0, x < − 1

α

− 1
2α

2|x|x+ αx+ 1
2 , |x| ≤ 1

α

1, x > 1
α

, (12)

where constant α is set to 1 for all cases.

B ANALYSIS OF GRADIENT TEMPORAL COLLINEARITY IMPACTS NETWORK
ROBUSTNESS

In this section, we analyze what impact GTC will have on network robustness. This analysis is
divided into two parts. In the first part, we analyze the impact of GTC on the spectral radius of the
network parameter Hessian. In the second part, we analyze the influence of spectral radius on the
robustness of the SNN network.

Impact of GTC on Hessian Spectral Radius. For a single sample (x, y), let z = fθ(x) be the
network output and let the sample loss be ℓ(x, y; θ). Given a batch B = {(xi, yi)}Bi=1, the overall
objective is

L(θ) =
1

B

B∑
i=1

ℓ(xi, yi; θ), (13)

where θ is the set of network parameters as given by Definition 1.

We first recall the Gauss–Newton form of the parameter Hessian for a single sample (x, y):

Ĥθ(x, y; θ) = Jθ(x)
⊤ Hz

(
fθ(x); y

)
Jθ(x), (14)

where Jθ = ∂fθ(x)/∂θ is the parameter Jacobian, and Hz = ∂2ℓ(z, y)/∂z2 is the Hessian of the
loss ℓ(z, y) with respect to the network output z = fθ(x). Then we analyze the temporal structure
under BPTT. The network output can be written as the sum of contributions across time steps
fθ(x) =

∑T
t=1 f

(t)
θ (x), and correspondingly we decompose

Jθ =

T∑
t=1

Jt, Jt = ∂f
(t)
θ (x)/∂θ, (15)

so that the Gauss–Newton Hessian becomes

Ĥθ =
∑
t,t′

J⊤t HzJt′ . (16)

Eq. (16) makes explicit that the Hessian contains both diagonal terms (t = t′) and cross-terms
(t ̸= t′), where the latter are directly determined by the temporal correlation of gradient components.
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Next, we introduce a notational substitution Zt = H
1/2
z Jt to absorb the curvature weighting into

each time block, so that

Ĥθ =
( T∑

t=1

Zt

)⊤( T∑
t=1

Zt

)
, λmax(Ĥθ) =

∥∥∥ T∑
t=1

Zt

∥∥∥2
op
. (17)

We then define the temporal Gram matrix

T ∈ RT×T , Tij = ⟨Zi, Zj⟩F , (18)

so that ∥
∑

t Zt∥2F = 1⊤T 1, where 1 indicates vector with all elements of 1. Using the Rayleigh
quotient, we have

1⊤T 1 ≤ T λmax(T ), (19)
and therefore

λmax(Ĥθ) ≤ T λmax(T ). (20)
After obtaining this bound, we continue to further bound λmax(T ). Let M ∈ RT×T denote the
normalized correlation matrix with

Mij =
⟨Zi, Zj⟩F

∥Zi∥F ∥Zj∥F
, Mii = 1, (21)

and let D = diag(∥Z1∥F , . . . , ∥ZT ∥F ) so that T = DMD. Then by the submultiplicativity of the
operator norm we have

λmax(T ) ≤
(
max

t
∥Zt∥2F

)
· λmax(M). (22)

Applying Gershgorin’s circle theorem, we obtain

λmax(M) ≤ 1 + (T − 1) ·max
i ̸=j

|Mij |. (23)

Combining Eqs. (20), (22), and (23), we arrive at the structured upper bound

λmax(Ĥθ) ≤ T ·
(
max

t
∥Zt∥2F

)
·
[
1 + (T − 1) ·max

i ̸=j
|Mij |

]
. (24)

Finally, we may replace Mij by GTC C(G[i], G[j]) and ∥Zt∥2F by ∥G[t]∥2F . Hence we obtain

λmax(Ĥθ) ≲ T ·
(
max

t
∥G[t]∥2F

)
·
[
1 + (T − 1) ·max

i̸=j
C(G[i], G[j])

]
. (25)

This structured bound makes explicit that the spectral radius of the parameter Hessian is determined
jointly by the per-step gradient magnitudes and the temporal gradient similarities. In particular, when
C(G[i], G[j]) is close to 1 for all pairs, the gradients are nearly collinear across time steps, leading
to a near rank-1 1 structure that amplifies cross-terms and yields a quadratic growth of the spectral
radius with T ; when C(G[i], G[j]) is small due to temporal decorrelation, the growth is closer to
linear. Therefore, lowering the GTC directly reduces the structured upper bound of λmax(Ĥθ).

Impact of the Hessian Spectral Radius on Network Robustness. The paper (Stutz et al., 2021)
presents from an experimental perspective the conclusion that the larger the spectral radius, the less
robust the network. We conduct a brief theoretical analysis of this conclusion based on SNN.

From the perspective of a single sample, we analyze why an increase in the spectral radius of the
network parameters amplifies the effect of input perturbations on the loss function, thereby indicating
that the network’s robustness deteriorates as the spectral radius grows.

Based on Eq. (13), for any input perturbation δ with ∥δ∥ ≤ ε, Taylor’s theorem at (x, y; θ) gives

ℓ(x+ δ, y; θ)− ℓ(x, y; θ) = ∇xℓ(x, y; θ)
⊤δ + 1

2 δ
⊤Hx(x, y; θ) δ + o(∥δ∥2), (26)

where Hx(x, y; θ) = ∇2
xℓ(x, y; θ) is the input Hessian for the sample.

By the Rayleigh-quotient bound δ⊤Hxδ ≤ λmax(Hx)∥δ∥2, where λmax(·) is the spectral radius for
symmetric matrices, we obtain the sample-wise worst-case bound

sup
∥δ∥≤ε

(
ℓ(x+ δ, y; θ)− ℓ(x, y; θ)

)
≤ ε∥∇xℓ(x, y; θ)∥+ 1

2 ε
2 λmax

(
Hx(x, y; θ)

)
. (27)

1Near rank-1 refers to the dominance of the leading eigenvalue of the temporal correlation matrix.
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Next, we should further obtain the relation between input Hessian Hx(x, y; θ) and overall parameter
Hessian Hθ. Parameter Hessian can be expressed as

Hθ(θ) = ∇2
θL(θ) =

1

B

B∑
i=1

Ĥθ(xi, yi; θ), (28)

where Ĥθ(x, y; θ) = ∇2
θℓ(x, y; θ) is the parameter Hessian for a single sample.

First, the input Hessian admits the exact decomposition

Hx(x, y; θ) = Jf (x)
⊤Hz

(
fθ(x); y

)
Jf (x) + R(x, y; θ), (29)

where Hz(fθ(x); y) is the output Hessian, and Jf (x) = ∂fθ(x)/∂x is the input Jacobian. In the
exact decomposition, the residual term R(x, y; θ) arises from the interaction between the loss gradient
∇zℓ(x, y; θ) and the second derivatives ∂2fθ(x)/∂x

2 of the network with respect to the input. While
this term may be nonzero in general, near convergence the loss gradient becomes small, and thus its
contribution can be upper-bounded by a constant η ≥ 0, i.e., ∥R(x, y; θ)∥ ≤ η. For the cross-entropy
loss, which is generally used in SNN fields, the softmax Hessian takes the form diag(p)−pp⊤, which
is positive semidefinite in the de-centered subspace orthogonal to the all-ones vector. All nonzero
eigenvalues of this Hessian lie in the interval [0, 1]. Therefore, we can take β = 1 as an upper bound
on the spectral norm of Hz , i.e., ∥Hz∥ ≤ β, and proceed with the subsequent analysis restricted to
this subspace.

On the other hand, for the input Hessian Hx, its positive semidefiniteness cannot be guaranteed in
general. This is because the nonlinearity of the network may lead to non-convexity. Consequently,
we can conclude that its spectral radius is bounded above by its spectral norm, namely,

λmax

(
Hx(x, y; θ)

)
≤ ∥Hx(x, y; θ)∥. (30)

By combining Eqs. (29) and (30) with the above analysis, we obtain the relation as follows:

λmax

(
Hx(x, y; θ)

)
≤ ∥Hx(x, y; θ)∥ ≤ ∥Jf (x)∥2 ∥Hz∥+ ∥R(x, y; θ)∥ ≤ β ∥Jf (x)∥2+ η. (31)

After obtaining the crucial inequality relation as Eq. (31), We further analyze the relationship between
the input Jacobian Jf (x) = ∂fθ(x)/∂x and the parameter Jacobian Jθ(x) = ∂fθ(x)/∂θ.

In a SNN with L-layer feedforward network over T steps, the pre-activation is membrane potential.
For the l-th layer at time t, we define

Dl[t] = diag
(
ϕ(ul[t])

)
, Uϕ = sup

u

∣∣ϕ(u)∣∣ < ∞, (32)

where ϕ is surrogate gradient function, and Uϕ is the upper bound of surrogate gradient function,
which is a bounded value for generally used surrogate gradient functions, such as triangle, rectangle,
and sigmoid. Based on Eq. (32), we can use chain rule across layer and time steps after unrolling the
network and obtain

Jf (x) =

T∏
t=1

(
WLDL−1[t]WL−1DL−2[t] · · ·D1[t]W1

)
, (33)

hence, by ∥Dl[t]∥ ≤ Uϕ, we get

∥Jf (x)∥ ≤
(
UL−1

ϕ

L∏
l=1

∥Wl∥
)T

. (34)

The parameter Jacobian Jθ(x) stacks the blocks ∂fθ(x)/∂vec(Wl). Assuming c0(x) > 0 is a non-
degeneracy constant that aggregates lower bounds on intermediate activations and on surrogate slopes
over active neurons across layers/time, such that

∥Jθ(x)∥ ≥ c0(x)
( L∏
l=1

∥Wl∥
)T

. (35)

Substituting Eq. (35) into Eq. (34) yields

∥Jf (x)∥ ≤ K(x) ∥Jθ(x)∥, (36)

16



Published as a conference paper at ICLR 2026

with the input-dependent factor

K(x) =
UL−1

ϕ

c0(x)
. (37)

Next, we link ∥Jf∥ to Hθ(θ) via a structural inequality and Gauss-Newton method. On the parameter
side, for the sample (x, y) we have

Ĥθ(x, y; θ) = Jθ(x)
⊤Hz

(
fθ(x); y

)
Jθ(x) + Rθ(x, y; θ), (38)

with a higher-order residual Rθ. In a Gauss-Newton regime, ∥Rθ∥ is negligible, and thus we can get
Eq. (39), where ’⪰’ is Loewner order.

Ĥθ(x, y; θ) ⪰ Jθ(x)
⊤Hz

(
fθ(x); y

)
Jθ(x). (39)

Let µeff be the minimal eigenvalue of Hz on the working subspace. Then

∥Jθ(x)∥2 ≤ 1

µeff
λmax

(
Ĥθ(x, y; θ)

)
. (40)

Since Hθ(θ) =
1
B

∑B
i=1 Ĥθ(xi, yi; θ) and each Ĥθ(xi, yi; θ) ⪰ 0 near minima, we have

Hθ(θ) ⪰ 1

B
Ĥθ(x, y; θ) ⇒ λmax

(
Hθ(θ)

)
≥ 1

B
λmax

(
Ĥθ(x, y; θ)

)
. (41)

Combining Eq. (40) and Eq. (41) yields

∥Jθ(x)∥2 ≤ B

µeff
λmax

(
Hθ(θ)

)
. (42)

Using Eq. (36) and Eq. (42),

∥Jf (x)∥2 ≤ K(x)2 ∥Jθ(x)∥2 ≤ BK(x)2

µeff
λmax

(
Hθ(θ)

)
. (43)

Substituting Eq. (43) into Eq. (31) gives

λmax

(
Hx(x, y; θ)

)
≤ β BK(x)2

µeff
λmax

(
Hθ(θ)

)
+ η. (44)

Putting Eq. (44) into the perturbation bound Eq. (27), we obtain the general inequality

sup
∥δ∥≤ε

(
ℓ(x+δ, y; θ)−ℓ(x, y; θ)

)
≤ ε∥∇xℓ(x, y; θ)∥+ 1

2 ε
2
(β BK(x)2

µeff
λmax

(
Hθ(θ)

)
+η
)
. (45)

At (near-)stationary points where ∥∇xℓ(x, y; θ)∥ ≈ 0, the worst-case loss increase reduces to

sup
∥δ∥≤ε

(
ℓ(x+ δ, y; θ)− ℓ(x, y; θ)

)
≤ 1

2 ε
2
(β BK(x)2

µeff
λmax

(
Hθ(θ)

)
+ η
)
, (46)

Although the terms µeff and K(x) in Eq. (46) are influenced by the network’s input and output,
they are not directly coupled with λmax

(
Hθ(θ)

)
. Hence, they only affect the scaling factor on the

right-hand side of the equation and do not alter its monotonicity when treating λmax

(
Hθ(θ)

)
as the

variable. Therefore, we conclude that under a fixed perturbation strength ε, the upper bound of
the network loss fluctuation increases with the spectral radius λmax

(
Hθ(θ)

)
. In other words, the

robustness of the network is weakened as its spectral radius grows.

C DATASET

CIFAR-10. The CIFAR-10 dataset (Krizhevsky et al., 2009) consists of 60,000 color images, each of
size 32×32 pixels, divided into 10 different classes, such as airplanes, cars, birds, cats, and dogs. Each
class has 6,000 images, with 50,000 images used for training and 10,000 for testing. Normalization,
random horizontal flipping, random cropping with 4 padding, and CutOut (DeVries & Taylor, 2017)
are applied for data augmentation.
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CIFAR-100. The CIFAR-100 dataset (Krizhevsky et al., 2009) consists of 60,000 color images, each
of size 32×32 pixels, categorized into 100 different classes. Each class contains 600 images, with
500 used for training and 100 for testing. The same processing methods as for dataset CIFAR-10 are
applied to dataset CIFAR-100.

ImageNet. We evaluate on the ILSVRC-2012 ImageNet dataset (Deng et al., 2009), which contains
∼1.28M training images and 50,000 validation images spanning 1,000 classes. Images are of variable
resolution; following common practice and our implementation, training augmentation includes
RandomResizedCrop to 224× 224, RandomHorizontalFlip, conversion to tensors, and channel-wise
normalization. For test, images are resized to have a shorter side of 256 pixels and then center-cropped
to 224× 224 before applying the same normalization.

DVS-CIFAR10. The DVS-CIFAR-10 dataset (Li et al., 2017) is a neuromorphic version of the
traditional CIFAR-10 dataset. DVS-CIFAR10 captures the visual information using a Dynamic Vision
Sensor (DVS), which records changes in the scene as a series of asynchronous events rather than as
a sequence of frames. The dataset consists of recordings of 10 object classes, corresponding to the
original CIFAR-10 categories, with each object presented in front of a DVS camera under various
conditions. The dataset contains 10,000 128×128 images, of which 9,000 are used as the training set
and the remaining 1,000 as the test set.

DVS-Gesture. The DVS-Gesture dataset (Amir et al., 2017) is a neuromorphic dataset, consisting of
11 different hand gesture classes, such as hand clapping, arm rolling, and air guitar, performed by 29
subjects under various lighting conditions. Each gesture is represented by a sequence of events rather
than frames. The dataset contains 1,176 training samples and 288 testing samples.

D EXPERIMENTAL SETUP

D.1 EXPERIMENTAL SETUP FOR GTC EVALUATION

In the GTC evaluation experiments, we consider both direct encoding and rate encoding. In direct
encoding, identical input data are fed into the network at every time step. For rate encoding, we adopt
Poisson encoding (Lee et al., 2020), where input pixel values are converted into Poisson-distributed
spike trains and presented to the network. Typically, direct encoding requires fewer time steps (e.g., 4
or 8), whereas rate encoding requires more (e.g., 32). To ensure a rigorous comparison, we evaluate
both encoding methods under time steps T = 4, 8, 32. For both methods, the data preprocessing
follows Appendix C, and the hyperparameters used for evaluation are listed in the following table.
All other experimental settings not mentioned are identical to those described in Appendix D.2.

Table 6: Hyperparameter settings for GTC evaluation experiments.

Dataset Optimizer Model LeaningRate WeightDecay Epoch BatchSize
CIFAR-10 SGD VGG-11 0.1 5e-5 200 128
CIFAR-100 SGD VGG-11 0.1 5e-4 200 128

D.2 EXPERIMENTAL SETUP FOR MAIN EXPERIMENTS

In our experiments, all training cases are implemented using PyTorch (Paszke et al., 2019) with the
SpikingJelly (Fang et al., 2023) framework and executed on an NVIDIA GeForce RTX 5090 GPU.
For each dataset, we utilize the hyperparameters listed as the following table, consistently employing
the SGD optimizer for network parameters and RiemannianSGD optimizer for orthogonal kernels and
the membrane time constant τ to 1.1. Unless otherwise specified, the ablation studies are conducted
under the same experimental settings as the main experiments.

E DETAILED EXPERIMENTAL RESULTS

This section first presents a comparison of our method with SOTA approaches under AT in terms of
robustness against white box attacks (Table 8). We then provide the complete experimental results
used to generate Fig. 3 (Table 9), Fig. 5 (Table 10), and Fig. 7 (Table 11) in the main text.
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Table 7: Hyperparameter settings for main experiments. ’LR’ denotes the learning rate, ’LRO’ is the
learning rate for orthogonal kernels. NF-ResNet-18* (Brock et al., 2021).

Dataset Model Timestep LR LRO WeightDecay Epoch BatchSize p λO

CIFAR-10 VGG-11 4 0.1 0.05 5e-5 200 128 8 0.05
CIFAR-100 VGG-11 4 0.1 0.05 5e-4 200 128 8 0.05
ImageNet NF-ResNet-18* 4 0.1 0.05 1e-5 150 512 16 0.05

DVS-CIFAR10 VGG-11 10 0.05 0.05 5e-4 200 128 8 0.05
DVS-Gesture VGG-11 20 0.05 0.05 5e-5 200 8 8 0.05

Table 8: White box performance (with AT) comparison. The highest accuracy in each column is
highlighted in bold. ’*’ indicates self-implementation results.

Method CIFAR-10 CIFAR-100 ImageNet
Clean FGSM PGD Clean FGSM PGD Clean FGSM PGD

SNN + AT* (Kundu et al., 2021) 91.16 38.20 14.07 69.69 16.31 8.49 51.00 15.74 6.39
DLIF + AT (Ding et al., 2024a) 88.91 56.71 40.30 66.33 36.83 24.25 - - -

HoSNN + AT (Geng & Li, 2023) 90.00 63.98 43.33 64.64 26.97 16.66 - - -
FEEL + AT (Xu et al., 2024) - - - 69.79 18.67 11.07 - - -

StoG + AT (Ding et al., 2024b) 90.13 45.74 27.74 66.37 24.45 14.42 - - -
STOD + AT w.o. OK (Ours) 89.70 68.79 39.99 68.02 39.76 24.31 51.92 23.86 8.43

STOD + AT (Ours) 88.94 73.23 43.54 67.19 41.89 27.94 50.68 26.77 9.80

F ADDITIONAL PARAMETER NUMBER ASSESSMENT

It is important to note that the orthogonal kernels in our method can be discarded during
inference, ensuring that no additional inference overhead is introduced. Specifically, in Table 1
of the main experiments, we compare STOD without orthogonal kernels (STOD w.o. OK) against
other SOTA methods. In Table 2, we further report the performance gap between inference with and
without orthogonal kernels.

In this section, we calculate the additional number of parameters introduced by the orthogonal kernels.
Given that the kernel dimension is d = C × p× p, in an SNN with T time steps, the extra parameters
Npara can be computed as:

Npara = T (Cp2)2 (47)
Therefore, when C = 3 and T = 4, if we set p = 2, 4, 8, 16, 32, the additional number of parameter
would be 576, 9216, 0.15M, 2.36M, and 37.75M, respectively. As shown, when p = 8, only 0.15M
additional parameters are introduced, which is nearly negligible.

G STATEMENT OF LARGE LANGUAGE MODEL (LLM) USAGE

In the preparation of this manuscript, an LLM was employed to assist with non-scientific tasks. These
included polishing the English writing for clarity and style, providing suggestions for figure design
and color schemes, supporting LATEX formatting and typesetting, and drafting this statement.
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Table 9: Performance of STOD with different attack methods. WB and BB denote white and black
box, respectively. This is detailed experimental results of Fig. 3.

Attack ε = 0 2 4 6 8 16 32 64 128
CIFAR-10

SNN FGSM WB 93.75 17.06 14.22 11.78 8.19 4.21 1.99 0.58 0.00
SNN FGSM BB 93.75 24.13 18.41 13.86 10.26 7.88 3.82 1.48 0.59
SNN PGD WB 93.75 2.37 1.01 0.34 0.03 0.00 0.00 0.00 0.00
SNN PGD BB 93.75 4.01 2.80 1.20 0.89 0.02 0.00 0.00 0.00
STOD FGSM WB 90.87 63.71 62.08 60.04 59.16 51.49 39.45 27.49 8.17
STOD FGSM BB 90.87 84.36 80.88 77.74 75.42 67.91 50.09 33.18 13.95
STOD PGD WB 90.87 41.10 38.89 37.29 36.72 23.07 6.19 0.04 0.00
STOD PGD BB 90.87 60.42 56.29 48.70 44.24 32.96 14.31 1.07 0.51

CIFAR-100
SNN FGSM WB 72.39 9.37 7.42 5.46 4.55 2.35 1.19 0.33 0.00
SNN FGSM BB 72.39 13.26 12.11 10.84 9.16 5.31 2.07 1.47 0.49
SNN PGD WB 72.39 2.53 1.15 0.50 0.19 0.02 0.00 0.00 0.00
SNN PGD BB 72.39 3.65 2.68 1.89 0.78 0.15 0.02 0.00 0.00
STOD FGSM WB 70.69 34.15 33.56 32.99 32.15 18.79 9.44 3.00 0.71
STOD FGSM BB 70.69 49.44 46.30 44.25 41.96 29.22 17.40 10.22 2.27
STOD PGD WB 70.69 23.42 20.00 17.91 15.02 5.55 0.02 0.00 0.00
STOD PGD BB 70.69 33.60 31.08 28.58 25.90 13.46 2.40 0.46 0.00

ImageNet
SNN FGSM WB 57.84 10.75 8.59 6.73 4.99 1.56 0.14 0.01 0.00
SNN FGSM BB 57.84 12.13 11.43 10.25 8.46 5.42 3.93 1.25 0.35
SNN PGD WB 57.84 1.02 0.48 0.13 0.01 0.00 0.00 0.00 0.00
SNN PGD BB 57.84 9.19 6.05 4.06 3.67 2.02 1.79 0.05 0.00
STOD FGSM WB 53.57 25.10 23.65 21.99 20.93 12.68 6.43 3.65 0.17
STOD FGSM BB 53.57 30.59 27.75 23.64 22.50 17.94 9.61 5.64 2.70
STOD PGD WB 53.57 13.86 11.38 9.71 8.01 4.52 1.36 0.02 0.00
STOD PGD BB 53.57 18.43 15.69 12.23 10.98 7.98 2.29 0.51 0.02

Table 10: Performance of STOD with different time steps and patch sizes. This is detailed experimen-
tal results of Fig. 5.

Attack OK T = 2 T = 4 T = 6 T = 8
p=2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

FGSM
✗ 47.88 51.26 53.51 52.58 45.65 46.14 55.41 55.80 50.54 47.94 49.19 51.27 54.49 52.35 50.02 47.50 51.26 52.95 56.01 53.69
✓ 54.22 56.77 57.06 55.52 51.33 57.43 57.82 59.16 56.62 55.84 55.14 57.10 57.29 58.82 54.83 56.93 57.10 59.74 60.12 59.16

PGD
✗ 19.09 21.92 23.40 21.81 21.72 24.33 32.30 32.97 31.21 24.75 25.32 31.73 36.45 34.89 28.63 25.95 29.56 31.34 32.89 30.40
✓ 22.05 23.40 27.19 26.37 26.52 33.69 34.05 36.72 35.69 35.92 37.63 37.65 39.14 36.80 38.19 36.80 37.11 37.30 36.02 37.08

Table 11: Performance of STOD with different PGD step number. This is detailed experimental
results of Fig. 7.

Dataset K = 7 10 15 20 30 40 50 60 70 80 90 100
CIFAR-10 36.72 35.44 34.98 33.80 32.17 31.59 31.02 30.97 30.95 30.94 30.93 30.93

CIFAR-100 15.02 14.20 13.50 13.09 12.87 12.62 12.59 12.57 12.56 12.56 12.56 12.56
ImageNet 8.01 7.29 6.77 6.20 5.92 5.71 5.65 5.63 5.62 5.62 5.62 5.61
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