
Iteratively Refined Early Interaction Alignment for
Subgraph Matching based Graph Retrieval

Ashwin Ramachandran1∗ Vaibhav Raj2∗ Indrayumna Roy2
Soumen Chakrabarti2 Abir De2

1UC San Diego 2IIT Bombay
ashwinramg@ucsd.edu

{vaibhavraj, indraroy15, soumen, abir}@cse.iitb.ac.in

Abstract

Graph retrieval based on subgraph isomorphism has several real-world applications
such as scene graph retrieval, molecular fingerprint detection and circuit design.
Roy et al. [35] proposed IsoNet, a late interaction model for subgraph matching,
which first computes the node and edge embeddings of each graph independently
of paired graph and then computes a trainable alignment map. Here, we present
IsoNet++, an early interaction graph neural network (GNN), based on several
technical innovations. First, we compute embeddings of all nodes by passing
messages within and across the two input graphs, guided by an injective alignment
between their nodes. Second, we update this alignment in a lazy fashion over
multiple rounds. Within each round, we run a layerwise GNN from scratch, based
on the current state of the alignment. After the completion of one round of GNN,
we use the last-layer embeddings to update the alignments, and proceed to the next
round. Third, IsoNet++ incorporates a novel notion of node-pair partner interaction.
Traditional early interaction computes attention between a node and its potential
partners in the other graph, the attention then controlling messages passed across
graphs. In contrast, we consider node pairs (not single nodes) as potential partners.
Existence of an edge between the nodes in one graph and non-existence in the other
provide vital signals for refining the alignment. Our experiments on several datasets
show that the alignments get progressively refined with successive rounds, resulting
in significantly better retrieval performance than existing methods. We demonstrate
that all three innovations contribute to the enhanced accuracy. Our code and
datasets are publicly available at https://github.com/structlearning/isonetpp.

1 Introduction
In graph retrieval based on subgraph isomorphism, the goal is to identify a subset of graphs from
a corpus, denoted {Gc}, wherein each retrieved graph contains a subgraph isomorphic to a given
query graph Gq. Numerous real-life applications, e.g., molecular fingerprint detection [6], scene
graph retrieval [16], circuit design [29] and frequent subgraph mining [43], can be formulated using
subgraph isomorphism. Akin to other retrieval systems, the key challenge is to efficiently score
corpus graphs against queries.

Recent work on neural graph retrieval [1, 2, 11, 22, 23, 35, 31, 46] has shown significant promise.
Among them, Lou et al. [23, Neuromatch] and Roy et al. [35, IsoNet] focus specifically on subgraph
isomorphism. They employ graph neural networks (GNNs) to obtain embeddings of query and corpus
graphs and compute the relevance score using a form of order embedding [39]. In addition, IsoNet
also approximates an injective alignment between the query and corpus graphs. These two models
operate in a late interaction paradigm, where the representations of the query and corpus graphs are

*Equal contribution. Ashwin Ramachandran did this work while at IIT Bombay.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/structlearning/isonetpp

computed independent of each other. In contrast, GMN [22] is a powerful early interaction network
for graph matching, where GNNs running on Gq and Gc interact with each other at every layer.

Conventional wisdom suggests that early interaction is more accurate (even if slower) than late
interaction, but GMN was outperformed by IsoNet. This is because of the following reasons.
(1) GMN does not explicitly infer any alignment between Gq and Gc. The graphs are encoded by two
GNNs that interact with each other at every layer, mediated by attentions from each node in one graph
on nodes in the other. These attentions are functions of node embeddings, so they change from layer
to layer. While these attentions may be interpreted as approximate alignments, they induce at best
non-injective mappings between nodes. (2) In principle, one wishes to propose a consistent alignment
across all layers. However, GMN’s attention based ‘alignment’ is updated in every layer. (3) GMN
uses a standard GNN that is known to be an over-smoother [36, 40]. Due to this, the attention weights
(which depend on the over-smoothed node representations) also suffer from oversmoothing. These
limitations raise the possibility of a third approach based on early interaction networks, enabled with
explicit alignment structures, that have the potential to outperform both GMN and IsoNet.

1.1 Our contributions

We present IsoNet++, an early interaction network for subgraph matching that maintains a chain of
explicit, iteratively refined, injective, approximate alignments between the two graphs.

Early interaction GNNs with alignment refinement We design early interaction networks for
scoring graph pairs, that ensure the node embeddings of one graph are influenced by both its paired
graph and the alignment map between them. In contrast to existing works, we model alignments
as an explicit “data structure”. An alignment can be defined between either nodes or edges, thus
leading to two variants of our model: IsoNet++ (Node) and IsoNet++ (Edge). Within IsoNet++, we
maintain a sequence of such alignments and refine them using GNNs acting on the two graphs. These
alignments mediate the interaction between the two GNNs. In our work, we realize the alignment as
a doubly stochastic approximation to a permutation matrix, which is an injective mapping by design.

Eager or lazy alignment updates In our work, we view the updates to the alignment maps as a
form of gradient-based updates in a specific quadratic assignment problem or asymmetric Gromov-
Wasserstein (GW) distance minimization [30, 41]. The general form of IsoNet++ allows updates
that proceed lockstep with GNN layers (eager layer-wise updates), but it also allows lazy updates.
Specifically, IsoNet++ can perform T rounds of updates to the alignment, each round including K
layers of GNN message passing. During each round, the alignment is held fixed across all propagation
layers in GNN. At the end of each round, we update the alignment by feeding the node embeddings
into a neural Gumbel-Sinkhorn soft permutation generator [10, 26, 37].

Node-pair partner interaction between graphs The existing remedies to counter oversmoothing [8,
33, 40] entail extra computation; but they may be expensive in an early-interaction setting. Existing
early interaction models like [22] perform node partner interaction; interactions are constrained to
occur between a node and it’s partner, the node in the paired graph aligned with it. Instead, we
perform node-pair partner interaction; the interaction is expanded to include the node-pairs (or edges)
in the paired graph that correspond to node-pairs containing the node. Consequently, the embedding
of a node not only depends on nodes in the paired graph that align with it, but also captures signals
from nodes in the paired graph that are aligned with its neighbors.

Experiments The design components of IsoNet++ and their implications are subtle — we report on
extensive experiments that tease out their effects. Our experiments on real world datasets show that,
IsoNet++ outperforms several state-of-the-art methods for graph retrieval by a substantial margin.
Moreover, our results suggest that capturing information directly from node-pair partners can improve
representation learning, as compared to taking information only from node partner.

2 Preliminaries

Notation Given graph G = (V,E), we use nbr(u) to denote the neighbors of a node u ∈ V . We
use u→ v to indicate a message flow from node u to node v. Given a set of corpus graphs C = {Gc}
and a query graph Gq , we denote y(Gc |Gq) as the binary relevance label of Gc for Gq . Motivated by
several real life applications like substructure search in molecular graphs [12], object search in scene
graphs [16], and text entailment [20], we consider subgraph isomorphism to significantly influence
the relevance label, similar to previous works [23, 35]. Specifically, y(Gc |Gq) = 1 when Gq is a

2

subgraph of Gc, and 0 otherwise. We define Cq+ ⊆ C as the set of corpus graphs that are relevant
to Gq and set Cq− = C\Cq+. Mildly overloading notation, we use P to indicate a ‘hard’ (0/1)
permutation matrix or its ‘soft’ doubly-stochastic relaxation. Bn denotes the set of all n× n doubly
stochastic matrices, and Πn denotes the set of all n× n permutation matrices.

IsoNet [35] Given a graph G = (V,E), IsoNet uses a GNN, which initializes node representations
{h0(u) : u ∈ V } using node-local features. Then, messages are passed between neighboring nodes
in K propagation layers. In the kth layer, a node u receives messages from its neighbors, aggregates
them, and then combines the result with its state after the (k − 1)th layer:

hk(u) = combθ
(
hk−1(u),

∑
v∈nbr(u) {msgθ(hk−1(u),hk−1(v))}

)
. (1)

Here, msgθ(·) and combθ(·, ·) are suitable networks with parameters collectively called θ. Edges
may also be featurized and influence the messages that are aggregated [24]. The node representations
at the final propagation layer K can be collected into the matrix H = {hK(u) |u ∈ V }. Given a
node u ∈ Gq and a node u′ ∈ Gc, we denote the embeddings of u and u′ after the propagation layer
k as h(q)

k (u) and h
(c)
k (u′) respectively. H(q) and H(c) denote the Kth-layer node embeddings of Gq

and Gc, collected into matrices. Note that, here the set of vectors H(q) and H(c) do not dependent
on Gc and Gq. In the end, IsoNet compares these embeddings to compute the distance ∆(Gc |Gq),
which is inversely related to ŷ(Gc |Gq).

∆(Gc |Gq) =
∑

u,i ReLU[H(c) − PH(q)][u, i] (2)

Since subgraph isomorphism entails an asymmetric relevance, we have: ∆(Gc |Gq) ̸= ∆(Gq |Gc).
IsoNet also proposed another design of ∆, where it replaces the node embeddings with edge embed-
dings and node alignment matrix with edge alignment matrix in Eq. (2).

In an early interaction network, H(q) depends on Gc and H(c) depends on Gq for any given (Gq, Gc)

pair. Formally, one should write H(q | c) and H(c | q) instead of H(q) and H(c) respectively for an
early interaction network, but for simplicity, we will continue using H(q) and H(c).

Our goal Given a set of corpus graphs C = {Gc | c ∈ [|C|]}, our high-level goal is to build a graph
retrieval model so that, given a query Gq , it can return the corpus graphs {Gc} which are relevant to
Gq . To that end, we seek to develop (1) a GNN-based early interaction model, and (2) an appropriate
distance measure ∆(· | ·), so that ∆(H(c) |H(q)) is an accurate predictor of y(Gc |Gq), at least to
the extent that ∆(·|·) is effective for ranking candidate corpus graphs in response to a query graph.

3 Proposed early-interaction GNN with multi-round alignment refinement
In this section, we first write down the subgraph isomorphism task as an instance of the quadratic
assignment problem (QAP) or the Gromov-Wasserstein (GW) distance optimization task. Then, we
design IsoNet++, by building upon this formulation.

3.1 Subgraph isomorphism as Gromov-Wasserstein distance optimization

QAP or GW formulation with asymmetric cost We are given a graph pair Gq and Gc padded
with appropriate number of nodes to ensure |Vq| = |Vc| = n (say). Let their adjacency matrices be
Aq,Ac ∈ {0, 1}n×n. Consider the family of hard permutation matrices P ∈ Πn where P [u, u′] = 1
indicates u ∈ Vq is “matched” to u′ ∈ Vc. Then, Gq is a subgraph of Gc, if for some permutation
matrix P , the matrix Aq is covered by PAcP

⊤, i.e., for each pair (u, v), whenever we have
Aq[u, v] = 1, we will also have PAcP

⊤[u, v] = 1. This condition can be written as Aq ≤ PAcP
⊤.

We can regard a deficit in coverage as a cost or distance:

cost(P ;Aq,Ac) =
∑

u∈[n],v∈[n]

[(
Aq − PAcP

⊤)
+

]
[u, v] (3)

=
∑

u,v∈[n]

∑
u′,v′∈[n](Aq[u, v]−Ac[u

′, v′])+ P [u, u′] P [v, v′] (4)

Here, [·]+ = max {·, 0} is the ReLU function, applied elementwise. The function cost(P ;Aq,Ac)
can be driven down to zero using a suitable choice of P iff Gq is a subgraph of Gc. This naturally
suggests the relevance distance

∆(Gc |Gq) = min
P∈Πn

cost(P ;Aq,Ac) (5)

Xu et al. [41] demonstrate that this QAP is a realization of the Gromov-Wassterstein distance
minimization in a graph setting.

3

NodeAlignerRefinement ,
EdgeAlignerRefinement

EarlyInteractionGNN = (comb , msg , Inter)

(a) Pipeline of EinsMatch

 GNN layers of
round

 GNN layers of round

Alignment Refined
alignment

Last round

)

(b) Node pair partner interaction in EinsMatch-Node

(c) Node pair partner interaction in EinsMatch-Edge(1) Pipeline of IsoNet++

(2) Node pair partner interaction in IsoNet++ (Node)

(3) Node pair partner interaction in IsoNet++ (Edge)

Figure 1: Overview of IsoNet++. Panel (a) shows the pipeline of IsoNet++. Given a graph pair
(Gq, Gc), we execute T rounds, each consisting of K GNN layer propagations. After a round t,
we use the node embeddings to update the node alignment P = Pt from its previous estimate
P = Pt−1. Within each round t ∈ [T], we compute the node embeddings of Gq by gathering signals
from Gc and vice-versa, using GNN embeddings in the previous round and the node-alignment map
Pt. The alignment Pt remains consistent across all propagation layers k ∈ [K] and is updated at
the end of round t. Panel (b) shows our proposed node pair partner interaction in IsoNet++ (Node).
When computing the message value of the node pair (u, v), we also feed the node embeddings of the
partners u′ and v′ in addition to the embeddings of the pairs (u, v), where u′ and v′ is approximately
aligned with u and v, respectively (when converted to soft alignment, u′, v′ need not be neighbors).
Panel (c) shows the node pair partner interaction in IsoNet++ (Edge). In contrast to IsoNet++ (Node),
here we feed the information from the message value of the partner pair (u′, v′) instead of their node
embeddings into the message passing network msgθ.

Updating P with projected gradient descent As shown in Benamou et al. [3], Peyré et al. [30], Xu
et al. [41], one approach is to first relax P into a doubly stochastic matrix, which serves as a continuous
approximation of the discrete permutation, and then update it using projected gradient descent (PGD).
Here, the soft permutation Pt−1 is updated to Pt at time-step t by solving the following linear optimal
transport (OT) problem, regularized with the entropy of {P [u, v] |u, v ∈ [n]} with a temperature τ .

Pt ← argmin
P∈Bn

Trace
(
P⊤∇P cost(P ;Aq,Ac)

∣∣
P=Pt−1

)
+ τ

∑

u,v

P [u, v] · logP [u, v]. (6)

Such an OT problem is solved using the iterative Sinkhorn-Knopp algorithm [10, 37, 26]. Similar to
other combinatorial optimization problems on graphs, a QAP (4) does not capture the coverage cost in
the presence of dense node or edge features, where two nodes or edges may exhibit graded degrees of
similarity represented by continuous values. Furthermore, the binary values of the adjacency matrices
result in inadequate gradient signals in ∇P cost(·). Additionally, the computational bottleneck of
solving a fresh OT problem in each PGD step introduces a significant overhead, especially given the
large number of pairwise evaluations required in typical learning-to-rank setups.

3.2 Design of IsoNet++ (Node)

Building upon the insights from the above GW minimization (3) and the successive refinement
step (6), we build IsoNet++ (Node), the first variant of our proposed early interaction model.

Node-pair partner interactions between graphs For simpler exposition, we begin by describing a
synthetic scenario, where P is a hard node permutation matrix, which induces the alignment map as
a bijection π : Vq → Vc, so that π(a) = b if P [a, b] = 1. We first initialize layer k = 0 embeddings
as h

(q)
0 (u) = Initθ(feature(u)) using a neural network Initθ. (Throughout, h(c)

k (u) are treated
likewise.) Under the given alignment map π, a simple early interaction model would update the node
embeddings as follows:

h
(q)
k+1(u) = combθ

(
h
(q)
k (u),

∑
v∈nbr(u) msgθ(h

(q)
k (u),h

(q)
k (v)), h

(c)
k (π(u))

)
(7)

In the above expression, the update layer uses representation of the partner node u′ ∈ Vc during
the message passing step, to compute h

(q)
k+1(u), the embedding of node u ∈ Vq. Li et al. [22] use

a similar update protocol, by approximating h
(c)
k (π(u)) =

∑
u′∈Vc

a
(k)
u′→uh

(c)
k (u′), where a

(k)
u′→u is

the kth layer attention from u ∈ Vq to potential partner u′ ∈ Vc, with
∑

u′∈Vc
a
(k)
u′→u = 1. Instead

4

<latexit sha1_base64="/qdjg2SQNotLgVMlnpJJhtoLqDA=">AAAB+XicbVBNS8NAEJ34WetX1KOXxSLUS0lE0WPRi8cK9gPaGDbbTbt0s4m7m0IJ+SdePCji1X/izX/jts1BWx8MPN6bYWZekHCmtON8Wyura+sbm6Wt8vbO7t6+fXDYUnEqCW2SmMeyE2BFORO0qZnmtJNIiqOA03Ywup367TGVisXiQU8S6kV4IFjICNZG8m27l0RBNswfs+rTWY78kW9XnJozA1ombkEqUKDh21+9fkzSiApNOFaq6zqJ9jIsNSOc5uVeqmiCyQgPaNdQgSOqvGx2eY5OjdJHYSxNCY1m6u+JDEdKTaLAdEZYD9WiNxX/87qpDq+9jIkk1VSQ+aIw5UjHaBoD6jNJieYTQzCRzNyKyBBLTLQJq2xCcBdfXiat85p7WXPuLyr1myKOEhzDCVTBhSuowx00oAkExvAMr/BmZdaL9W59zFtXrGLmCP7A+vwBF2STTA==</latexit>

hhh
(q)
k

<latexit sha1_base64="d3zOlXeYXKvneAI5yGLCWZNNK/o=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LBahXkoiih6LXjxWsB/QxrDZbtqlm03Y3RRKyD/x4kERr/4Tb/4bt20O2vpg4PHeDDPzgoQzpR3n2yqtrW9sbpW3Kzu7e/sH9uFRW8WpJLRFYh7LboAV5UzQlmaa024iKY4CTjvB+G7mdyZUKhaLRz1NqBfhoWAhI1gbybftfhIF2Sh/ymrkPEf+2LerTt2ZA60StyBVKND07a/+ICZpRIUmHCvVc51EexmWmhFO80o/VTTBZIyHtGeowBFVXja/PEdnRhmgMJamhEZz9fdEhiOlplFgOiOsR2rZm4n/eb1UhzdexkSSairIYlGYcqRjNIsBDZikRPOpIZhIZm5FZIQlJtqEVTEhuMsvr5L2Rd29qjsPl9XGbRFHGU7gFGrgwjU04B6a0AICE3iGV3izMuvFerc+Fq0lq5g5hj+wPn8AAeaTPg==</latexit>

hhh
(c)
k

<latexit sha1_base64="hx6MjUm8kDDpn/hj6yPREzIx5Cw=">AAAB/XicbVDLSgMxFM34rPU1PnZugqXgqsyIosuiG5cV7APaUjLpbRuamQzJHbEOxV9x40IRt/6HO//GtJ2Fth64cDjnXnJyglgKg5737Swtr6yurec28ptb2zu77t5+zahEc6hyJZVuBMyAFBFUUaCERqyBhYGEejC8nvj1e9BGqOgORzG0Q9aPRE9whlbquIcthAdMuQqDcSdt4QCQjTtuwSt5U9BF4mekQDJUOu5Xq6t4EkKEXDJjmr4XYztlGgWXMM63EgMx40PWh6alEQvBtNNp+jEtWqVLe0rbiZBO1d8XKQuNGdl8tBgyHJh5byL+5zUT7F22UxHFCULEZw/1EklR0UkVtCs0cJQjSxjXwmalfMA042gLy9sS/PkvL5Laack/L3m3Z4XyVVZHjhyRY3JCfHJByuSGVEiVcPJInskreXOenBfn3fmYrS452c0B+QPn8wegbJX6</latexit>

comb✓

<latexit sha1_base64="+44gyQCluYWd/yaPaWblgKfeY/4=">AAAB/HicbVBNS8NAEN34WetXtEcvwSJ4Kokoeix68VjBfkAbwmY7aZduPtidiCHEv+LFgyJe/SHe/Ddu2xy09cHA470ZZub5ieAKbfvbWFldW9/YrGxVt3d29/bNg8OOilPJoM1iEcueTxUIHkEbOQroJRJo6Avo+pObqd99AKl4HN1jloAb0lHEA84oaskzawOER8xDNSq8fIBjQFp4Zt1u2DNYy8QpSZ2UaHnm12AYszSECJmgSvUdO0E3pxI5E1BUB6mChLIJHUFf04iGoNx8dnxhnWhlaAWx1BWhNVN/T+Q0VCoLfd0ZUhyrRW8q/uf1Uwyu3JxHSYoQsfmiIBUWxtY0CWvIJTAUmSaUSa5vtdiYSspQ51XVITiLLy+TzlnDuWjYd+f15nUZR4UckWNyShxySZrklrRImzCSkWfySt6MJ+PFeDc+5q0rRjlTI39gfP4A64eVlg==</latexit>msg✓
<latexit sha1_base64="qS2M+gg/3mdB/GBb+ladZHPguGI=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKosegF48RzAOSJcxOZpMhM7PLPISw5Be8eFDEqz/kzb9xNtmDJhY0FFXddHdFKWfa+P63V1pb39jcKm9Xdnb39g+qh0dtnVhFaIskPFHdCGvKmaQtwwyn3VRRLCJOO9HkLvc7T1RplshHM01pKPBIspgRbHKpr60YVGt+3Z8DrZKgIDUo0BxUv/rDhFhBpSEca90L/NSEGVaGEU5nlb7VNMVkgke056jEguowm986Q2dOGaI4Ua6kQXP190SGhdZTEblOgc1YL3u5+J/Xsya+CTMmU2uoJItFseXIJCh/HA2ZosTwqSOYKOZuRWSMFSbGxVNxIQTLL6+S9kU9uKr7D5e1xm0RRxlO4BTOIYBraMA9NKEFBMbwDK/w5gnvxXv3PhatJa+YOYY/8D5/ADM9jlc=</latexit>X

(a) No Interaction
(IsoNet)

<latexit sha1_base64="/qdjg2SQNotLgVMlnpJJhtoLqDA=">AAAB+XicbVBNS8NAEJ34WetX1KOXxSLUS0lE0WPRi8cK9gPaGDbbTbt0s4m7m0IJ+SdePCji1X/izX/jts1BWx8MPN6bYWZekHCmtON8Wyura+sbm6Wt8vbO7t6+fXDYUnEqCW2SmMeyE2BFORO0qZnmtJNIiqOA03Ywup367TGVisXiQU8S6kV4IFjICNZG8m27l0RBNswfs+rTWY78kW9XnJozA1ombkEqUKDh21+9fkzSiApNOFaq6zqJ9jIsNSOc5uVeqmiCyQgPaNdQgSOqvGx2eY5OjdJHYSxNCY1m6u+JDEdKTaLAdEZYD9WiNxX/87qpDq+9jIkk1VSQ+aIw5UjHaBoD6jNJieYTQzCRzNyKyBBLTLQJq2xCcBdfXiat85p7WXPuLyr1myKOEhzDCVTBhSuowx00oAkExvAMr/BmZdaL9W59zFtXrGLmCP7A+vwBF2STTA==</latexit>

hhh
(q)
k

<latexit sha1_base64="d3zOlXeYXKvneAI5yGLCWZNNK/o=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LBahXkoiih6LXjxWsB/QxrDZbtqlm03Y3RRKyD/x4kERr/4Tb/4bt20O2vpg4PHeDDPzgoQzpR3n2yqtrW9sbpW3Kzu7e/sH9uFRW8WpJLRFYh7LboAV5UzQlmaa024iKY4CTjvB+G7mdyZUKhaLRz1NqBfhoWAhI1gbybftfhIF2Sh/ymrkPEf+2LerTt2ZA60StyBVKND07a/+ICZpRIUmHCvVc51EexmWmhFO80o/VTTBZIyHtGeowBFVXja/PEdnRhmgMJamhEZz9fdEhiOlplFgOiOsR2rZm4n/eb1UhzdexkSSairIYlGYcqRjNIsBDZikRPOpIZhIZm5FZIQlJtqEVTEhuMsvr5L2Rd29qjsPl9XGbRFHGU7gFGrgwjU04B6a0AICE3iGV3izMuvFerc+Fq0lq5g5hj+wPn8AAeaTPg==</latexit>

hhh
(c)
k

<latexit sha1_base64="hx6MjUm8kDDpn/hj6yPREzIx5Cw=">AAAB/XicbVDLSgMxFM34rPU1PnZugqXgqsyIosuiG5cV7APaUjLpbRuamQzJHbEOxV9x40IRt/6HO//GtJ2Fth64cDjnXnJyglgKg5737Swtr6yurec28ptb2zu77t5+zahEc6hyJZVuBMyAFBFUUaCERqyBhYGEejC8nvj1e9BGqOgORzG0Q9aPRE9whlbquIcthAdMuQqDcSdt4QCQjTtuwSt5U9BF4mekQDJUOu5Xq6t4EkKEXDJjmr4XYztlGgWXMM63EgMx40PWh6alEQvBtNNp+jEtWqVLe0rbiZBO1d8XKQuNGdl8tBgyHJh5byL+5zUT7F22UxHFCULEZw/1EklR0UkVtCs0cJQjSxjXwmalfMA042gLy9sS/PkvL5Laack/L3m3Z4XyVVZHjhyRY3JCfHJByuSGVEiVcPJInskreXOenBfn3fmYrS452c0B+QPn8wegbJX6</latexit>

comb✓

<latexit sha1_base64="+44gyQCluYWd/yaPaWblgKfeY/4=">AAAB/HicbVBNS8NAEN34WetXtEcvwSJ4Kokoeix68VjBfkAbwmY7aZduPtidiCHEv+LFgyJe/SHe/Ddu2xy09cHA470ZZub5ieAKbfvbWFldW9/YrGxVt3d29/bNg8OOilPJoM1iEcueTxUIHkEbOQroJRJo6Avo+pObqd99AKl4HN1jloAb0lHEA84oaskzawOER8xDNSq8fIBjQFp4Zt1u2DNYy8QpSZ2UaHnm12AYszSECJmgSvUdO0E3pxI5E1BUB6mChLIJHUFf04iGoNx8dnxhnWhlaAWx1BWhNVN/T+Q0VCoLfd0ZUhyrRW8q/uf1Uwyu3JxHSYoQsfmiIBUWxtY0CWvIJTAUmSaUSa5vtdiYSspQ51XVITiLLy+TzlnDuWjYd+f15nUZR4UckWNyShxySZrklrRImzCSkWfySt6MJ+PFeDc+5q0rRjlTI39gfP4A64eVlg==</latexit>msg✓
<latexit sha1_base64="qS2M+gg/3mdB/GBb+ladZHPguGI=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKosegF48RzAOSJcxOZpMhM7PLPISw5Be8eFDEqz/kzb9xNtmDJhY0FFXddHdFKWfa+P63V1pb39jcKm9Xdnb39g+qh0dtnVhFaIskPFHdCGvKmaQtwwyn3VRRLCJOO9HkLvc7T1RplshHM01pKPBIspgRbHKpr60YVGt+3Z8DrZKgIDUo0BxUv/rDhFhBpSEca90L/NSEGVaGEU5nlb7VNMVkgke056jEguowm986Q2dOGaI4Ua6kQXP190SGhdZTEblOgc1YL3u5+J/Xsya+CTMmU2uoJItFseXIJCh/HA2ZosTwqSOYKOZuRWSMFSbGxVNxIQTLL6+S9kU9uKr7D5e1xm0RRxlO4BTOIYBraMA9NKEFBMbwDK/w5gnvxXv3PhatJa+YOYY/8D5/ADM9jlc=</latexit>X

(b) Node Pair Interaction
(GMN)

<latexit sha1_base64="/qdjg2SQNotLgVMlnpJJhtoLqDA=">AAAB+XicbVBNS8NAEJ34WetX1KOXxSLUS0lE0WPRi8cK9gPaGDbbTbt0s4m7m0IJ+SdePCji1X/izX/jts1BWx8MPN6bYWZekHCmtON8Wyura+sbm6Wt8vbO7t6+fXDYUnEqCW2SmMeyE2BFORO0qZnmtJNIiqOA03Ywup367TGVisXiQU8S6kV4IFjICNZG8m27l0RBNswfs+rTWY78kW9XnJozA1ombkEqUKDh21+9fkzSiApNOFaq6zqJ9jIsNSOc5uVeqmiCyQgPaNdQgSOqvGx2eY5OjdJHYSxNCY1m6u+JDEdKTaLAdEZYD9WiNxX/87qpDq+9jIkk1VSQ+aIw5UjHaBoD6jNJieYTQzCRzNyKyBBLTLQJq2xCcBdfXiat85p7WXPuLyr1myKOEhzDCVTBhSuowx00oAkExvAMr/BmZdaL9W59zFtXrGLmCP7A+vwBF2STTA==</latexit>

hhh
(q)
k

<latexit sha1_base64="d3zOlXeYXKvneAI5yGLCWZNNK/o=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LBahXkoiih6LXjxWsB/QxrDZbtqlm03Y3RRKyD/x4kERr/4Tb/4bt20O2vpg4PHeDDPzgoQzpR3n2yqtrW9sbpW3Kzu7e/sH9uFRW8WpJLRFYh7LboAV5UzQlmaa024iKY4CTjvB+G7mdyZUKhaLRz1NqBfhoWAhI1gbybftfhIF2Sh/ymrkPEf+2LerTt2ZA60StyBVKND07a/+ICZpRIUmHCvVc51EexmWmhFO80o/VTTBZIyHtGeowBFVXja/PEdnRhmgMJamhEZz9fdEhiOlplFgOiOsR2rZm4n/eb1UhzdexkSSairIYlGYcqRjNIsBDZikRPOpIZhIZm5FZIQlJtqEVTEhuMsvr5L2Rd29qjsPl9XGbRFHGU7gFGrgwjU04B6a0AICE3iGV3izMuvFerc+Fq0lq5g5hj+wPn8AAeaTPg==</latexit>

hhh
(c)
k

<latexit sha1_base64="hx6MjUm8kDDpn/hj6yPREzIx5Cw=">AAAB/XicbVDLSgMxFM34rPU1PnZugqXgqsyIosuiG5cV7APaUjLpbRuamQzJHbEOxV9x40IRt/6HO//GtJ2Fth64cDjnXnJyglgKg5737Swtr6yurec28ptb2zu77t5+zahEc6hyJZVuBMyAFBFUUaCERqyBhYGEejC8nvj1e9BGqOgORzG0Q9aPRE9whlbquIcthAdMuQqDcSdt4QCQjTtuwSt5U9BF4mekQDJUOu5Xq6t4EkKEXDJjmr4XYztlGgWXMM63EgMx40PWh6alEQvBtNNp+jEtWqVLe0rbiZBO1d8XKQuNGdl8tBgyHJh5byL+5zUT7F22UxHFCULEZw/1EklR0UkVtCs0cJQjSxjXwmalfMA042gLy9sS/PkvL5Laack/L3m3Z4XyVVZHjhyRY3JCfHJByuSGVEiVcPJInskreXOenBfn3fmYrS452c0B+QPn8wegbJX6</latexit>

comb✓

<latexit sha1_base64="+44gyQCluYWd/yaPaWblgKfeY/4=">AAAB/HicbVBNS8NAEN34WetXtEcvwSJ4Kokoeix68VjBfkAbwmY7aZduPtidiCHEv+LFgyJe/SHe/Ddu2xy09cHA470ZZub5ieAKbfvbWFldW9/YrGxVt3d29/bNg8OOilPJoM1iEcueTxUIHkEbOQroJRJo6Avo+pObqd99AKl4HN1jloAb0lHEA84oaskzawOER8xDNSq8fIBjQFp4Zt1u2DNYy8QpSZ2UaHnm12AYszSECJmgSvUdO0E3pxI5E1BUB6mChLIJHUFf04iGoNx8dnxhnWhlaAWx1BWhNVN/T+Q0VCoLfd0ZUhyrRW8q/uf1Uwyu3JxHSYoQsfmiIBUWxtY0CWvIJTAUmSaUSa5vtdiYSspQ51XVITiLLy+TzlnDuWjYd+f15nUZR4UckWNyShxySZrklrRImzCSkWfySt6MJ+PFeDc+5q0rRjlTI39gfP4A64eVlg==</latexit>msg✓
<latexit sha1_base64="qS2M+gg/3mdB/GBb+ladZHPguGI=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKosegF48RzAOSJcxOZpMhM7PLPISw5Be8eFDEqz/kzb9xNtmDJhY0FFXddHdFKWfa+P63V1pb39jcKm9Xdnb39g+qh0dtnVhFaIskPFHdCGvKmaQtwwyn3VRRLCJOO9HkLvc7T1RplshHM01pKPBIspgRbHKpr60YVGt+3Z8DrZKgIDUo0BxUv/rDhFhBpSEca90L/NSEGVaGEU5nlb7VNMVkgke056jEguowm986Q2dOGaI4Ua6kQXP190SGhdZTEblOgc1YL3u5+J/Xsya+CTMmU2uoJItFseXIJCh/HA2ZosTwqSOYKOZuRWSMFSbGxVNxIQTLL6+S9kU9uKr7D5e1xm0RRxlO4BTOIYBraMA9NKEFBMbwDK/w5gnvxXv3PhatJa+YOYY/8D5/ADM9jlc=</latexit>X

<latexit sha1_base64="LWamVb/BkL06ijRGZDI20n1v6tA=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJS7AInkoiih6LXjxWsLXQhLDZTtqlmw92J2IJAf+KFw+KePV3ePPfuG1z0NYHA4/3ZpiZF6SCK7Ttb6OytLyyulZdr21sbm3vmLt7HZVkkkGbJSKR3YAqEDyGNnIU0E0l0CgQcB+Mrif+/QNIxZP4DscpeBEdxDzkjKKWfPPARXjEnMcIsvBzF4eAtPDNut2wp7AWiVOSOinR8s0vt5+wLIIYmaBK9Rw7RS+nEjkTUNTcTEFK2YgOoKdpTCNQXj49v7COtdK3wkTqitGaqr8nchopNY4C3RlRHKp5byL+5/UyDC89/VuaIcRstijMhIWJNcnC6nMJDMVYE8ok17dabEglZToMVdMhOPMvL5LOacM5b9i3Z/XmVRlHlRySI3JCHHJBmuSGtEibMJKTZ/JK3own48V4Nz5mrRWjnNknf2B8/gCSlZaF</latexit>

inter✓

(c) Node Pair Partner
Interaction (IsoNet++)

Figure 2: Illustration of the three interaction modes. IsoNet has no/late interaction between h(q) and
h(c). IsoNet++ and GMN allow interaction between the representations of the query and corpus
nodes. Under node pair interaction, the individual node embeddings h(q) are used for message
passing directly, thereby exposing them only to their neighbors. In the corresponding combθ step,
nodes interact only with their respective partners, therefore missing out on information from the
partners of its neighbors. However, under node pair partner interaction, the representation of a
node is combined with that of its partner(s) first, using the interθ block to obtain z(q) (12), which is
used for message passing. Thus, when interacting with its neighbors, a node also gets information
from the partners of its neighbors.

of regarding only nodes as potential partners, IsoNet++ will regard node pairs as partners. Given
(u, v) ∈ Eq , the partners (π(u), π(v)) ∈ Ec should then greatly influence the intensity of assimilation
of h(c)

k (u′) into h
(c)
k+1(u). The first key innovation in IsoNet++ is to replace (7) to recognize and

implement this insight:

h
(q)
k+1(u) = combθ

(
[h

(q)
k (u),h

(c)
k (π(u))],

∑
v∈nbr(u) msgθ

(
[h

(q)
k (u),h

(c)
k (π(u))], [h

(q)
k (v),h

(c)
k (π(v))]

))
(8)

Embeddings h(c)
k+1(u

′) for nodes u′ ∈ Vc are updated likewise in a symmetric manner. The network

msgθ is provided embeddings from partners π(u), π(v) of u, v ∈ Vq — this allows h
(•)
k+1(u) to

capture information from all nodes in the paired graph, that match with the (k + 1)-hop neighbors
of u. We schematically illustrate the interaction between the paired graphs in IsoNet, GMN and
IsoNet++ in Figure 2.

Multi-round lazy refinement of node alignment In reality, we are not given any alignment map π.
This motivates our second key innovation beyond prior models [1, 22, 23, 35], where we decouple
GNN layer propagation from updates to P . To achieve this, IsoNet++ (Node) executes T rounds,
each consisting of K layer propagations in both GNNs. At the end of each round t, we refine the
earlier alignment Pt−1 to the next estimate Pt, which will be used in the next round. Henceforth, we
will use the double subscript t, k instead of the single subscript k as in traditional GNNs. We denote
the node embeddings at layer k and round t by h

(q)
t,k(u),h

(c)
t,k(u

′) ∈ Rdimh for u ∈ Vq and u′ ∈ Vc,
which are (re-)initialized with node features h•

t,0 for each round t. We gather these into matrices

H
(q)
t,k = [h

(q)
t,k(u) |u ∈ Vq] ∈ Rn×dimh and H

(c)
t,k = [h

(c)
t,k(u

′) |u′ ∈ Vc] ∈ Rn×dimh . (9)

P no longer remains an oracular hard permutation matrix, but becomes a doubly stochastic matrix
indexed by rounds, written as Pt. At the end of round t, a differentiable aligner module takes H(q)

t,K

and H
(c)
t,K as inputs and outputs a doubly stochastic node alignment (relaxed permutation) matrix Pt

as follows:
Pt = NodeAlignerRefinementϕ

(
H

(q)
t,K ,H

(c)
t,K

)
(10)

= GumbelSinkhorn
(
LRLϕ(H

(q)
t,K) LRLϕ(H

(c)
t,K)⊤

)
∈ Bn (11)

In the above expression, GumbelSinkhorn(•) performs iterative Sinkhorn normalization on the input
matrix added with Gumbel noise [26]; LRLϕ is a neural module consisting of two linear layers with
a ReLU activation after the first layer. As we shall see next, Pt is used to gate messages flowing
across from one graph to the other during round t+1, i.e., while computing H

(q)
t+1,1:K and H

(c)
t+1,1:K .

The soft alignment Pt is kept frozen for the duration of all layers in round t+ 1. Pt[u, u
′] may be

interpreted as the probability that u is assigned to u′, which naturally requires that Pt should be

5

row-equivariant (column equivariant) to the shuffling of the node indices of Gq (Gc). As shown in
Appendix D, the above design choice (11) ensures this property.

Updating node representation using early-interaction GNN Here, we describe the early in-
teraction GNN for the query graph Gq. The GNN on the corpus graph Gc follows the exact same
design and is deferred to Appendix E.1. In the initial round (t = 1), since there is no prior alignment
estimate Pt=0, we employ the traditional late interaction GNN (1) to compute all layers H(q)

1,1:K and

H
(c)
1,1:K separately. These embeddings are then used to estimate Pt=1 using Eq. (11). For subsequent

rounds (t > 1), given embeddings H(q)
t,1:K , and the alignment estimate matrix Pt, we run an early

interaction GNN from scratch. We start with a fresh initialization of the node embeddings as before;
i.e., h(q)

t+1,0(u) = Initθ(feature(u)). For each subsequent propagation layer k + 1 (k ∈ [0,K − 1]),

we approximate (8) as follows. We read previous-round, same-layer embeddings h(c)
t,k(u

′) of nodes
u′ from the other graph Gc, incorporate the alignment strength Pt[u, u

′], and aggregate these to get
an intermediate representation of u that is sensitive to Pt and Gc.

z
(q)
t+1,k(u) = interθ

(
h
(q)
t+1,k(u),

∑
u′∈Vc

h
(c)
t,k(u

′)Pt[u, u
′]
)

(12)

Here, interθ is a neural network that computes interaction between the graph pairs; z(q)
t+1,k(u) provides

a soft alignment guided representation of [h(q)
k (u),h

(c)
k (π(u))] in Eq. (8), which can be relaxed as:

h
(q)
t+1,k+1(u) = combθ

(
z
(q)
t+1,k(u),

∑
v∈nbr(u) msgθ(z

(q)
t+1,k(u), z

(q)
t+1,k(v))

)
(13)

In the above expression, we explicitly feed z
(q)
t+1,k(v), v ∈ nbr(u) in the msgθ network, capturing

embeddings of nodes in the corpus Gc aligned with the neighbors of node u ∈ Vq in h
(q)
t+1,k+1(u).

This allows the model to perform node-pair partner interaction. Instead, if we were to feed only
h
(q)
t+1,k(u) into the msgθ network, then it would only perform node partner interaction. In this case,

the computed embedding for u would be based solely on signals from nodes in the paired graph that
directly correspond to u, therefore missing additional context from other neighbourhood nodes.

Distant supervision of alignment Finally, at the end of T rounds, we express the relevance
distance ∆(Gc |Gq) as a soft distance between the set H(q)

T,K = [h
(q)
T,K(u) |u ∈ Vq] and H

(c)
T,K =

[h
(c)
T,K(u′) |u′ ∈ Vc], measured as

∆θ,ϕ(Gc |Gq) =
∑

u

∑
d ReLU(H

(q)
T,K [u, d]− (PTH

(c)
T,K)[u, d]) (14)

Our focus is on graph retrieval applications. It is unrealistic to assume direct supervision from a gold
alignment map P ∗. Instead, training query instances are associated with pairwise preferences between
two corpus graphs, in the form ⟨Gq, Gc+, Gc−⟩, meaning that, ideally, we want ∆θ,ϕ(Gc−|Gq) ≥
γ +∆θ,ϕ(Gc+|Gq), where γ > 0 is a margin hyperparameter. This suggests a minimization of the
standard hinge loss as follows:

minθ,ϕ
∑

q∈Q

∑
c+∈Cq+,c−∈Cq−

[γ +∆θ,ϕ(Gc+ |Gq)−∆θ,ϕ(Gc− |Gq)]+ (15)

This loss is back-propagated to train model weights θ in combθ, interθ,msgθ and weights ϕ in the
Gumbel-Sinkhorn network.

Multi-layer eager alignment variant Having set up the general multi-round framework of
IsoNet++, we introduce a structurally simpler variant that updates P eagerly after every layer,
eliminating the need to re-initialize node embeddings every time we update P . The eager variant
retains the benefits of node-pair partner interactions, while ablating IsoNet++ toward GMN. Updating
P via Sinkhorn iterations is expensive compared to a single GNN layer. In practice, we see a
non-trivial tradeoff between computation cost, end task accuracy, and the quality of our injective
alignments, depending on the value of K for eager updates, and the values (T,K) for lazy updates.
Formally, Pk is updated across layers as follows:

Pk = NodeAlignerRefinementϕ
(
H

(q)
k ,H

(c)
k

)
(16)

= GumbelSinkhorn
(
LRLϕ(H

(q)
k) LRLϕ(H

(c)
k)⊤

)
. (17)

6

We update the GNN embeddings, layerwise, as follows:

z
(q)
k (u) = interθ

(
h
(q)
k (u),

∑
u′∈Vc

h
(c)
k (u′)Pk[u, u

′]
)
, (18)

h
(q)
k+1(u) = combθ

(
z
(q)
k (u),

∑
v∈nbr(u) msgθ(z

(q)
k (u), z

(q)
k (v))

)
(19)

Analysis of computational complexity Here, will compare the performance of IsoNet (Node) [35]
with multi-layer IsoNet++ (Node) and multi-round IsoNet++ (Node) for graphs with |V | nodes. For
multi-layer IsoNet++ (Node) and IsoNet (Node), we assume K propagation steps and for multi-round
IsoNet++ (Node), T rounds, each with K propagation steps.

—IsoNet (Node): The total complexity is O(|V |2 +K|E|), computed as follows: (1) Initialization of
layer embeddings at layer k = 0 takes O(|V |) time. (2) The node representation computation incurs
a complexity of O(|E|) for each message passing step since it aggregates node embeddings across all
neighbors. (3) The computation of P takes O(|V |2) time.

—Multi-layer eager IsoNet++ (Node): The total complexity is O(K|V |2 + K|E| + K|V |2) =
O(K|V |2), computed as follows: (1) Initialization (layer k = 0) takes O(|V |) time. (2) The
computation of intermediate embeddings z(•) (Eq. 18) involves the evaluation of the expression∑

u′∈Vc
h
(•)
k (u′)Pk[u, u

′] and hence admits a complexity of O(|V |) for each node per layer. The
total complexity for K steps and |V | nodes is thus O(K|V |2). (3) Next, for each node in every
layer, we compute h

(•)
k+1 (Eq. 19) which gathers messages z(•) from all its neighbors, contributing a

total complexity of O(K|E|). (4) Finally, we update Pk for each layer which has a complexity of
O(K|V |2).
—Multi-round IsoNet++ (Node): Here, the key difference from the multi-layer version above is
that the doubly stochastic matrix Pt from round t is used to compute z and the K-step-GNN runs
in each of the T rounds. This multiplies the complexity of steps 2 and 3 with T , raising it to
O(KT |V |2 +KT |E|). Matrix Pt is updated a total of T times, which changes the complexity of
step 4 to O(T |V |2). Hence, the total complexity is O(KT |V |2 + T |V |2 +KT |E|) = O(KT |V |2).
Hence, the complexity of IsoNet is O(|V |2 +K|E|), multi-layer IsoNet++ is O(K|V |2) and multi-
round IsoNet++ is O(KT |V |2). This increased complexity of the latter comes with the benefit of a
significant performance boost, as our experiments suggest.

3.3 Extension of IsoNet++ (Node) to IsoNet++ (Edge)

We now extend IsoNet++ (Node) to IsoNet++ (Edge) which uses explicit edge alignment for interac-
tion across GNN and relevance distance surrogate.

Multi-round refinement of edge alignment In IsoNet++ (Edge), we maintain a soft edge permuta-
tion matrix S which is frozen at S = St−1 within each round t ∈ [T] and gets refined after every
round t as St−1 → St. Similar to IsoNet++ (Node), within each round t, GNN runs from scratch: it
propagates messages across layers k ∈ [K] and St−1 assists it to capture cross-graph signals. Here, in
addition to node embeddings h(•)

t,k , we also use edge embeddings m(q)
t,k(e), m

(c)
t,k(e

′) ∈ Rdimm at each
layer k and each round t, which capture the information about the subgraph k ≤ K hop away from the
edges e and e′. Similar to Eq. (9), we define M

(q)
t,k = [m

(q)
t,k(e)]e∈Eq

, and M
(c)
t,k = [m

(c)
t,k(e

′)]e′∈Ec
.

M
(•)
t,0 are initialized using the features of the nodes connected by the edges, and possibly local edge

features. Given the embeddings M (q)
t,K and M

(c)
t,K computed at the end of round t, an edge aligner

module (EdgeAlignerRefinementϕ(•)) takes these embedding matrices as input and outputs a soft
edge permutation matrix St, similar to the update of Pt in Eq. (11).

St = EdgeAlignerRefinementϕ
(
M

(q)
t,K ,M

(c)
t,K

)
(20)

= GumbelSinkhorn(LRLϕ(M
(q)
t,K) LRLϕ(M

(c)
t,K)⊤) (21)

Here, M (•)
t,K are appropriately padded to ensure that they have the same number of rows.

Edge alignment-induced early interaction GNN For t = 1, we start with a late interaction model
using vanilla GNN (1) and obtain St=1 using Eq. (21). Having computed the edge embeddings
m

(•)
t,1:K(•) and node embeddings h(•)

t,1:K(•) upto round t, we compute St and use it to build a fresh
early interaction GNN for round t+ 1. To this end, we adapt the GNN guided by Pt in Eqs. (12)–

7

(13),to the GNN guided by St. We overload the notations for neural modules and different embedding
vectors from IsoNet++ (Node), whenever their roles are similar.

Starting with the same initialization as in IsoNet++ (Node), we perform the cross-graph interaction
guided by the soft edge permutation matrix St, similar to Eq. (12). Specifically, we use the embed-
dings of edges {e′ = (u′, v′)} ∈ Ec, computed at layer k at round t, which share soft alignments
with an edge e = (u, v) ∈ Eq , to compute z

(q)
t+1,k(e) and z

(q)
t+1,k(e

′) as follows:

z
(q)
t+1,k(e) = interθ

(
m

(q)
t+1,k(e),

∑
e′∈Ec

m
(c)
t,k(e

′)St[e, e
′]
)

(22)

Finally, we update the node embeddings h(•)
t+1,k+1 for propagation layer k + 1 as

h
(q)
t+1,k+1(u) = combθ

(
h
(q)
t+1,k(u),

∑
a∈nbr(u) msgθ(h

(q)
t+1,k(u),h

(q)
t+1,k(a), z

(q)
t+1,k((u, a)))

)
(23)

In this case, we perform the cross-graph interaction at the edge level rather than the node level. Hence,
msgθ acquires cross-edge signals separately as z(•)

t+1,k. Finally, we use h
(•)
t+1,k+1 and z

(•)
t+1,k+1 to

update m
(•)
t+1,k+1 as follows:

m
(q)
t+1,k+1

(
(u, v)

)
= msgθ

(
h
(q)
t+1,k+1(u),h

(q)
t+1,k+1(v), z

(q)
t+1,k((u, v))

)
(24)

Likewise, we develop m
(c)
t+1,k+1 for corpus graph Gc. Note that m(q)

t+1,k+1((u, v)) captures signals
not only from the matched pair (u′, v′), but also signals from the nodes in Gc which share corre-
spondences with the neighbor nodes of u and v. Finally, we pad zero vectors to [m

(q)
T,K(e)]e∈Eq

and [m
(c)
T,K(e′)]e′∈Ec

to build the matrices M (q)
T,K and M

(c)
T,K with same number of rows, which are

finally used to compute the relevance distance

∆θ,ϕ(Gc |Gq) =
∑

u

∑
d ReLU(M

(q)
T,K [e, d]− (STM

(c)
T,K)[e, d]). (25)

4 Experiments

We report on a comprehensive evaluation of IsoNet++ on six real datasets and analyze the efficacy of
the key novel design choices. In Appendix G, we provide results of additional experiments.

4.1 Experimental setup

Datasets We use six real world datasets in our experiments, viz., AIDS, Mutag, PTC-FM (FM),
PTC-FR (FR), PTC-MM (MM) and PTC-MR (MR), which were also used in [27, 35]. Appendix F
provides the details about dataset generation and their statistics.

State-of-the-art baselines We compare our method against eleven state-of-the-art methods, viz.,
(1) GraphSim [2] (2) GOTSim [11], (3) SimGNN [1], (4) EGSC [31], (5) H2MN [45], (6) Neuro-
match [23], (7) GREED [32], (8) GEN [22], (9) GMN [22] (10) IsoNet (Node) [35], and (11) IsoNet
(Edge) [35]. Among them, Neuromatch, GREED, IsoNet (Node) and IsoNet (Edge) apply asymmetric
hinge distances between query and corpus embeddings for ∆(Gc |Gq), specifically catered towards
subgraph matching, similar to our method in Eqs. (14) and (25). GMN and GEN use symmetric
Euclidean distance between their (whole-) graph embeddings g(q) (for query) and g(c) (for corpus) as
||g(q) − g(c)|| in their paper [22], which is not suitable for subgraph matching and therefore, results
in poor performance. Hence, we change it to ∆(Gc |Gq) = [g(q) − g(c)]+. The other methods first
compute the graph embeddings, then fuse them using a neural network and finally apply a nonlinear
function on the fused embeddings to obtain the relevance score.

Training and evaluation protocol Given a fixed corpus set C, we split the query set Q into 60%
training, 15% validation and 25% test set. We train all the models on the training set by minimizing a
ranking loss (15). During the training of each model, we use five random seeds. Given a test query q′,
we rank the corpus graphs C in the decreasing order of ∆θ,ϕ(Gc |Gq′) computed using the trained
model. We evaluate the quality of the ranking by measuring Average Precision (AP) and HITS@20,
described in Appendix F. Finally, we report mean average precision (MAP) and mean HITS@20,
across all the test queries. By default, we set the number of rounds T = 3, the number of propagation
layers in GNN K = 5. In Appendix F, we discuss the baselines, hyperparameter setup and the
evaluation metrics in more detail.

8

Metrics→ Mean Average Precision (MAP) HITS @ 20
AIDS Mutag FM FR MM MR AIDS Mutag FM FR MM MR

GraphSim [2] 0.356 0.472 0.477 0.423 0.415 0.453 0.145 0.257 0.261 0.227 0.212 0.23
GOTSim [11] 0.324 0.272 0.355 0.373 0.323 0.317 0.112 0.088 0.147 0.166 0.119 0.116
SimGNN [1] 0.341 0.283 0.473 0.341 0.298 0.379 0.138 0.087 0.235 0.155 0.111 0.160
EGSC [31] 0.505 0.476 0.609 0.607 0.586 0.58 0.267 0.243 0.364 0.382 0.348 0.325
H2MN [45] 0.267 0.276 0.436 0.412 0.312 0.243 0.076 0.084 0.200 0.189 0.119 0.069
Neuromatch [23] 0.489 0.576 0.615 0.559 0.519 0.606 0.262 0.376 0.389 0.350 0.282 0.385
GREED [32] 0.472 0.567 0.558 0.512 0.546 0.528 0.245 0.371 0.316 0.287 0.311 0.277
GEN [22] 0.557 0.605 0.661 0.575 0.539 0.631 0.321 0.429 0.448 0.368 0.292 0.391
GMN [22] 0.622 0.710 0.730 0.662 0.655 0.708 0.397 0.544 0.537 0.45 0.423 0.49
IsoNet (Node) [35] 0.659 0.697 0.729 0.68 0.708 0.738 0.438 0.509 0.525 0.475 0.493 0.532
IsoNet (Edge) [35] 0.690 0.706 0.783 0.722 0.753 0.774 0.479 0.529 0.613 0.538 0.571 0.601
IsoNet++ (Node) 0.825 0.851 0.888 0.855 0.838 0.874 0.672 0.732 0.797 0.737 0.702 0.755
IsoNet++ (Edge) 0.847 0.858 0.902 0.875 0.902 0.902 0.705 0.749 0.813 0.769 0.809 0.803

Table 3: Comparison of the two variants of IsoNet++ (IsoNet++ (Node) and IsoNet++ (Edge)) against
all the state-of-the-art graph retrieval methods, across all six datasets. Performance is measured
in terms average precision (MAP) and mean HITS@20. In all cases, we used 60% training, 15%
validation and 25% test sets. The numbers highlighted with green and yellow indicate the best,
second best method respectively, whereas the numbers with blue indicate the best method among
the baselines. (MAP values for IsoNet++ (Edge) across FM, MM and MR were verified to be not
exactly the same, but they match up to the third decimal place.)

AIDS Mutag FM FR MM MR

N
od

e{Eager 0.756 0.81 0.859 0.802 0.827 0.841

Lazy 0.825 0.851 0.888 0.855 0.838 0.874

E
dg

e{Eager 0.795 0.805 0.883 0.812 0.862 0.886

Lazy 0.847 0.858 0.902 0.875 0.902 0.902

Table 4: Lazy multi-round vs. eager multi-layer. First
(Last) two rows report MAP for IsoNet++ (Node)
(IsoNet++ (Edge)). Green shows the best method.

AIDS Mutag FM FR MM MR
L

az
y{Node partner 0.776 0.829 0.851 0.819 0.844 0.84

IsoNet++ (Node) 0.825 0.851 0.888 0.855 0.838 0.874

E
ag

er

{
Node partner 0.668 0.783 0.821 0.752 0.753 0.794

IsoNet++ (Node) 0.756 0.81 0.859 0.802 0.827 0.841

Table 5: Node partner vs. node pair partner interaction.
First (Last) two rows report MAP for multi-round (multi-
layer) update. Green shows the best method.

4.2 Results

Comparison with baselines First, we compare IsoNet++ (Node) and IsoNet++ (Edge) against
all the baselines, across all datasets. In Table 3, we report the results. The key observations are
as follows: (1) IsoNet++ (Node) and IsoNet++ (Edge) outperform all the baselines by significant
margins across all datasets. IsoNet++ (Edge) consistently outperforms IsoNet++ (Node). This is
because edge alignment allows us to compare the graph pairs more effectively than node alignment.
A similar effect was seen for IsoNet (Edge) vs. IsoNet (Node) [35]. (2) Among all state-of-the-art
competitors, IsoNet (Edge) performs the best followed by IsoNet (Node). Similar to us, they also use
edge and node alignments respectively. However, IsoNet does not perform any interaction between
the graph pairs and the alignment is computed once only during the computation of ∆(Gc |Gq). This
results in modest performance compared to IsoNet++. (3) GMN uses “attention” to estimate the
alignment between graph pairs, which induces a non-injective mapping. Therefore, despite being an
early interaction model, it is mostly outperformed by IsoNet, which uses injective alignments.

Lazy vs. eager updates In lazy multi-round updates, the alignment matrices remain unchanged
across all propagation layers and are updated only after the GNN completes its K-layer message
propagations. To evaluate its effectiveness, we compare it against the eager multi-layer update
(described at the end of Section 3.2), where the GNN executes its K-layer message propagations
only once; the alignment map is updated across K layers; and, the alignment at kth layer is used to
compute the embeddings at (k + 1)th layer. In Table 4, we compare the performance in terms MAP,
which shows that lazy multi-round updates significantly outperform multi-layer updates.

Node partner vs. node-pair partner interaction To understand the benefits of node-pair partner
interaction, we contrast IsoNet++ (Node) against another variant of our method, which performs node
partner interaction rather than node pair partner interaction, similar to Eq. (7). For lazy multi-round
updates, we compute the embeddings as follows:

h
(q)
t+1,k+1(u) = combθ(h

(q)
t+1,k(u),

∑
v∈nbr(u) msgθ(h

(q)
t,k(u),h

(q)
t,k(v)),

∑
u′∈Vc

Pt[u, u
′]h

(c)
t,k(u

′))

For eager multi-layer updates, we compute the embeddings as:

h
(q)
k+1(u) = combθ(h

(q)
k (u),

∑
v∈nbr(u) msgθ(h

(q)
k (u),h

(q)
k (v)),

∑
u′∈Vc

Pk[u, u
′]h

(c)
k (u′))

9

0 5 10

Tr(P>t P
∗)→

0.04

0.08

0.12

0.16

0.20

p
(T

r(
P
> t
P
∗)

)
→

AIDS

Multi-Round

t = 1
t = 2
t = 3

0 5 10

Tr(P>k P
∗)→

0.04

0.08

0.12

0.16

0.20

p
(T

r(
P
> k
P
∗)

)
→

AIDS

Multi-Layer

k = 1
k = 2
k = 3
k = 4
k = 5

0 5 10

Tr(S>t S
∗)→

0.04

0.08

0.12

p
(T

r(
S
> t
S
∗)

)
→

AIDS

Multi-Round

t = 1
t = 2
t = 3

0 5 10

Tr(S>k S
∗)→

0.04

0.08

0.12

p
(T

r(
S
> k
S
∗)

)
→

AIDS

Multi-Layer

k = 1
k = 2
k = 3
k = 4
k = 5

Figure 6: Empirical probability density of similarity between the estimated alignments and the
true alignments P ∗,S∗ for both multi-round and multi-layer update strategies across different
stages of updates (t for multi-round and k for multi-layer), for AIDS. Similarity is measured using
p(Tr(P⊤

t P ∗)), p(Tr(S⊤
t S∗)) for multi-round lazy updates and p(Tr(P⊤

k P ∗)), p(Tr(S⊤
k S∗)) for

multi-layer eager updates.

Table 5 summarizes the results, which shows that IsoNet++ (Node) (node partner pair) performs
significantly better than Node partner for both multi-round lazy updates (top-two rows) and multi-layer
eager updates (bottom tow rows).

Quality of injective alignments Next we compare between multi-round and multi-layer update
strategies in terms of their ability to refine the alignment matrices, as the number of updates of these
matrices increases. For multi-round (layer) updates, we instrument the alignments Pt and St (Pk

and Sk) for different rounds t ∈ [T] (layers k ∈ [K]). Specifically, we look into the distribution
of the similarity between the learned alignments Pt,St and the correct alignments P ∗,S∗ (using
combinatorial routine), measured using the inner products Tr(P⊤

t P ∗) and Tr(S⊤
t S∗) for different

t. Similarly, we compute Tr(P⊤
k P ∗) and Tr(S⊤

k S∗) for different k ∈ [K]. Figure 6 summarizes
the results, which shows that (1) as t or k increases, the learned alignments become closer to the
gold alignments; (2) multi-round updates refine the alignments approximately twice as faster than
the multi-layer variant. The distribution of Tr(P⊤

t P ∗) at t = 1 in multi-round strategy is almost
always close to Tr(P⊤

k P ∗) for k = 2. Note that, our aligner networks learn to refine the Pt and
St through end-to-end training, without using any form of supervision from true alignments or the
gradient computed in Eq. (6).

50 80 110 140

Inference time (in ms)

0.6

0.8

1.0

M
A

P

Lazy Eager GMN

(a) Node, AIDS

50 80 110 140

Inference time (in ms)

0.6

0.8

1.0

M
A

P

Lazy Eager GMN

(b) Edge, AIDS
Figure 7: Trade-off between MAP and inference
time (batch size=128).

Accuracy-inference time trade-off Here, we an-
alyze the accuracy and inference time trade-off. We
vary T and K for IsoNet++’s lazy multi-round vari-
ant, and vary K for IsoNet++’s eager multi-layer
variant and for GMN. Figure 7 summarizes the re-
sults. Notably, the eager multi-layer variant achieves
the highest accuracy for K = 8 on the AIDS dataset,
despite the known issue of oversmoothing in GNNs
for large K. This unexpected result may be due to our
message passing components, which involve terms
like

∑
u′ P [u, u′]h(u′), effectively acting as a convolution between alignment scores and embedding

vectors. This likely enables P to function as a filter, countering the oversmoothing effect.

5 Conclusion

We introduce IsoNet++ as an early-interaction network for estimating subgraph isomorphism.
IsoNet++ learns to identify explicit alignments between query and corpus graphs despite having
access to only pairwise preferences and not explicit alignments during training. We design a graph
neural network (GNN) that uses an alignment estimate to propagate messages, then uses the GNN’s
output representations to refine the alignment. Experiments across several datasets confirm that
alignment refinement is achieved over several rounds. Design choices such as using node-pair partner
interaction (instead of node partner) and lazy updates (over eager) boost the performance of our
architecture, making it the state-of-the-art in subgraph isomorphism based subgraph retrieval. We
also demonstrate the accuracy v/s inference time trade offs for IsoNet++, which show how different
knobs can be tuned to utilize our models under regimes with varied time constraints.

This study can be extended to graph retrieval problems which use different graph similarity measures,
such as maximum common subgraph or graph edit distance. Extracting information from node-pairs
is effective and can be widely used to improve GNNs working on multiple graphs at once.

10

Acknowledgements
Indradyumna acknowledges Qualcomm Innovation Fellowship, Abir and Soumen acknowledge grants
from Amazon, Google, IBM and SERB.

References
[1] Y. Bai, H. Ding, S. Bian, T. Chen, Y. Sun, and W. Wang. Simgnn: A neural network approach to

fast graph similarity computation. In Proceedings of the Twelfth ACM International Conference
on Web Search and Data Mining, pages 384–392, 2019.

[2] Y. Bai, H. Ding, K. Gu, Y. Sun, and W. Wang. Learning-based efficient graph similarity
computation via multi-scale convolutional set matching. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 3219–3226, 2020.

[3] J.-D. Benamou, G. Carlier, M. Cuturi, L. Nenna, and G. Peyré. Iterative bregman projections
for regularized transportation problems. SIAM Journal on Scientific Computing, 37(2):A1111–
A1138, 2015.

[4] Q. Berthet, M. Blondel, O. Teboul, M. Cuturi, J.-P. Vert, and F. Bach. Learning with differen-
tiable pertubed optimizers. Advances in neural information processing systems, 33:9508–9519,
2020.

[5] L. Biewald. Experiment tracking with weights and biases, 2020. URL https://www.wandb.
com/. Software available from wandb.com.

[6] A. Cereto-Massagué, M. J. Ojeda, C. Valls, M. Mulero, S. Garcia-Vallvé, and G. Pujadas.
Molecular fingerprint similarity search in virtual screening. Methods, 71:58–63, 2015.

[7] D. Chen, L. O’Bray, and K. Borgwardt. Structure-aware transformer for graph representation
learning. ICML, 2022.

[8] E. Cohen-Karlik, A. B. David, and A. Globerson. Regularizing towards permutation invariance
in recurrent models. In NeurIPS. Curran Associates Inc., 2020. ISBN 9781713829546. URL
https://arxiv.org/abs/2010.13055.

[9] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub) graph isomorphism algorithm for
matching large graphs. IEEE transactions on pattern analysis and machine intelligence, 26(10):
1367–1372, 2004.

[10] M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in
neural information processing systems, 26:2292–2300, 2013.

[11] K. D. Doan, S. Manchanda, S. Mahapatra, and C. K. Reddy. Interpretable graph similarity
computation via differentiable optimal alignment of node embeddings. pages 665–674, 2021.

[12] H.-C. Ehrlich and M. Rarey. Systematic benchmark of substructure search in molecular graphs-
from ullmann to vf2. Journal of Cheminformatics, 4:1–17, 2012.

[13] X. Gao, B. Xiao, D. Tao, and X. Li. A survey of graph edit distance. Pattern Analysis and
applications, 13(1):113–129, 2010.

[14] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing
for quantum chemistry. In International conference on machine learning, pages 1263–1272.
PMLR, 2017.

[15] A. Hagberg, P. Swart, and D. S Chult. Exploring network structure, dynamics, and function
using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United
States), 2008.

[16] J. Johnson, R. Krishna, M. Stark, L.-J. Li, D. Shamma, M. Bernstein, and L. Fei-Fei. Image
retrieval using scene graphs. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3668–3678, 2015.

11

https://www.wandb.com/
https://www.wandb.com/
https://arxiv.org/abs/2010.13055

[17] N. Karalias and A. Loukas. Erdos goes neural: an unsupervised learning framework for
combinatorial optimization on graphs. Advances in Neural Information Processing Systems, 33:
6659–6672, 2020.

[18] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

[19] J. Kotary, F. Fioretto, P. Van Hentenryck, and B. Wilder. End-to-end constrained optimization
learning: A survey. arXiv preprint arXiv:2103.16378, 2021.

[20] A. Lai and J. Hockenmaier. Learning to predict denotational probabilities for modeling en-
tailment. In Proceedings of the 15th Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 1, Long Papers, pages 721–730, 2017. URL
https://www.aclweb.org/anthology/E17-1068.pdf.

[21] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel. Gated graph sequence neural networks.
arXiv preprint arXiv:1511.05493, 2015.

[22] Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli. Graph matching networks for learning the
similarity of graph structured objects. In International conference on machine learning, pages
3835–3845. PMLR, 2019. URL https://arxiv.org/abs/1904.12787.

[23] Z. Lou, J. You, C. Wen, A. Canedo, J. Leskovec, et al. Neural subgraph matching. arXiv
preprint arXiv:2007.03092, 2020.

[24] D. Marcheggiani and I. Titov. Encoding sentences with graph convolutional networks for
semantic role labeling. In M. Palmer, R. Hwa, and S. Riedel, editors, Proceedings of the
2017 Conference on Empirical Methods in Natural Language Processing, pages 1506–1515,
Copenhagen, Denmark, Sept. 2017. Association for Computational Linguistics. doi: 10.18653/
v1/D17-1159. URL https://aclanthology.org/D17-1159.

[25] B. McFee and G. R. G. Lanckriet. Partial order embedding with multiple kernels. In Interna-
tional Conference on Machine Learning, 2009. URL https://api.semanticscholar.org/
CorpusID:699292.

[26] G. Mena, D. Belanger, S. Linderman, and J. Snoek. Learning latent permutations with gumbel-
sinkhorn networks. arXiv preprint arXiv:1802.08665, 2018. URL https://arxiv.org/pdf/
1802.08665.pdf.

[27] C. Morris, N. M. Kriege, F. Bause, K. Kersting, P. Mutzel, and M. Neumann. Tudataset: A
collection of benchmark datasets for learning with graphs. In ICML 2020 Workshop on Graph
Representation Learning and Beyond (GRL+ 2020), 2020. URL www.graphlearning.io.

[28] R. Myers, R. Wison, and E. R. Hancock. Bayesian graph edit distance. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22(6):628–635, 2000.

[29] M. Ohlrich, C. Ebeling, E. Ginting, and L. Sather. Subgemini: Identifying subcircuits using
a fast subgraph isomorphism algorithm. In Proceedings of the 30th International Design
Automation Conference, pages 31–37, 1993.

[30] G. Peyré, M. Cuturi, and J. Solomon. Gromov-wasserstein averaging of kernel and distance
matrices. In International conference on machine learning, pages 2664–2672. PMLR, 2016.

[31] C. Qin, H. Zhao, L. Wang, H. Wang, Y. Zhang, and Y. Fu. Slow learning and fast inference:
Efficient graph similarity computation via knowledge distillation. In Thirty-Fifth Conference on
Neural Information Processing Systems, 2021.

[32] R. Ranjan, S. Grover, S. Medya, V. Chakaravarthy, Y. Sabharwal, and S. Ranu. Greed: A neural
framework for learning graph distance functions. In Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Information Processing Systems 2022, NeurIPS
2022, November 29-Decemer 1, 2022, 2022.

[33] I. Roy, A. De, and S. Chakrabarti. Adversarial permutation guided node representations for link
prediction. In AAAI Conference, 2021. URL https://arxiv.org/abs/2012.08974.

12

https://www.aclweb.org/anthology/E17-1068.pdf
https://arxiv.org/abs/1904.12787
https://aclanthology.org/D17-1159
https://api.semanticscholar.org/CorpusID:699292
https://api.semanticscholar.org/CorpusID:699292
https://arxiv.org/pdf/1802.08665.pdf
https://arxiv.org/pdf/1802.08665.pdf
www.graphlearning.io
https://arxiv.org/abs/2012.08974

[34] I. Roy, S. Chakrabarti, and A. De. Maximum common subgraph guided graph retrieval: Late
and early interaction networks. In NeurIPS, 2022. URL https://openreview.net/forum?
id=COAcbu3_k4U.

[35] I. Roy, V. S. Velugoti, S. Chakrabarti, and A. De. Interpretable neural subgraph matching for
graph retrieval. In AAAI Conference, 2022. URL https://indradyumna.github.io/pdfs/
IsoNet_main.pdf.

[36] T. K. Rusch, M. M. Bronstein, and S. Mishra. A survey on oversmoothing in graph neural
networks. Preprint, 2023. URL https://arxiv.org/abs/2303.10993.

[37] R. Sinkhorn and P. Knopp. Concerning nonnegative matrices and doubly stochastic matrices.
Pacific Journal of Mathematics, 21(2):343–348, 1967.

[38] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph attention
networks. arXiv preprint arXiv:1710.10903, 2017.

[39] I. Vendrov, R. Kiros, S. Fidler, and R. Urtasun. Order-embeddings of images and language.
arXiv preprint arXiv:1511.06361, 2015. URL https://arxiv.org/pdf/1511.06361.

[40] F. Wenkel, Y. Min, M. Hirn, M. Perlmutter, and G. Wolf. Overcoming oversmoothness in graph
convolutional networks via hybrid scattering networks, 2022. URL https://arxiv.org/
abs/2201.08932.

[41] H. Xu, D. Luo, H. Zha, and L. C. Duke. Gromov-wasserstein learning for graph matching and
node embedding. In International conference on machine learning, pages 6932–6941. PMLR,
2019.

[42] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? arXiv
preprint arXiv:1810.00826, 2018.

[43] X. Yan, P. S. Yu, and J. Han. Graph indexing: A frequent structure-based approach. In
Proceedings of the 2004 ACM SIGMOD international conference on Management of data,
pages 335–346, 2004.

[44] Z. Zeng, A. K. Tung, J. Wang, J. Feng, and L. Zhou. Comparing stars: On approximating graph
edit distance. Proceedings of the VLDB Endowment, 2(1):25–36, 2009.

[45] Z. Zhang, J. Bu, M. Ester, Z. Li, C. Yao, Z. Yu, and C. Wang. H2mn: Graph similarity learning
with hierarchical hypergraph matching networks. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, pages 2274–2284, 2021.

[46] W. Zhuo and G. Tan. Efficient graph similarity computation with alignment regularization.
Advances in Neural Information Processing Systems, 35:30181–30193, 2022.

13

https://openreview.net/forum?id=COAcbu3_k4U
https://openreview.net/forum?id=COAcbu3_k4U
https://indradyumna.github.io/pdfs/IsoNet_main.pdf
https://indradyumna.github.io/pdfs/IsoNet_main.pdf
https://arxiv.org/abs/2303.10993
https://arxiv.org/pdf/1511.06361
https://arxiv.org/abs/2201.08932
https://arxiv.org/abs/2201.08932

Iteratively Refined Early Interaction Alignment for Subgraph
Matching based Graph Retrieval

(Appendix)

A Limitations
We find two limitations of our method each of which could form the basis of detailed future studies.

1. Retrieval systems greatly benefit from the similarity function being hashable. This can
improve the inference time multi-fold while losing very little, if at all any, performance,
making the approach ready for production environments working under tight time constraints.
The design of a hash function for an early interaction network like ours is unknown and
seemingly difficult. In fact, such a hashing procedure is not known even for predecessors
like IsoNet (Edge) or GMN, and this is an exciting future direction.

2. Our approach does not explicitly differentiate between nodes or edges that may belong to
different classes. This can be counterproductive when there exist constraints that prevent
the alignment of two nodes or edges with different labels. While the network is designed to
process node and edge features, it might not be enough to rule out alignments that violate
the said constraint. Such constraints could also exist for node-pairs, such as in knowledge
graphs with hierarchical relationships between entity types, and are not taken into account
by our model. Extending our work to handle such restrictions is an interesting problem to
consider.

B Related work
In this section, we discuss different streams of work that are related to and have influenced the study.

B.1 Graph Representation Learning

Graph neural networks (GNN) [14, 22, 21, 18, 42, 38] have emerged as a widely applicable approach
for graph representation learning. A graph neural network computes the embedding of a node
by aggregating the representations of its neighbors across K steps of message passing, effectively
combining information from K-hop neighbors. GNNs were first used for graph similarity computation
by Li et al. [22], who enriched the architecture with attention to predict isomorphism between two
graphs. Attention acts as a mechanism to transfer information from the representation of one graph
to that of the other, thus boosting the performance of the approach. Chen et al. [7] enriched the
representation of graphs by capturing the subgraph around a node effectively through a structure
aware transformer architecture.

B.2 Differentiable combinatorial solvers

We utilize a differentiable gadget to compute an injective alignment, which is a doubly stochastic
matrix. The differentiability is crucial to the training procedure as it enables us to backpropagate
through the alignments. The GumbelSinkhorn operator, which performs alternating normalizations
across rows and columns, was first proposed by Sinkhorn and Knopp [37] and later used for the
Optimal Transport problem by Cuturi [10]. Other methods to achieve differentiability include adding
random noise to the inputs to discrete solvers [4] and designing probabilistic loss functions [17]. A
compilation of such approaches towards constrained optimization on graphs through neural techniques
is presented in [19].

B.3 Graph Similarity Computation and Retrieval

Several different underlying measures have been proposed for graph similarity computation, including
full graph isomorphism [22], subgraph isomorphism [23, 35], graph edit distance (GED) [2, 11, 13,
28, 44] and maximum common subgraph (MCS) [2, 11, 34]. Bai et al. [2] proposed GraphSim
towards the GED and MCS problems, using convolutional neural network based scoring on top of
graph similarity matrices. GOTSim [11] explicitly computes the alignment between the two graphs
by studying the optimal transformation cost. GraphSim [2] utilizes both graph-level and node-level
signals to compute a graph similarity score. NeuroMatch [23] evaluates, for each node pair across the
two graphs, if the neighborhood of one node is contained in the neighborhood of another using order
embeddings [25]. GREED [32] proposed a Siamese graph isomorphism network, a late interaction

14

model to tackle the GED problem and provided supporting theoretical guarantees. Zhang et al. [45]
propose an early interaction model, using hypergraphs to learn higher order node similarity. Each
hypergraph convolution contains a subgraph matching module to learn cross graph similarity. Qin
et al. [31] trained a slower attention-based network on multi-level features from a GNN and distilled
its knowledge into a faster student model. Roy et al. [35] used the GumbelSinkhorn operator
as a differentiable gadget to compute alignments in a backpropagation-friendly fashion and also
demonstrated the utility of computing alignments for edges instead of nodes.

C Broader Impact

This work can be directly applied to numerous practical applications, such as drug discovery and
circuit design, which are enormously beneficial for the society and continue to garner interest from
researchers and practitioners worldwide. The ideas introduced in this paper have benefitted from and
can benefit the information retrieval community as well, beyond the domain of graphs. However,
malicious parties could use this technology for deceitful purposes, such as identifying and targeting
specific social circles on online social networks (which can be represented as graphs). Such pros and
cons are characteristic of every scientific study and the authors consider the positives to far outweigh
the negatives.

D Network architecture of different components of IsoNet++

IsoNet++ models consist of three components - an encoder, a message-passing network and a
node/edge aligner. We provide details about each of these components below. For convenience,
we represent a linear layer with input dimension a and output dimension b as Linear(a, b) and
a linear-ReLU-linear network with Linear(a, b), Linear(b, c) layers with ReLU activation in the
middle as LRL(a, b, c).

D.1 Encoder

The encoder transforms input node/edge features before they are fed into the message-passing network.
For models centred around node alignment like IsoNet++ (Node), the encoder refers to Initθ and
is implemented as a Linear(1, 10) layer. The edge vectors are not encoded and passed as-is down
to the message-passing network. For edge-based models like IsoNet++ (Edge), the encoder refers
to both Initθ,node and Initθ,edge, which are implemented as Linear(1, 10) and Linear(1, 20) layers
respectively.

D.2 GNN

Within the message-passing framework, we use node embeddings of size dimh = 10 and edge
embeddings of size dimm = 20. We specify each component of the GNN below.

• interθ combines the representation of the current node/edge (h•) with that from the other
graph, which are together fed to the network by concatenation. For node-based and edge-
based models, it is implemented as LRL(20, 20, 10) and LRL(40, 40, 20) networks respec-
tively. In particular, we ensure that the input dimension is twice the size of the output
dimension, which in turn equals the intermediate embedding dimension dim(z).

• msgθ is used to compute messages by combining intermediate embeddings z• of nodes
across an edge with the representation of that edge. For node-based models, the edge
vector is a fixed vector of size 1 while the intermediate node embeddings z• are vectors of
dimension 10, resulting in the network being a Linear(21, 20) layer. For edge-based models,
the edge embedding is the m vector of size 20 which requires msgθ to be a Linear(40, 20)
layer. Note that the message-passing network is applied twice, once to the ordered pair
(u, v) and then to (v, u) and the outputs thus obtained are added up. This is to ensure node
order invariance for undirected edges by design.

• combθ combines the representation of a node z• with aggregated messages received by it
from all its neighbors. It is modelled as a GRU where the node representation (of size 10)
is the initial hidden state and the aggregated message vector (of size 20) is the only element
of an input sequence which updates the hidden state to give us the final node embedding h•.

15

D.3 Node aligner

The node aligner takes as input two sets of node vectors H(q) ∈ Rn×10 and H(c) ∈ Rn×10

representing Gq and Gc respectively. n refers to the number of nodes in the corpus graph (the query
graph is padded to meet this node count). We use LRLϕ as a LRL(10, 16, 16) network (refer Eq. 11).

D.4 Edge aligner

The design of the edge aligner is similar to the node aligner described above in Section D.3, except
that its inputs are sets of edge vectors M (q) ∈ Re×20 and M (c) ∈ Re×20. e refers to the number of
edges in the corpus graph (the query graph is padded to meet this edge count). We use LRLϕ as a
LRL(20, 16, 16) network (refer Eq. 21).

D.5 GumbelSinkhorn operator

The GumbelSinkhorn operator consists of the following operations -
D0 = exp(Din/τ) (26)
Dt+1 = RowNorm (ColumnNorm(Dt)) (27)
Dout = lim

t→∞
Dt (28)

The matrix Dout obtained after this set of operations will be a doubly-stochastic matrix. The input
Din in our case is the matrix containing the dot product of the node/edge embeddings of the query
and corpus graphs respectively. τ represents the temperature and is fixed to 0.1 in all our experiments.

Theorem Equation 11 results in a permutation matrix that is row-equivariant (column-) to the
shuffling of nodes in Gq (Gc).

Proof To prove the equivariance of Eq. 11, we need to show that given a shuffling (permutation) of
query nodes Z ∈ Πn which modifies the node embedding matrix to ZḢ

(q)
t,K , the resulting output of

said equation would change to ZPt. Below, we consider any matrices with Z in the suffix as being
an intermediate expression in the computation of NodeAlignerRefinementϕ(ZH

(q)
t,K ,H

(c)
t,K).

It is easy to observe that the operators LRLϕ (a linear-ReLU-linear network applied to a matrix),
RowNorm, ColumnNorm and element-wise exponentiation (exp), division are all permutation-
equivariant since a shuffling of the vectors fed into these will trivially result in the output vectors
getting shuffled in the same order. Thus, we get the following sequence of operations

Din,Z = LRLϕ(ZH
(q)
t,K) LRLϕ(H

(c)
t,K)⊤ = Z · LRLϕ(H

(q)
t,K) LRLϕ(H

(c)
t,K)⊤Din = ZDin (29)

D0,Z equals exp(Din,Z/τ), which according to above equation would lead to D0,Z = ZD0. We
can then inductively show using Eq. 27 and the equivariance of row/column normalization, assuming
the following holds till t, that
Dt+1,Z = RowNorm (ColumnNorm(Dt,Z)) = RowNorm (ColumnNorm(ZDt)) (30)
= RowNorm (Z · ColumnNorm(Dt)) = Z · RowNorm (ColumnNorm(Dt)) = ZDt+1 (31)

The above equivariance would also hold in the limit, resulting in the doubly stochastic matrix
Dout,Z = ZDout, which concludes the proof. ■
A similar proof can be followed to show column equivariance for a shuffling in the corpus nodes.

E Variants of our models and GMN, used in the experiments

E.1 Multi-round refinement of IsoNet++ (Node) for the corpus graph

• Initialize:
h
(c)
0 (u′) = Initθ(feature(u

′)), (32)
• Update the GNN embeddings as follows:

z
(c)
t+1,k(u

′) = interθ

(
h
(c)
t+1,k(u

′),
∑

u∈Vq
h
(q)
t,k(u)P

⊤
t [u′, u]

)
, (33)

h
(c)
t+1,k+1(u

′) = combθ

(
z
(c)
t+1,k(u

′),
∑

v′∈nbr(u′) msgθ(z
(c)
t+1,k(u

′), z
(c)
t+1,k(v

′))
)

(34)

16

E.2 Eager update for IsoNet++ (Edge)

• Initialize:
h
(q)
0 (u) = Initθ,node(feature(u)), (35)

m
(q)
0 (e) = Initθ,edge(feature(e)), (36)

• The edge alignment is updated across layers. S0 is set to a matrix of zeros. For k > 0, the
following equation is used:

Sk = EdgeAlignerRefinementϕ
(
M

(q)
k ,M

(c)
k

)
(37)

= GumbelSinkhorn
(
LRLϕ(M

(q)
k) LRLϕ(M

(c)
k)⊤

)
(38)

• We update the GNN node and edge embeddings as follows:

z
(q)
k (e) = interθ

(
m

(q)
k (e),

∑
e′∈Ec

m
(c)
k (e′)Sk[e, e

′]
)
, (39)

h
(q)
k+1(u) = combθ

(
h
(q)
k (u),

∑
a∈nbr(u) msgθ(h

(q)
k (u),h

(q)
k (a), z

(q)
k ((u, a)))

)
(40)

m
(q)
k+1((u, v)) = msgθ(h

(q)
k+1(u),h

(q)
k+1(v), z

(q)
k ((u, v))) (41)

E.3 Node partner (with additional MLP) variant of IsoNet++ (Node)

Here, we update node embeddings as follows:

h
(q)
t+1,k+1(u) = combθ

(
z
(q)
t+1,k(u),

∑
v∈nbr(u) msgθ(h

(q)
t+1,k(u),h

(q)
t+1,k(v))︸ ︷︷ ︸

z is replaced with h

)
(42)

Here, z(q)
t+1,k(u) is computed as Eq. (12), where interθ is an MLP network. In contrast to Eq. (13),

here, z(q)
t+1,k(u), z

(q)
t+1,k(v) are not fed into the message passing layer. Hence, in the message passing

layer, we do not capture the signals from the partners of u and v in Gc. Only signals from partners of
u are captured through z

(q)
t+1,k(u) in the first argument.

E.4 Node pair partner (msg only) variant of IsoNet++ (Node)

We change the GNN update equation as follows:

h
(q)
t+1,k+1(u) = combθ

(
h
(q)
t+1,k(u)︸ ︷︷ ︸

z is replaced with h

,
∑

v∈nbr(u) msgθ(z
(q)
t+1,k(u), z

(q)
t+1,k(v))

)
(43)

Node pair partner interaction takes place because, we feed z from Eq. (12) into the message passing
layer. However, we use h in the first argument, instead of z.

17

F Additional details about experimental setup
F.1 Datasets

We use six datasets from the TUDatasets collection [27] for benchmarking our methods with respect
to existing baselines. Lou et al. [23] devised a method to sample query and corpus graphs from the
graphs present in these datasets to create their training data. We adopt it for the task of subgraph
matching. In particular, we choose a node u ∈ G as the center of a Breadth First Search (BFS) and
run the algorithm till |V | nodes are traversed, where the range of |V | is listed in Table 8 (refer to
the Min and Max columns for |Vq| and |Vc). This process is independently performed for the query
and corpus splits (with different ranges for graph size) to obtain 300 query graphs and 800 corpus
graphs. The set of query graphs is split into train, validation and test splits of 180 (60%), 45 (15%)
and 75 (25%) graphs respectively. Ground truth labels are computed for each query-corpus graph
pair using the VF2 algorithm [9, 15, 23] implemented in the Networkx library. Various statistics
about the datasets are listed in Table 8. pairs(y) denotes the number of pairs in the dataset with gold
label y, where y ∈ {0, 1}.

Mean |Vq| Min |Vq| Max |Vq| Mean |Eq| Mean |Vc| Min |Vc| Max |Vc| Mean |Ec| pairs(1) pairs(0) pairs(1)
pairs(0)

AIDS 11.61 7 15 11.25 18.50 17 20 18.87 41001 198999 0.2118
Mutag 12.91 6 15 13.27 18.41 17 20 19.89 42495 197505 0.2209
FM 11.73 6 15 11.35 18.30 17 20 18.81 40516 199484 0.2085
FR 11.81 6 15 11.39 18.32 17 20 18.79 39829 200171 0.2043
MM 11.80 6 15 11.37 18.36 17 20 18.79 40069 199931 0.2056
MR 11.87 6 15 11.49 18.32 17 20 18.78 40982 199018 0.2119

Table 8: Statistics for the 6 datasets borrowed from the TUDatasets collection [27]

F.2 Baselines

GraphSim, GOTSim, SimGNN, Neuromatch, GEN, GMN, IsoNet (Node), IsoNet (Edge): We
utilized the code from official implementation of [35] 1. Some for loops were vectorized to improve
the running time of GMN.
EGSC: The official implementation 2 is refactored and integrated into our code.
H2MN: We use the official code from 3.
GREED: We use the official code from 4. The model is adapted from the graph edit distance (GED)
task to the subgraph isomorphism task, using a hinge scoring layer.

The number of parameters involved in all models (our methods and baselines) are reported in Table 9.

Number of parameters

GraphSim [2] 3909
GOTSim [11] 304
SimGNN [1] 1671
EGSC [31] 3948
H2MN [45] 2974
Neuromatch [23] 3463
GREED [32] 1840
GEN [22] 1750
GMN [22] 2050
IsoNet (Node) [35] 1868
IsoNet (Edge) [35] 2028
IsoNet++ (Node) 2498
IsoNet++ (Edge) 4908

Table 9: Number of parameters for all models used in comparison

1https://github.com/Indradyumna/ISONET/
2https://github.com/canqin001/Efficient_Graph_Similarity_Computation
3https://github.com/cszhangzhen/H2MN
4https://github.com/idea-iitd/greed

18

https://github.com/Indradyumna/ISONET/
https://github.com/canqin001/Efficient_Graph_Similarity_Computation
https://github.com/cszhangzhen/H2MN
https://github.com/idea-iitd/greed

F.3 Calculation of Metrics: Mean Average Precision (MAP), HITS@K, Precision@K and
Mean Reciprocal Rank (MRR)

Given a ranked list of corpus graphs C = {Gc} for a test query Gq , sorted in the decreasing order of
∆θ,ϕ(Gc|Gq), let us assume that the cth

+ relevant graph is placed at position pos(c+) ∈ {1, ..., |C|} in
the ranked list. Then Average Precision (AP) is computed as:

AP(q) =
1

|Cq+|
∑

c+∈[|Cq+|]

c+
pos(c+)

(44)

Mean average precision is defined as
∑

q∈Q AP(q)/|Q|.

Precision@K(q) = 1
K # relevant graphs corresponding to Gq till rank K. Finally we report the

mean of Precision@K(q) across queries.

Reciprocal rank or RR(q) is the inverse of the rank of the topmost relevant corpus graph corresponding
to Gq in the ranked list. Mean reciprocal rank (MRR) is average of RR(q) across queries.

HITS@K for a query Gq is defined as the fraction of positively labeled corpus graphs that appear
before the K th negatively labeled corpus graph. Finally, we report the average of HITS@K across
queries.

Note that HITS@K is a significantly aggressive metric compared to Precision@K and MRR, as can
be seen in Tables 12 and 13.

F.4 Details about hyperparameters

All models were trained using early stopping with MAP score on the validation split as a stopping
criterion. For early stopping, we used a patience of 50 with a tolerance of 10−4. We used the Adam
optimizer with the learning rate as 10−3 and the weight decay parameter as 5 · 10−4. We set batch
size to 128 and maximum number of epochs to 1000.

Seed Selection and Reproducibility Five integer seeds were chosen uniformly at random from
the range [0, 104] resulting in the set {1704, 4929, 7366, 7474, 7762}. IsoNet++ (Node), GMN and
IsoNet (Edge) were trained on each of these 5 seeds for all 6 datasets. Note that these seeds do
not control the training-dev-test splits but only control the initialization. Since the overall problem
is non-convex, in principle, one should choose the best initial conditions leading to local minima.
Hence, for all models, we choose the best seed, based on validation MAP score, is shown in Table 10.

AIDS Mutag FM FR MM MR

GraphSim [2] 7762 4929 7762 7366 4929 7474
GOTSim [11] 7762 7366 1704 7762 1704 7366
SimGNN [1] 7762 7474 1704 4929 4929 7762
EGSC [31] 4929 1704 7762 4929 4929 7366
H2MN [45] 7762 4929 7366 1704 4929 7474
Neuromatch [23] 7366 4929 7762 7762 1704 7366
GREED [32] 7762 1704 1704 7474 1704 1704
GEN [22] 1704 4929 7474 7762 1704 1704
GMN [22] 7366 4929 7366 7474 7474 7366
IsoNet (Node) [35] 7474 7474 7474 1704 4929 1704
IsoNet (Edge) [35] 7474 7474 7474 1704 4929 1704
GMN [22] 7366 4929 7366 7474 7474 7366
IsoNet++ (Node) 7762 7762 7474 7762 7762 7366

Table 10: Best seeds for all models. For IsoNet (Edge), GMN and IsoNet++ (Node), these are
computed based on MAP score on the validation split at convergence. For other models, the
identification occurs after 10 epochs of training.

IsoNet++ (Edge) and all ablations on top of IsoNet++ (Node) were trained using the best seeds for
IsoNet++ (Node) (as in Tables 4, 5 and 16). Ablations of GMN were trained with the best GMN seeds.

For baselines excluding IsoNet (Edge), models were trained on all 5 seeds for 10 epochs and the MAP
scores on the validation split were considered. Full training with early stopping was resumed only for

19

the best seed per dataset. This approach was adopted to reduce the computational requirements for
benchmarking.

Margin Selection For GraphSim, GOTSim, SimGNN, Neuromatch, GEN, GMN and IsoNet
(Edge), we use the margins determined by Roy et al. [35] for each dataset. For IsoNet (Node), the
margins prescribed for IsoNet (Edge) were used for standardization. For IsoNet++ (Node), IsoNet++
(Edge) and ablations, a fixed margin of 0.5 is used.

Procedure for baselines EGSC, GREED, H2MN: They are trained on five seeds with a margin of 0.5
for 10 epochs and the best seed is chosen using the validation MAP score at this point. This seed is
also used to train a model with a margin of 0.1 for 10 epochs. The better of these models, again using
MAP score on the validation split, is identified and retrained till completion using early stopping.

AIDS Mutag FM FR MM MR

GraphSim [2] 0.5 0.5 0.5 0.5 0.5 0.5
GOTSim [11] 0.1 0.1 0.1 0.1 0.1 0.1
SimGNN [1] 0.5 0.1 0.5 0.1 0.5 0.5
EGSC [31] 0.1 0.5 0.1 0.5 0.1 0.5
H2MN [45] 0.5 0.5 0.5 0.5 0.5 0.1
Neuromatch [23] 0.5 0.5 0.5 0.5 0.5 0.5
GREED [32] 0.5 0.5 0.5 0.5 0.5 0.5
GEN [22] 0.5 0.5 0.5 0.5 0.5 0.5
GMN [22] 0.5 0.5 0.5 0.5 0.5 0.5
IsoNet (Node) [35] 0.5 0.5 0.5 0.5 0.5 0.5
IsoNet (Edge) [35] 0.5 0.5 0.5 0.5 0.5 0.5

Table 11: Best margin for baselines used in comparison.

F.5 Software and Hardware

All experiments were run with Python 3.10.13 and PyTorch 2.1.2. IsoNet++ (Node), IsoNet++
(Edge), GMN, IsoNet (Edge) and ablations on top of these were trained on Nvidia RTX A6000 (48
GB) GPUs while other baselines like GraphSim, GOTSim etc. were trained on Nvidia A100 (80 GB)
GPUs.

As an estimate of training time, we typically spawn 3 training runs of IsoNet++ (Node) or IsoNet++
(Edge) on one Nvidia RTX A6000 GPU, each of which takes 300 epochs to conclude on average,
with an average of 6-12 minutes per epoch. This amounts to 2 days of training. Overloading the
GPUs by spawning 6 training runs per GPU increases the training time marginally to 2.5 days.

Additionally, we use wandb [5] to manage and monitor the experiments.

F.6 License

GEN, GMN, GOTSim, GREED and EGSC are available under the MIT license, while SimGNN is
public under the GNU license. The licenses for GraphSim, H2MN, IsoNet (Node), IsoNet (Edge),
Neuromatch could not be identified. The authors were unable to identify the license of the TUDatasets
repository [27], which was used to compile the 6 datasets used in this paper.

20

G Additional experiments

G.1 Comparison against baselines

In Tables 12 and 13, we report the Mean Average Precision (MAP), HITS@20, MRR and Preci-
sion@20 scores for several baselines as well as the four approaches discussed in our paper - multi-layer
and multi-round variants of IsoNet++ (Node) and IsoNet++ (Edge). Multi-round IsoNet++ (Edge)
outperforms all other models with respect to all metrics, closely followed by multi-round IsoNet++
(Node) and multi-layer IsoNet++ (Edge) respectively. Among the baselines, IsoNet (Edge) is the
best-performing model, closely followed by IsoNet (Node) and GMN.

For MRR, Precision@20, the comparisons are less indicative of the significant boost in performance
obtained by IsoNet++, since these are not aggressive metrics from the point of view of information
retrieval.

Mean Average Precision (MAP)
AIDS Mutag FM FR MM MR

GraphSim [2] 0.356 ± 0.016 0.472 ± 0.027 0.477 ± 0.016 0.423 ± 0.019 0.415 ± 0.017 0.453 ± 0.018

GOTSim [11] 0.324 ± 0.015 0.272 ± 0.012 0.355 ± 0.014 0.373 ± 0.018 0.323 ± 0.015 0.317 ± 0.013

SimGNN [1] 0.341 ± 0.019 0.283 ± 0.012 0.473 ± 0.016 0.341 ± 0.015 0.298 ± 0.012 0.379 ± 0.015

EGSC [31] 0.505 ± 0.02 0.476 ± 0.022 0.609 ± 0.018 0.607 ± 0.019 0.586 ± 0.019 0.58 ± 0.018

H2MN [45] 0.267 ± 0.014 0.276 ± 0.012 0.436 ± 0.015 0.412 ± 0.016 0.312 ± 0.014 0.243 ± 0.008

Neuromatch [23] 0.489 ± 0.024 0.576 ± 0.029 0.615 ± 0.019 0.559 ± 0.024 0.519 ± 0.02 0.606 ± 0.021

GREED [32] 0.472 ± 0.021 0.567 ± 0.027 0.558 ± 0.02 0.512 ± 0.021 0.546 ± 0.021 0.528 ± 0.019

GEN [22] 0.557 ± 0.021 0.605 ± 0.028 0.661 ± 0.021 0.575 ± 0.02 0.539 ± 0.02 0.631 ± 0.018

GMN [22] 0.622 ± 0.02 0.710 ± 0.025 0.730 ± 0.018 0.662 ± 0.02 0.655 ± 0.02 0.708 ± 0.017

IsoNet (Node) [35] 0.659 ± 0.022 0.697 ± 0.026 0.729 ± 0.018 0.68 ± 0.022 0.708 ± 0.016 0.738 ± 0.017

IsoNet (Edge) [35] 0.690 ± 0.02 0.706 ± 0.026 0.783 ± 0.017 0.722 ± 0.02 0.753 ± 0.015 0.774 ± 0.016

multi-layer IsoNet++ (Node) 0.756 ± 0.019 0.81 ± 0.021 0.859 ± 0.015 0.802 ± 0.018 0.827 ± 0.015 0.841 ± 0.013

multi-layer IsoNet++ (Edge) 0.795 ± 0.018 0.805 ± 0.022 0.883 ± 0.013 0.812 ± 0.016 0.862 ± 0.013 0.886 ± 0.011

multi-round IsoNet++ (Node) 0.825 ± 0.016 0.851 ± 0.018 0.888 ± 0.012 0.855 ± 0.015 0.838 ± 0.015 0.874 ± 0.011

multi-round IsoNet++ (Edge) 0.847 ± 0.016 0.858 ± 0.019 0.902 ± 0.012 0.875 ± 0.014 0.902 ± 0.01 0.902 ± 0.01

HITS@20
AIDS Mutag FM FR MM MR

GraphSim [2] 0.145 ± 0.011 0.257 ± 0.027 0.261 ± 0.015 0.227 ± 0.015 0.212 ± 0.014 0.23 ± 0.015

GOTSim [11] 0.112 ± 0.011 0.088 ± 0.009 0.147 ± 0.011 0.166 ± 0.014 0.119 ± 0.011 0.116 ± 0.011

SimGNN [1] 0.138 ± 0.016 0.087 ± 0.008 0.235 ± 0.015 0.155 ± 0.013 0.111 ± 0.009 0.160 ± 0.013

EGSC [31] 0.267 ±0.023 0.243 ±0.02 0.364 ±0.02 0.382 ±0.024 0.348 ±0.023 0.325 ±0.021

H2MN [45] 0.076 ± 0.009 0.084 ± 0.007 0.200 ± 0.012 0.189 ± 0.013 0.119 ± 0.011 0.069 ± 0.004

Neuromatch [23] 0.262 ± 0.025 0.376 ± 0.034 0.389 ± 0.022 0.350 ± 0.025 0.282 ± 0.019 0.385 ± 0.025

GREED [32] 0.245 ± 0.025 0.371 ± 0.034 0.316 ± 0.027 0.287 ± 0.019 0.311 ± 0.024 0.277 ± 0.023

GEN [22] 0.321 ± 0.026 0.429 ± 0.035 0.448 ± 0.03 0.368 ± 0.026 0.292 ± 0.024 0.391 ± 0.025

GMN [22] 0.397 ± 0.029 0.544 ± 0.035 0.537 ± 0.027 0.45 ± 0.027 0.423 ± 0.025 0.49 ± 0.026

IsoNet (Node) [35] 0.438 ± 0.028 0.509 ± 0.034 0.525 ± 0.026 0.475 ± 0.03 0.493 ± 0.023 0.532 ± 0.025

IsoNet (Edge) [35] 0.479 ± 0.029 0.529 ± 0.035 0.613 ± 0.026 0.538 ± 0.029 0.571 ± 0.023 0.601 ± 0.027

multi-layer IsoNet++ (Node) 0.57 ± 0.029 0.672 ± 0.033 0.744 ± 0.027 0.657 ± 0.031 0.68 ± 0.025 0.707 ± 0.024

multi-layer IsoNet++ (Edge) 0.626 ± 0.029 0.671 ± 0.035 0.775 ± 0.026 0.67 ± 0.028 0.743 ± 0.024 0.776 ± 0.021

multi-round IsoNet++ (Node) 0.672 ± 0.027 0.732 ± 0.03 0.797 ± 0.024 0.737 ± 0.026 0.702 ± 0.025 0.755 ± 0.022

multi-round IsoNet++ (Edge) 0.705 ± 0.028 0.749 ± 0.032 0.813 ± 0.023 0.769 ± 0.026 0.809 ± 0.019 0.803 ± 0.02

Table 12: Replication of Table 3 with standard error. Comparison of the two variants of IsoNet++
(IsoNet++ (Node) and IsoNet++ (Edge)) against all the state-of-the-art graph retrieval methods,
across all six datasets. Performance is measured in terms average precision MAP and HITS@20.
In all cases, we used 60% training, 15% validation and 25% test sets. The first five methods apply
a neural network on the fused graph-pair representations. The next six methods apply asymmetric
hinge distance between the query and corpus embeddings similar to our method. The numbers with
green and yellow indicate the best, second best method respectively, whereas the numbers with blue
indicate the best method among the baselines. (MAP values for IsoNet++ (Edge) across FM, MM
and MR are verified to be not exactly same, but they take the same value until the third decimal).

21

Mean Reciprocal Rank (MRR)
AIDS Mutag FM FR MM MR

GraphSim [2] 0.71 ±0.039 0.795 ±0.037 0.885 ±0.029 0.817 ±0.032 0.818 ±0.034 0.789 ±0.037

GOTSim [11] 0.568 ±0.038 0.584 ±0.037 0.775 ±0.037 0.716 ±0.042 0.459 ±0.045 0.525 ±0.047

SimGNN [1] 0.533 ±0.038 0.644 ±0.043 0.866 ±0.031 0.753 ±0.038 0.669 ±0.04 0.638 ±0.046

EGSC [31] 0.894 ±0.026 0.75 ±0.041 0.943 ±0.021 0.909 ±0.023 0.904 ±0.025 0.932 ±0.022

H2MN [45] 0.46 ±0.047 0.565 ±0.042 0.822 ±0.035 0.817 ±0.034 0.386 ±0.039 0.62 ±0.041

Neuromatch [23] 0.823 ±0.035 0.855 ±0.035 0.88 ±0.028 0.929 ±0.022 0.87 ±0.027 0.895 ±0.026

GREED [32] 0.789 ±0.035 0.805 ±0.034 0.834 ±0.033 0.834 ±0.032 0.894 ±0.028 0.759 ±0.039

GEN [22] 0.865 ±0.028 0.895 ±0.029 0.889 ±0.026 0.878 ±0.028 0.814 ±0.034 0.878 ±0.026

GMN [22] 0.877 ±0.027 0.923 ±0.023 0.949 ±0.019 0.947 ±0.019 0.928 ±0.023 0.922 ±0.022

IsoNet (Node) [35] 0.916 ±0.024 0.887 ±0.029 0.977 ±0.013 0.954 ±0.018 0.956 ±0.018 0.954 ±0.018

IsoNet (Edge) [35] 0.949 ±0.02 0.926 ±0.026 0.973 ±0.013 0.956 ±0.018 0.98 ±0.011 0.948 ±0.019

multi-layer IsoNet++ (Node) 0.956 ±0.018 0.954 ±0.018 1.0 ±0.0 0.978 ±0.013 0.98 ±0.011 1.0 ±0.0

multi-layer IsoNet++ (Edge) 0.984 ±0.011 0.976 ±0.014 0.991 ±0.009 0.987 ±0.009 0.987 ±0.009 0.993 ±0.007

multi-round IsoNet++ (Node) 0.993 ±0.007 0.971 ±0.014 1.0 ±0.0 0.993 ±0.007 0.993 ±0.007 0.993 ±0.007

multi-round IsoNet++ (Edge) 1.0 ±0.0 0.983 ±0.012 0.991 ±0.009 1.0 ±0.0 1.0 ±0.0 1.0 ±0.0

Precision@20
AIDS Mutag FM FR MM MR

GraphSim [2] 0.474 ±0.025 0.577 ±0.033 0.679 ±0.023 0.617 ±0.028 0.604 ±0.028 0.638 ±0.026

GOTSim [11] 0.386 ±0.024 0.325 ±0.021 0.479 ±0.027 0.519 ±0.03 0.409 ±0.027 0.421 ±0.03

SimGNN [1] 0.44 ±0.026 0.33 ±0.022 0.626 ±0.026 0.471 ±0.029 0.414 ±0.026 0.512 ±0.032

EGSC [31] 0.646 ±0.023 0.608 ±0.034 0.79 ±0.022 0.766 ±0.021 0.739 ±0.023 0.74 ±0.021

H2MN [45] 0.28 ±0.026 0.34 ±0.023 0.587 ±0.024 0.563 ±0.026 0.399 ±0.028 0.308 ±0.017

Neuromatch [23] 0.615 ±0.03 0.689 ±0.032 0.809 ±0.022 0.725 ±0.027 0.694 ±0.027 0.751 ±0.023

GREED [32] 0.591 ±0.024 0.661 ±0.03 0.689 ±0.026 0.642 ±0.028 0.699 ±0.028 0.624 ±0.029

GEN [22] 0.674 ±0.024 0.721 ±0.03 0.783 ±0.023 0.678 ±0.022 0.64 ±0.027 0.759 ±0.021

GMN [22] 0.751 ±0.022 0.82 ±0.023 0.852 ±0.02 0.809 ±0.019 0.783 ±0.022 0.832 ±0.018

IsoNet (Node) [35] 0.791 ±0.022 0.803 ±0.029 0.866 ±0.018 0.803 ±0.022 0.844 ±0.015 0.863 ±0.016

IsoNet (Edge) [35] 0.822 ±0.022 0.812 ±0.028 0.896 ±0.016 0.851 ±0.017 0.877 ±0.014 0.875 ±0.017

multi-layer IsoNet++ (Node) 0.873 ±0.018 0.897 ±0.018 0.935 ±0.012 0.917 ±0.012 0.93 ±0.013 0.931 ±0.012

multi-layer IsoNet++ (Edge) 0.905 ±0.015 0.883 ±0.021 0.958 ±0.01 0.93 ±0.01 0.953 ±0.01 0.976 ±0.005

multi-round IsoNet++ (Node) 0.932 ±0.012 0.943 ±0.011 0.957 ±0.01 0.961 ±0.008 0.949 ±0.011 0.963 ±0.008

multi-round IsoNet++ (Edge) 0.946 ±0.012 0.931 ±0.014 0.973 ±0.007 0.963 ±0.008 0.98 ±0.005 0.987 ±0.003

Table 13: MRR and Precision@20 of corresponding models from Table 3 with standard error.
Comparison of the two variants of IsoNet++ (IsoNet++ (Node) and IsoNet++ (Edge)) against all the
state-of-the-art graph retrieval methods, across all six datasets. Performance is measured in terms
MRR and Precision@20. In all cases, we used 60% training, 15% validation and 25% test sets.
The first five methods apply a neural network on the fused graph-pair representations. The next six
methods apply asymmetric hinge distance between the query and corpus embeddings similar to our
method. The numbers with green and yellow indicate the best, second best method respectively,
whereas the numbers with blue indicate the best method among the baselines.

G.2 HITS@20, MRR and Precision@20 for multi-round IsoNet++ and multi-layer IsoNet++

Table 14 compares multi-round and multi-layer IsoNet++ with respect to different metrics. We
observe that multi-round IsoNet++ outperforms multi-layer IsoNet++ by a significant margin when
it comes to all metrics, both when the models are node-based or edge-based. This reinforces the
observations from MAP scores noted earlier in Table 4. Note that a minor exception occurs for MRR
but the scores are already so close to 1 that this particular metric can be discounted and our key
observation above still stands.

G.3 Refinement of alignment matrix across rounds and layers in multi-round IsoNet++ and
multi-layer IsoNet++

The node (edge) alignment calculated after round t is denoted as Pt (St). We accumulate such
alignments across multiple rounds. This also includes PT (ST) which is used to compute the
relevance distance in Eq. 14 (Eq. 25). We wish to compare the predicted alignments with ground

22

HITS@20
AIDS Mutag FM FR MM MR

N
od

e{Multi-layer 0.57 0.672 0.744 0.657 0.68 0.707

Multi-round 0.672 0.732 0.797 0.737 0.702 0.755

E
dg

e{Multi-layer 0.626 0.671 0.775 0.67 0.743 0.776

Multi-round 0.705 0.749 0.813 0.769 0.809 0.803

Mean Reciprocal Rank (MRR)
AIDS Mutag FM FR MM MR

N
od

e{Multi-layer 0.956 0.954 1.0 0.978 0.98 1.0

Multi-round 0.993 0.971 1.0 0.993 0.993 0.993

E
dg

e{Multi-layer 0.984 0.976 0.991 0.987 0.987 0.993

Multi-round 1.0 0.983 0.991 1.0 1.0 1.0

Precision@20
AIDS Mutag FM FR MM MR

N
od

e{Multi-layer 0.873 0.897 0.935 0.917 0.93 0.931

Multi-round 0.932 0.943 0.957 0.961 0.949 0.963

E
dg

e{Multi-layer 0.905 0.883 0.958 0.93 0.953 0.976

Multi-round 0.946 0.931 0.973 0.963 0.98 0.987

Table 14: Multi-round vs. multi-layer refinement. First and the last two rows of each table report HITS@20,
MRR and Precision@20 for IsoNet++ (Node) and IsoNet++ (Edge) respectively. Rows colored green and
yellow indicate the best and second best methods respectively.

truth alignments. We expect our final alignment matrix Pt (St) to be one of them. We determine the
closest ground truth matrices P ∗ and S∗ by computing maxP Tr(P⊤

T P) and maxS Tr(S⊤
T S) for

IsoNet++ (Node) and IsoNet++ (Edge) respectively. We now use the closest ground-truth alignment
P ∗, to compute Tr(P⊤

t P ∗) for t ∈ [T]. For each t, we plot a histogram with bin width 0.1 that
denotes the density estimate p(Tr(P⊤

t P ∗)). The same procedure is adopted for edges, with S∗ used
instead of P ∗. The histograms are depicted in Figure 15. We observe that the plots shift rightward
with increasing t. The frequency of graph pairs with misaligned Pt (St) decreases with rounds t
while that with well-aligned Pt (St) increases.

Here, we also study alignments obtained through multi-layer refinement. We adopt the same procedure
as in Section G.3. One key difference is that the node/edge alignments are computed after every layer
k and are accumulated across layers k ∈ [K]. In Figure 15, we observe that the plots, in general, shift
rightward with increasing k. The frequency of graph pairs with misaligned Pt (St) decreases with
rounds k while that with well-aligned Pk (Sk) increases.

G.4 Comparison across alternatives of multi-layer IsoNet++ (Node) and multi-round
IsoNet++ (Node)

In Table 16, we compare different alternatives to the multi-round and multi-layer variants of IsoNet++
(Node). In particular, we consider four alternatives - Node partner (equation shown in Section 4),
Node partner (with additional MLP) [Appendix E.3], Node pair partner (msg only) [Appendix E.4]
and IsoNet++ (Node). We observe that for all metrics, IsoNet++ (Node) and Node pair partner (msg
only) dominate the other alternatives in most cases. This highlights the importance of node pair
partner interaction for determining the subgraph isomorphism relationship between two graphs. For
the multi-round variant, IsoNet++ (Node) outperforms Node pair partner (msg only) in four of the
datasets and is comparable / slightly worse in the other two. Once again, comparisons based on MRR
break down because it does not cause a strong differentiation between the approaches.

23

0 5 10

Tr(P>t P
∗)→

0.04

0.08

0.12

0.16

0.20

p
(T

r(
P
> t
P
∗)

)
→

AIDS

Multi-Round

t = 1
t = 2
t = 3

0 5 10

Tr(P>k P
∗)→

0.04

0.08

0.12

0.16

0.20

p
(T

r(
P
> k
P
∗)

)
→

AIDS

Multi-Layer

k = 1
k = 2
k = 3
k = 4
k = 5

0 5 10

Tr(S>t S
∗)→

0.04

0.08

0.12

p
(T

r(
S
> t
S
∗)

)
→

AIDS

Multi-Round

t = 1
t = 2
t = 3

0 5 10

Tr(S>k S
∗)→

0.04

0.08

0.12

p
(T

r(
S
> k
S
∗)

)
→

AIDS

Multi-Layer

k = 1
k = 2
k = 3
k = 4
k = 5

0 5 10

Tr(P>t P
∗)→

0.04

0.08

0.12

0.16

p
(T

r(
P
> t
P
∗)

)
→

MUTAG

Multi-Round

t = 1
t = 2
t = 3

0 5 10

Tr(P>k P
∗)→

0.04

0.08

0.12

0.16

p
(T

r(
P
> k
P
∗)

)
→

MUTAG

Multi-Layer

k = 1
k = 2
k = 3
k = 4
k = 5

0 5 10

Tr(S>t S
∗)→

0.04

0.08

0.12

0.16

p
(T

r(
S
> t
S
∗)

)
→

MUTAG

Multi-Round

t = 1
t = 2
t = 3

0 5 10

Tr(S>k S
∗)→

0.04

0.08

0.12

0.16

p
(T

r(
S
> k
S
∗)

)
→

MUTAG

Multi-Layer

k = 1
k = 2
k = 3
k = 4
k = 5

0 5 10

Tr(P>t P
∗)→

0.04

0.08

0.12

0.16

0.20

p
(T

r(
P
> t
P
∗)

)
→

PTC-FM

Multi-Round

t = 1
t = 2
t = 3

0 5 10

Tr(P>k P
∗)→

0.04

0.08

0.12

0.16

0.20

p
(T

r(
P
> k
P
∗)

)
→

PTC-FM

Multi-Layer

k = 1
k = 2
k = 3
k = 4
k = 5

0 5 10

Tr(S>t S
∗)→

0.04
0.08
0.12
0.16
0.20
0.24
0.28
0.32
0.36
0.40

p
(T

r(
S
> t
S
∗)

)
→

PTC-FM

Multi-Round

t = 1
t = 2
t = 3

0 5 10

Tr(S>k S
∗)→

0.04
0.08
0.12
0.16
0.20
0.24
0.28
0.32
0.36
0.40

p
(T

r(
S
> k
S
∗)

)
→

PTC-FM

Multi-Layer

k = 1
k = 2
k = 3
k = 4
k = 5

0 5 10

Tr(P>t P
∗)→

0.04

0.08

0.12

0.16

p
(T

r(
P
> t
P
∗)

)
→

PTC-FR

Multi-Round

t = 1
t = 2
t = 3

0 5 10

Tr(P>k P
∗)→

0.04

0.08

0.12

0.16

p
(T

r(
P
> k
P
∗)

)
→

PTC-FR

Multi-Layer

k = 1
k = 2
k = 3
k = 4
k = 5

0 5 10

Tr(S>t S
∗)→

0.04
0.08
0.12
0.16
0.20
0.24
0.28

p
(T

r(
S
> t
S
∗)

)
→

PTC-FR

Multi-Round

t = 1
t = 2
t = 3

0 5 10

Tr(S>k S
∗)→

0.04
0.08
0.12
0.16
0.20
0.24
0.28

p
(T

r(
S
> k
S
∗)

)
→

PTC-FR

Multi-Layer

k = 1
k = 2
k = 3
k = 4
k = 5

0 5 10

Tr(P>t P
∗)→

0.04

0.08

0.12

0.16

p
(T

r(
P
> t
P
∗)

)
→

PTC-MM

Multi-Round

t = 1
t = 2
t = 3

0 5 10

Tr(P>k P
∗)→

0.04

0.08

0.12

0.16

p
(T

r(
P
> k
P
∗)

)
→

PTC-MM

Multi-Layer

k = 1
k = 2
k = 3
k = 4
k = 5

0 5 10

Tr(S>t S
∗)→

0.04

0.08

0.12

0.16

0.20

0.24

p
(T

r(
S
> t
S
∗)

)
→

PTC-MM

Multi-Round

t = 1
t = 2
t = 3

0 5 10

Tr(S>k S
∗)→

0.04

0.08

0.12

0.16

0.20

0.24

p
(T

r(
S
> k
S
∗)

)
→

PTC-MM

Multi-Layer

k = 1
k = 2
k = 3
k = 4
k = 5

0 5 10

Tr(P>t P
∗)→

0.04

0.08

0.12

0.16

0.20

p
(T

r(
P
> t
P
∗)

)
→

PTC-MR

Multi-Round

t = 1
t = 2
t = 3

0 5 10

Tr(P>k P
∗)→

0.04

0.08

0.12

0.16

0.20

p
(T

r(
P
> k
P
∗)

)
→

PTC-MR

Multi-Layer

k = 1
k = 2
k = 3
k = 4
k = 5

0 5 10

Tr(S>t S
∗)→

0.04

0.08

0.12

p
(T

r(
S
> t
S
∗)

)
→

PTC-MR

Multi-Round

t = 1
t = 2
t = 3

0 5 10

Tr(S>k S
∗)→

0.04

0.08

0.12

p
(T

r(
S
> k
S
∗)

)
→

PTC-MR

Multi-Layer

k = 1
k = 2
k = 3
k = 4
k = 5

Figure 15: Similar to Figure 6, we plot empirical probability density of p(Tr(P⊤
t P ∗)) and

p(Tr(S⊤
t S∗)) for different values of t lazy multi round updates and p(Tr(P⊤

k P ∗)) and p(Tr(S⊤
k S∗))

for different values of k for eager multi layer updates. The first (last) two plots in the left (right) of
each row are for multi-round IsoNet++ (Node) (multi-round IsoNet++ (Edge)).

24

Mean Average Precision (MAP)
AIDS Mutag FM FR MM MR

M
ul

ti-
L

ay
er


Node partner (with additional MLP) 0.692 0.782 0.822 0.776 0.777 0.803

Node pair partner (msg only) 0.765 0.792 0.876 0.823 0.843 0.848

Node partner 0.668 0.783 0.821 0.752 0.753 0.794

IsoNet++ (Node) 0.756 0.81 0.859 0.802 0.827 0.841

M
ul

ti-
R

ou
nd


Node partner (with additional MLP) 0.815 0.844 0.868 0.852 0.818 0.858

Node pair partner (msg only) 0.818 0.833 0.897 0.831 0.852 0.871

Node partner 0.776 0.829 0.851 0.819 0.844 0.84

IsoNet++ (Node) 0.825 0.851 0.888 0.855 0.838 0.874

HITS@20
AIDS Mutag FM FR MM MR

M
ul

ti-
L

ay
er


Node partner (with additional MLP) 0.479 0.634 0.677 0.611 0.608 0.64

Node pair partner (msg only) 0.577 0.651 0.775 0.682 0.719 0.703

Node partner 0.433 0.639 0.678 0.58 0.571 0.624

IsoNet++ (Node) 0.57 0.672 0.744 0.657 0.68 0.707

M
ul

ti-
R

ou
nd


Node partner (with additional MLP) 0.658 0.727 0.756 0.738 0.667 0.743

Node pair partner (msg only) 0.671 0.717 0.807 0.696 0.728 0.753

Node partner 0.603 0.702 0.736 0.686 0.721 0.695

IsoNet++ (Node) 0.672 0.732 0.797 0.737 0.702 0.755

Mean Reciprocal Rank (MRR)
AIDS Mutag FM FR MM MR

M
ul

ti-
L

ay
er


Node partner (with additional MLP) 0.909 0.941 0.965 0.964 0.966 0.984

Node pair partner (msg only) 0.97 0.956 0.964 0.993 0.978 1.0

Node partner 0.917 0.945 0.964 0.987 0.958 0.969

IsoNet++ (Node) 0.956 0.954 1.0 0.978 0.98 1.0

M
ul

ti-
R

ou
nd


Node partner (with additional MLP) 0.987 0.944 0.993 0.987 0.963 0.983

Node pair partner (msg only) 0.984 0.958 0.993 0.98 0.984 0.984

Node partner 0.984 0.949 0.993 0.978 0.978 0.97

IsoNet++ (Node) 0.993 0.971 1.0 0.993 0.993 0.993

Precision@20
AIDS Mutag FM FR MM MR

M
ul

ti-
L

ay
er


Node partner (with additional MLP) 0.817 0.867 0.913 0.913 0.883 0.914

Node pair partner (msg only) 0.871 0.886 0.957 0.937 0.927 0.937

Node partner 0.799 0.866 0.919 0.877 0.873 0.885

IsoNet++ (Node) 0.873 0.897 0.935 0.917 0.93 0.931

M
ul

ti-
R

ou
nd


Node partner (with additional MLP) 0.921 0.917 0.936 0.951 0.921 0.945

Node pair partner (msg only) 0.923 0.913 0.969 0.951 0.957 0.957

Node partner 0.875 0.921 0.933 0.942 0.939 0.941

IsoNet++ (Node) 0.932 0.943 0.957 0.961 0.949 0.963
Table 16: Effect of node pair partner interaction in IsoNet++ (Node). Table shows the comparison of IsoNet++
(Node) with three different alternatives. The first table reports MAP values, second reports HITS@20, third
reports MRR and fourth reports Precision@20. In each table, the first two rows report metrics for multi-layer
refinement and the second two rows report metrics for multi-round refinement. Rows colored green and yellow
indicate the best and second best methods in their respective sections.

25

G.5 Comparison of GMN with IsoNet++ alternative for multi-layer and multi-round

In Table 17, we modify the GMN architecture to include node pair partner interaction in the message-
passing layer. Based on the reported metrics, we observe that there is no substantial improvement
upon including information from node pairs in GMN, which is driven by a non-injective mapping
(attention). This indicates that injectivity of the doubly stochastic matrix in our formulation is crucial
towards the boost in performance obtained from node pair partner interaction as well.

Mean Average Precision (MAP)
AIDS Mutag FM FR MM MR

Multi-Layer
{

GMN 0.622 0.71 0.73 0.662 0.655 0.708

Node pair partner 0.579 0.732 0.74 0.677 0.641 0.713

Multi-Round
{

GMN 0.629 0.699 0.757 0.697 0.653 0.714

Node pair partner 0.579 0.693 0.729 0.69 0.665 0.705

HITS@20
AIDS Mutag FM FR MM MR

Multi-Layer
{

GMN 0.397 0.544 0.537 0.45 0.423 0.49

Node pair partner 0.346 0.567 0.551 0.476 0.411 0.5

Multi-Round
{

GMN 0.403 0.533 0.562 0.494 0.431 0.502

Node pair partner 0.344 0.528 0.54 0.502 0.462 0.506

Mean Reciprocal Rank (MRR)
AIDS Mutag FM FR MM MR

Multi-Layer
{

GMN 0.877 0.923 0.949 0.947 0.928 0.922

Node pair partner 0.827 0.897 0.958 0.877 0.918 0.92

Multi-Round
{

GMN 0.905 0.862 0.958 0.956 0.906 0.921

Node pair partner 0.811 0.901 0.907 0.908 0.964 0.92

Precision@20
AIDS Mutag FM FR MM MR

Multi-Layer
{

GMN 0.751 0.82 0.852 0.809 0.783 0.832

Node pair partner 0.7 0.833 0.861 0.797 0.792 0.846

Multi-Round
{

GMN 0.753 0.795 0.885 0.829 0.792 0.842

Node pair partner 0.694 0.794 0.847 0.835 0.802 0.825
Table 17: Effect of node pair partner interaction in GMN. The tables compare GMN with its IsoNet++
alternative. The first table reports MAP values, the second table reports HITS@20 values, the third table reports
MRR values and the fourth table reports Precision@20. In each table, the first two rows report metrics for
multi-layer refinement and the second two rows report metrics for multi-round refinement. Rows colored green
and yellow indicate the best and second best methods according to the respective metrics.

26

G.6 Variation of IsoNet++ (Node) and IsoNet++ (Edge) with different T and K

In this section, we analyze the accuracy and inference time trade-off of multi-round lazy and multi-
layer eager variants of IsoNet++ (Node) and IsoNet++ (Edge). In the following tables, we show the
MAP and inference time. Additionally, we also analyze the trade-off of GMN and IsoNet (Edge).
The T,K parameters for different models are so chosen that they can be compared against each other
while fixing the inference time to be roughly similar. For instance, multi-round lazy IsoNet++ (Node)
with T = 5,K = 5 maps to multi-layer eager IsoNet++ (Node) with K = 8, allowing for a direct
comparison of performance without caring much about different compute. Note that in below tables,
models are listed in order of increasing inference time (i.e. increasing K or T).

In tables 19 and 20, we show variations for multi-round lazy IsoNet++ (Node) for fixed T and fixed
K respectively. We observe that with fixed T , increasing K from 5 to 10 doesn’t improve the model
significantly. For fixed K, performance (in terms of MAP) improves notably when increasing T from
3 to 5.

In table 21, we show variations for multi-layer eager IsoNet++ (Node) for varying K. We observe
that except for a drop at K = 7, the performance of the model improves as we increase K. In fact, at
K = 8, the performance is surprisingly good, even outperforming the similarly timed T = 5,K = 5
variant of lazy multi-round IsoNet++ (Node) on both AIDS and Mutag.

In tables 22 and 23, we compare variants of multi-round lazy IsoNet++ (Edge) with fixed T and
fixed K respectively. We observe that when T is fixed and K is increased, the gain is marginal. We
observe a significant gain When K is fixed and T is increased from 3 to 4.

In table 24, we study the trade-off for multi-layer eager IsoNet++ (Edge) for varying K. We observe
that with increasing K, the performance continues to improve and peaks at K = 8. Note that even at
this K, the performance of multi-layer eager IsoNet++ (Edge) is worse than a similarly timed variant
(T = 5,K = 5) of multi-round IsoNet++ (Edge).

In table 25, we show variations for GMN for varying K. We observe marginal gains while increasing
K. From K = 10 to K = 12, the performance drops.

In table 26, we show how performance varies for IsoNet (Edge) for varying K. We observe that the
model does not improve with increasing K.

50 80 110 140

Inference time (in ms)

0.6

0.8

1.0

M
A

P

Lazy Eager GMN

(a) Node, AIDS

50 80 110 140

Inference time (in ms)

0.6

0.8

1.0

M
A

P

Lazy Eager GMN

(b) Edge, AIDS

50 80 110 140

Inference time (in ms)

0.6

0.8

1.0

M
A

P

Lazy Eager GMN

(c) Node, Mutag

50 80 110 140

Inference time (in ms)

0.6

0.8

1.0

M
A

P

Lazy Eager GMN

(d) Edge, Mutag
Figure 18: Trade off between MAP and inference time (batch size=128).

27

Mean Average Precision (MAP)
AIDS Mutag FM FR MM MR

T = 3,K = 5 0.825 0.851 0.888 0.855 0.838 0.874
T = 3,K = 10 0.774 0.855 0.898 0.811 0.855 0.882

Inference time (in ms)
AIDS Mutag FM FR MM MR

T = 3,K = 5 80.11 80.99 81.01 81.24 80.94 80.25
T = 3,K = 10 99.11 99.31 99.28 99.48 99.37 99.36

Table 19: MAP and inference time trade-off of variants of multi-round lazy IsoNet++ (Node) with fixed T .
Rows colored green indicate the best K according to the MAP score.

Mean Average Precision (MAP)
AIDS Mutag FM FR MM MR

T = 3,K = 5 0.825 0.851 0.888 0.855 0.838 0.874
T = 4,K = 5 0.799 0.833 0.892 0.858 0.867 0.891
T = 5,K = 5 0.845 0.875 0.919 0.883 0.894 0.897

Inference time (in ms)
AIDS Mutag FM FR MM MR

T = 3,K = 5 80.11 80.99 81.01 81.24 80.94 80.25
T = 4,K = 5 101.33 100.99 100.95 100.46 100.59 100.87
T = 5,K = 5 123.18 124.19 123.61 122.79 123.33 122.74

Table 20: MAP and inference time trade-off of variants of multi-round lazy IsoNet++ (Node) with fixed K.
Rows colored green and yellow indicate the best and second best T according to the MAP score.

Mean Average Precision (MAP)
AIDS Mutag

K = 5 0.756 0.81
K = 6 0.813 0.821
K = 7 0.808 0.842
K = 8 0.883 0.874

Inference time (in ms)
AIDS Mutag

K = 5 79.02 79.15
K = 6 94.99 95.33
K = 7 110.78 111.09
K = 8 126.48 126.6

Table 21: MAP and inference time trade-off of variants of multi-layer eager IsoNet++ (Node) with increasing
K. Rows colored green and yellow indicate the best and second best K according to the MAP score.

Mean Average Precision (MAP)
AIDS Mutag

T = 3,K = 5 0.847 0.858
T = 3,K = 10 0.865 0.871

Inference time (in ms)
AIDS Mutag

T = 3,K = 5 64.39 66.03
T = 3,K = 10 88.59 90.76

Table 22: MAP and inference time trade-off of variants of multi-round lazy IsoNet++ (Edge) with fixed T .
Rows colored green indicate the best K according to the MAP score.

Mean Average Precision (MAP)
AIDS Mutag

T = 3,K = 5 0.847 0.858
T = 4,K = 5 0.881 0.887
T = 5,K = 5 0.886 0.909

Inference time (in ms)
AIDS Mutag

T = 3,K = 5 64.39 66.03
T = 4,K = 5 85.02 87.33
T = 5,K = 5 106.24 109.1

Table 23: MAP and inference time trade-off of variants of multi-round lazy IsoNet++ (Edge) with fixed K.
Rows colored green and yellow indicate the best and second best T according to the MAP score.

28

Mean Average Precision (MAP)
AIDS Mutag

K = 5 0.795 0.805
K = 6 0.828 0.837
K = 7 0.852 0.848
K = 8 0.862 0.851

Inference time (in ms)
AIDS Mutag

K = 5 72.63 73.46
K = 6 86.03 87.77
K = 7 100.26 102.6
K = 8 114.33 115.01

Table 24: MAP and inference time trade-off of variants of multi-layer eager IsoNet++ (Edge) with increasing
K. Rows colored green and yellow indicate the best and second best K according to the MAP score.

Mean Average Precision (MAP)
AIDS Mutag FM FR MM MR

K = 5 0.622 0.710 0.730 0.662 0.655 0.708
K = 8 0.641 0.731 0.745 0.701 0.658 0.711
K = 10 0.679 0.736 0.741 0.712 0.691 0.74
K = 12 0.651 0.728 0.743 0.697 0.687 0.699

Inference time (in ms)
AIDS Mutag FM FR MM MR

K = 5 52.94 53.16 53.23 53.12 53.32 53.34
K = 8 83.97 84.47 84.64 84.38 85.41 84.51
K = 10 104.87 105.21 105.72 105.33 105.66 105.73
K = 12 125.99 126.33 126.53 126.39 126.79 126.59

Table 25: MAP and inference time trade-off of variants of GMN with increasing K. Rows colored green and
yellow indicate the best and second best K according to the MAP score.

AIDS Inference time (in ms)
K = 5 0.69 19.77
K = 6 0.717 20.83
K = 7 0.697 21.96
K = 8 0.709 23.02

Table 26: MAP and inference time trade-off of variants of IsoNet (Edge) with increasing K. Rows colored
green and yellow indicate the best and second best T according to the MAP score.

29

G.7 Contribution of refining alignment matrix in inference time

In GMN, computing the embeddings of nodes after the message passing step at each layer dominates
the inference time. However, in the case of IsoNet++ models, we observe the refinement of the
alignment matrix at each layer or round to also be time-intensive. In table 27, we show the
contribution of embedding computation and matrix updates to the total inference time. The updates to
P constitute the largest share of inference time for multi-layer variants. This can be attributed to the
refinement of P after every message passing step, equaling the frequency of embedding computation.
In the case of multi-round variants, both embedding computation and updates to P contribute almost
equally since P is refined only at the end of each round, after several layers of message passing
alongwith embedding computation.

Models Embedding Computation Matrix Updates
multi-layer IsoNet++ (Node) 13.7 68.3
multi-layer IsoNet++ (Edge) 19.7 76.3
multi-round IsoNet++ (Node) 34.1 47.8
multi-round IsoNet++ (Edge) 54.9 39.9

Table 27: Inference time contribution of embedding computation and matrix updates by multi-layer and
multi-round IsoNet++ (Node) and IsoNet++ (Edge) models.

30

G.8 Transfer ability of learned models

In this section, we evaluate the transfer ability of each trained model across datasets. In table 28,
we report the Mean Average Precision (MAP) scores for models trained using the AIDS and Mutag
datasets respectively evaluated on all six datasets. We observe that despite a zero-shot transfer from
one of the datasets to all others, variants of IsoNet++ show the best accuracy.

Test across other datasets when trained on AIDS
AIDS Mutag FM FR MM MR

GraphSim [2] 0.356 0.225 0.192 0.198 0.210 0.215

GOTSim [11] 0.324 0.275 0.370 0.339 0.314 0.361

SimGNN [1] 0.341 0.264 0.374 0.344 0.331 0.383

EGSC [31] 505 0.255 0.473 0.451 0.447 0.499

H2MN [45] 0.267 0.272 0.319 0.281 0.262 0.297

Neuromatch [23] 0.489 0.287 0.442 0.403 0.386 0.431

GREED [32] 0.472 0.307 0.477 0.452 0.436 0.490

GEN [22] 0.557 0.291 0.445 0.427 0.437 0.496

GMN [22] 0.622 0.342 0.569 0.544 0.532 0.588

IsoNet (Node) [35] 0.659 0.459 0.612 0.562 0.588 0.640

IsoNet (Edge) [35] 0.690 0.468 0.620 0.568 0.624 0.627

multi-layer IsoNet++ (Node) 0.756 0.685 0.825 0.767 0.781 0.794

multi-layer IsoNet++ (Edge) 0.795 0.683 0.800 0.751 0.792 0.785

multi-round IsoNet++ (Node) 0.825 0.702 0.828 0.777 0.800 0.825

multi-round IsoNet++ (Edge) 0.847 0.741 0.846 0.799 0.833 0.836
Test across other datasets when trained on Mutag

AIDS Mutag FM FR MM MR

GraphSim [2] 0.188 0.472 0.190 0.193 0.205 0.198

GOTSim [11] 0.194 0.272 0.185 0.192 0.202 0.182

SimGNN [1] 0.206 0.283 0.203 0.209 0.220 0.195

EGSC [31] 0.296 0.476 0.391 0.333 0.309 0.355

H2MN [45] 0.209 0.276 0.204 0.207 0.223 0.197

Neuromatch [23] 0.275 0.576 0.368 0.304 0.304 0.325

GREED [32] 0.328 0.567 0.388 0.335 0.356 0.370

GEN [22] 0.278 0.605 0.359 0.308 0.312 0.330

GMN [22] 0.299 0.710 0.434 0.361 0.389 0.394

IsoNet (Node) [35] 0.458 0.697 0.503 0.456 0.446 0.486

IsoNet (Edge) [35] 0.472 0.706 0.499 0.438 0.467 0.489

multi-layer IsoNet++ (Node) 0.601 0.810 0.695 0.611 0.628 0.614

multi-layer IsoNet++ (Edge) 0.527 0.805 0.558 0.507 0.560 0.563

multi-round IsoNet++ (Node) 0.645 0.851 0.679 0.626 0.652 0.655

multi-round IsoNet++ (Edge) 0.625 0.858 0.639 0.598 0.634 0.650

Table 28: Test MAP of all graph retrieval methods on different datasets, when they were trained on
AIDS (top half) and Mutag (bottom half) dataset. The numbers with green and yellow indicate the
best, second best method respectively.

31

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Section 1.1 discusses the paper’s contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Appendix A discusses the limitations of our work. Details about computational
efficiency are included in the main paper as well as in Appendix G.6, expressed explicitly as
the running time of each approach.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The paper includes one theorem, which is noted and proved in Appendix D.5.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.

32

• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper introduces new architectures and the designs of each of these are
discussed in the main paper under Sections 3.2, 3.3 and Appendices D, E. Hyperparameters,
training procedure, hardware and random seeds for all experiments are noted in Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Uploaded in github.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not

33

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Important parameters that are required to understand and appreciate the results
are noted as and when required. Hyperparameters, training procedure, hardware and random
seeds for all experiments are noted in Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Appendix G.1 includes standard error for the metrics reported in the paper,
which includes Mean Average Precision (MAP) and HITS@20, computed across each query
graph in the test split. The section also reports the method of calculation of the standard
error.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

34

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Types of GPUs and inference time are reported in Appendices F.5 and G.6
respectively. Other details about the training setting are mentioned point-wise in Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors have studied the ethics guidelines and find the work to conform
well to them.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Broader societal impacts (both positive and negative) are discussed in Ap-
pendix C.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

35

https://neurips.cc/public/EthicsGuidelines

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The datasets used in the paper are derived from public graph datasets widely
used by researchers and the authors are not aware of any risks for misuse posed by them.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The related work and datasets applicable to this work have been cited in
Appendices B and F.1 respectively. Best effort was made by the authors to determine the
licenses of the datasets and existing architectures, and are included in Appendix F.6.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Details of the models and datasets are discussed in Appendices D and F.1
respectively. Datasets used in the paper are publicly accessible. The code is submitted with
the paper as a supplementary item and is anonymized & well-documented.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

36

paperswithcode.com/datasets

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The experiments performed in this paper do not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The experiments performed in this paper do not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

37

	Introduction
	Our contributions

	Preliminaries
	Proposed early-interaction GNN with multi-round alignment refinement
	Subgraph isomorphism as Gromov-Wasserstein distance optimization
	Design of IsoNet++ (Node)
	Extension of IsoNet++ (Node) to IsoNet++ (Edge)

	Experiments
	Experimental setup
	Results

	Conclusion
	Limitations
	Related work
	Graph Representation Learning
	Differentiable combinatorial solvers
	Graph Similarity Computation and Retrieval

	Broader Impact
	Network architecture of different components of IsoNet++
	Encoder
	GNN
	Node aligner
	Edge aligner
	GumbelSinkhorn operator

	Variants of our models and GMN, used in the experiments
	Multi-round refinement of IsoNet++ (Node) for the corpus graph
	Eager update for IsoNet++ (Edge)
	Node partner (with additional MLP) variant of IsoNet++ (Node)
	Node pair partner (`3́9`42`"̇613A``45`47`"603Amsg only) variant of IsoNet++ (Node)

	Additional details about experimental setup
	Datasets
	Baselines
	Calculation of Metrics: Mean Average Precision (MAP), HITS@K, Precision@K and Mean Reciprocal Rank (MRR)
	Details about hyperparameters
	Software and Hardware
	License

	Additional experiments
	Comparison against baselines
	HITS@20, MRR and Precision@20 for multi-round IsoNet++ and multi-layer IsoNet++
	Refinement of alignment matrix across rounds and layers in multi-round IsoNet++ and multi-layer IsoNet++
	Comparison across alternatives of multi-layer IsoNet++ (Node) and multi-round IsoNet++ (Node)
	Comparison of GMN with IsoNet++ alternative for multi-layer and multi-round
	Variation of IsoNet++ (Node) and IsoNet++ (Edge) with different T and K
	Contribution of refining alignment matrix in inference time
	Transfer ability of learned models

