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Abstract

Large language models (LLMs) have demonstrated impressive capabilities in var-
ious reasoning tasks, aided by techniques like chain-of-thought prompting that
elicits verbalized reasoning. However, LLMs often generate text with obvious
mistakes and contradictions, raising doubts about their ability to robustly process
and utilize generated rationales. In this work, we investigate reasoning in LLMs
through the lens of internal representations, focusing on how these representations
are influenced by generated rationales. Our preliminary analysis reveals that while
generated rationales improve answer accuracy, inconsistencies emerge between
the model’s internal representations in middle layers and those in final layers,
potentially undermining the reliability of their reasoning processes. To address
this, we propose internal consistency as a measure of the model’s confidence by
examining the agreement of latent predictions decoded from intermediate layers.
Extensive empirical studies across different models and datasets demonstrate that
internal consistency effectively distinguishes between correct and incorrect reason-
ing paths. Motivated by this, we propose a new approach to calibrate reasoning
by up-weighting reasoning paths with high internal consistency, resulting in a
significant boost in reasoning performance. Further analysis uncovers distinct
patterns in attention and feed-forward modules across layers, providing insights
into the emergence of internal inconsistency. In summary, our results demonstrate
the potential of using internal representations for self-evaluation of LLMs. Our
code is available at github.com/zhxieml/internal-consistency.

1 Introduction

Large language models (LLMs) have demonstrated impressive capabilities in various reasoning tasks,
aided by techniques like chain-of-thought (CoT) prompting that elicits verbalized reasoning (Wei
et al., 2022; Merrill and Sabharwal, 2024). This approach directs the model to articulate step-by-step
rationales before answering a question, simulating the reasoning process used by humans. With these
verbalized rationales, it is expected that not only will the model’s problem-solving capabilities be
enhanced, but also the interpretability of its predictions will improve. Understanding how LLMs
reason is essential for aligning them with human values (Bai et al., 2022; Li et al., 2024).

Despite the continued improvement in performance and the emergence of new capabilities, LLMs
often generate text with obvious mistakes and contradictions, raising doubts about their ability to
robustly process and utilize generated rationales (Ye and Durrett, 2022; Turpin et al., 2023). One
notable failure mode is unfaithful reasoning, where LLMs provide rationales that contradict their
final predictions (Lyu et al., 2023; Lanham et al., 2023). This makes it difficult to determine the
trustworthiness of their predictions, highlighting the need for effective calibration methods to assess
the reliability of rationales.
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Figure 1: An illustration of internal consistency. Given a true-or-false question with the ground
truth being true, we elicit latent predictions (i.e., predictions decoded from intermediate layers,
represented by “T” for true and “F” for false) from the answer token of reasoning paths. By defining
internal consistency as the agreement of latent predictions with the final stated one, we observe a high
correlation between internal consistency and prediction accuracy, which aids in calibrating reasoning.
Note that the figure on the right is synthesized for illustration purposes, but the distributions reflect
actual observations as shown in Figure 3.

In this work, we present the first exploration of leveraging internal representations to calibrate
reasoning in LLMs. Our study is based on the intuition that the inner workings of LLMs contain
latent structures that can assess the reliability of reasoning paths. To investigate this, we begin
by probing the model’s intermediate activations for answer correctness in CoT reasoning. Our
preliminary analysis reveals that CoT reasoning leads to inconsistencies between the model’s internal
representations in middle layers and those in final layers, potentially indicating a degree of uncertainty.

Based on this observation, we propose internal consistency (illustrated in Figure 1) as a measure
of the model’s confidence in the reasoning process. Inspired by previous works on eliciting latent
predictions from intermediate layers (nostalgebraist, 2020; Belrose et al., 2023), we examine internal
consistency by assessing the agreement of latent predictions decoded from intermediate layers. Unlike
methods that require additional training and human annotations (Ye and Durrett, 2022; Khalifa et al.,
2023), internal consistency provides a reliable and off-the-shelf self-evaluation for reasoning.

We conduct extensive empirical studies on various reasoning tasks, including reading comprehension,
symbolic reasoning, and logical reasoning. Our analysis across different models and datasets demon-
strates that internal consistency effectively distinguishes between correct and incorrect reasoning
paths. Moreover, by up-weighting reasoning paths with high internal consistency, we achieve a
significant improvement in reasoning performance. These results highlight the potential of using
internal representations for the self-evaluation of LLMs.

This work makes three main contributions. 1) We identify the emergence of inconsistencies between
intermediate and final layer representations in LLM reasoning, highlighting a potential issue where
CoT reasoning leads to higher uncertainty. 2) We propose internal consistency as a novel measure to
evaluate the model’s confidence and calibrate reasoning by up-weighting paths with high internal
consistency. 3) We provide insights into the cause of internal inconsistency in reasoning by analyzing
Transformer components (i.e., attention and feed-forward networks) across layers. We believe our
results show promise in leveraging internal representations to enhance reasoning in LLMs.

2 Preliminaries

In this section, we present background information, notations, and preliminary analysis to provide
context for our study.

2.1 Transformer Architecture

Our analysis focuses on the prevalent decoder-only Transformer architecture (Vaswani et al., 2017;
Radford et al., 2018). To set notation and context, we briefly describe the key components as follows.
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Given a sequence x = (x1, . . . , xn) of input tokens, the inference process of the Transformer begins
by projecting these tokens into a sequence of representations h0

1, . . . ,h
0
n ∈ Rd. This representation

is then updated by a series of L residual blocks (Elhage et al., 2021), each consisting of a multi-
head self-attention (MHSA) layer followed by a feed-forward network (FFN) layer2. In each block
ℓ ∈ [0, L− 1], the representation of each token i is updated as follows:

hℓ+1
i = hℓ

i + FFNℓ(hℓ
i +MHSAℓ(hℓ

i)).

Finally, the next token distribution is produced by applying an unembedding on hL
i :

p(xn+1 | x) = Softmax(Unembed(hL
i ))xn+1

.

As the dimension of hi remains constant across layers, we can view it as a dynamic distribution
processed by the model (Geva et al., 2022), providing insight into how LLMs reason internally.

2.2 Preliminary Analysis of Internal Representations in CoT Reasoning

Building upon works that explore the inner workings of LLMs (Burns et al., 2023; Ferrando et al.,
2024), our study starts with exploring the encoded information in internal representations during
reasoning. In the context of CoT prompting—a prevalent technique for eliciting reasoning capabilities
of LLMs—we analyze these representations along two dimensions: horizontally across reasoning
steps, and vertically across network layers.
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Figure 2: CoT reasoning improves answer
accuracy but exacerbates the inconsistency
between hidden and stated reasoning. Left:
Heatmap of linear probe accuracies at all rea-
soning steps and intermediate layers. Right:
A zoom-in on the results of the last two steps.

We conduct preliminary experiments using the Llama-
2-7B model (Touvron et al., 2023) on the PrOntoQA
dataset (Saparov and He, 2023), which challenges
the model to determine whether a proposition is true
based on a series of assumptions. We apply 4-shot
CoT prompting and greedy decoding to generate rea-
soning paths and predictions. To discern encoded
information crucial for reasoning, we utilize linear
probing (Alain and Bengio, 2016; Belinkov, 2022)
to train classifiers on the activations with respect to
the ground truth labels, aiming to differentiate be-
tween true and false propositions. Reasoning paths
are segmented into individual steps using the NLTK
punkt sentence tokenizer (Bird et al., 2009), with a
dedicated probe classifier for each layer at the last
token of every reasoning step. Implementation details are provided in Appendix B.1.

Figure 2 presents an evaluation of the probe accuracy on the validation set, including a detailed
zoom-in on the probe accuracy at the last two reasoning steps, which reveals two distinct patterns:

1. Improved accuracy through verbalized reasoning: Probe accuracy increases monotoni-
cally as the model processes and verbalizes reasoning paths, indicating that LLMs extract
and utilize task-solving information from their generated rationales.

2. Emergent inconsistency across layers: A closer examination at the last two reasoning steps
reveals a notable inconsistency in probe accuracy between middle and later layers. This
inconsistency suggests that while middle layers capture essential reasoning information, it
may not be fully utilized or maintained by the later layers, potentially impacting the model’s
overall reasoning performance.

This analysis provides an initial understanding of how LLMs internally process and handle information
during CoT reasoning. While LLMs effectively gather information from verbalized reasoning
paths, there is a noticeable tendency for these models to underutilize the processed information at
intermediate layers. This motivates us to further investigate into the internal representations of LLMs
and explore methods to better harness them to enhance reasoning capabilities.

2Modern Transformer models apply normalization (Ba et al., 2016; Zhang and Sennrich, 2019) before or
after each layer. We omit the notation here for simplicity.
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2.3 Calibration

Calibration refers to the alignment between a model’s predicted probability estimates and their actual
prediction correctness (Guo et al., 2017; Geng et al., 2023). Calibration is crucial for assessing the
reliability and trustworthiness of LLMs, and can also help improve performance (Wang et al., 2022).

More formally, we want to find a measure Score such that for any two prompt-answer-prediction
triplets (xi,yi, ŷi) and (xj ,yj , ŷj), the following holds:

Score (xi, ŷi) ≤ Score (xj , ŷj) ⇐⇒ p (ŷi = yi | xi) ≤ p (ŷj = yj | xj) .

In this work, we reveal the potential of using internal representations for calibration and introduce a
new measure based on internal consistency, as described in Section 3.2. The new measure does not
require additional training and is more accurate than logit-based methods.

3 Internal Consistency as a Lens to Calibrate Reasoning

In Section 2.2, we uncover patterns of internal inconsistency in reasoning with linear probes. While
probe accuracy indicates the “extractability” of task-solving information, it does not necessarily show
how LLMs process internal representations for generation (Alain and Bengio, 2016; Belinkov, 2022).
Therefore, we introduce a new method to measure internal consistency in this section.

3.1 Interpreting Internal Representations

The internal reasoning process of a Transformer towards its final prediction can be comprehended
through iterative inference (Jastrzębski et al., 2017; Geva et al., 2022). A direct method to inspect
this internal process during generation is to early exit from intermediate layers. Specifically, instead
of applying unembedding on hL

i , we can obtain the token distribution over the vocabulary from any
intermediate layer using the logit lens (nostalgebraist, 2020):

pℓ(xn+1 | x) = Softmax(Unembed(hℓ
i))xn+1

.

Building on this interpretation, we can decode latent predictions from any layer ℓ:

x̂ℓ
n+1 = argmax

x
pℓ(x | x). (1)

While Equation 1 provides a measurement of latent predictions, we find that the decoded distributions
are often miscalibrated, biasing towards specific answers (Zhao et al., 2021; Belrose et al., 2023). For
instance, in the PrOntoQA task with Llama-2-7B, the penultimate layer consistently assigns over
90% probability to the answer "True," regardless of the context. To address this, we balance the latent
predictions across the possible answers for each layer separately. See Appendix B.4 for more details.

3.2 Calibration Measurement with Internal Consistency

Built on our findings in Section 2.2, we investigate consistency of internal representations as an
indication of uncertainty. Intuitively speaking, if the model’s internal representations are highly
inconsistent with those of later layers, it may not faithfully say as it thinks. Based on these intuitions,
we propose a simple metric called internal consistency to measure the agreement of latent predictions.

Internal Consistency During inference, we collect latent predictions at the answer tokens and
measure how often latent predictions match the final prediction:

InternalConsistency(x, ŷ) =
1

L− 1

L−1∑
ℓ=1

1{ŷℓ = ŷL}. (2)

This measure offers a straightforward method to gauge the level of internal consistency, serving as a
useful indicator of the output’s correctness (i.e., calibration), without requiring additional training.
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Calibrating Reasoning with Internal Consistency As LLMs often require long reasoning paths to
resolve complex tasks (Wei et al., 2022), a process that introduces cumulative errors and uncertainty,
we integrate this consistency measure into the generation process to enhance reasoning calibration.
Specifically, we propose a new decoding method that assigns weights to each sampled reasoning path
based on their calculated consistency score at the final answer token. Paths that exhibit higher internal
consistency—indicating robust alignment between intermediate and final predictions—are assigned
greater weight in determining the final model output. This weighted strategy aims to prioritize
reasoning paths that not only maintain self-consistency but are also more likely to converge on the
correct answer, thus potentially enhancing the model’s accuracy in complex reasoning tasks.

4 Experiments

To study internal consistency, we conduct extensive experiments to address the following questions:
1) To what degree does internal consistency correlates with reasoning performance? 2) Can we
leverage internal consistency to boost reasoning? 3) How do different components of the Transformer
architecture contribute to the emergence of internal inconsistency?

4.1 Setup

We evaluate internal consistency across a spectrum of models and tasks. See Appendix B.2 for further
details of the experimental setup.

Models Our experiments are conducted using two prominent series of open-source Transformer-
based models: the Llama-2 series (Touvron et al., 2023) and the Mistral series (Jiang et al., 2023).
Specifically, we evaluate both the 7B and 13B configurations of the Llama-2 series to understand
how model scale impacts internal consistency. Additionally, for the Mistral series, we explore the 7B
and the 8×7B versions, the latter of which incorporates mixture of experts layers (Jiang et al., 2024).
These models were chosen due to their extensive use and distinct architectural features, enabling a
comprehensive evaluation of internal consistency.

Datasets We evaluate various datasets that span reading comprehension, symbolic reasoning, and
logical reasoning tasks. We choose these datasets because they involve explicit reasoning processes
with unambiguous single-token answers (i.e., “True” and “False”), which facilitates our analysis. To
standardize the evaluation process, each dataset is transformed into a true-or-false QA format. For a
detailed description of the datasets and examples, please refer to Appendix B.2.

1. BoolQ (Clark et al., 2019): A reading comprehension dataset where each instance involves
a yes/no question grounded in a related passage.

2. CoinFlip (Wei et al., 2022): A dataset that challenges the model’s symbolic reasoning
abilities by presenting a task where the model must determine the outcome of a coin (heads
or tails) after a series of flips.

3. PrOntoQA (Saparov and He, 2023): A dataset designed for logical reasoning. Each question
requires a 3-hop deduction to determine the truth value of a proposition based on a set of
assumptions with fictional concepts.

4. ProofWriter (Tafjord et al., 2020): A logical reasoning dataset that, in contrast to PrOntoQA,
uses real concepts for all assumptions. Each question requires 3 hops of reasoning.

We balance the labels and each dataset has at least 500 samples for evaluation. Our method requires
no training procedure. To evaluate reasoning performance, we use calibrated accuracy following
Zhao et al. (2021); Burns et al. (2023), balancing predictions to be 50/50 across the two labels.

4.2 Internal Consistency is a Good Calibration Measure

Our analysis begins by examining patterns of internal consistency across different layers of LLMs. As
illustrated in Figure 6 (Appendix C), latent predictions exhibit variable convergence during inference;
notably, there are significant increases in consistency in the middle and final layers, while the early
layers are characterized by considerable noise. Additionally, these patterns vary across models and
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Figure 3: Internal consistency is a reliable measure of prediction confidence in CoT reasoning.
From left to right: 1) the effect of different prompting techniques on the model’s internal consistency;
2) the distribution discrepancy of internal consistency between correct and incorrect model predictions;
3) pattern variations in agreement values (representing the ratio of data instances where the latent
predictions match the final predictions) across layers; and 4) a calibration plot with bins according to
the model’s internal consistency on the x-axis and the accuracy within each bin on the y-axis. Results
are averaged over all models and datasets. See Appendix C for the full results.

datasets. Smaller models, such as Llama-2-7B, show high variability in latent predictions across
layers, indicating less stability in their reasoning processes. In contrast, larger models like Mixtral
8×7B demonstrate more robust internal reasoning, as evidenced by more reliable convergence of
latent predictions. For BoolQ, the inconsistency is less pronounced compared to other datasets that
require more complex symbolic and logical reasoning.

Furthermore, the correlation between internal consistency and model accuracy is particularly evident
when distinguishing between correct and incorrect answers in CoT reasoning. As depicted in
Figure 3, the impact of prompting techniques on internal consistency is significant, highlighting the
emergence of inconsistency brought by CoT prompting as discussed in Section 2.2. While few-shot
demonstrations generally enhance consistency, CoT prompting decreases it. A closer examination
of CoT reasoning reveals that reasoning paths leading to incorrect answers typically exhibit lower
internal consistency. These results underscore the potential of internal consistency not only as a
diagnostic tool but also as a reliable measure for calibrating reasoning in LLMs.

4.3 Enhancing Reasoning with Internal Consistency

Our analysis reveals a strong correlation between internal consistency and prediction accuracy,
suggesting its potential as a mechanism for improving reasoning performance. As demonstrated in
Section 4.2, CoT prompting, while effective, tends to decrease internal consistency. This decrease
is possibly attributable to the generated reasoning paths that incorporate incorrect rationales, which
confuse the model to make inconsistent predictions across layers. To investigate the generality of
this phenomenon and its potential solutions, we also least-to-most (L2M) prompting (Zhou et al.,
2022), which decomposes complex problems into simpler sub-problems for reasoning. For a detailed
description of our least-to-most decomposition approach, please refer to Appendix B.3.

To incorporate internal consistency, we build on the self-consistency (SC) approach (Wang et al.,
2022), which utilizes an ensemble of multiple sampled reasoning paths to increase accuracy. Our
proposed method, which we term SC+IC, integrates internal consistency to weight these reasoning
paths accordingly. Specifically, if a reasoning path demonstrates high internal consistency in its
answer prediction, the probability of accepting its corresponding answer as the final answer increases.
We accumulate the sum of internal consistency scores across all reasoning paths for each answer
and choose the answer with the highest sum. For baselines, we also compare with greedy decoding
Greedy and a logit-based approach SC+∆ (Wang and Zhou, 2024) that selects the final answer
based on a confidence measure ∆k = p

(
ŷ1 | x

)
− p

(
ŷ2 | x

)
, where ŷ1 and ŷ2 represent the top

two tokens for answer prediction of the k-th path.

Table 1 summarizes the results, which demonstrate that SC+IC consistently outperforms the others
across different models and tasks, with improvements ranging between 1.8% to 4.9% across models.
Figure 4 plots the calibrated accuracy with respect to varying numbers of sampled paths. We observe
clear improvements of SC+IC over the baselines, highlighting the effectiveness of leveraging internal
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Table 1: Internal consistency improves reasoning performance across diverse tasks. We report
calibrated accuracy averaged across runs of 10 different random seeds. For self-consistency (SC) and
its variants, results are obtained with 40 sampled reasoning paths.

BoolQ CoinFlip PrOntoQA ProofWriter Mean
CoT L2M CoT L2M CoT L2M CoT L2M CoT L2M

LLAMA-2-7B

Greedy 67.1 61.4 71.2 81.9 51.7 51.1 52.4 60.7 60.6 63.8
SC 70.0 73.2 76.0 89.2 49.0 50.0 52.2 66.8 61.8 69.8
SC+∆ 69.9 73.0 76.2 90.1 50.2 50.1 52.4 68.2 62.2 70.3
SC+IC 70.7 73.4 77.6 90.2 49.0 51.2 52.2 69.0 62.4 71.0
SC+IC (tune) 71.5 73.5 78.6 93.9 50.8 55.7 54.1 70.7 63.8 73.4
SC+IC (transfer) 71.5 73.5 78.7 93.9 50.8 55.7 53.9 70.7 63.8 73.4

LLAMA-2-13B

Greedy 78.5 71.3 78.9 90.5 53.6 54.0 60.8 78.1 67.9 73.5
SC 80.8 78.3 81.0 94.2 52.6 55.4 61.0 88.6 68.9 79.1
SC+∆ 81.2 78.9 81.8 94.2 55.0 57.6 61.6 87.9 69.9 79.6
SC+IC 81.4 78.7 84.0 93.2 55.4 57.0 61.8 88.6 70.6 79.4
SC+IC (tune) 81.4 80.4 86.2 96.5 54.5 56.6 62.9 89.6 71.2 80.8
SC+IC (transfer) 81.4 80.2 86.4 96.3 54.4 56.2 62.8 89.7 71.2 80.6

MISTRAL-7B

Greedy 74.0 72.7 89.8 99.1 55.3 53.4 65.6 73.3 71.2 74.6
SC 76.8 78.9 95.2 99.4 58.0 51.4 68.6 84.0 74.6 78.4
SC+∆ 77.9 79.5 95.2 99.4 59.6 52.7 66.8 85.3 74.9 79.2
SC+IC 78.1 78.9 96.4 99.4 59.8 53.2 70.0 85.0 76.1 79.1
SC+IC (tune) 77.8 79.5 97.7 99.9 60.4 56.6 71.2 88.6 76.8 81.2
SC+IC (transfer) 77.8 79.4 97.7 99.9 60.5 56.5 71.1 88.7 76.8 81.1

MIXTRAL-8×7B

Greedy 78.8 78.2 98.8 99.4 57.4 57.9 72.3 79.4 76.8 78.7
SC 81.6 85.3 99.4 100.0 61.6 56.8 75.6 90.2 79.6 83.1
SC+∆ 82.6 85.6 99.4 100.0 63.4 57.9 75.0 90.6 80.1 83.6
SC+IC 81.7 85.6 99.4 100.0 63.4 56.4 78.0 90.6 80.6 83.2
SC+IC (tune) 81.8 86.1 99.9 100.0 63.8 59.3 78.8 92.1 81.1 84.4
SC+IC (transfer) 81.8 86.1 100.0 100.0 63.8 59.5 78.9 92.1 81.1 84.4

consistency to enhance reasoning. This improvement is particularly notable in tasks involving
symbolic and logical reasoning, which depend heavily on the correctness of reasoning paths. In
addition, we observe that internal consistency effectively distinguish between correct and incorrect
paths (e.g., in the PrOntoQA examples in Table 2, internal consistency helps filter out flawed
rationales), validating our hypothesis on why internal consistency can enhance CoT reasoning.

4.4 Layer-weighted Aggregation Finds Transferable Patterns

While results of SC+IC have demonstrated the effectiveness of leveraging latent predictions for
reasoning, the relative importance of different layers remains unexplored. Recent studies have shown
that certain intermediate layers specialize in specific types of reasoning (Yang et al., 2024). These
observations suggest that treating all layers equally when computing internal consistency might be
suboptimal. Motivated by these insights, we introduce an aggregation strategy for internal consistency
with two variants: SC+IC (tune) and SC+IC (transfer). Specifically, instead of assigning
equal weights to each layer in Equation 2, we consider a learned weight vector w ∈ RL (where L is
the number of layers) for aggregation. For SC+IC (tune), we optimize layer weights using 500
held-out samples per dataset. The weights are learned using Adam optimizer with a learning rate
of 0.01 for 1,000 iterations. SC+IC (transfer) evaluates cross-task generalization by applying
weights tuned on PrOntoQA to other datasets.

The results are presented in Table 1 and Figure 4. Despite introducing only L parameters, this
weighted approach yields substantial improvements. Notably, the strong performance of SC+IC
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Figure 4: Internal consistency brings larger gains for complex reasoning tasks. The figure
shows calibrated accuracy as a function of the number of votes for three types of tasks: reading
comprehension (BoolQ), symbolic reasoning (CoinFlip), and logical reasoning (PrOntoQA and
ProofWriter). Results are averaged over all models and random seeds.

(transfer) across diverse tasks indicates that optimal layer importance patterns generalize well,
demonstrating the broad applicability of internal consistency for reasoning tasks.

4.5 Investigating the Role of Transformer Components in Internal Inconsistency

Having observed that CoT prompting exaggerates internal inconsistency and that reasoning perfor-
mance can be improved by re-weighting reasoning paths based on internal consistency, we now aim
to understand why internal inconsistency emerges from CoT reasoning. Specifically, we explore how
different network components contribute to the final predictions in CoT reasoning and, consequently,
the calibration effect of internal consistency. One hypothesis is that this effect arises from better
elicitation of information processed in the middle layers, which tends to be underutilized in later
layers. To investigate this, we conduct a detailed analysis focusing on the roles of self-attention and
feed-forward network (FFN) layers.

Self-attention Layers We analyze the average attention weights across all attention heads at each
layer, focusing on what the answer tokens attend to. Consistent with the CoT process, we segment
the processed tokens into three parts: the context, the query, and the generated rationale. Further
details on the methodology and calculations can be found in Appendix B.5.

FFN Layers For FFN layers, we use a probe vector trained on the model’s last hidden state of the
answer token with respect to the model’s output. We compute cosine similarities between this probe
vector and the value vectors (Geva et al., 2022; Lee et al., 2024), each corresponding to a column

Table 2: Examples where internal consistency helps select correct reasoning paths for Mistral-7B
on PrOntoQA. We show the paths with the highest and lowest internal consistency. The question
has been reformatted for better presentation. Incorrect steps are colored in gray, whereas wrong
predictions are highlighted in red.

Question: Zumpuses are not transparent. Each zumpus is a wumpus. Wumpuses are red. Each wumpus
is a jompus. Impuses are amenable. Every jompus is not spicy. Jompuses are tumpuses. Every tumpus is
floral. Tumpuses are yumpuses. Every yumpus is not amenable. Every yumpus is a vumpus. Each vumpus is
metallic. Every vumpus is a numpus. Numpuses are temperate. Numpuses are dumpuses. Dumpuses are not
small. Dumpuses are rompuses. Polly is a jompus. True or false: Polly is amenable.

Sampled Paths:
P1 (IC=0.875): Polly is a jompus. Jompuses are tumpuses. Polly is a tumpus. Every tumpus is floral.
Tumpuses are yumpuses. Polly is a yumpus. Every yumpus is not amenable. Polly is not amenable. False

P2 (IC=0.656): Polly is a jompus. Jompuses are impuses. Impuses are amenable. Polly is amenable. True

Ground-truth Path: Polly is a jompus. Jompuses are tumpuses. Polly is a tumpus. Tumpuses are yumpuses.
Polly is a yumpus. Every yumpus is not amenable. Polly is not amenable. False
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Figure 5: The emergence of internal inconsistency in CoT reasoning could be attributed to the
misalignment between layers with high attention weights on critical tokens and those promotes
certain predictions. The histograms display attention weights for each part (context, query, and
rationale) across self-attention layers , accompanied by a gray line indicating the count of value
vectors in FFN layers that achieve high cosine similarity to the model’s final prediction.

in the last FFN matrix of the layer. Our analysis focuses on the vectors with the top 0.1% of cosine
similarity values, which play a pivotal role in forming final predictions. For more details, please see
Appendix B.6.

Results Figure 5 presents our findings: 1) Self-attention layers in the middle layers show a marked
focus on the query and reasoning steps, a pattern consistent across both models and datasets; 2) FFN
layers in the later layers dominate the final model outputs, as indicated by the fact that value vectors
with the highest cosine similarities to the probe vector tend to cluster in the later layers. The layers
with strong attention on query and reasoning steps and those where high cosine similarity value
vectors cluster do not align, providing insight into the possible mechanism behind the emergence
of internal inconsistency. This finding is consistent with Figure 2 and Figure 6, suggesting that the
model may make correct predictions in the middle layers but fails to fully utilize them in the later
layers. To further understand the specific concepts these high-similarity value vectors represent and
verify their importance in determining the final prediction, we project them onto the vocabulary
space (nostalgebraist, 2020). Additional analysis are provided in Appendix B.6.3.

5 Related Work

Understanding the Inner Workings of Language Models The rapid progress in LLM devel-
opment has necessitated simultaneous efforts to interpret the inner workings of advanced mod-
els (Bricken et al., 2023; Ferrando et al., 2024). These works aim to provide an internal view of
mechanisms to ensure safety and fairness (Burns et al., 2023; Zou et al., 2023; Li et al., 2024) and
to further improve model inference (Schuster et al., 2022; Raposo et al., 2024). Some studies also
examine CoT reasoning from an internal perspective and propose methods to teach models to perform
implicit CoT (Deng et al., 2023). Unlike these approaches, which require additional training for
interpretation, our internal consistency measure offers an off-the-shelf solution to calibrate CoT
reasoning, providing a practical and efficient tool for enhancing model reliability.

Calibration in Language Models Traditional calibration methods (Platt et al., 1999; Naeini et al.,
2015; Guo et al., 2017) train a parameterized classifier on validation data to adjust the final output
of a neural network towards expected outcomes. In the context of LLMs, previous works apply
trained parameterized models to the logits at the final layer (Zhao et al., 2021; Shen et al., 2024). In
comparison, our study focuses on the phenomenon of internal inconsistency in CoT reasoning and
demonstrates that internal consistency is a reliable unsupervised calibration measure.

Faithfulness of CoT Reasoning Although the reasoning capabilities of LLMs have been greatly
enhanced with techniques like CoT reasoning (Wei et al., 2022; Yao et al., 2022; Xia et al., 2024),
previous investigations into the faithfulness of CoT reasoning have shown that the model’s generated
rationales often are not consistent with their predictions (Lyu et al., 2023; Lanham et al., 2023). These
studies primarily focus on the alignment between a model’s verbalized reasoning and its outcomes,

9



without delving into the model’s internal reasoning processes. In contrast, our work provides new
insights into how unfaithfulness emerges internally during CoT reasoning and proposes solutions to
calibrate reasoning with internal consistency.

Closest to our work is that of Halawi et al. (2023), which studies harmful imitation behaviors of
LLMs and the underlying internal mechanisms. Unlike their study that focuses on few-shot learning
with false demonstrations, we provide new insights on the phenomenon that CoT reasoning leads to
internal inconsistency and that we can calibrate reasoning with internal consistency.

6 Conclusions

This work explores the use of internal representations to enhance the reliability of reasoning in LLMs.
By examining CoT reasoning, we identify that although generated rationales can improve answer
accuracy, they also lead to inconsistencies between middle and final layer representations, potentially
affecting reliability. To mitigate this, we introduce internal consistency as a confidence measure,
which evaluates the alignment of latent predictions from intermediate layers. Our extensive empirical
studies across multiple models and datasets demonstrate that internal consistency is a robust indicator
of correct reasoning paths, which we show can be further used for enhancing CoT reasoning by
prioritizing paths with high internal consistency. Finally, our analysis on the patterns in attention and
feed-forward networks across layers provides insights on why internal inconsistency emerges.

This work has several limitations. First, we restrict our empirical study on decoder-only models.
While techniques like decoder lens (Langedijk et al., 2023) is a promising way to extend the concept
of internal consistency to encoder-decoder models, we leave it for future work. Second, our analysis
focuses on vanilla CoT prompting as the simplest approach for reasoning, whereas many other
prompting techniques have been proposed (Gao et al., 2023; Yao et al., 2024). It would be interesting
to further investigate internal consistency under these more complex scenarios.
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A Broader Impacts

This work contributes to the understanding and enhancement of reasoning capabilities in LLMs
through the lens of internal consistency. While our findings and methodologies offer significant
advancements in the calibration and reliability of LLMs, there are potential negative societal impacts
to consider. Enhanced reasoning abilities in LLMs could be misused to generate more convincing
disinformation, exacerbating issues related to misinformation and manipulation. To mitigate these
risks, it is crucial to implement robust monitoring and access control mechanisms. This includes
gated release of models, ensuring that only authorized and ethical usage is permitted. Furthermore,
developing and providing defenses against misuse, such as mechanisms for detecting and countering
disinformation, is essential. By proactively addressing these potential negative impacts, we aim to
responsibly advance the field while safeguarding societal interests.

B Implementation Details

We performed all experiments on a compute node with 8 Nvidia GPU cards and 512 GB of memory.
To replicate our results, the total estimated computing time is under 100 GPU hours, even though the
entire research project required more computing power than the experiments detailed in the paper.

B.1 Preliminary Analysis

We conduct linear probing on activations to investigate how information is processed throughout layers
and reasoning steps during CoT reasoning. Specifically, for each reasoning step and intermediate layer,
we train a logistic regression classifier on the corresponding hidden states of all data instances. We
split the dataset randomly by 80%/20% into training and validation subsets. Following Radford et al.
(2021), we use the Scikit-learn package (Pedregosa et al., 2011) and determine the L2 regularization
strength λ using a hyperparameter sweep over the range between 10−6 and 106 for logistic regression.

B.2 Main Experiments

Models Our implementation is based on the Huggingface’s Transformer library (Wolf et al.,
2019). We use meta-llama/Llama-2-7b-hf and meta-llama/Llama-2-13b-hf for
the Llama series. For the Mistral series, we evaluate mistralai/Mistral-7B-v0.1 and
mistralai/Mixtral-8x7B-v0.1. The Llama and Mistral series models are released under
the custom license and apache-2.0 license, respectively.

Dataset Construction The construction processes for the test datasets are as follows:

1. BoolQ: We use the original validation set3, which has 2033 positive and 1237 negative
samples. We balance the classes by randomly sampling 1237 samples from the positive
ones, resulting in a subset of 2474 samples. BoolQ is released under the Creative Commons
Share-Alike 3.0 license.

2. CoinFlip: Since the original dataset used in Wei et al. (2022) is not publicly available, we
use the reproduced one4 created by Kojima et al. (2022) which contains 500 instances.

3. PrOntoQA: We use the official script5 provided by Saparov and He (2023) to generate 500
instances. Each instance requires 3 hops of reasoning and is based on fictional concept
names. PrOntoQA is released under the Apache-2.0 license.

4. ProofWriter: We use the subset6 provided by Poesia et al. (2023) and randomly sample 500
instances. ProofWriter is released under the CC BY license.

3https://github.com/google-research-datasets/boolean-questions
4https://github.com/kojima-takeshi188/zero_shot_cot/blob/main/dataset/

coin_flip/coin_flip.json
5https://github.com/asaparov/prontoqa/blob/main/run_experiment.py
6https://github.com/gpoesia/certified-reasoning/blob/main/learning/

proofwriter/proofwriter_3hop.json
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Prompt Format We use the prompt format {context}\nQ: {query}\nA: for all datasets
and models. For few-shot prompting, in-context examples are prepended using the following
format (taking 2-shot prompting as an example): {icl example 1}\n\n{icl example
2}\n\n{test example}. For few-shot CoT prompting, we append the rationale after A: for
each in-context example. Table 3 provides a list of examples for the considered datasets.

Few-shot Examplars We use the few-shot examples from Wang et al. (2022) for BoolQ and from
Wei et al. (2022) for CoinFlip. For ProofWriter and PrOntoQA, we directly utilize the examplars
from the original datasets.

Table 3: Data examples.

Dataset Context Query

BoolQ The myotonic goat, otherwise known as the fainting goat, is a
domestic goat that temporarily seizes when it feels panic. If startled
by sudden movements or loud noises, they will attempt to escape
from the disturbance, generally followed by a startle reaction. In
more severe cases, this reaction results in strong tetanic contractions
of the agonist and antagonist muscles, causing an uncontrolled
stiffness that may cause the goat to remain “frozen” in the position
that it was in previous to the attack, or cause it to fall to the ground
on its side. During an attack, which may last from 5-20 seconds,
the goat can often be picked up without any bending or movement
occurring in its body. In the case of goats that are less severely
affected with the condition, there may be some minor localized
stiffness observed in the legs, however, they are still capable of
running away. This behaviour is caused by a hereditary genetic
disorder called myotonia congenita. The myotonic goat, similar
to humans with congenital myotonia, exhibits no obvious muscle
wasting, is rarely incapacitated by the condition, and lives a normal
and healthy life span.

True or false: is there
such a thing as a faint-
ing goat

CoinFlip A coin is heads up. Whitney flips the coin. Erika does not flip the
coin. Tj does not flip the coin. Benito flips the coin.

True or false: Is the
coin still heads up?

PrOntoQA Every tumpus is sour. Tumpuses are rompuses. Every rompus is
small. Every rompus is an impus. Impuses are floral. Impuses are
dumpuses. Dumpuses are not kind. Every dumpus is a yumpus.
Each yumpus is feisty. Yumpuses are numpuses. Numpuses are not
opaque. Each numpus is a zumpus. Every wumpus is opaque. Every
zumpus is temperate. Each zumpus is a jompus. Every jompus is
dull. Jompuses are vumpuses. Alex is a dumpus.

True or false: Alex is
not opaque.

ProofWriter Fiona is blue. Harry is cold. Harry is white. If Harry is blue and
Harry is green then Harry is not round. If something is green then
it is young. All white things are young. If something is green and
not white then it is not blue. Young, round things are not furry.
If something is white and young then it is round. If something is
young and not cold then it is round. If something is green and not
young then it is not round.

True or false: Harry is
round.

B.3 Least-to-Most Prompting

In addition to chain-of-thought prompting, we evaluated our approach using least-to-most prompt-
ing Zhou et al. (2022) across four datasets. Due to the absence of existing least-to-most prompting
templates for these datasets, we developed a systematic process to generate and validate appropriate
prompts.

For each dataset, we selected 4 representative instances as our prompt engineering samples. We
utilized GPT-4o to generate initial least-to-most decompositions for these instances, followed by
manual inspection and refinement. Table 4 presents examples from each dataset demonstrating our
least-to-most decomposition approach.
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Table 4: Examples of least-to-most prompting decomposition across different datasets.

Dataset Context Decomposition Steps

BoolQ System of a Down, sometimes shortened to System and
abbreviated as SOAD, is an Armenian-American heavy
metal band from Glendale, California, formed in 1994.
The band currently consists of Serj Tankian (lead vo-
cals, keyboards), Daron Malakian (vocals, guitar), Shavo
Odadjian (bass, backing vocals) and John Dolmayan
(drums).

1. Who are the mem-
bers of System of a
Down? 2. What are
the roles of each mem-
ber? 3. How many
members are listed as
vocalists?

CoinFlip A coin is heads up. Ka flips the coin. Sherrie flips the
coin.

1. What is the starting
position of the coin? 2.
What happens to the
coin after each flip?

PrOntoQA Every tumpus is sour. Tumpuses are rompuses. Every
rompus is small. Every rompus is an impus. Impuses
are floral. Impuses are dumpuses. Dumpuses are not
kind. Every dumpus is a yumpus. Each yumpus is feisty.
Yumpuses are numpuses. Numpuses are not opaque.
Each numpus is a zumpus. Every wumpus is opaque.
Every zumpus is temperate. Each zumpus is a jompus.
Every jompus is dull. Jompuses are vumpuses. Alex is a
dumpus.

1. What are the prop-
erties of a dumpus? 2.
Is Alex a dumpus? 3.
Is a dumpus opaque?

ProofWriter Fiona is blue. Harry is cold. Harry is white. If Harry
is blue and Harry is green then Harry is not round. If
something is green then it is young. All white things are
young. If something is green and not white then it is not
blue. Young, round things are not furry. If something is
white and young then it is round. If something is young
and not cold then it is round. If something is green and
not young then it is not round.

1. What are Harry’s
characteristics? 2.
What does being
white imply about
being young? 3. What
does being white and
young imply about
being round?

Our decomposition strategy focuses on breaking down complex reasoning tasks into simpler, sequen-
tial steps. This systematic approach helps the model handle complex reasoning tasks by addressing
simpler sub-problems sequentially.

Generation In our few-shot CoT experiments, we use Nucleus sampling (Holtzman et al., 2019)
with a temperature of 0.7 and a top-p of 0.95 to generate reasoning paths.

B.4 The Issue of Miscalibration in Latent Predictions

Ideally, for a balanced dataset with an equal proportion of True and False instances, we would expect
the LLM to assign approximately 50% probability to each class. However, our preliminary analysis
shows that latent predictions tend to exhibit a skewed distribution, allocating disproportionately high
probabilities to one class. Therefore, we implement specific steps to balance the predictions at each
layer before use, following Halawi et al. (2023).

Denote the probability assigned by the LLM to the True class as p(True) and the probability assigned
to the False class as p(False). We apply the following steps for each layer:

1. We collect the model’s output logits for all instances in the dataset.

2. We normalize the probabilities in the i-th instance such that p̂i(True) = pi(True)
pi(True)+pi(False) .

3. We determine the median of the set {p̂i}ni=1 to be t.

4. For any given instance, if the model’s output p̂i(True) ≥ t, we classify it as True; otherwise,
we classify it as False.
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B.5 Self-attention Layer Analysis

We are interested in the attention value on the context, the query and the generated rationale part. Our
calculation can be formally represented as:

AttnScore(ℓ,P) =
1

H

H∑
h=1

∑
i∈P

MHSA(ℓ,h)(i, tans)

where AttnScore(ℓ,P) denotes the average attention weight across the attention heads on layer ℓ
for part P , tans denotes the index of the answer token, MHSA(ℓ,h)(i, j) signifies the sum of attention
scores from the i-th token to the j-th token within the sequence, as computed by the h-th attention
head at the ℓ-th layer.

B.6 FFN Layer Analysis

B.6.1 Value vector

We utilize the concept of the value vector and the weighted value vector of FFN given by Geva et al.
(2022). Specifically, each FFN in layer ℓ is made up of two linear transformations with a point-wise
activation function in between:

FFNℓ(xℓ) = σ(W ℓ
Kxℓ)W ℓ

V ,

where W ℓ
K ,W ℓ

V ∈ Rdm×d are the parameter matrices and σ is the activation function. We define the
value vector vℓ

i as the i-th column of W ℓ
V . For an input xℓ, the keys produce a vector of coefficients

mℓ := σ(W ℓ
Kxℓ) ∈ Rdm , then the output of FFN is the weighted average of the value vectors with

respect to mℓ, that is:

FFNℓ(xℓ) =

dm∑
i=1

mℓ
iv

ℓ
i .

B.6.2 Implementation Details

We execute the models on each dataset and extract their final output (True or False) and the last
hidden state. Subsequently, we apply logistic regression (without intercept term) in the Scikit-learn
package (Pedregosa et al., 2011), and determine the optimal L2 regularization strength λ using
hyperparameter grid search, based on the last hidden state and the final output of the model. The
accuracy evaluated by 5-fold cross-evaluation is above 93% consistently (see Table 5 for details). We
observe that using ground truth labels as the training target of logistic regression results in similar
result with Figure 5 but the training accuracy is poorer as the model may not know the correct answer.

Then we calculate the cosine similarity of the value vectors and the probe vector. As the average
cosine similarity across all layers is relatively noisy because many value vectors are not relevant to
the task, we plot the count of value vectors of top 0.1% of the cosine similarity values instead.

Table 5: Cross-validation accuracy of the training of the probe vector.

ProofWriter PrOntoQA

Mistral-7B 97.0% 97.6%
Llama-2-7B 93.6% 96.3%

B.6.3 Semantics Analysis

To uncover the concepts that the value vectors of the top cosine similarity promote, we project them
onto the vocabulary space. Specifically, we are interested in the top tokens of the followings:

• The probe vector, which we refer to as Wprobe.

• The value vectors with top cosine similarity with the probe vector. We refer the i-th value
vector at layer ℓ as vℓ

i (i and ℓ are indexed from 0).
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• We stack the value vectors of top 100 of cosine similarity to a N × d matrix (N = 100) and
apply SVD, obtaining the top singular value vectors. We refer the singular value vector of
the largest singular value as U.

Filtering out the tokens that are Unicode escape sequences (e.g. \u2705), the result is depicted in
Table 6- 9. Note that some token ids encode the same word.

Table 6: Top tokens promoted by the probe vector, value vectors and top singular value vector for
Mistral-7B on ProofWriter.

Vector Top tokens
Wprobe true, true, True, True, sort, right, kind, fin
v19
8228 true, truth, TRUE, True, true, correct, True, reality

v26
13073 ver, ver, Ver, Vern, verd, VER, verification, verify
v31
1549 right, Right, right, Right, RIGHT, droit, Rights, rights
v31
597 thinking, really, pretty, constantly, calm, misunder, why, how

v22
12854 stronger, infl, elev, loaded, augment, aug, strong, rich
v31
2391 most, none, most, none, current, newest, now, more

v21
1308 positive, posit, praise, affirm, Pos, triumph, approval, appro

v24
5604 right, right, Right, Right, RIGHT, correct, correct, rights
U both, both, Both, beiden, neither, sia, tanto, Neither

Table 7: Top tokens promoted by the probe vector, value vectors and top singular value vector for
Mistral-7B on PrOntoQA.

Vector Top tokens
Wprobe True, True, Trust, TRUE, TRUE, Tru, true, Truth
v26
13073 ver, ver, Ver, Vern, verd, VER, verification, verify
v19
8228 true, truth, TRUE, True, true, correct, True, reality

v21
1308 positive, posit, praise, affirm, Pos, triumph, approval, appro

v18
8216 yes, Yes, Yes, did, does, yes, Roh, rog

v18
5555 positive, affirm, strengths, yes, confirmed, endors, Sull, inclusion

v29
8705 true, True, true, True, TRUE, TRUE, truly, Tru, false

v18
6717 persistence, esso, mero, triumph, /******/, tol, lica, akov

v23
9740 eligible, legitimate, compatible, permitted, constitutional, ethical, legit, olv
U FALSE, false, False, absent, FALSE, false, absence, lessness
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Table 8: Top tokens promoted by the probe vector, value vectors and top singular value vector for
Llama-2-7B on ProofWriter.

Vector Top tokens
Wprobe True, tr, Tru, Tr, True, TR, true, TRUE
v31
6785 t, T, tub, tap, tile, tut, tum, tin

v16
1949 pra, triumph, bless, vict, Pra, positive, solutions, rejo

v16
10757 confirm, confirm, yes, ="., confir, otto, dia, unfortunately
v31
6356 grande, greater, gradle, groupe, Grad, gradu, great, grand

v20
2369 sam, uniform, identical, uniform, hom, similarity, similar, smooth

v16
9429 pra, positive, Pos, Pra, posit, happy, Pos, bless, eu
v18
722 blo, alive, forced, oku, replacing, eu, active, once

v29
3660 ways, ways, MDb, torn, modo, hm, zik, Tourn, etch
U NOT, nicht, W, notin, False, ikke, false, FALSE, moins

Table 9: Top tokens promoted by the probe vector, value vectors and top singular value vector for
Llama-2-7B on PrOntoQA.

Vector Top tokens
Wprobe True, TRUE, TRUE, TR, True, true, TR, truth
v16
1949 pra, triumph, bless, vict, Pra, positive, solutions, rejo
v18
722 blo, alive, forced, oku, replacing, eu, active, once

v31
6356 grande, greater, gradle, groupe, Grad, gradu, great, grand

v16
4462 active, straight, bold, walt, visible, Active, Active, dx

v16
10757 confirm, confirm, yes, ="., confir, otto, dia, unfortunately
v16
9429 pra, positive, Pos, Pra, posit, happy, Pos, bless, eu

v14
8600 pra, positive, esc, salv, escaped, triumph, rag, gem

v25
3927 Tr, Tr, tr, tram, trig, tr, trim, trim
U false, FALSE, NOT, FALSE, False, notin, negative, fails

The result is to verify that the value vectors with the highest cosine similarity to the probe vector
indeed encode crucial information for determining the final prediction, so as to verify the emergence
of internal inconsistency from the perspective of pattern of attention and FFN layers demonstrated in
Section 4.5. This is evidenced by their representation of important keywords such as "true", "false",
"verification", and others.

In addition, we also have some interesting discoveries: 1) Some value vectors appear to be of the top
cosine similarity with the probe vector in both datasets, indicating their importance and relevance.
2) The value vectors consistently bias towards "True", and the singular value vector of the largest
singular value tends to lean towards negative tokens, indicating the necessity of calibration. 3) Some
value vectors encode tokens of opposite concepts, which reveals a degree of internal inconsistency
within a single value vector.

C Additional Results

In this section, we provide additional results to support our analysis. Figure 6 illustrates the patterns
of internal consistency across different layers, as discussed in Section 4.2. This figure shows
variable convergence patterns across different models and datasets, with significant increases in
consistency observed in the final layers. Figures 7-10 present detailed results for each dataset and
model corresponding to the findings in Figure 3.
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Figure 6: The patterns of internal consistency are similar across different tasks and models. The
“agreement” value represents the ratio of data instances where the latent predictions match the final
predictions. Results are obtained from the zero-shot prompting setting.
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Figure 7: Detailed results for each dataset and model of the first panel in Figure 3: the effect of
different prompting techniques on the model’s internal consistency.
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Figure 8: Detailed results for each dataset and model of the second panel in Figure 3: the distribution
discrepancy of internal consistency between correct and incorrect model predictions.
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Figure 9: Detailed results for each dataset and model of the third panel in Figure 3: pattern variations
in agreement values (representing the ratio of data instances where the latent predictions match the
final predictions) across layers.
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Figure 10: Detailed results for each dataset and model of the fourth panel in Figure 3: a calibration
plot with bins according to the model’s internal consistency on the x-axis and the accuracy within
each bin on the y-axis.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims in the abstract and Section 1 match our experimental results
in Section 2.2 and Section 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper does not include theoretical results. We focus on empirical findings
and analysis about internal consistency in CoT reasoning.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We present implementation details that are sufficient to reproduce the main
experimental results in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Due to policy constraints, we are unable to provide the code with our submis-
sion. We provide sufficient implementation details for readers to reproduce our results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies the details necessary to understand the results in Ap-
pendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We include standard deviation in our main results to show the statistical
significance of the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide information on the resources in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We are guided by the NeurIPS Code of Ethics when conducting this research.
For example, we clarify the datasets used, their sources, and their licensing in Appendix B.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss broader impacts of our work in Appendix A.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not introduce new models or data and therefore poses no such
risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper properly credits the assets used, mentions their licenses, and respects
them. For more details, please refer to Appendix B.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new assets are well documented in Appendix B.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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